WO2018220782A1 - Elevator device - Google Patents

Elevator device Download PDF

Info

Publication number
WO2018220782A1
WO2018220782A1 PCT/JP2017/020424 JP2017020424W WO2018220782A1 WO 2018220782 A1 WO2018220782 A1 WO 2018220782A1 JP 2017020424 W JP2017020424 W JP 2017020424W WO 2018220782 A1 WO2018220782 A1 WO 2018220782A1
Authority
WO
WIPO (PCT)
Prior art keywords
elevator
data
distance
car
distance sensor
Prior art date
Application number
PCT/JP2017/020424
Other languages
French (fr)
Japanese (ja)
Inventor
将太郎 森
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/020424 priority Critical patent/WO2018220782A1/en
Priority to CN201780090924.7A priority patent/CN110678409B/en
Priority to JP2019521632A priority patent/JP6704519B2/en
Publication of WO2018220782A1 publication Critical patent/WO2018220782A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B13/00Doors, gates, or other apparatus controlling access to, or exit from, cages or lift well landings
    • B66B13/02Door or gate operation
    • B66B13/14Control systems or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators

Definitions

  • the present invention relates to an elevator apparatus, and more particularly to an elevator apparatus capable of detecting the shape of an object such as a person or an object getting on and off a car.
  • Some conventional elevator devices calculate the occupancy rate of an object such as a person or an object with respect to the elevator car floor area, and cancel the landing call when the occupancy rate in the car exceeds a predetermined value. For example, in the invention described in Patent Document 1, an object passing through an elevator doorway is detected as a linear image, and the floor projection area of the object is calculated based on this, thereby calculating the occupation ratio in the car. Yes.
  • Patent Document 1 since a fixed value set in advance is used as the width of the object, the shape of the object cannot be calculated with high accuracy. Therefore, there is a problem that the floor occupation area of the object cannot be accurately calculated, and the occupation ratio in the car becomes inaccurate.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide an elevator apparatus that can detect the shape of an object that gets on and off the car with low cost and high accuracy.
  • an elevator apparatus is provided with a first distance sensor group that is provided at either the left or right of an elevator entrance and acquires first distance data to an object that enters and exits a car.
  • a second distance sensor group for obtaining second distance data to an object that is provided on either the left or right side of the elevator entrance and exits the car, and the first distance data, the second distance data, and Based on the distance in the width direction of the first and second distance sensor groups, a width calculation unit that calculates the width data of the object, first detection start time data of the object by the first distance sensor group, A moving speed calculating unit for calculating moving speed data of the object based on the second detection start time data of the object by the distance sensor group and the distance in the depth direction of the first and second distance sensor groups; Speed data In addition, the first detection start time data and the first detection end time data of the object by the first distance sensor group, or the second detection start time data and the second detection of the object by the second distance sensor group.
  • a depth calculation unit that calculates the
  • the elevator apparatus can detect the shape of an object that gets on and off the car with low cost and high accuracy.
  • FIGS. 1A to 1C show the configuration of the entrance / exit of the elevator apparatus according to the embodiment of the present invention.
  • the first distance sensor group 11 is provided on either the left or right wall surface of the elevator entrance 40.
  • a second distance sensor group 12 is provided on the left or right wall surface of the elevator door 40.
  • the first distance sensor group 11 includes one or a plurality of reflective distance sensors 11n having an optical axis parallel to the width direction of the elevator entrance 40 (the direction indicated by the arrow W in the drawing). Each reflective distance sensor 11n can detect a distance X 1n from itself to the object (person or object) 50, respectively.
  • the second distance sensor group 12 includes one or more reflective distance sensors 12n having an optical axis parallel to the width direction of the elevator entrance 40. Each reflective distance sensor 12n can detect the distance X 2n from itself to the object 50, respectively.
  • the first distance sensor group 11 and the second distance sensor group 12 are provided apart by a predetermined distance W in the width direction of the elevator entrance 40.
  • the first distance sensor group 11 and the second distance sensor group 12 are provided apart from each other by a predetermined distance D in the depth direction of the elevator doorway 40 (the direction indicated by the arrow D in the drawing). .
  • the moving direction of the object 50 can be determined. For example, when the object 50 is first detected by the first distance sensor group 11 and then detected by the second distance sensor group 12, the object 50 is moving in the direction of getting into the car. On the other hand, when the object 50 is first detected by the second distance sensor group 12 and then detected by the first distance sensor group 11, the object 50 moves in the direction of getting out of the car.
  • FIG. 2 is a block diagram showing the configuration of the elevator apparatus according to the embodiment of the present invention.
  • the elevator device includes a boarding / alighting detection device 10, a control device 20, and a weighing device 30.
  • the boarding / alighting detection device 10 detects an object 50 that gets on and off the elevator car.
  • the control device 20 controls the operation of the elevator based on the detection result of the getting on / off detection device 10.
  • the scale device 30 detects the weight of an object that has entered the elevator car.
  • the elevator boarding / alighting detection device 10 includes a first distance sensor group 11, a second distance sensor group 12, a shape calculation unit 13 that calculates a three-dimensional shape of an object 50 that gets on and off the car, and a calculated three-dimensional shape. And an information reading unit 14 for reading information.
  • the shape calculation unit 13 includes a width calculation unit 131 that calculates the width data Wn of the object 50, a movement speed calculation unit 132 that calculates the movement speed data Vn of the object 50, and a depth calculation unit that calculates the depth data Dn of the object 50. 133 and a three-dimensional shape calculation unit 134 that calculates the three-dimensional shape Sh of the object 50.
  • the width calculation unit 131 includes a first distance X 1n to the object 50 detected by the first distance sensor group 11 and a second distance X 2n to the object 50 detected by the second distance sensor group 12. Then, the width data Wn of the object 50 is calculated according to the following expression from the predetermined distance W in the width direction between the first distance sensor group 11 and the second distance sensor group 12.
  • the moving speed calculation unit 132 has a first predetermined detection time TS 1n of the object 50 detected by the first distance sensor group 11 and a first detection time TS 2n of the object 50 detected by the second distance sensor group 12.
  • the moving speed data Vn of the object 50 is calculated from the distance D in the depth direction between the distance sensor group 11 and the second distance sensor group 12 according to the following equation.
  • the depth calculation unit 133 is based on the movement speed data Vn of the object 50 calculated by the movement speed calculation unit 132 and the detection start time TS 1n and detection end time TE 1n of the object 50 by the first distance sensor group 11.
  • the depth data Dn of the object 50 is calculated according to the following formula.
  • the depth calculation unit 133 uses the moving speed data Vn of the object 50 calculated by the moving speed calculation unit 132, the detection start time TS 2n of the object 50 by the second distance sensor group 12, and the detection end time TE. Based on 2n , the depth data Dn of the object 50 is calculated according to the following equation.
  • the solid shape calculation unit 134 calculates the three-dimensional shape Sh of the object 50 from the width data Wn of the object 50 calculated by the width calculation unit 131 and the depth data Dn of the object 50 calculated by the depth calculation unit 133.
  • FIGS. 3A and 3B show an example of the three-dimensional shape Sh of the object 50 calculated by the three-dimensional shape calculation unit 134.
  • the information reading unit 14 includes a floor projection area calculation unit 141, an occupation rate calculation unit 142, and a height detection unit 143.
  • the floor projection area calculation unit 141 calculates the floor projection area of the object 50 from the three-dimensional shape Sh of the object 50 calculated by the three-dimensional shape calculation unit 134.
  • FIG. 3C shows an example of the floor projected area of the object 50 calculated by the floor projected area calculating unit 141.
  • the occupancy rate calculation unit 142 calculates the occupancy rate in the elevator car based on the floor projection area of the object 50 calculated by the floor projection area calculation unit 141 and the floor area of the elevator car determined in advance. To do. Specifically, the occupancy rate calculation unit 142 adds the floor projected area when the object 50 gets into the car, and subtracts the floor projected area when the object 50 gets out of the car. The occupancy rate is calculated.
  • the height detection unit 143 calculates the height of the object 50 from the three-dimensional shape Sh of the object 50 calculated by the three-dimensional shape calculation unit 134.
  • the control device 20 controls the operation of the elevator based on the occupation ratio in the car calculated by the occupation ratio calculation unit 142 and the weight in the car detected by the scale device 30. Specifically, the control device 20 cancels the landing call when the occupation ratio in the car is a predetermined value or more, or when the weight in the car is more than the rated load. Thereby, when the car is full or more than the rated load, the operation of the elevator can be made efficient.
  • control device 20 opens the door of the elevator when the height of the object 50 calculated by the height detection unit 143 is equal to or less than a predetermined value and the operation in the car is not performed for a predetermined time. Thereby, it is possible to prevent a short child or animal from being trapped in the cage.
  • the control device 20 makes the opening / closing speed of the elevator door slower than normal. Thereby, it is possible to prevent an elderly person who is moving slowly or a person who is carrying a heavy object from being caught in the door. Note that the opening / closing time of the door may be changed more finely according to the actual moving speed of the object 50.
  • control device 20 stops or reverses the opening / closing operation of the elevator door during a period in which at least one sensor included in the first and second distance sensor groups 11 and 12 is detecting the object 50.
  • the 1st, 2nd distance sensor groups 11 and 12 can be utilized also as a safety device of a door.
  • the elevator apparatus includes the first distance sensor group 11 that acquires the first distance data X 1n to the object 50 and the second distance data to the object 50.
  • a second distance sensor group 12 that acquires X 2n , a width calculation unit 131 that calculates width data Wn of the object 50, a movement speed calculation unit 132 that calculates movement speed data Vn of the object 50, and the depth of the object 50
  • a depth calculation unit 133 that calculates data Dn and a three-dimensional shape calculation unit 134 that calculates a three-dimensional shape Sh of the object 50 are provided.
  • the shape of the object getting on and off the car can be calculated with low cost and high accuracy.
  • the first and second distance sensor groups 11 and 12 are reflective distance sensors, but an optical scanning distance sensor or an ultrasonic distance sensor may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)
  • Elevator Door Apparatuses (AREA)
  • Elevator Control (AREA)

Abstract

An elevator device provided with: a first distance sensor group for acquiring first distance data representing a first distance to an object; a second distance sensor group for acquiring second distance data representing a second distance to the object; a width calculation unit for calculating width data representing the width of the object; a travel speed calculation unit for calculating travel speed data representing the travel speed of the object; a depth calculation unit for calculating depth data representing the depth of the object; and a three-dimensional shape calculation unit for calculating the three-dimensional shape of the object.

Description

エレベータ装置Elevator equipment
 本発明は、エレベータ装置に係り、特にかごに乗り降りする人や物などの物体の形状を検出可能なエレベータ装置に関する。 The present invention relates to an elevator apparatus, and more particularly to an elevator apparatus capable of detecting the shape of an object such as a person or an object getting on and off a car.
 従来のエレベータ装置として、エレベータのかご床面積に対する人や物などの物体の占有率を算出し、かご内の占有率が所定値以上である場合には、乗り場呼びをキャンセルするものがある。例えば、特許文献1に記載の発明では、エレベータの出入口を通過する物体を線状画像として検出し、これに基いて物体の床投影面積を算出することにより、かご内の占有率を算出している。 Some conventional elevator devices calculate the occupancy rate of an object such as a person or an object with respect to the elevator car floor area, and cancel the landing call when the occupancy rate in the car exceeds a predetermined value. For example, in the invention described in Patent Document 1, an object passing through an elevator doorway is detected as a linear image, and the floor projection area of the object is calculated based on this, thereby calculating the occupation ratio in the car. Yes.
特開2013-43711号公報JP 2013-43711 A
 しかしながら、特許文献1の記載の発明では、物体の幅として予め設定された固定値を用いるため、物体の形状を高精度に算出することができない。そのため、物体の床占有面積を正確に算出することができず、かご内の占有率も不正確になるという問題がある。 However, in the invention described in Patent Document 1, since a fixed value set in advance is used as the width of the object, the shape of the object cannot be calculated with high accuracy. Therefore, there is a problem that the floor occupation area of the object cannot be accurately calculated, and the occupation ratio in the car becomes inaccurate.
 本発明は、このような問題を解決するためになされたものであり、かごに乗り降りする物体の形状を低コストかつ高精度に検出することができる、エレベータ装置を提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide an elevator apparatus that can detect the shape of an object that gets on and off the car with low cost and high accuracy.
 上記の課題を解決するために、本発明に係るエレベータ装置は、エレベータの出入口の左右いずれか一方に設けられてかごを出入りする物体までの第1の距離データを取得する第1の距離センサ群と、エレベータの出入口の左右いずれか他方に設けられてかごを出入りする物体までの第2の距離データを取得する第2の距離センサ群と、第1の距離データ、第2の距離データ、および第1、第2の距離センサ群の幅方向の距離に基いて、物体の幅データを算出する幅算出部と、第1の距離センサ群による物体の第1の検出開始時刻データ、第2の距離センサ群による物体の第2の検出開始時刻データ、および第1、第2の距離センサ群の奥行方向の距離に基いて、物体の移動速度データを算出する移動速度算出部と、物体の移動速度データ、並びに、第1の距離センサ群による物体の第1の検出開始時刻データおよび第1の検出終了時刻データ、または、第2の距離センサ群による物体の第2の検出開始時刻データおよび第2の検出終了時刻データに基づいて、物体の奥行データを算出する奥行算出部と、物体の幅データおよび奥行データに基いて、物体の立体形状を算出する立体形状算出部とを備えている。 In order to solve the above problems, an elevator apparatus according to the present invention is provided with a first distance sensor group that is provided at either the left or right of an elevator entrance and acquires first distance data to an object that enters and exits a car. A second distance sensor group for obtaining second distance data to an object that is provided on either the left or right side of the elevator entrance and exits the car, and the first distance data, the second distance data, and Based on the distance in the width direction of the first and second distance sensor groups, a width calculation unit that calculates the width data of the object, first detection start time data of the object by the first distance sensor group, A moving speed calculating unit for calculating moving speed data of the object based on the second detection start time data of the object by the distance sensor group and the distance in the depth direction of the first and second distance sensor groups; Speed data In addition, the first detection start time data and the first detection end time data of the object by the first distance sensor group, or the second detection start time data and the second detection of the object by the second distance sensor group. A depth calculation unit that calculates the depth data of the object based on the end time data, and a solid shape calculation unit that calculates the solid shape of the object based on the width data and the depth data of the object.
 本発明に係るエレベータ装置によれば、かごに乗り降りする物体の形状を低コストかつ高精度に検出することができる。 The elevator apparatus according to the present invention can detect the shape of an object that gets on and off the car with low cost and high accuracy.
実施の形態に係るエレベータ装置の出入口の構成を示す図である。It is a figure which shows the structure of the entrance / exit of the elevator apparatus which concerns on embodiment. 実施の形態に係るエレベータ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the elevator apparatus which concerns on embodiment. 実施の形態に係るエレベータ装置によって検出された物体の立体形状の一例を示す図である。It is a figure which shows an example of the solid shape of the object detected by the elevator apparatus which concerns on embodiment.
 以下、添付の図1~3を参照して、本発明の実施の形態を詳細に説明する。ただし、以下に示す実施の形態は一例であり、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. However, the embodiment described below is an example, and the present invention is not limited to the embodiment.
 実施の形態.
 図1(a)~(c)には、本発明の実施の形態に係るエレベータ装置の出入口の構成が示されている。
Embodiment.
FIGS. 1A to 1C show the configuration of the entrance / exit of the elevator apparatus according to the embodiment of the present invention.
 エレベータの出入口40の左右いずれか一方の壁面には、第1の距離センサ群11が設けられている。また、エレベータの出入口40の左右いずれか他方の壁面には、第2の距離センサ群12が設けられている。 The first distance sensor group 11 is provided on either the left or right wall surface of the elevator entrance 40. A second distance sensor group 12 is provided on the left or right wall surface of the elevator door 40.
 第1の距離センサ群11は、エレベータの出入口40の幅方向(図中に矢印Wで示される方向)と平行な光軸を有する1つまたは複数の反射式距離センサ11nから構成されている。各反射式距離センサ11nは、自身から物体(人または物)50までの距離X1nをそれぞれ検出することができる。 The first distance sensor group 11 includes one or a plurality of reflective distance sensors 11n having an optical axis parallel to the width direction of the elevator entrance 40 (the direction indicated by the arrow W in the drawing). Each reflective distance sensor 11n can detect a distance X 1n from itself to the object (person or object) 50, respectively.
 第2の距離センサ群12は、エレベータの出入口40の幅方向と平行な光軸を有する1つまたは複数の反射式距離センサ12nから構成されている。各反射式距離センサ12nは、自身から物体50までの距離X2nをそれぞれ検出することができる。 The second distance sensor group 12 includes one or more reflective distance sensors 12n having an optical axis parallel to the width direction of the elevator entrance 40. Each reflective distance sensor 12n can detect the distance X 2n from itself to the object 50, respectively.
 第1の距離センサ群11と第2の距離センサ群12とは、エレベータの出入口40の幅方向について、所定距離Wだけ離れて設けられている。また、第1の距離センサ群11と第2の距離センサ群12とは、エレベータの出入口40の奥行方向(図中で矢印Dで示される方向)について、所定距離Dだけ離れて設けられている。 The first distance sensor group 11 and the second distance sensor group 12 are provided apart by a predetermined distance W in the width direction of the elevator entrance 40. The first distance sensor group 11 and the second distance sensor group 12 are provided apart from each other by a predetermined distance D in the depth direction of the elevator doorway 40 (the direction indicated by the arrow D in the drawing). .
 第1の距離センサ群11と第2の距離センサ群12とが出入口40の奥行方向についてDだけ離れて設けられていることにより、物体50の移動方向を判定することができる。例えば、物体50がはじめに第1の距離センサ群11によって検出され、次に第2の距離センサ群12によって検出された場合には、物体50はかごに乗り込む方向に移動している。反対に、物体50がはじめに第2の距離センサ群12によって検出され、次に第1の距離センサ群11によって検出された場合には、物体50はかごから降りる方向に移動している。 Since the first distance sensor group 11 and the second distance sensor group 12 are provided apart by D in the depth direction of the entrance 40, the moving direction of the object 50 can be determined. For example, when the object 50 is first detected by the first distance sensor group 11 and then detected by the second distance sensor group 12, the object 50 is moving in the direction of getting into the car. On the other hand, when the object 50 is first detected by the second distance sensor group 12 and then detected by the first distance sensor group 11, the object 50 moves in the direction of getting out of the car.
 なお、図1では第1の距離センサ群11と第2の距離センサ群12とは、それぞれn=1~15の反射式距離センサ11n、12nから構成されているが、反射式距離センサの数はこれに限定されるものではない。 In FIG. 1, the first distance sensor group 11 and the second distance sensor group 12 are each composed of reflective distance sensors 11n and 12n with n = 1 to 15, but the number of reflective distance sensors Is not limited to this.
 図2には、本発明の実施の形態に係るエレベータ装置の構成を示すブロック図が示されている。 FIG. 2 is a block diagram showing the configuration of the elevator apparatus according to the embodiment of the present invention.
 エレベータ装置は、乗降検出装置10と、制御装置20と、秤装置30とを備えている。乗降検出装置10は、エレベータのかごに乗降する物体50を検出する。制御装置20は、乗降検出装置10の検出結果に基いてエレベータの運転を制御する。秤装置30は、エレベータのかご内に乗り込んだ物体の重量を検出する。 The elevator device includes a boarding / alighting detection device 10, a control device 20, and a weighing device 30. The boarding / alighting detection device 10 detects an object 50 that gets on and off the elevator car. The control device 20 controls the operation of the elevator based on the detection result of the getting on / off detection device 10. The scale device 30 detects the weight of an object that has entered the elevator car.
 エレベータの乗降検出装置10は、第1の距離センサ群11と、第2の距離センサ群12と、かごに乗り降りする物体50の立体形状を算出する形状算出部13と、算出された立体形状から情報を読み取る情報読取部14とを備えている。 The elevator boarding / alighting detection device 10 includes a first distance sensor group 11, a second distance sensor group 12, a shape calculation unit 13 that calculates a three-dimensional shape of an object 50 that gets on and off the car, and a calculated three-dimensional shape. And an information reading unit 14 for reading information.
 形状算出部13は、物体50の幅データWnを算出する幅算出部131と、物体50の移動速度データVnを算出する移動速度算出部132と、物体50の奥行データDnを算出する奥行算出部133と、物体50の立体形状Shを算出する立体形状算出部134とを備えている。 The shape calculation unit 13 includes a width calculation unit 131 that calculates the width data Wn of the object 50, a movement speed calculation unit 132 that calculates the movement speed data Vn of the object 50, and a depth calculation unit that calculates the depth data Dn of the object 50. 133 and a three-dimensional shape calculation unit 134 that calculates the three-dimensional shape Sh of the object 50.
 幅算出部131は、第1の距離センサ群11によって検出される物体50までの第1の距離X1nと、第2の距離センサ群12によって検出される物体50までの第2の距離X2nと、予め決定されている第1の距離センサ群11と第2の距離センサ群12との幅方向の距離Wとから、物体50の幅データWnを以下の式に従って算出する。 The width calculation unit 131 includes a first distance X 1n to the object 50 detected by the first distance sensor group 11 and a second distance X 2n to the object 50 detected by the second distance sensor group 12. Then, the width data Wn of the object 50 is calculated according to the following expression from the predetermined distance W in the width direction between the first distance sensor group 11 and the second distance sensor group 12.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 移動速度算出部132は、第1の距離センサ群11による物体50の検出開始時刻TS1nと、第2の距離センサ群12による物体50の検出開始時刻TS2nと、予め決定されている第1の距離センサ群11と第2の距離センサ群12との奥行方向の距離Dとから、物体50の移動速度データVnを以下の式に従って算出する。 The moving speed calculation unit 132 has a first predetermined detection time TS 1n of the object 50 detected by the first distance sensor group 11 and a first detection time TS 2n of the object 50 detected by the second distance sensor group 12. The moving speed data Vn of the object 50 is calculated from the distance D in the depth direction between the distance sensor group 11 and the second distance sensor group 12 according to the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 奥行算出部133は、移動速度算出部132によって算出された物体50の移動速度データVnと、第1の距離センサ群11による物体50の検出開始時刻TS1nおよび検出終了時刻TE1nとに基いて、物体50の奥行データDnを以下の式に従って算出する。 The depth calculation unit 133 is based on the movement speed data Vn of the object 50 calculated by the movement speed calculation unit 132 and the detection start time TS 1n and detection end time TE 1n of the object 50 by the first distance sensor group 11. The depth data Dn of the object 50 is calculated according to the following formula.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 代替的には、奥行算出部133は、移動速度算出部132によって算出された物体50の移動速度データVnと、第2の距離センサ群12による物体50の検出開始時刻TS2nおよび検出終了時刻TE2nとに基いて、物体50の奥行データDnを以下の式に従って算出する。 Alternatively, the depth calculation unit 133 uses the moving speed data Vn of the object 50 calculated by the moving speed calculation unit 132, the detection start time TS 2n of the object 50 by the second distance sensor group 12, and the detection end time TE. Based on 2n , the depth data Dn of the object 50 is calculated according to the following equation.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 立体形状算出部134は、幅算出部131によって算出された物体50の幅データWnと、奥行算出部133によって算出された物体50の奥行データDnとから、物体50の立体形状Shを算出する。図3(a)(b)には、立体形状算出部134によって算出された物体50の立体形状Shの一例が示されている。 The solid shape calculation unit 134 calculates the three-dimensional shape Sh of the object 50 from the width data Wn of the object 50 calculated by the width calculation unit 131 and the depth data Dn of the object 50 calculated by the depth calculation unit 133. FIGS. 3A and 3B show an example of the three-dimensional shape Sh of the object 50 calculated by the three-dimensional shape calculation unit 134.
 情報読取部14は、床投影面積算出部141と、占有率算出部142と、高さ検出部143とを備えている。 The information reading unit 14 includes a floor projection area calculation unit 141, an occupation rate calculation unit 142, and a height detection unit 143.
 床投影面積算出部141は、立体形状算出部134によって算出された物体50の立体形状Shから、物体50の床投影面積を算出する。図3(c)には、床投影面積算出部141によって算出された物体50の床投影面積の一例が示されている。 The floor projection area calculation unit 141 calculates the floor projection area of the object 50 from the three-dimensional shape Sh of the object 50 calculated by the three-dimensional shape calculation unit 134. FIG. 3C shows an example of the floor projected area of the object 50 calculated by the floor projected area calculating unit 141.
 占有率算出部142は、床投影面積算出部141によって算出された物体50の床投影面積と、予め決定されているエレベータのかごの床面積とに基いて、エレベータのかご内の占有率を算出する。詳細には、占有率算出部142は、物体50がかごに乗り込んだ場合にはその床投影面積を加算し、物体50がかごから降りた場合にはその床投影面積を減算することによって、かご内の占有率を算出する。 The occupancy rate calculation unit 142 calculates the occupancy rate in the elevator car based on the floor projection area of the object 50 calculated by the floor projection area calculation unit 141 and the floor area of the elevator car determined in advance. To do. Specifically, the occupancy rate calculation unit 142 adds the floor projected area when the object 50 gets into the car, and subtracts the floor projected area when the object 50 gets out of the car. The occupancy rate is calculated.
 高さ検出部143は、立体形状算出部134によって算出された物体50の立体形状Shから、物体50の高さを算出する。  The height detection unit 143 calculates the height of the object 50 from the three-dimensional shape Sh of the object 50 calculated by the three-dimensional shape calculation unit 134.
 制御装置20は、占有率算出部142によって算出されたかご内の占有率と、秤装置30によって検出されるかご内の重量とに基いて、エレベータの運転を制御する。詳細には、制御装置20は、かご内の占有率が所定値以上の場合、またはかご内の重量が定格荷重以上の場合には、乗り場呼びをキャンセルする。これにより、かごが満員の場合または定格荷重以上の場合に、エレベータの運転を効率化することができる。  The control device 20 controls the operation of the elevator based on the occupation ratio in the car calculated by the occupation ratio calculation unit 142 and the weight in the car detected by the scale device 30. Specifically, the control device 20 cancels the landing call when the occupation ratio in the car is a predetermined value or more, or when the weight in the car is more than the rated load. Thereby, when the car is full or more than the rated load, the operation of the elevator can be made efficient.
 また、制御装置20は、高さ検出部143によって算出された物体50の高さが所定値以下であり、かつかご内における操作が一定時間行われない場合には、エレベータの扉を開放する。これにより、背の低い子供や動物がかご内に閉じ込められることを防止することができる。 Further, the control device 20 opens the door of the elevator when the height of the object 50 calculated by the height detection unit 143 is equal to or less than a predetermined value and the operation in the car is not performed for a predetermined time. Thereby, it is possible to prevent a short child or animal from being trapped in the cage.
 また、制御装置20は、移動速度算出部132によって算出された物体50の移動速度データVnの平均が所定値以下の場合には、エレベータの扉の開閉速度を通常時よりも遅くする。これにより、ゆっくりと移動している高齢者や重い物を運搬している人などが扉に挟まれるのを防止することができる。なお、物体50の実際の移動速度に応じて扉の開閉時間をさらに細かく変化させてもよい。 Further, when the average of the moving speed data Vn of the object 50 calculated by the moving speed calculating unit 132 is equal to or less than a predetermined value, the control device 20 makes the opening / closing speed of the elevator door slower than normal. Thereby, it is possible to prevent an elderly person who is moving slowly or a person who is carrying a heavy object from being caught in the door. Note that the opening / closing time of the door may be changed more finely according to the actual moving speed of the object 50.
 また、制御装置20は、第1、第2の距離センサ群11、12に含まれる少なくとも1つのセンサが物体50を検出している期間中は、エレベータの扉の開閉動作を停止または反転させる。これにより、第1、第2の距離センサ群11、12を扉の安全装置としても活用することができる。 Further, the control device 20 stops or reverses the opening / closing operation of the elevator door during a period in which at least one sensor included in the first and second distance sensor groups 11 and 12 is detecting the object 50. Thereby, the 1st, 2nd distance sensor groups 11 and 12 can be utilized also as a safety device of a door.
 以上説明したように、本発明の実施の形態に係るエレベータ装置は、物体50までの第1の距離データX1nを取得する第1の距離センサ群11と、物体50までの第2の距離データX2nを取得する第2の距離センサ群12と、物体50の幅データWnを算出する幅算出部131と、物体50の移動速度データVnを算出する移動速度算出部132と、物体50の奥行データDnを算出する奥行算出部133と、物体50の立体形状Shを算出する立体形状算出部134とを備えている。これにより、かごに乗り降りする物体の形状を低コストかつ高精度に算出することができる。 As described above, the elevator apparatus according to the embodiment of the present invention includes the first distance sensor group 11 that acquires the first distance data X 1n to the object 50 and the second distance data to the object 50. A second distance sensor group 12 that acquires X 2n , a width calculation unit 131 that calculates width data Wn of the object 50, a movement speed calculation unit 132 that calculates movement speed data Vn of the object 50, and the depth of the object 50 A depth calculation unit 133 that calculates data Dn and a three-dimensional shape calculation unit 134 that calculates a three-dimensional shape Sh of the object 50 are provided. Thereby, the shape of the object getting on and off the car can be calculated with low cost and high accuracy.
 なお、上記の実施の形態では、第1、第2の距離センサ群11、12は反射式距離センサであったが、光走査式距離センサや超音波式距離センサを用いることもできる。 In the above embodiment, the first and second distance sensor groups 11 and 12 are reflective distance sensors, but an optical scanning distance sensor or an ultrasonic distance sensor may be used.

Claims (7)

  1.  エレベータの出入口の左右いずれか一方に設けられてかごを出入りする物体までの第1の距離データを取得する第1の距離センサ群と、
     前記エレベータの前記出入口の左右いずれか他方に設けられて前記かごを出入りする前記物体までの第2の距離データを取得する第2の距離センサ群と、
     前記第1の距離データ、前記第2の距離データ、および前記第1、第2の距離センサ群の幅方向の距離に基いて、前記物体の幅データを算出する幅算出部と、
     前記第1の距離センサ群による前記物体の第1の検出開始時刻データ、前記第2の距離センサ群による前記物体の第2の検出開始時刻データ、および前記第1、第2の距離センサ群の奥行方向の距離に基いて、前記物体の移動速度データを算出する移動速度算出部と、
     前記物体の前記移動速度データ、並びに、前記第1の距離センサ群による前記物体の前記第1の検出開始時刻データおよび第1の検出終了時刻データ、または、前記第2の距離センサ群による前記物体の前記第2の検出開始時刻データおよび第2の検出終了時刻データに基づいて、前記物体の奥行データを算出する奥行算出部と、
     前記物体の前記幅データおよび前記奥行データに基いて、前記物体の立体形状を算出する立体形状算出部と
    を備える、エレベータ装置。
    A first distance sensor group for acquiring first distance data to an object that is provided on either the left or right of the elevator entrance and exits the car;
    A second distance sensor group that is provided on either the left or right side of the doorway of the elevator and acquires second distance data to the object that enters and exits the car;
    A width calculation unit that calculates width data of the object based on a distance in a width direction of the first distance data, the second distance data, and the first and second distance sensor groups;
    First detection start time data of the object by the first distance sensor group, second detection start time data of the object by the second distance sensor group, and the first and second distance sensor groups A moving speed calculation unit that calculates moving speed data of the object based on a distance in the depth direction;
    The moving speed data of the object, and the first detection start time data and first detection end time data of the object by the first distance sensor group, or the object by the second distance sensor group. A depth calculation unit that calculates depth data of the object based on the second detection start time data and the second detection end time data;
    An elevator apparatus comprising: a solid shape calculation unit that calculates a solid shape of the object based on the width data and the depth data of the object.
  2.  前記物体の前記立体形状に基いて、前記物体の床投影面積を算出する床投影面積算出部と、
     前記物体の前記床投影面積および前記かごの床面積に基づいて、前記かご内の占有率を算出する占有率算出部と
    をさらに備える、請求項1に記載のエレベータ装置。 
    A floor projected area calculating unit that calculates a floor projected area of the object based on the three-dimensional shape of the object;
    The elevator apparatus according to claim 1, further comprising: an occupancy ratio calculation unit that calculates an occupancy ratio in the car based on the floor projected area of the object and the floor area of the car.
  3.  前記かご内の重量を検出する秤部と、
     前記かご内の占有率および前記かご内の重量に基いて、前記エレベータの運転を制御する制御部と
    をさらに備える、請求項2に記載のエレベータ装置。 
    A scale for detecting the weight in the cage;
    The elevator apparatus according to claim 2, further comprising: a control unit that controls operation of the elevator based on an occupation ratio in the car and a weight in the car.
  4.  前記制御部は、前記かご内の占有率が所定値以上の場合、または前記かご内の重量が定格荷重以上の場合には、乗り場呼びをキャンセルする、請求項3に記載のエレベータ装置。  The elevator device according to claim 3, wherein the control unit cancels the landing call when the occupation ratio in the car is a predetermined value or more, or when the weight in the car is more than a rated load.
  5.  前記物体の前記立体形状に基いて前記物体の高さを算出する高さ算出部をさらに備え、
     前記制御部は、前記物体の前記高さが所定値以下であり、かつ前記かご内における操作が一定時間行われない場合に、前記エレベータの扉を開放する、請求項3または4に記載のエレベータ装置。
    A height calculator that calculates the height of the object based on the three-dimensional shape of the object;
    The elevator according to claim 3 or 4, wherein the control unit opens the door of the elevator when the height of the object is equal to or smaller than a predetermined value and the operation in the car is not performed for a predetermined time. apparatus.
  6.  前記制御部は、前記物体の前記移動速度データの平均が所定値以下の場合に、前記エレベータの扉の開閉速度を通常時よりも遅くする、請求項3~5のいずれか一項に記載のエレベータ装置。 The control unit according to any one of claims 3 to 5, wherein when the average of the moving speed data of the object is equal to or less than a predetermined value, the opening / closing speed of the door of the elevator is made slower than normal. Elevator device.
  7.  前記制御部は、前記第1、第2のセンサ群に含まれる少なくとも1つのセンサが前記物体を検出している期間中は、前記エレベータの扉の開閉動作を停止または反転させる、請求項3~6のいずれか一項に記載のエレベータ装置。 The control unit stops or reverses the opening / closing operation of the elevator door during a period in which at least one sensor included in the first and second sensor groups detects the object. The elevator apparatus as described in any one of Claims 6.
PCT/JP2017/020424 2017-06-01 2017-06-01 Elevator device WO2018220782A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/020424 WO2018220782A1 (en) 2017-06-01 2017-06-01 Elevator device
CN201780090924.7A CN110678409B (en) 2017-06-01 2017-06-01 Elevator device
JP2019521632A JP6704519B2 (en) 2017-06-01 2017-06-01 Elevator equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/020424 WO2018220782A1 (en) 2017-06-01 2017-06-01 Elevator device

Publications (1)

Publication Number Publication Date
WO2018220782A1 true WO2018220782A1 (en) 2018-12-06

Family

ID=64455290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020424 WO2018220782A1 (en) 2017-06-01 2017-06-01 Elevator device

Country Status (3)

Country Link
JP (1) JP6704519B2 (en)
CN (1) CN110678409B (en)
WO (1) WO2018220782A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113135484A (en) * 2020-01-20 2021-07-20 原相科技股份有限公司 Anti-pinch device, space calculation device and suspension control device
CN112623893B (en) * 2020-12-03 2023-04-14 深圳市普渡科技有限公司 Elevator floor determining method and device, computer equipment and storage medium
CN113003340B (en) * 2021-02-22 2022-12-16 上海三菱电梯有限公司 Elevator identification method and device and elevator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079012A (en) * 1996-09-04 1998-03-24 Matsushita Electric Ind Co Ltd Device for detecting number of passing person
JP2011203227A (en) * 2010-03-26 2011-10-13 Panasonic Electric Works Co Ltd Apparatus and method for detection of passer
JP2012017197A (en) * 2010-07-09 2012-01-26 Mitsubishi Electric Building Techno Service Co Ltd Elevator
JP2014109464A (en) * 2012-11-30 2014-06-12 Toshiba Corp Object measuring device and object measuring method
JP2014144826A (en) * 2013-01-28 2014-08-14 Hitachi Ltd Elevator monitor device and method
JP2015009902A (en) * 2013-06-26 2015-01-19 三菱電機株式会社 Elevator system
JP2015202934A (en) * 2014-04-14 2015-11-16 三菱電機ビルテクノサービス株式会社 Elevator control unit
JP2016222353A (en) * 2015-05-27 2016-12-28 株式会社日立製作所 Elevator provided with image recognition function

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003102A (en) * 2000-06-21 2002-01-09 Mitsubishi Electric Corp Monitoring device for elevator
JP2003063746A (en) * 2001-08-23 2003-03-05 Mitsubishi Electric Building Techno Service Co Ltd Cage inside monitoring device of elevator
CN101304939A (en) * 2006-03-20 2008-11-12 三菱电机株式会社 Elevator door device
US7609906B2 (en) * 2006-04-04 2009-10-27 Mitsubishi Electric Research Laboratories, Inc. Method and system for acquiring and displaying 3D light fields
FI121421B (en) * 2009-07-28 2010-11-15 Marimils Oy A system for controlling lifts in an elevator system
US9126806B2 (en) * 2009-11-10 2015-09-08 Otis Elevator Company Elevator system with distributed dispatching
CN102753934A (en) * 2010-05-31 2012-10-24 天际停车公司 Method and device for measuring the spatial extension of an object
JP2013131100A (en) * 2011-12-22 2013-07-04 Univ Of Electro-Communications Number of persons prediction method, number of persons prediction device, movable robot, and program
JP5865729B2 (en) * 2012-02-24 2016-02-17 東芝エレベータ株式会社 Elevator system
JP5812894B2 (en) * 2012-02-24 2015-11-17 東芝エレベータ株式会社 Elevator occupancy measuring device, and elevator system in which a plurality of elevators each have occupancy counting devices
US9384585B2 (en) * 2012-10-23 2016-07-05 Electronics And Telecommunications Research Institute 3-dimensional shape reconstruction device using depth image and color image and the method
CN102951516B (en) * 2012-10-24 2015-10-28 陈春俊 Elevator operation monitoring system
JP6192997B2 (en) * 2013-06-10 2017-09-06 株式会社日立製作所 Elevator passenger guidance device and elevator passenger guidance method
KR101580637B1 (en) * 2013-10-28 2015-12-28 주식회사 케이티 Elevator security system
CN104637082B (en) * 2013-11-14 2018-08-10 联想(北京)有限公司 A kind of method and device of information processing
MY185617A (en) * 2014-02-20 2021-05-25 Kone Corp Displaying information in elevator arrangement
CN204675557U (en) * 2015-06-03 2015-09-30 上海浦东开灵电梯厂有限公司 The accurate warning of elevator overload
CN205448955U (en) * 2016-03-02 2016-08-10 东华理工大学 Hand push teaching industrial robot's three -dimensional sensing system that measures

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079012A (en) * 1996-09-04 1998-03-24 Matsushita Electric Ind Co Ltd Device for detecting number of passing person
JP2011203227A (en) * 2010-03-26 2011-10-13 Panasonic Electric Works Co Ltd Apparatus and method for detection of passer
JP2012017197A (en) * 2010-07-09 2012-01-26 Mitsubishi Electric Building Techno Service Co Ltd Elevator
JP2014109464A (en) * 2012-11-30 2014-06-12 Toshiba Corp Object measuring device and object measuring method
JP2014144826A (en) * 2013-01-28 2014-08-14 Hitachi Ltd Elevator monitor device and method
JP2015009902A (en) * 2013-06-26 2015-01-19 三菱電機株式会社 Elevator system
JP2015202934A (en) * 2014-04-14 2015-11-16 三菱電機ビルテクノサービス株式会社 Elevator control unit
JP2016222353A (en) * 2015-05-27 2016-12-28 株式会社日立製作所 Elevator provided with image recognition function

Also Published As

Publication number Publication date
JP6704519B2 (en) 2020-06-03
CN110678409A (en) 2020-01-10
JPWO2018220782A1 (en) 2019-11-07
CN110678409B (en) 2021-03-23

Similar Documents

Publication Publication Date Title
CN110775752B (en) Automatic method for detecting visually impaired, pregnant or disabled elevator passengers
WO2018220782A1 (en) Elevator device
US7360630B2 (en) Elevator positioning system
JP4399283B2 (en) Station congestion estimation system
JP6416326B1 (en) Elevator system and elevator control method
JP6125842B2 (en) Elevator operation control device
JP2013043711A (en) Elevator incoming/outgoing detection device, elevator device, and elevator incoming/outgoing detection method
JP2005126184A (en) Control device of elevator
JP2016222437A (en) Traffic means guide system
CN110902539A (en) Dynamic elevator door control
JP6435215B2 (en) Elevator system
JP4679909B2 (en) Elevator fire operation system
JP6305178B2 (en) Elevator control device
JP7136164B2 (en) passenger conveyor
WO2020230298A1 (en) System for controlling movement of mobile body
JP2019038683A (en) Elevator
JP2014221683A (en) Elevator operation system
EP3492416B1 (en) Elevator group management for occupant evacuation
JP2019167186A (en) User detection system
JP5481513B2 (en) elevator
JP5355298B2 (en) Passenger presence detection device, number of people detection device, rampage detection device
CN111295349A (en) Elevator boarding/landing person number estimation device, elevator boarding/landing person number estimation method, and elevator boarding/landing person number estimation program
JP7147994B2 (en) Congestion determination device and elevator operation control system
EP4011815A1 (en) Passenger grouping for elevators
WO2024095611A1 (en) Elevator management system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911695

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521632

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911695

Country of ref document: EP

Kind code of ref document: A1