WO2018220664A1 - Flow path switching valve and liquid chromatograph - Google Patents

Flow path switching valve and liquid chromatograph Download PDF

Info

Publication number
WO2018220664A1
WO2018220664A1 PCT/JP2017/019844 JP2017019844W WO2018220664A1 WO 2018220664 A1 WO2018220664 A1 WO 2018220664A1 JP 2017019844 W JP2017019844 W JP 2017019844W WO 2018220664 A1 WO2018220664 A1 WO 2018220664A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
rotor
pressing mechanism
stator
switching valve
Prior art date
Application number
PCT/JP2017/019844
Other languages
French (fr)
Japanese (ja)
Inventor
統宏 井上
理沙 梶山
研壱 保永
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2017/019844 priority Critical patent/WO2018220664A1/en
Publication of WO2018220664A1 publication Critical patent/WO2018220664A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns

Definitions

  • the present invention relates to a rotary flow path switching valve that switches a connection state between flow paths by rotating a rotor, and a liquid chromatograph including the flow path switching valve.
  • a liquid chromatograph is configured to switch whether to introduce a sample loop holding a sample into an analysis flow path by driving a rotary flow path switching valve.
  • Such a rotary flow path switching valve has a disk-shaped stator having a plurality of holes communicating with each of a plurality of connection ports to which a flow path is connected, and a contact surface in contact with the stator. And a rotor provided with a flow path for communicating two or more connection ports on the surface. When the rotor rotates while sliding with the stator, the combination of connection ports communicating with each other through a groove provided on the contact surface of the rotor is switched (see Patent Document 1).
  • the rotor is pressed against the stator by the elastic force of an elastic body such as a spring, and the liquid tightness between the rotor and the stator is maintained. Since the pressure resistance performance of the flow path switching valve is determined by the magnitude of the stress that presses the rotor to the stator side, the high pressure resistance flow path switching valve sets a large pressing force on the rotor, and the low pressure resistance flow path switching valve has a rotor. The pressing force is set small.
  • High friction pressure switching valve has a large frictional force with the stator when the rotor rotates, so the contact surface between the rotor and the stator is easily worn and has a short life compared to low pressure resistance switching valve. For this reason, it is common to select and use a pressure-switching valve having a pressure resistance according to the use environment.
  • analysis may be performed under various conditions, and the liquid feeding pressure varies depending on the analysis conditions.
  • a gradient analysis may be performed in which the composition of the mobile phase is changed over time.
  • the pressure in the analysis channel also changes over time due to a change in the composition of the mobile phase. . Therefore, the pressure resistance of the flow path switching valve is suitable for the maximum pressure during a series of analysis operations.
  • the pressure in the analysis channel reaches the maximum pressure only during some time periods during the series of analysis operations, and the pressure in the analysis channel is lower than that during most of the remaining time periods. . Nevertheless, at all times during the analysis operation, the rotor and stator of the flow switching valve are pressed with a stress corresponding to the maximum pressure during the series of analysis operations, so that the contact surface of the rotor and stator An excessive load will be applied.
  • the present invention has been made in view of the above-described problems, and an object thereof is to reduce an excessive load applied to the contact surface between the rotor and the stator of the flow path switching valve.
  • the flow path switching valve has a plurality of connection ports for connecting flow paths, a stator having a plurality of holes communicating with each of the connection ports, and a contact surface in contact with the stator, A rotor having a flow path for communicating between the connection ports on the contact surface, a drive mechanism for rotationally driving the rotor, and an electric power provided at a position opposite to the stator across the rotor Reads the output signal value from the pressure mechanism that detects the pressure in the flow path connected to the connecting port and the pressing mechanism that presses the rotor to the stator side with the stress according to the signal, and according to the output signal value And a pressing mechanism control unit configured to apply the electrical signal to the pressing mechanism.
  • the “electric signal” applied to the pressing mechanism is a voltage or a current.
  • the electrical signal applied to the pressing mechanism changes according to the pressure in the flow path connected to the connection port of the flow path switching valve, and the magnitude of the stress that presses the rotor to the stator side is increased.
  • Cited Document 2 (WO2012 / 151080) describes using a linear actuator that generates a force according to an applied electric signal to make the force pressing the rotor against the stator variable.
  • the technique disclosed in the cited document 2 reduces the wear of the rotor and the stator when the rotor is rotated by weakening the force applied to the rotor when the rotor is rotating than when the rotor is stationary.
  • the technique disclosed in the cited document 2 changes the force applied to the rotor when the rotor is stationary and when it rotates, and the pressure in the flow path can change during a series of analysis operations. It is not considered at all.
  • the rotor When the rotor is stationary, the rotor is pressed to the stator side with a certain force, and when the rotor rotates, the rotor is only pressed to the stator side with another constant force. Therefore, the present invention is different from the technique disclosed in the cited document 2 in that it corresponds to a necessary change in breakdown voltage during a series of analysis operations.
  • the pressing mechanism may be configured so that a partial area of the contact surface of the rotor can be pressed to the stator side with a stress different from other areas. If it does so, distribution of the stress which presses a rotor to the stator side can be given also in a field. For example, a portion of the rotor contact surface that requires high pressure resistance can be pressed to the stator side with a large stress, and a portion that does not have a problem even if the pressure resistance is low can be pressed to the stator side with a smaller stress. Become. Thereby, the excessive load concerning the contact surface of a rotor and a stator can be reduced.
  • the pressing mechanism includes a plurality of piezo elements that are driven independently of each other, and each piezo element is configured to press different regions on the contact surface of the rotor toward the stator side. Has been.
  • the flow path switching valve includes an applied electrical signal information holding unit that holds applied electrical signal information that defines the applied electrical signal to the pressing mechanism corresponding to the output signal value from the pressure sensor,
  • the pressing mechanism control unit is configured to apply an electric signal derived based on an output signal value from the pressure sensor and the applied electric signal information held in the applied electric signal information holding unit to the pressing mechanism. May be. If comprised in this way, the electric signal applied to a press mechanism can be determined easily.
  • a mobile phase supply channel for supplying a mobile phase by a liquid delivery device, an analysis channel provided with a separation column and a detector, a sample loop for holding a sample, And the above-described channel switching valve configured to selectively switch between the state in which the sample loop is interposed between the mobile phase supply channel and the analysis channel and the state in which the sample loop is not interposed It is.
  • the flow path switching valve according to the present invention is configured such that the magnitude of the stress that presses the rotor toward the stator changes according to the pressure in the flow path connected to the connection port. Excessive load on the contact surface is reduced, and wear of the rotor and the stator is reduced.
  • the liquid chromatograph according to the present invention is configured to selectively switch between a state in which a sample loop is interposed between a mobile phase supply channel and an analysis channel and a state in which no sample loop is interposed between the channel switching valve. Therefore, the maintenance cost can be reduced by extending the life of the flow path switching valve.
  • Fig. 1 shows an example of the configuration of the flow path switching valve.
  • the flow path switching valve 2 of this embodiment is a rotary type switching valve that switches the flow path configuration by rotating the rotor 8 provided inside the valve body 12.
  • the distal end portion 12a of the valve body 12 is provided with a plurality of connection ports 4 for connecting the flow paths.
  • a stator 6 is provided on the side wall surface of the distal end portion 12 a inside the valve body 12. The stator 6 is provided with a hole leading to the connection port 4.
  • a rotor 8, a rotor shaft 10, a bearing 14, a pressing mechanism 16, and the like are provided in the valve body 12.
  • the rotor 8 is a disk-shaped member, and is held by a holding portion 11 provided at the tip of the rotor shaft 10 in a state where the center portion is in contact with the stator 6.
  • the rotor shaft 10 is rotated about the axis by the drive mechanism 20.
  • the rotor 8 is fixed to the holding portion 11 at least in the rotational direction.
  • the drive mechanism 20 that rotationally drives the rotor shaft 10 includes a motor and a gear that transmits the rotation of the motor to the rotor shaft 10.
  • the holding portion 11 provided at the tip of the rotor shaft 10 has an outer diameter larger than that of the rotor shaft 10.
  • a bearing 14 and a pressing mechanism 16 are provided around the rotor shaft 10, and a base end surface 11 a of the holding portion 11 is supported by the bearing 14 and the pressing mechanism 16.
  • the pressing mechanism 16 is composed of a piezoelectric element that expands and contracts in the axial direction of the rotor shaft 10 in accordance with a voltage as an applied electric signal.
  • the base end face (lower end face in the figure) of the pressing mechanism 16 is supported by a support member 19 whose relative position with respect to the valve body 12 is fixed by a screw 18.
  • the front end surface (upper end surface in the drawing) of the pressing mechanism 16 supports the bearing 14. Thereby, the rotor 8 is pressed against the stator 6 side by the stress from the pressing mechanism 16.
  • control unit 22 for controlling the operation of the drive mechanism 20 also has a function of adjusting the magnitude of the voltage applied to the pressing mechanism 16.
  • control unit 22 includes a pressing mechanism control unit 24 and an applied electric signal information holding unit 26.
  • the control unit 22 can be realized by a dedicated computer or a general-purpose personal computer.
  • the pressing mechanism control unit 24 is a function obtained by executing a program in such a computer
  • the applied electric signal information holding unit 26 is a function realized by one area of a storage device provided in such a computer. It is.
  • the control unit 22 receives an output signal from a pressure sensor that detects the pressure in the flow path connected to the connection port 4.
  • the pressing mechanism control unit 24 determines an applied voltage (applied electric signal) to the pressing mechanism 16 based on an output signal from the pressure sensor taken into the control unit 22, and a value that determines the applied voltage to the pressing mechanism 16. It is configured to adjust to.
  • the applied electrical signal information holding unit 26 holds applied electrical signal information that defines the output signal from the pressure sensor taken into the control unit 22 and the applied voltage corresponding thereto.
  • the pressing mechanism control unit 24 is configured to determine an applied voltage value to the pressing mechanism 16 using the applied electric signal information held in the applied electric signal information holding unit 26.
  • the applied electrical signal information is, for example, as shown in Table 1 below.
  • the applied electrical signal information shown in Table 1 divides the pressure value in the flow path detected by the pressure sensor into four levels, and defines the applied voltage value to the pressing mechanism 16 corresponding to each pressure level.
  • the pressing mechanism control unit 24 determines which pressure level in the applied electric signal information the pressure in the flow path detected by the pressure sensor corresponds to, and applies a voltage corresponding to the corresponding pressure level to the pressing mechanism 16. Apply to.
  • the pressing mechanism control unit 24 reads an output signal from the pressure sensor (step S1), and the pressure level in the flow path connected to the connection port 4 is any of the applied electric signal information as shown in Table 1. It is determined whether it corresponds to the pressure level (step S2), and an applied voltage (applied electric signal) to the pressing mechanism is determined (step S3). Then, the voltage applied to the pressing mechanism 16 is adjusted to the determined value (step S4).
  • the control unit 22 takes in the output signal from the pressure sensor at regular intervals, and adjusts the voltage applied to the pressing mechanism 16 by the above operation each time. Thereby, for example, even when the pressure in the flow path connected to the connection port 4 changes with time by gradient analysis, the applied voltage to the pressing mechanism 16 changes according to the pressure change in the flow path. However, the pressure resistance performance changes.
  • the pressing mechanism 16 may be formed of a cylindrical piezo element as shown in FIG. 2, or a plurality of piezo elements 16a, 16b, and 16c may be rotor shafts as shown in FIG. It may be arranged around 10. 2 and 3, in consideration of the visibility of the shape of the pressing mechanism 16, the illustration of the bearing 14 and the like interposed between the holding portion 11 and the pressing mechanism 16 is omitted.
  • the pressing mechanism 16 is configured by the three piezoelectric elements 16a to 16c.
  • the number of piezoelectric elements when the pressing mechanism is configured by a plurality of piezoelectric elements is not limited to this.
  • the pressing mechanism 16 is constituted by a cylindrical piezo element as shown in FIG. 2, the rotor 8 can be pressed uniformly toward the stator 6 side.
  • the rotor 8 is made different by changing the voltage applied to one of the piezo elements 16a, 16b, 16c from the others.
  • the pressure resistance performance can be distributed in the contact surface of the stator 6.
  • the pressure resistance performance between the stator 6 and the rotor 8 is determined by the pressure in the flow path connected to each connection port 4. Accordingly, the required pressure resistance may vary depending on the portion in the contact surface between the stator 6 and the rotor 8.
  • the pressing mechanism 16 includes a plurality of piezo elements 16a to 16c, the pressure resistance performance on the contact surface between the rotor 8 and the stator 6 can be improved for each position where the piezo elements 16a to 16c are provided. Can be variably adjusted.
  • FIG. 5 shows a flow channel configuration when the sample is sucked from the sample container
  • FIG. 6 shows a flow channel configuration when the sucked sample is introduced into the analysis flow channel.
  • the flow path switching valve 2 includes six ports “a” to “f” as connection ports 4. Ports “a” to “f” are arranged in that order counterclockwise on the same circumference.
  • the rotor 8 (see FIG. 1) of the flow path switching valve 2 is provided with three flow paths that connect three adjacent pairs of ports, and the ports “a”-“ f ”,“ b ”-“ c ”, and“ d ”-“ e ”communicated with each other (state shown in FIG. 5), between ports“ a ”-“ b ”,“ c ”-“ d ”and“ e ”-“ f ”are in communication with each other (the state shown in FIG. 6).
  • the injection port 34 is connected to the port “a” of the flow path switching valve 2.
  • the injection port 34 is for inserting the needle 28 and communicating the flow path provided in the needle 28 with the port “a”.
  • the needle 28 is provided at the distal end of the sampling channel 32, and the proximal end of the sampling channel 32 is connected to the port “d” of the channel switching valve 2.
  • the needle 28 can be moved by a driving mechanism (not shown), and can be moved to the position of the container for containing the sample to be analyzed or the position of the injection port 34.
  • a sample loop 30 is provided on the proximal end side of the needle 28 on the sampling flow path 32, and the sample sucked from the tip of the needle 28 is held in the sample loop 30.
  • the ports “b” and “f” adjacent to the port “a” are connected to the downstream analysis channel 50 and the drain channel 56 leading to the drain, respectively.
  • the upstream analysis flow path 42 and the syringe flow path 36 are connected to the ports “c” and “e” adjacent to the port “d”, respectively.
  • the syringe flow path 36 is connected to the syringe pump 40 via a three-way valve 38.
  • the flow path switching valve 2 When the flow path switching valve 2 is brought into a state where the ports “d” and “e” are communicated (the state shown in FIG. 5), the sampling flow path 32 and the syringe flow path 36 are communicated to drive the syringe pump 40.
  • the syringe pump 40 can be connected to a container that stores the cleaning liquid by switching the three-way valve 38, and supplies the cleaning liquid sucked by the syringe pump 40 to the sampling flow path 32. It is comprised so that the inside can be cleaned.
  • the upstream analysis flow path 42 includes a liquid feeding device 44.
  • the liquid feeding device 44 includes a liquid feeding pump 46 that assembles the solvent from a container in which a predetermined solvent is stored and sends the liquid as a mobile phase, and a pressure sensor 48 that detects a liquid feeding pressure by the liquid feeding pump 46.
  • the downstream analysis flow path 50 includes a separation column 52 and a detector 54.
  • the separation column 52 is for separating the sample for each component
  • the detector 54 is for detecting the sample component separated by the separation column 52.
  • the flow path switching valve 2 is brought into communication between the ports “a”-“f”, “b”-“c”, and “d”-“e” (the state shown in FIG. 5) and the needle 28 Is inserted into the sample container, and the syringe pump 40 is inhaled to hold the sample in the sample loop 30. Thereafter, the flow path switching valve 2 is switched to a state where the ports “a”-“b”, “c”-“d”, and “e”-“f” are in communication (the state in FIG. 6).
  • the mobile phase fed by the liquid delivery device 44 flows through the sampling flow path 32, and the sample held in the sample loop 30 is introduced into the downstream analysis flow path 50 together with the mobile phase.
  • the sample introduced into the downstream analysis flow path 50 is separated for each component in the separation column 52, and each component is detected by the detector 54.
  • the pressure in the upstream analysis flow path 42 to which the mobile phase is always sent is the highest pressure. Therefore, the flow path switching valve 2 is required to have a pressure resistance performance corresponding to the pressure in the upstream analysis flow path 42. Therefore, the output signal from the pressure sensor 48 is taken into the control unit 22 having a function of adjusting the pressure resistance performance of the flow path switching valve 2.
  • the pressing mechanism control unit 24 of the control unit 22 applies a voltage to the pressing mechanism 16 (see FIG. 1) of the flow path switching valve 2 based on the pressure value in the upstream analysis flow path 42 detected by the pressure sensor 48. Configured to adjust.
  • the pressing mechanism control unit 24 of the control unit 22 adjusts the voltage applied to the pressing mechanism 16 of the flow path switching valve 2 in accordance with the pressure in the upstream analysis flow path 42, Excessive load on the contact surface of the rotor 8 (see FIG. 1) is suppressed.
  • the pressing mechanism control unit 24 determines the pressure in the upstream analysis flow path 42 that changes with the change in the composition of the mobile phase. Accordingly, the applied voltage to the pressing mechanism 16 of the flow path switching valve 2 is also changed, so that an excessive load on the contact surface between the stator 6 and the rotor 8 of the flow path switching valve 2 is suppressed, and the stator 6 and the rotor 8 are suppressed. It is possible to reduce wear.
  • the present inventors maintain the pressure resistance performance of the flow path switching valve 2 at a constant level in a state corresponding to the maximum value during a series of analysis operations of the liquid feeding pressure by the liquid feeding pump 46, and by the pressure sensor 48. About the case where it adjusted according to the liquid feeding pressure detected, it verified about durability of the flow-path switching valve 2.
  • FIG. As a result, when the pressure resistance performance is maintained constant in a state corresponding to the maximum value of the liquid feeding pressure by the liquid feeding pump 46, liquid leakage occurs between the stator 6 and the rotor 8 in about 25000 switching operations.
  • the pressure resistance performance was adjusted according to the liquid feeding pressure detected by the pressure sensor 48, no liquid leakage occurred between the stator 6 and the rotor 8 even after about 50000 switching operations. From this, it was confirmed that the durability of the flow path switching valve 2 was improved by adjusting the pressure resistance performance of the flow path switching valve 2 according to the liquid feeding pressure.
  • a portion of the contact surface between the stator 6 and the rotor 8 of the flow path switching valve 2 where the ports “b” and “c” are provided always has a high pressure.
  • no high pressure is applied to the portion where the ports “e” and “f” are provided. Therefore, the pressure resistance performance of the portion where the high pressure is applied in the contact surface between the stator 6 and the rotor 8 is variably adjusted based on the output signal from the pressure sensor 48, and the pressure resistance performance of the portion where the high pressure is not applied is kept low and constant. May be.
  • the distribution of the pressure resistance performance in the contact surface between the stator 6 and the rotor 8 is realized by configuring the pressing mechanism 16 of the flow path switching valve 2 with a plurality of piezoelectric elements as shown in FIG. can do. If the pressure resistance performance is distributed in the contact surface between the stator 6 and the rotor 8, an excessive load applied to the contact surface between the stator 6 and the rotor 8 (see FIG. 1) can be suppressed.

Abstract

The flow path switching valve according to the present invention includes: a plurality of connection ports that connect flow paths; a stator that has a plurality of holes communicating with the respective connection ports; a rotor that has a contact surface in contact with the stator, and has, in the contact surface, a flow path for communicating between the connection ports; a drive mechanism that rotationally drives the rotor; a pressing mechanism that is provided at a position opposite to the stator, with the rotor interposed therebetween, and presses the rotor toward the stator side by stress corresponding to an applied electric signal; and a pressing mechanism control unit that is configured to read an output signal value from a pressure sensor detecting the pressure in the flow path connected to the connection port and apply an electric signal corresponding to the output signal value to the pressing mechanism.

Description

流路切替バルブ及び液体クロマトグラフFlow path switching valve and liquid chromatograph
 本発明は、ロータを回転させることによって流路間の接続状態を切り替えるロータリー式の流路切替バルブと、その流路切替バルブを備えた液体クロマトグラフに関するものである。 The present invention relates to a rotary flow path switching valve that switches a connection state between flow paths by rotating a rotor, and a liquid chromatograph including the flow path switching valve.
 例えば液体クロマトグラフでは、試料を保持させたサンプルループを分析流路中に導入するかどうかの切替えを、ロータリー式の流路切替バルブを駆動することによって行なうように構成されている。 For example, a liquid chromatograph is configured to switch whether to introduce a sample loop holding a sample into an analysis flow path by driving a rotary flow path switching valve.
 そのようなロータリー式の流路切替バルブは、流路が接続される複数の接続ポートのそれぞれに通じる複数の孔を有する円盤状のステータと、そのステータと接触する接触面を有し、その接触面に2以上の接続ポート間を連通させるための流路が設けられたロータと、を備えている。ロータがステータと摺動しながら回転することで、ロータの接触面に設けられた溝を介して連通する接続ポートの組合せが切り替えられる(特許文献1参照。)。 Such a rotary flow path switching valve has a disk-shaped stator having a plurality of holes communicating with each of a plurality of connection ports to which a flow path is connected, and a contact surface in contact with the stator. And a rotor provided with a flow path for communicating two or more connection ports on the surface. When the rotor rotates while sliding with the stator, the combination of connection ports communicating with each other through a groove provided on the contact surface of the rotor is switched (see Patent Document 1).
US6193213B1US6193213B1 WO2012/151080WO2012 / 151080
 上記のような流路切替バルブでは、一般的に、バネなどの弾性体による弾性力によってロータをステータに押し付け、ロータとステータとの間の液密性を保持している。流路切替バルブの耐圧性能はロータをステータ側へ押圧する応力の大きさによって決まるため、高耐圧の流路切替バルブではロータへの押圧力が大きく設定され、低耐圧の流路切替バルブではロータへの押圧力が小さく設定されている。 In the flow path switching valve as described above, generally, the rotor is pressed against the stator by the elastic force of an elastic body such as a spring, and the liquid tightness between the rotor and the stator is maintained. Since the pressure resistance performance of the flow path switching valve is determined by the magnitude of the stress that presses the rotor to the stator side, the high pressure resistance flow path switching valve sets a large pressing force on the rotor, and the low pressure resistance flow path switching valve has a rotor. The pressing force is set small.
 高耐圧の流路切替バルブでは、ロータが回転する際のステータとの摩擦力が大きいため、低耐圧の流路切替バルブに比べてロータとステータの接触面が摩耗しやすく、寿命が短い。そのため、使用環境に応じた耐圧の流路切替バルブを選択して使用することが一般的である。 High friction pressure switching valve has a large frictional force with the stator when the rotor rotates, so the contact surface between the rotor and the stator is easily worn and has a short life compared to low pressure resistance switching valve. For this reason, it is common to select and use a pressure-switching valve having a pressure resistance according to the use environment.
 液体クロマトグラフでは、様々な条件で分析を行う場合があり、分析条件によっては、送液圧力が異なる。また、移動相の組成を時間的に変化させながら分析するグラジエント分析が行われる場合があるが、そのようなグラジエント分析では移動相の組成の変化によって分析流路内の圧力も時間的に変化する。そのため、流路切替バルブの耐圧は一連の分析動作中における最大圧力に適したものが使用される。 In liquid chromatographs, analysis may be performed under various conditions, and the liquid feeding pressure varies depending on the analysis conditions. In addition, a gradient analysis may be performed in which the composition of the mobile phase is changed over time. In such a gradient analysis, the pressure in the analysis channel also changes over time due to a change in the composition of the mobile phase. . Therefore, the pressure resistance of the flow path switching valve is suitable for the maximum pressure during a series of analysis operations.
 しかし、分析流路内の圧力が最大圧力に達するのは一連の分析動作中のうち一部の時間帯のみであり、残りの大半の時間帯は分析流路内がそれよりも低い圧力となる。そうであるにも拘わらず、分析動作中のすべての時間において、流路切替バルブのロータとステータが一連の分析動作中における最大圧力に対応した応力で押し付けられ、それによってロータとステータの接触面に過剰な負荷がかかることとなる。 However, the pressure in the analysis channel reaches the maximum pressure only during some time periods during the series of analysis operations, and the pressure in the analysis channel is lower than that during most of the remaining time periods. . Nevertheless, at all times during the analysis operation, the rotor and stator of the flow switching valve are pressed with a stress corresponding to the maximum pressure during the series of analysis operations, so that the contact surface of the rotor and stator An excessive load will be applied.
 本発明は上記の問題に鑑みてなされたものであり、流路切替バルブのロータとステータの接触面にかかる過剰な負荷を軽減することを目的とするものである。 The present invention has been made in view of the above-described problems, and an object thereof is to reduce an excessive load applied to the contact surface between the rotor and the stator of the flow path switching valve.
 本発明に係る流路切替バルブは、流路を接続するための複数の接続ポートと、前記接続ポートのそれぞれに通じる複数の孔を有するステータと、前記ステータと接触する接触面を有し、前記接触面に前記接続ポート間を連通させるための流路を有するロータと、前記ロータを回転駆動する駆動機構と、前記ロータを挟んで前記ステータとは反対側の位置に設けられ、印加される電気信号に応じた応力で前記ロータを前記ステータ側へ押圧する押圧機構と、前記接続ポートに接続された流路内の圧力を検出する圧力センサからの出力信号値を読み取り、前記出力信号値に応じた電気信号を前記押圧機構に印加するように構成された押圧機構制御部と、を備えたものである。
 ここで、押圧機構に印加される「電気信号」とは、電圧又は電流である。
The flow path switching valve according to the present invention has a plurality of connection ports for connecting flow paths, a stator having a plurality of holes communicating with each of the connection ports, and a contact surface in contact with the stator, A rotor having a flow path for communicating between the connection ports on the contact surface, a drive mechanism for rotationally driving the rotor, and an electric power provided at a position opposite to the stator across the rotor Reads the output signal value from the pressure mechanism that detects the pressure in the flow path connected to the connecting port and the pressing mechanism that presses the rotor to the stator side with the stress according to the signal, and according to the output signal value And a pressing mechanism control unit configured to apply the electrical signal to the pressing mechanism.
Here, the “electric signal” applied to the pressing mechanism is a voltage or a current.
 上記の構成によれば、当該流路切替バルブの接続ポートに接続された流路内の圧力に応じて押圧機構に印加される電気信号が変化し、ロータをステータ側へ押し付ける応力の大きさが変化する。すなわち、接続ポートに接続された流路内の圧力に応じて流路切替バルブの耐圧が変化する。したがって、例えばグラジエント分析が実施されたときには、一連の分析動作中に移動相の組成の時間的な変化に起因して分析流路内の圧力が時間的に変化するが、それに応じて流路切替バルブの耐圧も変化することになる。これにより、ロータとステータの互いの接触面にかかる過剰な負荷が軽減され、ロータとステータの摩耗の低減が図られる。 According to the above configuration, the electrical signal applied to the pressing mechanism changes according to the pressure in the flow path connected to the connection port of the flow path switching valve, and the magnitude of the stress that presses the rotor to the stator side is increased. Change. That is, the pressure resistance of the flow path switching valve changes according to the pressure in the flow path connected to the connection port. Therefore, for example, when a gradient analysis is performed, the pressure in the analysis flow path changes with time due to a temporal change in the composition of the mobile phase during a series of analysis operations. The pressure resistance of the valve will also change. Thereby, an excessive load applied to the contact surface between the rotor and the stator is reduced, and wear of the rotor and the stator is reduced.
 引用文献2(WO2012/151080)には、印加された電気信号に応じた力を発生させる線形アクチュエータを用いて、ロータをステータに押し付ける力を可変にすることが記載されている。そして、引用文献2に開示の技術は、ロータの回転時にロータに印加する力をロータの静止時よりも弱めることで、ロータが回転する際のロータとステータの摩耗を低減するものである。 Cited Document 2 (WO2012 / 151080) describes using a linear actuator that generates a force according to an applied electric signal to make the force pressing the rotor against the stator variable. The technique disclosed in the cited document 2 reduces the wear of the rotor and the stator when the rotor is rotated by weakening the force applied to the rotor when the rotor is rotating than when the rotor is stationary.
 引用文献2に開示の技術は、ロータが静止しているときと回転するときでロータに印加する力を変化させるものであって、一連の分析動作中に流路内の圧力が変化し得るということについてはまったく考慮されていない。ロータが静止しているときにはある一定の力でロータをステータ側へ押圧し、ロータが回転するときには別の一定の力でロータをステータ側へ押圧するだけである。したがって、本願発明は、一連の分析動作中における必要な耐圧の変化に対応している点において引用文献2に開示の技術と相違する。 The technique disclosed in the cited document 2 changes the force applied to the rotor when the rotor is stationary and when it rotates, and the pressure in the flow path can change during a series of analysis operations. It is not considered at all. When the rotor is stationary, the rotor is pressed to the stator side with a certain force, and when the rotor rotates, the rotor is only pressed to the stator side with another constant force. Therefore, the present invention is different from the technique disclosed in the cited document 2 in that it corresponds to a necessary change in breakdown voltage during a series of analysis operations.
 本発明に係る流路切替バルブでは、押圧機構を、前記ロータの前記接触面の一部の領域を他の領域と異なる応力で前記ステータ側へ押圧することができるように構成してもよい。そうすれば、ロータをステータ側へ押圧する応力の分布を面内にもたせることができる。例えば、ロータの接触面のうち高耐圧が必要な部分は大きな応力でステータ側へ押圧し、耐圧が低くても問題のないような部分はより小さい応力でステータ側へ押圧するといったことが可能となる。これにより、ロータとステータの接触面にかかる過剰な負荷を低減することができる。 In the flow path switching valve according to the present invention, the pressing mechanism may be configured so that a partial area of the contact surface of the rotor can be pressed to the stator side with a stress different from other areas. If it does so, distribution of the stress which presses a rotor to the stator side can be given also in a field. For example, a portion of the rotor contact surface that requires high pressure resistance can be pressed to the stator side with a large stress, and a portion that does not have a problem even if the pressure resistance is low can be pressed to the stator side with a smaller stress. Become. Thereby, the excessive load concerning the contact surface of a rotor and a stator can be reduced.
 上記の場合の好ましい実施形態では、押圧機構は互いに独立して駆動される複数のピエゾ素子からなり、各ピエゾ素子が前記ロータの前記接触面における互いに異なる領域を前記ステータ側へ押圧するように構成されている。 In a preferred embodiment of the above case, the pressing mechanism includes a plurality of piezo elements that are driven independently of each other, and each piezo element is configured to press different regions on the contact surface of the rotor toward the stator side. Has been.
 また、本発明に係る流路切替バルブは、前記圧力センサからの出力信号値に対応する前記押圧機構への印加電気信号について規定した印加電気信号情報を保持する印加電気信号情報保持部を備え、前記押圧機構制御部は、前記圧力センサからの出力信号値と前記印加電気信号情報保持部に保持された前記印加電気信号情報に基づいて導出される電気信号を前記押圧機構に印加するように構成されていてもよい。このように構成すれば、押圧機構に印加する電気信号を容易に決定することができる。 Further, the flow path switching valve according to the present invention includes an applied electrical signal information holding unit that holds applied electrical signal information that defines the applied electrical signal to the pressing mechanism corresponding to the output signal value from the pressure sensor, The pressing mechanism control unit is configured to apply an electric signal derived based on an output signal value from the pressure sensor and the applied electric signal information held in the applied electric signal information holding unit to the pressing mechanism. May be. If comprised in this way, the electric signal applied to a press mechanism can be determined easily.
 本発明に係る液体クロマトグラフでは、送液装置によって移動相を供給するための移動相供給流路と、分離カラム及び検出器が設けられた分析流路と、試料を保持するためのサンプルループと、前記移動相供給流路と前記分析流路との間に前記サンプルループを介在させた状態と介在させない状態に選択的に切り替えるように構成された上述の流路切替バルブと、を備えたものである。 In the liquid chromatograph according to the present invention, a mobile phase supply channel for supplying a mobile phase by a liquid delivery device, an analysis channel provided with a separation column and a detector, a sample loop for holding a sample, And the above-described channel switching valve configured to selectively switch between the state in which the sample loop is interposed between the mobile phase supply channel and the analysis channel and the state in which the sample loop is not interposed It is.
 本発明に係る流路切替バルブでは、接続ポートに接続された流路内の圧力に応じてロータをステータ側へ押し付ける応力の大きさが変化するように構成されているので、ロータとステータの互いの接触面にかかる過剰な負荷が軽減され、ロータとステータの摩耗の低減が図られる。 The flow path switching valve according to the present invention is configured such that the magnitude of the stress that presses the rotor toward the stator changes according to the pressure in the flow path connected to the connection port. Excessive load on the contact surface is reduced, and wear of the rotor and the stator is reduced.
 本発明に係る液体クロマトグラフでは、上記の流路切替バルブを用いて移動相供給流路と分析流路との間にサンプルループを介在させた状態と介在させない状態に選択的に切り替えるように構成されているので、流路切替バルブの長寿命化による維持コストの低減を図ることができる。 The liquid chromatograph according to the present invention is configured to selectively switch between a state in which a sample loop is interposed between a mobile phase supply channel and an analysis channel and a state in which no sample loop is interposed between the channel switching valve. Therefore, the maintenance cost can be reduced by extending the life of the flow path switching valve.
流路切替バルブの一実施例を示す断面構成図である。It is a section lineblock diagram showing one example of a channel change valve. 同実施例における押圧機構の一例を示す斜視図である。It is a perspective view which shows an example of the press mechanism in the Example. 同実施例における押圧機構の他の例を示す斜視図である。It is a perspective view which shows the other example of the press mechanism in the Example. 流路切替バルブの押圧機構の制御動作の一例を示すフローチャートである。It is a flowchart which shows an example of control operation of the press mechanism of a flow-path switching valve. 液体クロマトグラフの一実施例における試料吸入時の流路構成図である。It is a flow-path block diagram at the time of sample inhalation in one Example of a liquid chromatograph. 同実施例における試料注入時の流路構成図である。It is a flow-path block diagram at the time of sample injection | pouring in the Example.
 以下に、流路切替バルブ及び液体クロマトグラフの一実施例について、図面を用いて説明する。 Hereinafter, an embodiment of the flow path switching valve and the liquid chromatograph will be described with reference to the drawings.
 図1に流路切替バルブの構成の一例を示す。 Fig. 1 shows an example of the configuration of the flow path switching valve.
 この実施例の流路切替バルブ2は、バルブボディ12の内部に設けられたロータ8を回転させることによって流路構成を切り替えるロータリー式の切替バルブである。バルブボディ12の先端部12aには、流路を接続するための複数の接続ポート4が設けられている。バルブボディ12の内部の先端部12a側壁面にステータ6が設けられている。ステータ6には接続ポート4へ通じる孔が設けられている。 The flow path switching valve 2 of this embodiment is a rotary type switching valve that switches the flow path configuration by rotating the rotor 8 provided inside the valve body 12. The distal end portion 12a of the valve body 12 is provided with a plurality of connection ports 4 for connecting the flow paths. A stator 6 is provided on the side wall surface of the distal end portion 12 a inside the valve body 12. The stator 6 is provided with a hole leading to the connection port 4.
 バルブボディ12の内部には、ロータ8、ロータシャフト10、軸受け14及び押圧機構16などが設けられている。ロータ8は円盤状の部材であり、中央部がステータ6と接触した状態でロータシャフト10の先端に設けられた保持部11によって保持されている。ロータシャフト10は駆動機構20によって軸中心に回転させられる。ロータ8は少なくとも回転方向に対して保持部11に固定されており、ロータシャフト10が回転するとそれに伴ってロータ8がステータ6と摺動しながら回転する。ロータシャフト10を回転駆動する駆動機構20には、モータやそのモータの回転をロータシャフト10へ伝えるギヤなどが含まれる。 In the valve body 12, a rotor 8, a rotor shaft 10, a bearing 14, a pressing mechanism 16, and the like are provided. The rotor 8 is a disk-shaped member, and is held by a holding portion 11 provided at the tip of the rotor shaft 10 in a state where the center portion is in contact with the stator 6. The rotor shaft 10 is rotated about the axis by the drive mechanism 20. The rotor 8 is fixed to the holding portion 11 at least in the rotational direction. When the rotor shaft 10 rotates, the rotor 8 rotates while sliding with the stator 6. The drive mechanism 20 that rotationally drives the rotor shaft 10 includes a motor and a gear that transmits the rotation of the motor to the rotor shaft 10.
 ロータシャフト10の先端に設けられた保持部11はロータシャフト10よりも外径が大きくなっている。ロータシャフト10の周囲に軸受け14及び押圧機構16が設けられており、保持部11の基端面11aが軸受け14及び押圧機構16によって支持されている。押圧機構16は、印加される電気信号としての電圧に応じてロータシャフト10の軸方向へ伸縮するピエゾ素子からなるものである。 The holding portion 11 provided at the tip of the rotor shaft 10 has an outer diameter larger than that of the rotor shaft 10. A bearing 14 and a pressing mechanism 16 are provided around the rotor shaft 10, and a base end surface 11 a of the holding portion 11 is supported by the bearing 14 and the pressing mechanism 16. The pressing mechanism 16 is composed of a piezoelectric element that expands and contracts in the axial direction of the rotor shaft 10 in accordance with a voltage as an applied electric signal.
 押圧機構16の基端面(図において下側端面)はスクリュー18によってバルブボディ12に対する相対的な位置が固定された支持部材19によって支持されている。押圧機構16の先端面(図において上側端面)は軸受け14を支持している。これにより、押圧機構16からの応力によってロータ8がステータ6側へ押し付けられる。この構造により、押圧機構16がロータシャフト10の軸方向へ伸縮すると、それによって保持部11をステータ6側へ押圧する応力が変化し、ステータ6にロータ8を押し付ける力が変化する。すなわち、押圧機構16に対する印加電圧を変化させることによってステータ6にロータ8を押し付ける応力、すなわちステータ6とロータ8との間の耐圧性能を変化させることができる。 The base end face (lower end face in the figure) of the pressing mechanism 16 is supported by a support member 19 whose relative position with respect to the valve body 12 is fixed by a screw 18. The front end surface (upper end surface in the drawing) of the pressing mechanism 16 supports the bearing 14. Thereby, the rotor 8 is pressed against the stator 6 side by the stress from the pressing mechanism 16. With this structure, when the pressing mechanism 16 expands and contracts in the axial direction of the rotor shaft 10, the stress that presses the holding portion 11 toward the stator 6 changes, and the force that presses the rotor 8 against the stator 6 changes. That is, by changing the voltage applied to the pressing mechanism 16, the stress that presses the rotor 8 against the stator 6, that is, the pressure resistance performance between the stator 6 and the rotor 8 can be changed.
 この実施例では、駆動機構20の動作制御を行なうための制御部22が押圧機構16への印加電圧の大きさを調節する機能も有する。そのような機能を実現するために、制御部22は押圧機構制御部24と印加電気信号情報保持部26を備えている。制御部22は、専用のコンピュータ又は汎用のパーソナルコンピュータによって実現することができる。押圧機構制御部24はそのようなコンピュータにおいてプログラムが実行されることにより得られる機能であり、印加電気信号情報保持部26はそのようなコンピュータに設けられた記憶装置の一領域によって実現される機能である。 In this embodiment, the control unit 22 for controlling the operation of the drive mechanism 20 also has a function of adjusting the magnitude of the voltage applied to the pressing mechanism 16. In order to realize such a function, the control unit 22 includes a pressing mechanism control unit 24 and an applied electric signal information holding unit 26. The control unit 22 can be realized by a dedicated computer or a general-purpose personal computer. The pressing mechanism control unit 24 is a function obtained by executing a program in such a computer, and the applied electric signal information holding unit 26 is a function realized by one area of a storage device provided in such a computer. It is.
 制御部22には、接続ポート4に接続された流路内の圧力を検出する圧力センサからの出力信号が取り込まれる。押圧機構制御部24は、制御部22に取り込まれた圧力センサからの出力信号に基づいて押圧機構16への印加電圧(印加電気信号)を決定し、押圧機構16への印加電圧を決定した値に調節するように構成されている。印加電気信号情報保持部26は、制御部22に取り込まれる圧力センサからの出力信号とそれに対応する印加電圧について規定した印加電気信号情報を保持している。押圧機構制御部24は、印加電気信号情報保持部26に保持された印加電気信号情報を用いて押圧機構16への印加電圧値を決定するように構成されている。印加電気信号情報とは、例えば以下の表1に示されるようなものである。 The control unit 22 receives an output signal from a pressure sensor that detects the pressure in the flow path connected to the connection port 4. The pressing mechanism control unit 24 determines an applied voltage (applied electric signal) to the pressing mechanism 16 based on an output signal from the pressure sensor taken into the control unit 22, and a value that determines the applied voltage to the pressing mechanism 16. It is configured to adjust to. The applied electrical signal information holding unit 26 holds applied electrical signal information that defines the output signal from the pressure sensor taken into the control unit 22 and the applied voltage corresponding thereto. The pressing mechanism control unit 24 is configured to determine an applied voltage value to the pressing mechanism 16 using the applied electric signal information held in the applied electric signal information holding unit 26. The applied electrical signal information is, for example, as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示される印加電気信号情報は、圧力センサによって検出される流路内の圧力値を4つのレベルに分け、各圧力レベルに対応する押圧機構16への印加電圧値を規定している。押圧機構制御部24は、圧力センサによって検出された流路内の圧力が上記の印加電気信号情報におけるいずれの圧力レベルに該当するかを判定し、該当する圧力レベルに応じた電圧を押圧機構16へ印加する。 The applied electrical signal information shown in Table 1 divides the pressure value in the flow path detected by the pressure sensor into four levels, and defines the applied voltage value to the pressing mechanism 16 corresponding to each pressure level. The pressing mechanism control unit 24 determines which pressure level in the applied electric signal information the pressure in the flow path detected by the pressure sensor corresponds to, and applies a voltage corresponding to the corresponding pressure level to the pressing mechanism 16. Apply to.
 ここで、押圧機構16の制御動作について図4のフローチャートを用いて説明する。 Here, the control operation of the pressing mechanism 16 will be described with reference to the flowchart of FIG.
 まず、押圧機構制御部24は圧力センサからの出力信号を読み取り(ステップS1)、接続ポート4に接続された流路内の圧力レベルが、表1に示されるような印加電気信号情報のいずれの圧力レベルに該当するかを判定し(ステップS2)、押圧機構への印加電圧(印加電気信号)を決定する(ステップS3)。そして、押圧機構16への印加電圧を決定した値に調節する(ステップS4)。 First, the pressing mechanism control unit 24 reads an output signal from the pressure sensor (step S1), and the pressure level in the flow path connected to the connection port 4 is any of the applied electric signal information as shown in Table 1. It is determined whether it corresponds to the pressure level (step S2), and an applied voltage (applied electric signal) to the pressing mechanism is determined (step S3). Then, the voltage applied to the pressing mechanism 16 is adjusted to the determined value (step S4).
 制御部22は、圧力センサからの出力信号を一定時間ごとに取り込み、その都度、上記の動作によって押圧機構16への印加電圧値を調節する。これにより、例えばグラジエント分析によって接続ポート4に接続された流路内の圧力が時間的に変化するような場合にも、その流路内の圧力変化に応じて押圧機構16への印加電圧が変化し、耐圧性能が変化する。 The control unit 22 takes in the output signal from the pressure sensor at regular intervals, and adjusts the voltage applied to the pressing mechanism 16 by the above operation each time. Thereby, for example, even when the pressure in the flow path connected to the connection port 4 changes with time by gradient analysis, the applied voltage to the pressing mechanism 16 changes according to the pressure change in the flow path. However, the pressure resistance performance changes.
 ここで、押圧機構16の構造について説明する。 Here, the structure of the pressing mechanism 16 will be described.
 押圧機構16は、図2に示されているように円筒形状のピエゾ素子からなるものであってもよいし、図3に示されているように複数のピエゾ素子16a、16b、16cがロータシャフト10の周囲に配列されたものであってもよい。なお、図2及び図3では、押圧機構16の形状の視認性を考慮し、保持部11と押圧機構16との間に介在する軸受け14などの図示を省略している。また、図3では3つのピエゾ素子16a~16cによって押圧機構16を構成しているが、複数のピエゾ素子によって押圧機構を構成する場合のピエゾ素子の個数はこれに限定されない。 The pressing mechanism 16 may be formed of a cylindrical piezo element as shown in FIG. 2, or a plurality of piezo elements 16a, 16b, and 16c may be rotor shafts as shown in FIG. It may be arranged around 10. 2 and 3, in consideration of the visibility of the shape of the pressing mechanism 16, the illustration of the bearing 14 and the like interposed between the holding portion 11 and the pressing mechanism 16 is omitted. In FIG. 3, the pressing mechanism 16 is configured by the three piezoelectric elements 16a to 16c. However, the number of piezoelectric elements when the pressing mechanism is configured by a plurality of piezoelectric elements is not limited to this.
 押圧機構16を図2のように円筒形状のピエゾ素子によって構成した場合は、ロータ8をステータ6側へ均一に押圧することができる。 When the pressing mechanism 16 is constituted by a cylindrical piezo element as shown in FIG. 2, the rotor 8 can be pressed uniformly toward the stator 6 side.
 他方、押圧機構16を図3のように複数のピエゾ素子16a~16cによって構成した場合、ピエゾ素子16a、16b、16cのいずれかへの印加電圧を他のものと異ならせることによって、ロータ8をステータ6の接触面内において耐圧性能に分布をもたせることができる。ステータ6とロータ8との間の耐圧性能は、各接続ポート4に接続された流路内の圧力で決まるものである。したがって、ステータ6とロータ8との接触面内の部分によって要求される耐圧性能が異なる場合がある。そのような場合、押圧機構16が複数のピエゾ素子16a~16cによって構成されていれば、ロータ8とステータ6との接触面における耐圧性能を、ピエゾ素子16a~16cが設けられている位置ごとに可変に調節することができる。 On the other hand, when the pressing mechanism 16 is constituted by a plurality of piezo elements 16a to 16c as shown in FIG. 3, the rotor 8 is made different by changing the voltage applied to one of the piezo elements 16a, 16b, 16c from the others. The pressure resistance performance can be distributed in the contact surface of the stator 6. The pressure resistance performance between the stator 6 and the rotor 8 is determined by the pressure in the flow path connected to each connection port 4. Accordingly, the required pressure resistance may vary depending on the portion in the contact surface between the stator 6 and the rotor 8. In such a case, if the pressing mechanism 16 includes a plurality of piezo elements 16a to 16c, the pressure resistance performance on the contact surface between the rotor 8 and the stator 6 can be improved for each position where the piezo elements 16a to 16c are provided. Can be variably adjusted.
 次に、上述の流路切替バルブ2を備えた液体クロマトグラフの一実施例について、図5及び図6を用いて説明する。図5は試料容器から試料を吸入するときの流路構成を示しており、図6は吸入した試料を分析流路へ導入するときの流路構成を示している。 Next, an example of a liquid chromatograph provided with the above-described flow path switching valve 2 will be described with reference to FIGS. FIG. 5 shows a flow channel configuration when the sample is sucked from the sample container, and FIG. 6 shows a flow channel configuration when the sucked sample is introduced into the analysis flow channel.
 この実施例において、流路切替バルブ2は接続ポート4として6つのポート「a」~「f」を備えている。ポート「a」~「f」は同一円周上において反時計回りにその順に配列されている。流路切替バルブ2のロータ8(図1参照)には、互いに隣り合う3組のポート対を連通させる3つの流路が設けられており、ロータ8を回転させるよって、ポート「a」-「f」間、「b」-「c」間、及び「d」-「e」間を連通させた状態(図5の状態)と、ポート「a」-「b」間、「c」-「d」間、及び「e」-「f」間を連通させた状態(図6の状態)と、のいずれか一方の状態に選択的に切り替えられるように構成されている。 In this embodiment, the flow path switching valve 2 includes six ports “a” to “f” as connection ports 4. Ports “a” to “f” are arranged in that order counterclockwise on the same circumference. The rotor 8 (see FIG. 1) of the flow path switching valve 2 is provided with three flow paths that connect three adjacent pairs of ports, and the ports “a”-“ f ”,“ b ”-“ c ”, and“ d ”-“ e ”communicated with each other (state shown in FIG. 5), between ports“ a ”-“ b ”,“ c ”-“ d ”and“ e ”-“ f ”are in communication with each other (the state shown in FIG. 6).
 流路切替バルブ2のポート「a」には注入ポート34が接続されている。注入ポート34は、ニードル28を挿入させてニードル28の内部に設けられた流路をポート「a」と連通させるためのものである。ニードル28はサンプリング流路32の先端に設けられており、サンプリング流路32の基端は流路切替バルブ2のポート「d」に接続されている。ニードル28は、図示されていない駆動機構によって移動可能であり、分析対象の試料を収容する使用容器の位置や注入ポート34の位置へ移動することができる。サンプリング流路32上におけるニードル28の基端側にサンプルループ30が設けられており、ニードル28の先端から吸入された試料がサンプルループ30に保持されるようになっている。 The injection port 34 is connected to the port “a” of the flow path switching valve 2. The injection port 34 is for inserting the needle 28 and communicating the flow path provided in the needle 28 with the port “a”. The needle 28 is provided at the distal end of the sampling channel 32, and the proximal end of the sampling channel 32 is connected to the port “d” of the channel switching valve 2. The needle 28 can be moved by a driving mechanism (not shown), and can be moved to the position of the container for containing the sample to be analyzed or the position of the injection port 34. A sample loop 30 is provided on the proximal end side of the needle 28 on the sampling flow path 32, and the sample sucked from the tip of the needle 28 is held in the sample loop 30.
 ポート「a」に隣接するポート「b」と「f」にはそれぞれ、下流側分析流路50とドレインへ通じるドレイン流路56が接続されている。ポート「d」と隣接するポート「c」と「e」にはそれぞれ、上流側分析流路42とシリンジ流路36が接続されている。 The ports “b” and “f” adjacent to the port “a” are connected to the downstream analysis channel 50 and the drain channel 56 leading to the drain, respectively. The upstream analysis flow path 42 and the syringe flow path 36 are connected to the ports “c” and “e” adjacent to the port “d”, respectively.
 シリンジ流路36は3方バルブ38を介してシリンジポンプ40と接続されている。流路切替バルブ2をポート「d」-「e」間が連通された状態(図5の状態)にすれば、サンプリング流路32とシリンジ流路36の間が連通し、シリンジポンプ40の駆動によってニードル28の先端から液の吸入と吐出を行なうことができる。また、シリンジポンプ40は、3方バルブ38の切替えによって洗浄液を収容する容器と接続することができ、シリンジポンプ40によって吸入した洗浄液をサンプリング流路32へ供給し、ニードル28やサンプリング流路32の内部を洗浄することができるように構成されている。 The syringe flow path 36 is connected to the syringe pump 40 via a three-way valve 38. When the flow path switching valve 2 is brought into a state where the ports “d” and “e” are communicated (the state shown in FIG. 5), the sampling flow path 32 and the syringe flow path 36 are communicated to drive the syringe pump 40. Thus, the liquid can be sucked and discharged from the tip of the needle 28. In addition, the syringe pump 40 can be connected to a container that stores the cleaning liquid by switching the three-way valve 38, and supplies the cleaning liquid sucked by the syringe pump 40 to the sampling flow path 32. It is comprised so that the inside can be cleaned.
 上流側分析流路42は送液装置44を備えている。送液装置44は、所定の溶媒が収容された容器から溶媒を組み上げて移動相として送液する送液ポンプ46と、送液ポンプ46による送液圧力を検出する圧力センサ48を備えている。 The upstream analysis flow path 42 includes a liquid feeding device 44. The liquid feeding device 44 includes a liquid feeding pump 46 that assembles the solvent from a container in which a predetermined solvent is stored and sends the liquid as a mobile phase, and a pressure sensor 48 that detects a liquid feeding pressure by the liquid feeding pump 46.
 下流側分析流路50は、分離カラム52と検出器54を備えている。分離カラム52は試料を成分ごとに分離するためのものであり、検出器54は分離カラム52で分離した試料成分を検出するためのものである。 The downstream analysis flow path 50 includes a separation column 52 and a detector 54. The separation column 52 is for separating the sample for each component, and the detector 54 is for detecting the sample component separated by the separation column 52.
 この実施例の液体クロマトグラフの動作について説明する。流路切替バルブ2をポート「a」-「f」間、「b」-「c」間、及び「d」-「e」間を連通させた状態(図5の状態)にするとともにニードル28を試料容器へ挿入し、シリンジポンプ40を吸入駆動することで、サンプルループ30に試料を保持する。その後、流路切替バルブ2をポート「a」-「b」間、「c」-「d」間、及び「e」-「f」間を連通させた状態(図6の状態)に切り替えることで、送液装置44によって送液される移動相がサンプリング流路32を流れ、サンプルループ30に保持された試料が移動相とともに下流側分析流路50へ導入される。下流側分析流路50に導入された試料は分離カラム52において成分ごとに分離され、各成分が検出器54により検出される。 The operation of the liquid chromatograph of this embodiment will be described. The flow path switching valve 2 is brought into communication between the ports “a”-“f”, “b”-“c”, and “d”-“e” (the state shown in FIG. 5) and the needle 28 Is inserted into the sample container, and the syringe pump 40 is inhaled to hold the sample in the sample loop 30. Thereafter, the flow path switching valve 2 is switched to a state where the ports “a”-“b”, “c”-“d”, and “e”-“f” are in communication (the state in FIG. 6). Thus, the mobile phase fed by the liquid delivery device 44 flows through the sampling flow path 32, and the sample held in the sample loop 30 is introduced into the downstream analysis flow path 50 together with the mobile phase. The sample introduced into the downstream analysis flow path 50 is separated for each component in the separation column 52, and each component is detected by the detector 54.
 この実施例では、常時移動相が送液される上流側分析流路42内の圧力が最も高圧となる。したがって、流路切替バルブ2には上流側分析流路42内の圧力に応じた耐圧性能が要求される。そのため、流路切替バルブ2の耐圧性能を調節する機能を有する制御部22には、圧力センサ48からの出力信号が取り込まれる。制御部22の押圧機構制御部24は、圧力センサ48によって検出された上流側分析流路42内の圧力値に基づいて、流路切替バルブ2の押圧機構16(図1参照)への印加電圧を調節するように構成されている。 In this embodiment, the pressure in the upstream analysis flow path 42 to which the mobile phase is always sent is the highest pressure. Therefore, the flow path switching valve 2 is required to have a pressure resistance performance corresponding to the pressure in the upstream analysis flow path 42. Therefore, the output signal from the pressure sensor 48 is taken into the control unit 22 having a function of adjusting the pressure resistance performance of the flow path switching valve 2. The pressing mechanism control unit 24 of the control unit 22 applies a voltage to the pressing mechanism 16 (see FIG. 1) of the flow path switching valve 2 based on the pressure value in the upstream analysis flow path 42 detected by the pressure sensor 48. Configured to adjust.
 制御部22の押圧機構制御部24は、上流側分析流路42内の圧力に応じて流路切替バルブ2の押圧機構16への印加電圧を調節するため、流路切替バルブ2のステータ6とロータ8(図1参照)の接触面にかかる過剰な負荷が抑制される。特に、送液装置44が移動相の組成を時間的に変化させながら送液する場合、押圧機構制御部24は、移動相の組成の変化に伴って変化する上流側分析流路42内の圧力に応じて、流路切替バルブ2の押圧機構16への印加電圧も変化させるため、流路切替バルブ2のステータ6とロータ8の接触面にかかる過剰な負荷が抑制され、ステータ6とロータ8の摩耗の低減を図ることができる。 The pressing mechanism control unit 24 of the control unit 22 adjusts the voltage applied to the pressing mechanism 16 of the flow path switching valve 2 in accordance with the pressure in the upstream analysis flow path 42, Excessive load on the contact surface of the rotor 8 (see FIG. 1) is suppressed. In particular, when the liquid delivery device 44 delivers the liquid while changing the composition of the mobile phase over time, the pressing mechanism control unit 24 determines the pressure in the upstream analysis flow path 42 that changes with the change in the composition of the mobile phase. Accordingly, the applied voltage to the pressing mechanism 16 of the flow path switching valve 2 is also changed, so that an excessive load on the contact surface between the stator 6 and the rotor 8 of the flow path switching valve 2 is suppressed, and the stator 6 and the rotor 8 are suppressed. It is possible to reduce wear.
 本発明者らは、流路切替バルブ2の耐圧性能を、送液ポンプ46による送液圧力の一連の分析動作中における最大値に対応させた状態で一定に維持した場合と、圧力センサ48により検出される送液圧力に応じて調節した場合について、流路切替バルブ2の耐久性について検証した。その結果、耐圧性能を送液ポンプ46による送液圧力の最大値に対応させた状態で一定に維持した場合には25000回程度の切替え動作でステータ6とロータ8の間から液漏れが発生したのに対し、耐圧性能を圧力センサ48により検出される送液圧力に応じて調節した場合には50000回程度の切替え動作後もステータ6とロータ8の間から液漏れが発生しなかった。このことから、流路切替バルブ2の耐圧性能を送液圧力に応じて調節することによって、流路切替バルブ2の耐久性が向上することを確認した。 The present inventors maintain the pressure resistance performance of the flow path switching valve 2 at a constant level in a state corresponding to the maximum value during a series of analysis operations of the liquid feeding pressure by the liquid feeding pump 46, and by the pressure sensor 48. About the case where it adjusted according to the liquid feeding pressure detected, it verified about durability of the flow-path switching valve 2. FIG. As a result, when the pressure resistance performance is maintained constant in a state corresponding to the maximum value of the liquid feeding pressure by the liquid feeding pump 46, liquid leakage occurs between the stator 6 and the rotor 8 in about 25000 switching operations. On the other hand, when the pressure resistance performance was adjusted according to the liquid feeding pressure detected by the pressure sensor 48, no liquid leakage occurred between the stator 6 and the rotor 8 even after about 50000 switching operations. From this, it was confirmed that the durability of the flow path switching valve 2 was improved by adjusting the pressure resistance performance of the flow path switching valve 2 according to the liquid feeding pressure.
 また、図5及び図6に示した実施例では、流路切替バルブ2のステータ6とロータ8の接触面のうち、ポート「b」と「c」が設けられている部分には常時高圧がかかる一方で、ポート「e」と「f」が設けられている部分に高圧がかかることはない。そのため、ステータ6とロータ8の接触面のうち、高圧がかかる部分の耐圧性能を圧力センサ48からの出力信号に基づいて可変に調節し、高圧がかからない部分の耐圧性能を低く一定に保つようにしてもよい。 Further, in the embodiment shown in FIGS. 5 and 6, a portion of the contact surface between the stator 6 and the rotor 8 of the flow path switching valve 2 where the ports “b” and “c” are provided always has a high pressure. On the other hand, no high pressure is applied to the portion where the ports “e” and “f” are provided. Therefore, the pressure resistance performance of the portion where the high pressure is applied in the contact surface between the stator 6 and the rotor 8 is variably adjusted based on the output signal from the pressure sensor 48, and the pressure resistance performance of the portion where the high pressure is not applied is kept low and constant. May be.
 上記のように、ステータ6とロータ8の接触面内で耐圧性能に分布をもたせることは、図3のように、複数のピエゾ素子によって流路切替バルブ2の押圧機構16を構成することによって実現することができる。ステータ6とロータ8の接触面内で耐圧性能に分布をもたせるようにすれば、ステータ6とロータ8(図1参照)の接触面にかかる過剰な負荷を抑制することができる。 As described above, the distribution of the pressure resistance performance in the contact surface between the stator 6 and the rotor 8 is realized by configuring the pressing mechanism 16 of the flow path switching valve 2 with a plurality of piezoelectric elements as shown in FIG. can do. If the pressure resistance performance is distributed in the contact surface between the stator 6 and the rotor 8, an excessive load applied to the contact surface between the stator 6 and the rotor 8 (see FIG. 1) can be suppressed.
   2   流路切替バルブ
   4   接続ポート
   6   ステータ
   8   ロータ
   10   ロータシャフト
   11   保持部
   12   バルブボディ
   12a   バルブボディ先端部
   14   軸受け
   16   押圧機構
   16a~16c   ピエゾ素子
   18   スクリュー
   19   支持部材
   20   駆動機構
   22   制御部
   24   押圧機構制御部
   26   印加電気信号情報保持部
   28   ニードル
   30   サンプルループ
   32   サンプリング流路
   34   注入ポート
   36   シリンジ流路
   38   3方バルブ
   40   シリンジポンプ
   42   上流側分析流路
   44   送液装置
   46   送液ポンプ
   48   圧力センサ
   50   下流側分析流路
   52   分離カラム
   54   検出器
   56   ドレイン流路
DESCRIPTION OF SYMBOLS 2 Flow path switching valve 4 Connection port 6 Stator 8 Rotor 10 Rotor shaft 11 Holding part 12 Valve body 12a Valve body front-end | tip part 14 Bearing 16 Press mechanism 16a-16c Piezo element 18 Screw 19 Support member 20 Drive mechanism 22 Control part 24 Press mechanism Control unit 26 Applied electric signal information holding unit 28 Needle 30 Sample loop 32 Sampling flow path 34 Injection port 36 Syringe flow path 38 Three-way valve 40 Syringe pump 42 Upstream analysis flow path 44 Liquid feeding device 46 Liquid feeding pump 48 Pressure sensor 50 Downstream analysis flow path 52 Separation column 54 Detector 56 Drain flow path

Claims (5)

  1.  流路を接続するための複数の接続ポートと、
     前記接続ポートのそれぞれに通じる複数の孔を有するステータと、
     前記ステータと接触する接触面を有し、前記接触面に前記接続ポート間を連通させるための流路を有するロータと、
     前記ロータを回転駆動する駆動機構と、
     前記ロータを挟んで前記ステータとは反対側の位置に設けられ、印加される電気信号に応じた応力で前記ロータを前記ステータ側へ押圧する押圧機構と、
     前記接続ポートに接続された流路内の圧力を検出する圧力センサからの出力信号値を読み取り、前記出力信号値に応じた電気信号を前記押圧機構へ印加するように構成された押圧機構制御部と、を備えた流路切替バルブ。
    A plurality of connection ports for connecting the flow paths;
    A stator having a plurality of holes communicating with each of the connection ports;
    A rotor having a contact surface in contact with the stator, and having a flow path for communicating between the connection ports on the contact surface;
    A drive mechanism for rotationally driving the rotor;
    A pressing mechanism that is provided at a position opposite to the stator across the rotor, and that presses the rotor toward the stator with a stress corresponding to an applied electrical signal;
    A pressing mechanism control unit configured to read an output signal value from a pressure sensor that detects a pressure in a flow path connected to the connection port, and to apply an electric signal corresponding to the output signal value to the pressing mechanism. And a flow path switching valve.
  2.  前記押圧機構は、前記ロータの前記接触面の一部の領域を他の領域と異なる応力で前記ステータ側へ押圧することができるように構成されている請求項1に記載の流路切替バルブ。 The flow path switching valve according to claim 1, wherein the pressing mechanism is configured to be able to press a part of the contact surface of the rotor to the stator side with a stress different from that of other areas.
  3.  前記押圧機構は互いに独立して駆動される複数のピエゾ素子からなり、各ピエゾ素子が前記ロータの前記接触面における互いに異なる領域を前記ステータ側へ押圧するように構成されている請求項2に記載の流路切替バルブ。 The said pressing mechanism consists of a several piezo element driven mutually independently, Each piezo element is comprised so that a mutually different area | region in the said contact surface of the said rotor may be pressed to the said stator side. Flow path switching valve.
  4.  前記圧力センサからの出力信号値に対応する前記押圧機構への印加電気信号について規定した印加電気信号情報を保持する印加電気信号情報保持部を備え、
     前記押圧機構制御部は、前記圧力センサからの出力信号値と前記印加電圧データ保持部に保持された前記印加電圧データに基づいて導出される電気信号を前記押圧機構に印加するように構成されている請求項1から3のいずれか一項に記載の流路切替バルブ。
    An applied electrical signal information holding unit for holding applied electrical signal information defined for an applied electrical signal to the pressing mechanism corresponding to an output signal value from the pressure sensor;
    The pressing mechanism control unit is configured to apply an electrical signal derived based on an output signal value from the pressure sensor and the applied voltage data held in the applied voltage data holding unit to the pressing mechanism. The flow path switching valve according to any one of claims 1 to 3.
  5.  送液装置によって移動相を供給するための上流側分析流路と、
     分離カラム及び検出器が設けられた下流側分析流路と、
     試料を保持するためのサンプルループと、
     前記上流側分析流路と前記下流側分析流路との間に前記サンプルループを介在させた状態と介在させない状態に選択的に切り替えるように構成された請求項1から4のいずれか一項に記載の流路切替バルブと、を備えた液体クロマトグラフ。
    An upstream analysis channel for supplying a mobile phase by a liquid delivery device;
    A downstream analysis flow path provided with a separation column and a detector;
    A sample loop to hold the sample;
    5. The apparatus according to claim 1, wherein the sample loop is selectively switched between a state in which the sample loop is interposed and a state in which the sample loop is not interposed between the upstream analysis channel and the downstream analysis channel. A liquid chromatograph comprising the flow path switching valve described above.
PCT/JP2017/019844 2017-05-29 2017-05-29 Flow path switching valve and liquid chromatograph WO2018220664A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019844 WO2018220664A1 (en) 2017-05-29 2017-05-29 Flow path switching valve and liquid chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019844 WO2018220664A1 (en) 2017-05-29 2017-05-29 Flow path switching valve and liquid chromatograph

Publications (1)

Publication Number Publication Date
WO2018220664A1 true WO2018220664A1 (en) 2018-12-06

Family

ID=64456084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019844 WO2018220664A1 (en) 2017-05-29 2017-05-29 Flow path switching valve and liquid chromatograph

Country Status (1)

Country Link
WO (1) WO2018220664A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111561585A (en) * 2020-05-25 2020-08-21 王伟 Electric cold and hot water constant temperature water mixing valve core

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307575A (en) * 1988-06-03 1989-12-12 Shimadzu Corp Change-over valve
JPH0590067U (en) * 1992-05-06 1993-12-07 横河電機株式会社 Rotary micro valve
JP2012159460A (en) * 2011-02-02 2012-08-23 Gl Sciences Inc Switching valve
JP2017067484A (en) * 2015-09-28 2017-04-06 株式会社島津製作所 Liquid dispensation device and liquid dispensation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307575A (en) * 1988-06-03 1989-12-12 Shimadzu Corp Change-over valve
JPH0590067U (en) * 1992-05-06 1993-12-07 横河電機株式会社 Rotary micro valve
JP2012159460A (en) * 2011-02-02 2012-08-23 Gl Sciences Inc Switching valve
JP2017067484A (en) * 2015-09-28 2017-04-06 株式会社島津製作所 Liquid dispensation device and liquid dispensation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111561585A (en) * 2020-05-25 2020-08-21 王伟 Electric cold and hot water constant temperature water mixing valve core
CN111561585B (en) * 2020-05-25 2021-10-15 王伟 Electric cold and hot water constant temperature water mixing valve core

Similar Documents

Publication Publication Date Title
JP6043786B2 (en) High pressure fluid switching valve with variable pressure load
US8382979B2 (en) Liquid chromatograph system
US9035873B2 (en) Haptic feedback input device
WO2009101695A1 (en) Flow channel switching valve
WO2018220664A1 (en) Flow path switching valve and liquid chromatograph
US10914394B2 (en) Fluidic valve with contactless force transmission for pressing together stator and rotor
JP2014507646A (en) High pressure switching valve for high performance liquid chromatography
JP6836108B2 (en) Flow control valve
CN110500436B (en) Flow regulating valve
JPWO2018055866A1 (en) Switching valve, binary pump and liquid chromatograph equipped with the binary pump
EP2755700A2 (en) Peristaltic pump with multiple independent channels
JP2008215494A (en) Flow passage switching valve
JP4781060B2 (en) Syringe pump
JP5910548B2 (en) Flow path switching valve
JP5639914B2 (en) Switching valve
CN110621993B (en) Automatic sampler and fluid chromatograph
JPWO2013069401A1 (en) Flow path switching valve
JP3870797B2 (en) Thread tension device
US11788647B2 (en) Valve arrangement having valve module and base module
JP7405585B2 (en) Medical pump module and medical pump
JP5573838B2 (en) Liquid chromatograph
CN105572277B (en) The holding meanss of part for sample separation equipment, with varying strength
US11611272B2 (en) Rotation operation device
JP2006014498A (en) Drive unit, guide device, and rotating device
CN115494188A (en) Multi-channel sample injection valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP