JP5639914B2 - Switching valve - Google Patents

Switching valve Download PDF

Info

Publication number
JP5639914B2
JP5639914B2 JP2011020829A JP2011020829A JP5639914B2 JP 5639914 B2 JP5639914 B2 JP 5639914B2 JP 2011020829 A JP2011020829 A JP 2011020829A JP 2011020829 A JP2011020829 A JP 2011020829A JP 5639914 B2 JP5639914 B2 JP 5639914B2
Authority
JP
Japan
Prior art keywords
rotor
switching valve
stator
valve according
seal surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011020829A
Other languages
Japanese (ja)
Other versions
JP2012159460A (en
Inventor
賢 菅野
賢 菅野
隆夫 田村
隆夫 田村
高松 良一
良一 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GL Science Inc
Original Assignee
GL Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GL Science Inc filed Critical GL Science Inc
Priority to JP2011020829A priority Critical patent/JP5639914B2/en
Publication of JP2012159460A publication Critical patent/JP2012159460A/en
Application granted granted Critical
Publication of JP5639914B2 publication Critical patent/JP5639914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えばリサイクル分離機能を備えた高速液体クロマトグラフ(以下、HPLCと呼ぶ)に好適で、簡単な構成によってロ−タ−シール面に異なる耐圧を容易に得られ、ロータ−の磨耗に応じて、その交換を合理的に行なえるとともに、高圧流体の給排を正確かつ円滑に行なえ、しかも製作の容易化と低廉化、並びに小形軽量化を図れ、また単一のバルブ操作によって、移動相の供給流路とリサイクル流路の切換えを容易に行なえる、切換バルブに関する。   The present invention is suitable for, for example, a high performance liquid chromatograph (hereinafter referred to as HPLC) having a recycle separation function, and can easily obtain different pressure resistances on the rotor seal surface with a simple configuration, thereby reducing the wear of the rotor. Therefore, the replacement can be performed rationally, the supply and discharge of high-pressure fluid can be performed accurately and smoothly, and the manufacturing can be simplified and reduced, and the size and weight can be reduced. The present invention relates to a switching valve that can easily switch between a phase supply channel and a recycling channel.

リサイクル分離機能を備えた液体クロマトグラフ(以下、LCと呼ぶ)のなかに、リサイクルバルブと切換バルブを備え、溶離液に試料を導入し、試料の目的成分が溶出したところで、リサイクルバルブを切換え、同時に切換バルブを切換えて、溶離液と試料をリサイクル流路に循環させ、リサイクル分離するようにしたものがある(例えば、特許文献1参照)。   A liquid chromatograph equipped with a recycle separation function (hereinafter referred to as LC) is equipped with a recycle valve and a switching valve. The sample is introduced into the eluent, and when the target component of the sample is eluted, the recycle valve is switched. At the same time, there is one in which the switching valve is switched so that the eluent and the sample are circulated through the recycling flow path for recycling separation (see, for example, Patent Document 1).

しかし、前記LCは、リサイクルバルブと切換バルブを要し、部品点数が増え構成が複雑になって高価になるとともに、それらの切換えを要して、操作が煩雑になる等の問題があった。   However, the LC requires a recycle valve and a switching valve, which increases the number of parts, makes the configuration complicated and expensive, and requires switching them, resulting in complicated operations.

前記問題を解決するものとして、リサイクルバルブと切換バルブを単一の8ポ−ト切換バルブで構成し、バルブの個数を低減し、バルブの切換え操作の煩雑を解消するようにしたものがある(例えば、特許文献2参照)。   As a solution to the above problem, there is one in which the recycling valve and the switching valve are constituted by a single 8-port switching valve, the number of valves is reduced, and the complicated switching operation of the valve is eliminated ( For example, see Patent Document 2).

しかし、前記LCは、8ポ−ト切換バルブにバッファ流路を接続するとともに、リサイクル流路に試料注入装置を介挿しているため、リサイクル流路のデッドボリュ−ムが増加して試料が拡散し、リサイクル分離精度に十分な結果を得られなかった。   However, since the LC has a buffer flow path connected to the 8-port switching valve and a sample injection device is inserted in the recycle flow path, the dead volume of the recycle flow path increases and the sample diffuses. The recycling separation accuracy was not sufficient.

ところで、この種の切換バルブのなかに、外部に開口したポ−トに連通するオリフィスを形成したステ−タ−と、前記オリフィスに連通可能な複数のロ−タ−溝を形成したロ−タ−とを備え、該ロ−タ−の背部に従来の皿バネに代わってアクチュエ―タを装着し、該アクチュエ―タに流路の圧力を感知する圧力センサと増幅器の信号を入力し、前記流路の圧力によってアクチュエ―タの軸方向の寸法を変化させ、ロ−タ−とステ−タ−との摺動面に要するシール圧を発生させるようにしたものがある(例えば、特許文献3参照)。   By the way, in this kind of switching valve, a rotor having an orifice communicating with a port opened to the outside and a rotor having a plurality of rotor grooves communicable with the orifice. The actuator is attached to the back of the rotor in place of the conventional disc spring, and the pressure sensor for detecting the pressure of the flow path and the signal of the amplifier are input to the actuator, There is one in which the axial dimension of the actuator is changed by the pressure of the flow path to generate a seal pressure required for the sliding surface between the rotor and the stator (for example, Patent Document 3). reference).

しかし、前記アクチュエ―タの寸法変化または皿バネの付勢力は、保持板を介してロ−タ−とステ−タ−との摺動面全域に一様に作用し、前記オリフィスとロ−タ−溝にシール圧を画一的に作用させているため、ロ−タ−シ−ル面の耐圧が画一的に設定されるという問題があった。   However, the dimensional change of the actuator or the urging force of the disc spring acts uniformly on the entire sliding surface of the rotor and the stator via the holding plate, and the orifice and the rotor. -Since the seal pressure is applied uniformly to the groove, there is a problem that the pressure resistance of the rotor seal surface is set uniformly.

このような問題を解決するものとして、ロ−タ−シール面に複数のロ−タ−溝を同心円上の内外位置に設け、試料の注入量に応じて試料注入装置を切換えるようにしたものがある。(例えば、特許文献4参照)。   In order to solve such a problem, a rotor seal surface is provided with a plurality of rotor grooves at inner and outer positions on concentric circles, and the sample injection device is switched according to the sample injection amount. is there. (For example, refer to Patent Document 4).

しかし、前記切換バルブは、ロ−タ−シール面とステ−タ−の摺動面の全域を一様な圧力で接触させているため、外側のロ−タ−溝の耐圧を基準に内側のロ−タ−溝の耐圧が設定され、概して内側のロ−タ−溝の耐圧が最適値よりも低く設定される傾向があり、しかもロ−タ−シール面を同一部材で構成しているため、周速度の大きな外側のロ−タ−シール面が内側よりも早く磨耗し、内側は十分使用できるにも拘わらず、ロ−タ−全体を交換せざるを得なくなるという問題があった。   However, since the switching valve makes the entire area of the rotor seal surface and the sliding surface of the stator contact with a uniform pressure, the inner side of the switching valve is determined based on the pressure resistance of the outer rotor groove. Because the rotor groove pressure is set, the inner rotor groove tends to be set lower than the optimum value, and the rotor seal surface is made of the same member. However, there is a problem in that the outer rotor seal surface having a large peripheral speed is worn faster than the inner side, and the entire rotor must be replaced even though the inner side can be used sufficiently.

特許第2573884号公報Japanese Patent No. 2557384 特開2006−138699号公報JP 2006-138699 A 特開平1−307575号公報JP-A-1-307575 特開2009−276110号公報JP 2009-276110 A

本発明はこのような問題を解決し、例えばリサイクル分離機能を備えた高速液体クロマトグラフ(以下、HPLCと呼ぶ)に好適で、簡単な構成によってロ−タ−シール面に異なる耐圧を容易に得られ、ロータ−の磨耗に応じて、その交換を合理的に行なえるとともに、高圧流体の給排を正確かつ円滑に行なえ、しかも製作の容易化と低廉化、並びに小形軽量化を図れ、また単一のバルブ操作によって、移動相の供給流路とリサイクル流路の切換えを容易に行なえる、切換バルブを提供することを目的にしている。   The present invention solves such problems and is suitable for, for example, a high performance liquid chromatograph (hereinafter referred to as HPLC) having a recycle separation function, and easily obtains different pressure resistance on the rotor seal surface with a simple configuration. It is possible to rationally replace the rotor according to the wear of the rotor, to supply and discharge high-pressure fluid accurately and smoothly, and to simplify and reduce the manufacturing cost, as well as to reduce the size and weight. It is an object of the present invention to provide a switching valve that can easily switch between a supply flow path and a recycle flow path of a mobile phase by a single valve operation.

請求項1の発明は、外部に連通する複数のオリフィスを形成したステ−タ−と、該ステ−タ−に摺接かつ回動可能に配置され、かつ前記オリフィスに連通可能な複数のロ−タ−溝を形成したロ−タ−とを備え、該ロ−タ−のロ−タ−シール面をステ−タ−に液密に付勢した切換バルブにおいて、前記ロ−タ−をアウタ−ロ−タ−と該ロ−タ−の内側に配置するインナ−ロ−タ−とで構成し、前記アウタ−ロ−タ−とインナ−ロ−タ−をステ−タ−側へそれぞれ移動可能に設け、前記アウタ−ロ−タ−とインナ−ロ−タ−の後方に各ロ−タ−をステ−タ−側へ付勢する付勢手段を別々に配置し、簡単な構成によって、ロ−タ−シール面に異なる耐圧を容易に得られ、高圧流体の給排を円滑かつ能率良く行なえ、しかも容易かつ安価に製作し得るようにしている。
したがって、前記切換バルブをリサイクル分離機能を備えたHPLCに使用することによって、単一のバルブ操作によって、移動相の供給流路とリサイクル流路の切換えを容易に行なえ、HPLCの使用に好適にしている。
According to the first aspect of the present invention, there is provided a stator having a plurality of orifices communicating with the outside, and a plurality of rotors arranged so as to be slidably contacted and rotatable with the stator and capable of communicating with the orifices. And a rotor formed with a rotor groove, wherein the rotor seal surface of the rotor is urged in a fluid-tight manner to the stator, and the rotor is connected to the outer rotor. Consists of a rotor and an inner rotor arranged inside the rotor, and the outer rotor and the inner rotor can be moved to the stator side. The urging means for urging each rotor toward the stator side is separately provided behind the outer rotor and the inner rotor, and the rotor is configured with a simple structure. -Different pressure resistance can be easily obtained on the tur-seal surface, high pressure fluid can be supplied and discharged smoothly and efficiently, and can be manufactured easily and inexpensively. Unishi to have.
Therefore, by using the switching valve in an HPLC having a recycling separation function, it is possible to easily switch between the supply flow path and the recycling flow path of the mobile phase by a single valve operation, and to make it suitable for use in HPLC. Yes.

請求項2の発明は、前記アウタ−ロ−タ−とインナ−ロ−タ−とを同期回動可能にし、ロ−タ−の所期の作動を得られるようにしている。
請求項3の発明は、前記アウタ−ロ−タ−とインナ−ロ−タ−とを同一または異質部材で構成し、同一部材で構成する場合は、例えば構成の簡潔化と製作の容易化を図れ、また異質部材で構成する場合は、周速度ないし摩耗の相違や耐圧性を基に、例えば耐摩耗性または化学的耐久性の相違する異質部材で構成することによって、合理的な設計を促すようにしている。
請求項4の発明は、前記アウタ−ロ−タ−とインナ−ロ−タ−とを別々に着脱可能に設け、それらが経年的な使用によって磨耗しシール作用が低下した際の交換を独自かつ別々に行なえるようにし、その交換を小規模で容易に行なえるとともに、従来の一体形のロ−タ−のように、ロ−タ−全体を交換する不合理を解消し得るようにしている。
請求項5の発明は、アウタ−ロ−タ−とインナ−ロ−タ−を収容するバルブハウジングの内部にバルブシャフトを回動かつ軸方向に移動可能に設け、該バルブシャフトの端部に前記インナ−ロ−タ−を装着するとともに、前記バルブシャフトの端部周面に回動シリンダを軸方向に摺動かつ係合可能に配置し、該回動シリンダの端部に前記アウタ−ロ−タ−を装着し、簡単な構成によって、アウタ−ロ−タ−とインナ−ロ−タ−の同期回動を実現可能にしている。
According to a second aspect of the present invention, the outer rotor and the inner rotor can be rotated synchronously so that the desired operation of the rotor can be obtained.
According to a third aspect of the present invention, when the outer rotor and the inner rotor are formed of the same or different members, and the same member is used, for example, the configuration is simplified and the manufacture is facilitated. In case of using different materials, rational design is promoted by using different materials with different wear resistance or chemical durability, for example, based on the difference in peripheral speed or wear and pressure resistance. I am doing so.
According to a fourth aspect of the present invention, the outer rotor and the inner rotor are separately detachably provided, and the replacement when the seal action is deteriorated due to wear due to aging is uniquely and uniquely provided. It can be performed separately, and the replacement can be easily performed on a small scale, and the unreasonableness of exchanging the entire rotor can be eliminated like a conventional integrated rotor. .
According to a fifth aspect of the present invention, a valve shaft is rotatably and axially movable in a valve housing that accommodates an outer rotor and an inner rotor, and the end of the valve shaft is provided with the valve shaft. An inner rotor is mounted, and a rotating cylinder is slidably and axially disposed on the end surface of the valve shaft, and the outer rotor is disposed at the end of the rotating cylinder. A rotor is mounted, and the outer rotor and the inner rotor can be rotated synchronously with a simple configuration.

請求項6の発明は、前記回動シリンダにフランジを設け、該フランジの後方に付勢手段を係合可能に配置するとともに、前記バルブシャフトの周面にフランジを設け、該フランジの後方に付勢手段を係合可能に配置し、別々の付勢手段を用いることによって、アウタ−ロ−タ−とインナ−ロ−タ−のそれぞれの付勢を独自かつ所期の通りに実現し、所期の耐圧の設定を実現可能にしている。
請求項7の発明は、前記ステ−タ−のシ−ル面に8個以上のオリフィスを形成し、ステ−タ−に形成するポ−トと、シ−ル面に形成するオリフィスの数を共に従来よりも削減し、構成の簡潔化と製作の容易化を図り、切換バルブの小形軽量化を図るとともに、HPLCの流路切換え用に応じられるようにしている。
請求項8の発明は、前記ロ−タ−のロ−タ−シール面に前記オリフィスに連通可能な4個以上のロ−タ−溝を形成し、前記シ−ル面に形成するロ−タ−溝の数を従来よりも削減し、構成の簡潔化と製作の容易化を図り、切換バルブの小形軽量化を図るとともに、HPLCの流路切換え用に応じられるようにしている。
According to a sixth aspect of the present invention, a flange is provided on the rotating cylinder, and an urging means is disposed behind the flange so as to be engageable. A flange is provided on a peripheral surface of the valve shaft, and the flange is attached to the rear of the flange. By arranging the biasing means so as to be engageable and using separate biasing means, each of the outer rotor and the inner rotor is biased independently and as expected. This makes it possible to set the breakdown voltage of the period.
According to the seventh aspect of the present invention, eight or more orifices are formed on the seal surface of the stator, and the number of the orifices formed on the seal surface and the number of orifices formed on the seal surface are determined. Both of them are reduced from the conventional ones, simplifying the structure and facilitating manufacture, reducing the size and weight of the switching valve, and making it compatible with HPLC flow path switching.
According to an eighth aspect of the present invention, four or more rotor grooves capable of communicating with the orifice are formed on a rotor seal surface of the rotor, and the rotor is formed on the seal surface. -The number of grooves is reduced compared to the conventional one, the structure is simplified and the manufacture is facilitated, the switching valve is reduced in size and weight, and it is adapted for switching the flow path of HPLC.

請求項9の発明は、前記オリフィスを大小異径に形成し、かつこれらを同心円上の内外位置に配置し、ステ−タ−のシ−ル面にオリフィスを合理的に配置し、前記シ−ル面ないしステ−タ−の小形軽量化を図るようにしている。
請求項10の発明は、前記ロ−タ−溝の溝幅を大小異幅に形成し、かつこれらを同心円上の内外位置に配置し、ロ−タ−シール面にロ−タ−溝を合理的に配置し、前記ロ−タ−シ−ル面ないしロ−タ−の小形軽量化を図るようにしている。
請求項11の発明は、前記ステ−タ−の外部に複数の導管の一端を接続し、該導管の他端を移動相の供給流路と、送液ポンプと分離カラムと検出器とを介挿し、かつ導入した試料を循環可能にしたリサイクル流路とに接続し、前記供給流路とリサイクル流路とを切換え可能にし、単一のバルブ構成によって、移動相の供給流路とリサイクル流路の切換えを容易に行なえ、HPLCの使用に好適にしている。
請求項12の発明は、前記付勢手段はバネで、皿バネやコイルバネ、板バネ等の汎用な構成によって容易かつ安価に製作し得るようにしている。
According to the ninth aspect of the present invention, the orifices are formed to have different diameters and are arranged at concentric inner and outer positions, the orifice is rationally arranged on the seal surface of the stator, and the seal is arranged. The surface and the stator are reduced in size and weight.
According to a tenth aspect of the present invention, the rotor grooves are formed to have different widths, and are arranged at concentric inner and outer positions so that the rotor grooves are rationally provided on the rotor seal surface. Therefore, the rotor seal surface or rotor is reduced in size and weight.
According to the eleventh aspect of the present invention, one end of a plurality of conduits is connected to the outside of the stator, and the other end of the conduit is connected to a mobile phase supply channel, a liquid feed pump, a separation column, and a detector. Inserting and connecting the introduced sample to a recycling channel that enables circulation, the supply channel and the recycling channel can be switched, and a single valve configuration allows the mobile phase supply channel and the recycling channel to be switched. Can be easily switched and is suitable for use in HPLC.
According to a twelfth aspect of the present invention, the biasing means is a spring, and can be easily and inexpensively manufactured by a general-purpose configuration such as a disc spring, a coil spring, and a leaf spring.

請求項1の発明は、ロ−タ−をアウタ−ロ−タ−と該ロ−タ−の内側に配置するインナ−ロ−タ−とで構成し、前記アウタ−ロ−タ−とインナ−ロ−タ−をステ−タ−側へそれぞれ移動可能に設け、前記アウタ−ロ−タ−とインナ−ロ−タ−の後方に各ロ−タ−をステ−タ−側へ付勢する付勢手段を別々に配置したから、簡単な構成によって、ロ−タ−シール面に異なる耐圧を容易に得られ、高圧流体の供給を円滑かつ能率良く行なえるとともに、これを容易かつ安価に製作することができる。
したがって、前記切換バルブをリサイクル分離機能を備えたHPLCに使用することによって、単一のバルブ操作によって、移動相の供給流路とリサイクル流路の切換えを容易に行なえ、HPLCの使用に好適な効果がある。
According to a first aspect of the present invention, a rotor is composed of an outer rotor and an inner rotor disposed inside the rotor, and the outer rotor and the inner rotor are arranged. Rotors are provided so as to be movable toward the stator side, and the rotors are urged toward the stator side behind the outer rotor and the inner rotor. Since the biasing means are separately arranged, different pressure resistances can be easily obtained on the rotor seal surface with a simple configuration, and high-pressure fluid can be supplied smoothly and efficiently, and this can be manufactured easily and inexpensively. be able to.
Therefore, by using the switching valve for HPLC having a recycling separation function, the mobile phase supply channel and the recycling channel can be easily switched by a single valve operation, which is suitable for the use of HPLC. There is.

請求項2の発明は、前記アウタ−ロ−タ−とインナ−ロ−タ−とを同期回動可能にしたから、ロ−タ−の所期の作動を得られる効果がある。
請求項3の発明は、前記アウタ−ロ−タ−とインナ−ロ−タ−とを同一または異質部材で構成したから、同一部材で構成する場合は、例えば構成の簡潔化と製作の容易化を図れ、また異質部材で構成する場合は、周速度ないし摩耗の相違や耐圧性を基に、例えば耐摩耗性または化学的耐久性の相違する異質部材で構成することによって、合理的な設計を促すことができる。
請求項4の発明は、前記アウタ−ロ−タ−とインナ−ロ−タ−とを別々に着脱可能に設けたから、それらが経年的な使用によって磨耗しシール作用が低下した際の交換を独自かつ別々に行なえ、その交換を小規模で容易に行なえるとともに、従来の一体形のロ−タ−のように、ロ−タ−全体を交換する不合理を解消し得る効果がある。
請求項5の発明は、アウタ−ロ−タ−とインナ−ロ−タ−を収容するバルブハウジングの内部にバルブシャフトを回動かつ軸方向に移動可能に設け、該バルブシャフトの端部に前記インナ−ロ−タ−を装着するとともに、前記バルブシャフトの端部周面に回動シリンダを軸方向に摺動かつ係合可能に配置し、該回動シリンダの端部に前記アウタ−ロ−タ−を装着したから、簡単な構成によって、アウタ−ロ−タ−とインナ−ロ−タ−の同期回動を実現することができる。
According to the second aspect of the present invention, since the outer rotor and the inner rotor can be rotated synchronously, the desired operation of the rotor can be obtained.
According to the invention of claim 3, since the outer rotor and the inner rotor are made of the same or different members, when they are made of the same member, for example, the structure is simplified and the manufacture is facilitated. In the case of using different materials, rational design can be achieved by using different materials with different wear resistance or chemical durability, for example, based on differences in peripheral speed or wear and pressure resistance. Can be urged.
According to the invention of claim 4, since the outer rotor and the inner rotor are separately detachably provided, the replacement when the seal action is deteriorated due to wear due to use over time is unique. In addition, they can be performed separately and can be easily exchanged on a small scale, and can eliminate the unreasonableness of exchanging the entire rotor as in a conventional integrated rotor.
According to a fifth aspect of the present invention, a valve shaft is rotatably and axially movable in a valve housing that accommodates an outer rotor and an inner rotor, and the end of the valve shaft is provided with the valve shaft. An inner rotor is mounted, and a rotating cylinder is slidably and axially disposed on the end surface of the valve shaft, and the outer rotor is disposed at the end of the rotating cylinder. Since the rotor is mounted, synchronous rotation of the outer rotor and the inner rotor can be realized with a simple configuration.

請求項6の発明は、前記回動シリンダにフランジを設け、該フランジの後方に付勢手段を係合可能に配置するとともに、前記バルブシャフトの周面にフランジを設け、該フランジの後方に付勢手段を係合可能に配置したから、別々の付勢手段を用いることによって、アウタ−ロ−タ−とインナ−ロ−タ−のそれぞれの付勢を独自かつ所期の通りに得られ、所期の耐圧の設定を実現することができる。
請求項7の発明は、前記ステ−タ−のシ−ル面に8個以上のオリフィスを形成したから、ステ−タに形成するポ−トと、シ−ル面に形成するオリフィスの数を共に従来よりも削減し、構成の簡潔化と製作の容易化を図り、切換バルブの小形軽量化を図るとともに、HPLCの流路切換え用に応じられる効果がある。
請求項8の発明は、前記ロ−タ−のロ−タ−シール面に前記オリフィスに連通可能な4個以上のロ−タ−溝を形成したから、前記シ−ル面に形成するロ−タ−溝の数を従来よりも削減し、構成の簡潔化と製作の容易化を図り、切換バルブの小形軽量化を図るとともに、HPLCの流路切換え用に応じられる効果がある。
請求項9の発明は、前記オリフィスを大小異径に形成し、かつこれらを同心円上の内外位置に配置したから、ステ−タ−のシ−ル面にオリフィスを合理的に配置し、前記シ−ル面ないしステ−タ−の小形軽量化を図ることができる。
According to a sixth aspect of the present invention, a flange is provided on the rotating cylinder, and an urging means is disposed behind the flange so as to be engageable. A flange is provided on a peripheral surface of the valve shaft, and the flange is attached to the rear of the flange. Since the biasing means are arranged to be engageable, by using separate biasing means, the respective biasing of the outer rotor and the inner rotor can be obtained independently and as expected, The desired breakdown voltage can be set.
In the invention of claim 7, since eight or more orifices are formed on the seal surface of the stator, the number of orifices formed on the seal surface and the number of orifices formed on the seal surface is reduced. Both of them are less than the conventional ones, simplifying the structure and facilitating the manufacture, reducing the size and weight of the switching valve, and are effective for switching the flow path of HPLC.
According to the eighth aspect of the present invention, since four or more rotor grooves that can communicate with the orifice are formed on the rotor seal surface of the rotor, the rotor formed on the seal surface. The number of turbine grooves is reduced as compared with the prior art, the structure is simplified and the manufacture is facilitated, the switching valve is reduced in size and weight, and the effect is that it can be used for switching the flow path of HPLC.
According to the ninth aspect of the present invention, since the orifices are formed to have different diameters and are arranged at concentric inner and outer positions, the orifice is rationally arranged on the seal surface of the stator, and -The surface and the stator can be reduced in size and weight.

請求項10の発明は、前記ロ−タ−溝の溝幅を大小異幅に形成し、かつこれらを同心円上の内外位置に配置したから、ロ−タ−シール面にロ−タ−溝を合理的に配置し、前記ロ−タ−シ−ル面ないしロ−タ−の小形軽量化を図ることができる。
請求項11の発明は、前記ステ−タ−の外部に複数の導管の一端を接続し、該導管の他端を移動相の供給流路と、送液ポンプと分離カラムと検出器とを介挿し、かつ導入した試料を循環可能にしたリサイクル流路とに接続し、前記供給流路とリサイクル流路とを切換え可能にしたから、単一のバルブ構成によって、移動相の供給流路とリサイクル流路の切換えを容易に行なえ、HPLCの使用に好適な効果がある。
請求項12の発明は、前記付勢手段はバネで、皿バネやコイルバネ、板バネ等の汎用な構成によって容易かつ安価に製作することができる。
In the tenth aspect of the present invention, the rotor grooves are formed to have different widths, and are arranged at concentric inner and outer positions, so that the rotor groove is formed on the rotor seal surface. The rotor seal surface or rotor can be reduced in size and weight by rational arrangement.
According to the eleventh aspect of the present invention, one end of a plurality of conduits is connected to the outside of the stator, and the other end of the conduit is connected to a mobile phase supply channel, a liquid feed pump, a separation column, and a detector. Inserted and connected to the recycle flow path that allows the introduced sample to be circulated, and the supply flow path and the recycle flow path can be switched. The flow path can be easily switched, and there is an effect suitable for the use of HPLC.
According to a twelfth aspect of the present invention, the biasing means is a spring, and can be easily and inexpensively manufactured by a general-purpose configuration such as a disc spring, a coil spring, and a leaf spring.

本発明に適用した切換バルブのバルブヘッドの外面を示す正面図である。It is a front view which shows the outer surface of the valve head of the switching valve applied to this invention. 図1のA−A線に沿う拡大断面図である。It is an expanded sectional view which follows the AA line of FIG. 本発明に適用した切換バルブのロ−タ−を示す正面図で、アウタ−ロ−タ−にインナ−ロ−タ−を装着している。It is a front view which shows the rotor of the switching valve applied to this invention, and the inner rotor is mounted | worn with the outer rotor. 本発明に適用した切換バルブのロ−タ−を分解して示す正面図で、(a)はアウタ−ロ−タ−を示し(b)はインナ−ロ−タ−を示している。FIG. 2 is an exploded front view showing a rotor of a switching valve applied to the present invention, wherein (a) shows an outer rotor and (b) shows an inner rotor. 本発明の切換バルブをHPLCの流路切換え用に適用した際の通常使用時を示す説明図である。It is explanatory drawing which shows the time of normal use at the time of applying the switching valve of this invention for the flow path switching of HPLC.

本発明の切換バルブをHPLCの流路切換え用に適用した際のリサイクル時を示す説明図である。It is explanatory drawing which shows the time of recycling at the time of applying the switching valve of this invention for the flow path switching of HPLC. 本発明の第2の実施形態の要部を示す拡大断面図である。It is an expanded sectional view showing an important section of a 2nd embodiment of the present invention. 本発明の第3の実施形態の要部を示すロ−タ−の正面図で、アウタ−ロ−タ−にインナ−ロ−タ−を装着している。It is a front view of the rotor which shows the principal part of the 3rd Embodiment of this invention, and the inner rotor is mounted | worn with the outer rotor. 前記第3の実施形態に適用した切換バルブのロ−タ−を分解して示す正面図で、(a)はアウタ−ロ−タ−を示し(b)はインナ−ロ−タ−を示している。FIG. 7 is an exploded front view showing a rotor of a switching valve applied to the third embodiment, wherein (a) shows an outer rotor and (b) shows an inner rotor. Yes.

以下、本発明をリサイクル分離機能を備えたHPLCの切換バルブに適用した図示の実施形態について説明すると、図1乃至図6において1はHPLCの移動相の供給流路と、リサイクル流路の流路切換機能とを備えた切換バルブで、該切換バルブ1は8ポ−ト以上の多ポ−トバルブが使用され、実施形態では10ポ−ト切換バルブを使用している。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention applied to an HPLC switching valve having a recycle separation function will be described below. In FIG. 1 to FIG. A switching valve having a switching function. The switching valve 1 is a multi-port valve of 8 ports or more, and in the embodiment, a 10-port switching valve is used.

前記切換バルブ1は内部のデッドボリュ−ムを低減するため、バルブヘッドの機能を兼ね備えたステ−タ−2を有し、該ステ−タ−2の内側に平坦なシ−ル面2aを備え、該ステ−タ−2をボルト3を介して、筒状のバルブハウジング4に連結している。
前記ステ−タ−2の外部は略円錐台形状に形成され、その外面の内外位置に複数のポ−ト5,6が同心円上に配置され、該ポ−ト5,6にフィッティング7,8がねじ込まれ、該該フィッティング7,8に導管9a〜9dと、導管9b,9c,10aが接続されている。
In order to reduce the internal dead volume, the switching valve 1 has a stator 2 having a function of a valve head, and has a flat seal surface 2a inside the stator 2. The stator 2 is connected to a cylindrical valve housing 4 via a bolt 3.
The outside of the stator 2 is formed in a substantially truncated cone shape, and a plurality of ports 5 and 6 are arranged concentrically at the inner and outer positions of the outer surface thereof, and fittings 7 and 8 are provided on the ports 5 and 6. Are connected, and the conduits 9a to 9d and the conduits 9b, 9c and 10a are connected to the fittings 7 and 8, respectively.

この場合、前記各導管のうち、後述する送液ポンプの吸引側の導管9cの内径を最大径に形成し、送液ポンプによる吸引作動を円滑かつ能率良く行なうようにし、また後述する検出器から切換バルブ1への導入側の導管9bの内径を中間径に形成し、検出器のセルに対する高圧負荷を防止して、セルの破壊を防止するようにし、更に後述する送液ポンプから切換バルブ1への吐出側の導管9cの内径を最小径に形成することが望ましい。   In this case, the inner diameter of the conduit 9c on the suction side of the liquid feeding pump, which will be described later, is formed to the maximum diameter among the respective conduits so that the suction operation by the liquid feeding pump can be performed smoothly and efficiently. The inner diameter of the conduit 9b on the introduction side to the switching valve 1 is formed to be an intermediate diameter so as to prevent a high-pressure load on the cell of the detector to prevent the destruction of the cell. It is desirable to form the inner diameter of the discharge-side conduit 9c to the minimum diameter.

前記ステ−タ−2の内部に、前記ポ−ト5,6に連通する斜状通路11,12が形成され、該通路11,12の傾斜角度は互いに相違し、外側の斜状通路11は内側配置の斜状通路12ものより鋭角に形成され、それらの内側端部がステ−タ−2のシール面2aの内外位置に開口している。
前記斜状通路11,12の内側端部に、大小異径のオリフィス13〜16、17〜22とが形成され、該オリフィス13〜16、17〜22が後述するロ−タ−溝に連通可能に配置されている。
実施形態では10個のオリフィスを形成しているが、HPLCの移動相の供給流路とリサイクル流路の流路切換用には、8個以上のオリフィスを形成すれば良い。
Slanted passages 11 and 12 communicating with the ports 5 and 6 are formed inside the stator-2. The inclination angles of the passages 11 and 12 are different from each other. It is formed at an acute angle with respect to the oblique passage 12 arranged on the inner side, and the inner end thereof opens to the inner and outer positions of the seal surface 2a of the stator-2.
Large and small diameter orifices 13 to 16 and 17 to 22 are formed at inner end portions of the oblique passages 11 and 12, and the orifices 13 to 16 and 17 to 22 can communicate with a rotor groove described later. Is arranged.
In the embodiment, ten orifices are formed, but it is sufficient to form eight or more orifices for switching the supply flow path of the HPLC mobile phase and the recycle flow path.

前記バルブハウジング4の内部に大小異径の段付きのバルブ室4aが形成され、該バルブ室4aにバルブシャフト23が回動かつ軸方向に摺動可能に配置され、その一端がバルブハウジング4の外側に突出し、該突出部がロ−タ−駆動用モ−タ(図示略)に連係している。
前記バルブシャフト23の他端部は拡径され、その拡径部23aの周囲に回動シリンダ24が配置され、該シリンダ24の内面に複数のガイド溝25が軸方向に形成されている
前記バルブシャフト23の他端部に複数のドグ26が突設され、該ドグ26が前記ガイド溝25に摺動可能に嵌合している。
A stepped valve chamber 4 a having a large and small diameter is formed inside the valve housing 4, and a valve shaft 23 is disposed in the valve chamber 4 a so as to be rotatable and slidable in the axial direction. Projecting outward, the projecting portion is linked to a rotor driving motor (not shown).
The other end portion of the valve shaft 23 is enlarged in diameter, a rotating cylinder 24 is disposed around the enlarged diameter portion 23a, and a plurality of guide grooves 25 are formed on the inner surface of the cylinder 24 in the axial direction. A plurality of dogs 26 project from the other end of the shaft 23, and the dogs 26 are slidably fitted into the guide grooves 25.

前記回動シリンダ24の端部にフランジ27が形成され、該フランジ27とバルブ室4aの大径段部4bとの間に、後述のアウタ−ロ−タ−の付勢手段としてバネ28、実施形態では複数の皿バネと、軸受29とが配置されている。
前記バルブシャフト23の中間部にフランジ30等の凸部が突設され、該フランジ30と小径段部4cとの間に、後述のインナ−ロ−タ−の付勢手段としてバネ31、実施形態では複数の皿バネと、軸受32とが配置されている。
この場合、前記皿バネの代わりにコイルバネ、板バネを用いることも可能である。
A flange 27 is formed at the end of the rotating cylinder 24. A spring 28 is provided between the flange 27 and the large-diameter step 4b of the valve chamber 4a as a biasing means for an outer rotor described later. In the embodiment, a plurality of disc springs and a bearing 29 are arranged.
A convex portion such as a flange 30 protrudes from an intermediate portion of the valve shaft 23, and a spring 31 is provided between the flange 30 and the small-diameter step portion 4c as an urging means for an inner rotor described later. Then, the some disc spring and the bearing 32 are arrange | positioned.
In this case, it is also possible to use a coil spring or a leaf spring instead of the disc spring.

前記皿バネ28は皿バネ31よりも大径に形成され、この皿バネ28,31のばね強さは、対応するアウタ−ロ−タ−またはインナ−ロ−タ−の耐圧ないしシ−ル圧に応じて設定され、かつ皿バネ31のばね強さを皿バネ28よりも強く設定している。   The disc spring 28 is formed to have a larger diameter than the disc spring 31, and the spring strength of the disc springs 28, 31 is the pressure resistance or seal pressure of the corresponding outer rotor or inner rotor. And the spring strength of the disc spring 31 is set to be stronger than that of the disc spring 28.

そして、前記皿バネ28の弾性によって、後述するアウタ−ロ−タ−をステ−タ−2側へ移動可能に付勢し、また前記皿バネ31の弾性によって、バルブシャフト23をステ−タ−2側へ移動可能に付勢し、後述するインナ−ロ−タ−をアウタ−ロ−タ−と別個にステ−タ−2側へ移動可能に付勢している。図中、33はバルブシャフト23の一端部側に配置した軸受である。   An elastic force of the disc spring 28 urges an outer rotor, which will be described later, to move toward the stator 2 side, and the elastic force of the disc spring 31 causes the valve shaft 23 to move toward the stator. The inner rotor, which will be described later, is urged so as to be movable toward the second side, and is urged so as to be movable toward the stator-2 side separately from the outer rotor. In the figure, reference numeral 33 denotes a bearing disposed on one end side of the valve shaft 23.

前記フランジ27の端面は、バルブシャフト23の端面と同一面上に配置され、該フランジ27の端面に環状の保持板34が配置されている。前記保持板34の内側に円板状の保持板35がバルブシャフト23と同動可能に配置され、これら保持板34,35の他側面にロ−タ−36が配置されている。   The end face of the flange 27 is arranged on the same plane as the end face of the valve shaft 23, and an annular holding plate 34 is arranged on the end face of the flange 27. A disc-shaped holding plate 35 is arranged inside the holding plate 34 so as to be movable with the valve shaft 23, and a rotor 36 is arranged on the other side of the holding plates 34, 35.

前記ロ−タ−36は、PEEK(登録商標)材等の合成樹脂製の環状のアウタ−ロ−タ−37と、該アウタ−ロ−タ−37と同質の合成樹脂製の円板状のインナ−ロ−タ−38とで構成され、該インナ−ロ−タ−38が前記アウタ−ロ−タ−37の通孔37bに軸方向に摺動可能に嵌合している。
この場合、アウタ−ロ−タ−37をPEEK材で構成し、インナ−ロ−タ−38をアウタ−ロ−タ−37と異質のグラファイトベスペル(登録商標)、デルリン(登録商標)材、等で構成することも可能である。
また、アウタ−ロ−タ−37を環状の円錐台形状に形成しているが、環状の円板状に形成することも可能である。
The rotor 36 includes a ring-shaped outer rotor 37 made of a synthetic resin such as PEEK (registered trademark) material, and a disk-shaped made of a synthetic resin of the same quality as the outer rotor 37. The inner rotor 38 is fitted in the through hole 37b of the outer rotor 37 so as to be slidable in the axial direction.
In this case, the outer rotor 37 is made of PEEK material, and the inner rotor 38 is made of graphite Bespel (registered trademark), Delrin (registered trademark) material, etc., which are different from the outer rotor 37. It is also possible to configure.
Further, although the outer rotor 37 is formed in an annular truncated cone shape, it can be formed in an annular disk shape.

前記アウタ−ロ−タ−37は、ピン39を介して前記保持板34とフランジ27の端面に固定され、また前記インナ−ロ−タ−38がピン40を介して、前記保持板35とバルブシャフト23の端面に固定されている。
この場合、実施形態のロ−タ−36は、回動手段としてバルブシャフト23をロ−タ−駆動用モ−タ(図示略)に連係しているが、前記モ−タの代わりに手動で回動させることも可能である。
The outer rotor 37 is fixed to the holding plate 34 and the end face of the flange 27 via a pin 39, and the inner rotor 38 is fixed to the holding plate 35 and a valve via a pin 40. It is fixed to the end face of the shaft 23.
In this case, in the rotor 36 of the embodiment, the valve shaft 23 is linked to a rotor driving motor (not shown) as rotating means, but manually instead of the motor. It is also possible to rotate.

前記バルブシャフト23の回動力は、ドグ26を介して回動シリンダ24に伝達され、該シリンダ24の回動力がピン39および保持板34を介して、アウタ−ロ−タ−37に伝達可能にされている。
一方、バルブシャフト23の回動力は、ピン40および保持板35を介して、インナ−ロ−タ−38に伝達可能にされ、かつ前記アウタ−ロ−タ−37と同期回動可能にされている。
The turning force of the valve shaft 23 is transmitted to the rotating cylinder 24 via the dog 26, and the turning force of the cylinder 24 can be transmitted to the outer rotor 37 via the pin 39 and the holding plate 34. Has been.
On the other hand, the rotational force of the valve shaft 23 can be transmitted to the inner rotor 38 via the pin 40 and the holding plate 35, and can be rotated synchronously with the outer rotor 37. Yes.

前記アウタ−ロ−タ−37のロ−タ−シール面37aに、大小二つの円弧状のロ−タ−溝41,42が同心円上の内外位置に形成され、これらのロ−タ−溝41,42は図示のように略点対称位置に配置され、このうちロ−タ−溝41はロ−タ−溝42の略1/2の長さに形成され、それらの溝幅は同一に形成されている。
そして、移動相の供給と目的成分を分取する通常時は、前記ロ−タ−溝41に前記オリフィス13,14が連通可能に配置され、また前記ロ−タ−溝42に前記オリフィス15,16が連通可能に配置されている。
On the rotor seal surface 37a of the outer rotor 37, two large and small arc-shaped rotor grooves 41, 42 are formed at inner and outer positions on concentric circles. , 42 are arranged at substantially point-symmetrical positions as shown in the figure. Among these, the rotor groove 41 is formed to be approximately half the length of the rotor groove 42, and the groove width is the same. Has been.
In the normal time when the mobile phase is supplied and the target component is separated, the orifices 13 and 14 are arranged in the rotor groove 41 so as to communicate with each other, and the orifices 15 and 14 are arranged in the rotor groove 42. 16 is arrange | positioned so that communication is possible.

前記オリフィス13に導管9aの一端が連通し、その他端が分取装置43に接続され、また前記オリフィス14に導管9bの一端が連通し、その他端が前記オリフィス18に接続され、該導管9bにセル44を有する検出器45と、分離カラム46とが介挿されている。
前記オリフィス15に導管9cの一端が連通し、その他端が前記オリフィス19に連通し、該導管9cに送液ポンプ47が介挿されている。
前記オリフィス16に導管9dの一端が連通し、その他端が溶離液48を収容した容器49に接続されている。
One end of a conduit 9a communicates with the orifice 13 and the other end is connected to a sorting device 43. One end of a conduit 9b communicates with the orifice 14 and the other end is connected to the orifice 18. The conduit 9b A detector 45 having a cell 44 and a separation column 46 are interposed.
One end of a conduit 9c communicates with the orifice 15, the other end communicates with the orifice 19, and a liquid feed pump 47 is inserted into the conduit 9c.
One end of a conduit 9 d communicates with the orifice 16 and the other end is connected to a container 49 containing an eluent 48.

前記インナ−ロ−タ−38のロ−タ−シール面38aに、同様な三つの円弧状のロ−タ−溝50〜52が同心円上に等角度位置に配置されている。
前記ロ−タ−溝50〜52の長さは前記ロ−タ−溝42の略1/4に形成され、その溝幅が前記ロ−タ−溝42の略1/2に形成されている。
このうち、前記ロ−タ−溝51は、ロ−タ−溝42の長さの略中央の放射線上に位置し、該ロ−タ−溝51を基に他のロ−タ−溝50,52を配置している。
Three similar arc-shaped rotor grooves 50 to 52 are arranged concentrically on the rotor seal surface 38a of the inner rotor 38 at equiangular positions.
The length of the rotor grooves 50 to 52 is formed to be approximately ¼ of the rotor groove 42, and the groove width is formed to be approximately ½ of the rotor groove 42. .
Among these, the rotor groove 51 is positioned on the radiation at the substantially center of the length of the rotor groove 42, and the other rotor grooves 50, based on the rotor groove 51. 52 is arranged.

そして、通常時は、前記ロ−タ−溝50に前記オリフィス17,18が連通可能に配置され、また前記ロ−タ−溝51に前記オリフィス19,20が連通可能に配置され、更にロ−タ−溝52に前記オリフィス21,22が連通可能に配置されている。
前記オリフィス20に導管10aの一端が連通し、その他端が前記オリフィス22に連通し、該導管10aにプレヒートチュ−ブ53と、オ−トサンプラ−54とが介挿されている。 前記オリフィス17に導管または通路10bの一端が連通し、その他端が前記オリフィス21に連通している。
In a normal state, the orifices 17 and 18 are arranged to communicate with the rotor groove 50, and the orifices 19 and 20 are arranged to communicate with the rotor groove 51. The orifices 21 and 22 are arranged in the turbine groove 52 so as to communicate with each other.
One end of a conduit 10a communicates with the orifice 20, the other end communicates with the orifice 22, and a preheat tube 53 and an autosampler 54 are inserted into the conduit 10a. One end of a conduit or passage 10 b communicates with the orifice 17 and the other end communicates with the orifice 21.

前記プレヒ−トチュ−ブ53は、リサイクル目的成分が溶出するまで溶離液48を流入され、該溶離液48を前記チュ−ブ53に付設したヒ−タ−(図示略)によって加温可能にしている。
なお、実施形態では導管10aにオ−トサンプラ−54を配置しているが、これを分離カラム46より上流側に配置することも可能であり、また分離カラム46とプレヒ−トチュ−ブ53を、オーブン(図示略)内に配置することも可能である。
The preheat tube 53 is supplied with the eluent 48 until the recycle target component is eluted, and the eluent 48 can be heated by a heater (not shown) attached to the tube 53. Yes.
In the embodiment, the autosampler 54 is disposed in the conduit 10a. However, it is also possible to dispose the autosampler 54 on the upstream side of the separation column 46. It is also possible to arrange in an oven (not shown).

このように構成した切換バルブは、概括するとバルブヘッドの機能を備えたステ−タ−2と、該ステ−タ−2を取付けるバルブハウジング4と、バルブハウジング4に回動かつ軸方向に移動可能に設けたバルブシャフト23と、バルブシャフト23と同期回動可能な回動シリンダ24と、回動シリンダ24と同動可能な保持板34と、前記バルブシャフト23と同動可能な保持板35と、前記保持板34と同動可能なアウタ−ロ−タ−37と、前記保持板35と同動可能なインナ−ロ−タ−37と、アウタ−ロ−タ−37とインナ−ロ−タ−37の付勢手段である皿バネ28,31と、で構成されている。   In general, the switching valve configured as described above is a stateer 2 having a function of a valve head, a valve housing 4 to which the stater-2 is attached, and the valve housing 4 can be rotated and moved in the axial direction. A valve shaft 23 provided on the rotating shaft 24, a rotating cylinder 24 that can rotate synchronously with the valve shaft 23, a holding plate 34 that can move with the rotating cylinder 24, and a holding plate 35 that can move with the valve shaft 23 The outer rotor 37 that can move with the holding plate 34, the inner rotor 37 that can move with the holding plate 35, the outer rotor 37, and the inner rotor The disc springs 28 and 31 are biasing means of −37.

前記ステ−タ−2を異形の円盤形に形成し、その外面に4つのポ−ト5と6つのポ−ト
6を形成し、内側に平滑なシ−ル面2aを形成し、該シ−ル面2aに前記ポ−ト5,6に連通する大小異径のオリフィス13〜16、17〜22を同心円上の内外位置にに形成する。
前記バルブハウジング4を略円筒状に形成し、その内部に段付きのバルブ室4aを形成し、その前後位置に大小異径の大径段部4bと小径段部4cを形成し、その内部にバルブシャフト23を回動かつ軸方向に移動可能に収容する。
The stator-2 is formed in a deformed disk shape, four ports 5 and six ports 6 are formed on the outer surface thereof, and a smooth seal surface 2a is formed on the inner side. The orifices 13 to 16 and 17 to 22 having different diameters communicating with the ports 5 and 6 are formed in the inner and outer positions on the concentric circles.
The valve housing 4 is formed in a substantially cylindrical shape, a stepped valve chamber 4a is formed therein, a large-diameter step portion 4b and a small-diameter step portion 4c having large and small different diameters are formed at front and rear positions thereof, The valve shaft 23 is accommodated so as to be rotatable and movable in the axial direction.

前記バルブシャフト23を段付きの軸状に形成し、その中間部にフランジ30を突設し、また軸端部の外周に複数のドグ26を突設し、他側端部を縮径して延設する。
前記回動シリンダ24を中空筒状に形成し、その端部にフランジ27を突設し、中空部の内面に前記ドグ26と係合可能なガイド溝25を軸方向に形成する。
前記保持板34を環状の円板状に形成し、内側の保持板35を保持板34の内側に挿入可能な円板状に形成する。
The valve shaft 23 is formed in a stepped shaft shape, a flange 30 is projected in the middle of the valve shaft 23, a plurality of dogs 26 are projected on the outer periphery of the shaft end, and the other end is reduced in diameter. Extend.
The rotating cylinder 24 is formed in a hollow cylindrical shape, a flange 27 is provided at the end thereof, and a guide groove 25 that can be engaged with the dog 26 is formed in the axial direction on the inner surface of the hollow portion.
The holding plate 34 is formed in an annular disk shape, and the inner holding plate 35 is formed in a disk shape that can be inserted into the holding plate 34.

前記ロ−タ−36をアウタ−ロ−タ−37とインナ−ロ−タ−38の同質または異質の二部材で構成する。実施形態ではこれらをPEEK(登録商標)材、またはグラファイトベスペル(登録商標)材、デルリン(登録商標)等で構成している。
また、アウタ−ロ−タ−37を環状の円錐台形状または円板状に形成し、インナ−ロ−タ−38を通孔37bに嵌合可能な円板状に形成する。
前記アウタ−ロ−タ−37のロ−タ−シール面37aに、大小二つの円弧状のロ−タ−溝41,42を同心円上のに配置し、インナ−ロ−タ−38のロ−タ−シール面38aに同様な三つの円弧状のロ−タ−溝50〜52を同心円上の等角度位置に配置する。
The rotor 36 is composed of two members of the same or different quality, an outer rotor 37 and an inner rotor 38. In the embodiment, these are made of PEEK (registered trademark) material, graphite vespel (registered trademark) material, delrin (registered trademark), or the like.
Further, the outer rotor 37 is formed in an annular truncated cone shape or a disk shape, and is formed in a disk shape that can be fitted into the through hole 37b of the inner rotor 38.
Two large and small arc-shaped rotor grooves 41 and 42 are arranged concentrically on the rotor seal surface 37a of the outer rotor 37 so that the rotor of the inner rotor 38 is rotated. Three similar arc-shaped rotor grooves 50 to 52 are arranged at equiangular positions on a concentric circle on the rotor seal surface 38a.

前記皿バネ28,31のばね強さは、対応するアウタ−ロ−タ−37またはインナ−ロ−タ−38の耐圧ないしシ−ル圧に応じて設定され、実施形態ではアウタ−ロ−タ−37に対する皿バネ28よりも、インナ−ロ−タ−38に対する皿バネ31のばね強さを強く設定している。   The spring strength of the disc springs 28 and 31 is set in accordance with the pressure resistance or seal pressure of the corresponding outer rotor 37 or inner rotor 38. In the embodiment, the outer rotor is used. The spring strength of the disc spring 31 with respect to the inner rotor 38 is set stronger than the disc spring 28 with respect to -37.

このような主要な構成部材を用いて切換バルブを組立てる場合は、例えば回動シリンダ24にバルブシャフト23の一側端部を挿入し、ガイド溝25にドグ26を係合し、バルブシャフト23の軸端部とフランジ27の端面とを同一面上に位置付ける。
この後、フランジ27の端面に保持板34を重合し、その内側に保持板35を挿入し、該保持板35をバルブシャフト23の軸端部に重合する。そして、ピン39を保持板34とフランジ27の端面に圧入し、またピン40を保持板35とバルブシャフト23の軸端面に圧入し、保持板34,35をフランジ27とバルブシャフト23の軸端面に固定する
When assembling the switching valve using such main components, for example, one end of the valve shaft 23 is inserted into the rotating cylinder 24, the dog 26 is engaged with the guide groove 25, and the valve shaft 23 The shaft end and the end face of the flange 27 are positioned on the same plane.
Thereafter, the holding plate 34 is superposed on the end face of the flange 27, the holding plate 35 is inserted inside thereof, and the holding plate 35 is superposed on the shaft end portion of the valve shaft 23. Then, the pin 39 is press-fitted into the holding plate 34 and the end surface of the flange 27, the pin 40 is press-fitted into the holding plate 35 and the shaft end surface of the valve shaft 23, and the holding plates 34 and 35 are pressed into the shaft end surface of the flange 27 and the valve shaft 23. Secure to

次に、前記保持板34の他側端面にアウタ−ロ−タ−37を重合し、該アウタ−ロ−タ−37を前記ピン39の突出部に圧入し、またアウタ−ロ−タ−37の内側にインナ−ロ−タ−38を挿入し、該インナ−ロ−タ−38を前記ピン40の突出部に圧入し、アウタ−ロ−タ−37とインナ−ロ−タ−38を保持板34,35に固定する。
このようにして、バルブシャフト23の軸端部に、ピン39,40と保持板34,35を介して、アウタ−ロ−タ−37とインナ−ロ−タ−38を組み付けたバルブシャフトアセンブリを製作する。
Next, the outer rotor 37 is superposed on the other end surface of the holding plate 34, the outer rotor 37 is press-fitted into the protruding portion of the pin 39, and the outer rotor 37 is also pressed. An inner rotor 38 is inserted inside the inner rotor 38, and the inner rotor 38 is press-fitted into the projecting portion of the pin 40 to hold the outer rotor 37 and the inner rotor 38. Secure to plates 34 and 35.
Thus, the valve shaft assembly in which the outer rotor 37 and the inner rotor 38 are assembled to the shaft end portion of the valve shaft 23 via the pins 39 and 40 and the holding plates 34 and 35 is provided. To manufacture.

前記アセンブリの製作と前後して、バルブハウジング4aの大径段部4bに軸受29と大径の皿バネ28を収容し、またバルブハウジング4の小径段部4cに軸受32と小径の皿バネ31を収容し、該軸受32,32を前記段部4b,4cに係合可能に配置する。
この後、前記バルブシャフトアセンブリをバルブ室4aに挿入し、フランジ30を皿バネ31に係合可能に位置付け、回動シリンダ24のフランジ27を皿バネ28に係合可能に位置付け、バルブシャフト23の他側端部をバルブハウジング4の外側に突出し、該突出部をロ−タ−駆動用モ−タ(図示略)に連係する。
Before and after manufacturing the assembly, the bearing 29 and the large-diameter disc spring 28 are accommodated in the large-diameter step portion 4b of the valve housing 4a, and the bearing 32 and the small-diameter disc spring 31 are accommodated in the small-diameter step portion 4c of the valve housing 4. And the bearings 32 and 32 are arranged to be engageable with the stepped portions 4b and 4c.
Thereafter, the valve shaft assembly is inserted into the valve chamber 4a, the flange 30 is positioned so as to be engageable with the disc spring 31, the flange 27 of the rotating cylinder 24 is positioned so as to be engageable with the disc spring 28, and The other end protrudes outside the valve housing 4 and the protrusion is linked to a rotor driving motor (not shown).

そして、バルブハウジング4の一側端部にステ−タ−2を接合し、そのシ−ル面2aをアウタ−ロ−タ−37とインナ−ロ−タ−38の他側端面、すなわち各ロータ−シ−ル37a,38aに接合し、ステ−タ−2の外側からボルト3をバルブハウジング4にねじ込み、該ボルト3を緊締してステ−タ−2をバルブハウジング4に接続する。   The stator 2 is joined to one end of the valve housing 4, and the seal surface 2a is connected to the other end surfaces of the outer rotor 37 and the inner rotor 38, that is, each rotor. -Join the seals 37a and 38a, screw the bolt 3 into the valve housing 4 from the outside of the stator-2, and tighten the bolt 3 to connect the stator-2 to the valve housing 4.

この状況は図2および図3のようで、アウタ−ロ−タ−37のロ−タ−溝41,42にステ−タ−2のオリフィス13〜16が連通し、インナ−ロ−タ−38のロ−タ−溝50〜52にステ−タ−2のオリフィス17〜22が連通する。
この後、各ポート5,6にフィッティング7,8をねじ込み、該フィッティング7,8に導管9a〜9d、9b,9c,10aの一端を配管する。
This situation is as shown in FIGS. 2 and 3. The rotor grooves 41 and 42 of the outer rotor 37 are connected to the orifices 13 to 16 of the stator 2 so that the inner rotor 38 The rotor grooves 50 to 52 are connected to the orifices 17 to 22 of the stator 2.
Thereafter, the fittings 7 and 8 are screwed into the respective ports 5 and 6, and one ends of the conduits 9a to 9d, 9b, 9c and 10a are piped to the fittings 7 and 8, respectively.

そして、導管9aの他端を分取装置43に接続し、導管9bの他端をオリフィス18に連通し、該導管9bに検出器45と分離カラム46を介挿する。
また、導管9cの他端をオリフィス19に連通し、該導管9cに送液ポンプ47を介挿し、導管9dの他端を容器49に接続する。更に、導管10aの他端をオリフィス22に連通し、該導管10aにプレヒ−トチュ−ブ53とオートサンプラ−54を介挿する。この状況は図5のようである。
The other end of the conduit 9a is connected to the sorting device 43, the other end of the conduit 9b communicates with the orifice 18, and the detector 45 and the separation column 46 are inserted into the conduit 9b.
Further, the other end of the conduit 9 c communicates with the orifice 19, a liquid feed pump 47 is inserted into the conduit 9 c, and the other end of the conduit 9 d is connected to the container 49. Further, the other end of the conduit 10a is communicated with the orifice 22, and a preheat tube 53 and an autosampler 54 are inserted into the conduit 10a. This situation is as shown in FIG.

こうして組立てた切換バルブ1は、皿バネ31の弾性によってバルブシャフト23がステ−タ−2側に付勢され、保持板35を介してインナ−ロ−タ−38のロータ−シ−ル面38aが、ステ−タ2のシ−ル面2aに密着かつ回動可能に摺接している。
また、回動シリンダ24がドグ26と摺動可能に係合し、バルブシャフト23と同期回動可能に連結され、該回動シリンダ24が皿バネ28の弾性によってステ−タ−2側に付勢され、保持板34を介してアウタ−ロ−タ−37のロータ−シ−ル面37aを、前記ステ−タ2のシ−ル面2aに密着かつ回動可能に摺接させている。
In the assembled switching valve 1, the valve shaft 23 is biased toward the stator 2 side by the elasticity of the disc spring 31, and the rotor seal surface 38 a of the inner rotor 38 is interposed via the holding plate 35. However, it is in close contact with the seal surface 2a of the stator 2 and slidably contacted.
The rotating cylinder 24 is slidably engaged with the dog 26 and is connected to the valve shaft 23 so as to be able to rotate synchronously. The rotating cylinder 24 is attached to the stator-2 side by the elasticity of the disc spring 28. The rotor seal surface 37a of the outer rotor 37 is slidably brought into close contact with the seal surface 2a of the stator 2 via the holding plate 34 so as to be rotatable.

その際、ステ−タ−2のシ−ル面2aに対する、アウタ−ロ−タ−37のロータ−シ−ル面37aのシ−ル圧ないし耐圧は、皿バネ28の弾性によって設定され、また前記シ−ル面2aに対する、インナ−ロ−タ−38のロータ−シ−ル面38aのシ−ル圧ないし耐圧は、皿バネ31の弾性によって設定される。
このように前記ロ−タ−シ−ル面37a,38aに作用する圧力を二つの付勢手段で独自かつ別々に設定しているから、単一の付勢手段で設定する従来のものに比べて、個々の皿バネ等の付勢手段の強さを低減できるとともに、前記ロ−タ−シ−ル面37a,38aに対する耐圧を精密に設定し得る。
At this time, the seal pressure or pressure resistance of the rotor seal surface 37a of the outer rotor 37 with respect to the seal surface 2a of the stator 2 is set by the elasticity of the disc spring 28, and The seal pressure or pressure resistance of the rotor seal surface 38 a of the inner rotor 38 with respect to the seal surface 2 a is set by the elasticity of the disc spring 31.
Thus, since the pressure acting on the rotor seal surfaces 37a and 38a is uniquely and separately set by the two urging means, compared with the conventional one set by the single urging means. Thus, the strength of the urging means such as individual disc springs can be reduced, and the pressure resistance against the rotor seal surfaces 37a and 38a can be set precisely.

したがって、前記皿バネ28,31のバネ強さを選択することによって、アウタ−ロ−タ−37とインナ−ロ−タ−38の各ロ−タ−シ−ル面37a,38aに最適のシ−ル圧ないし耐圧を独自かつ個別に、しかも自由度を以って設定し得る。
実施形態では、皿バネ31のバネ強さを皿バネ28よりも強く設定し、インナ−ロ−タ−38のロ−タ−シ−ル面38aの耐圧を33MPaとし、アウタ−ロ−タ−37のロ−タ−シ−ル面37aの耐圧を4MPaに設定している。
Therefore, by selecting the spring strength of the disc springs 28 and 31, the optimum shearing surface 37a and 38a for the outer rotor 37 and the inner rotor 38 can be obtained. -The pressure or pressure can be set individually and individually, and with a degree of freedom.
In the embodiment, the spring strength of the disc spring 31 is set stronger than that of the disc spring 28, the pressure resistance of the rotor seal surface 38a of the inner rotor 38 is 33 MPa, and the outer rotor. The pressure resistance of the 37 rotor seal surfaces 37a is set to 4 MPa.

それゆえ、ロ−タ−溝41,42、50〜52に導かれる流体の圧力に応じたシ−ル圧ないし耐圧を的確に設定でき、高圧または低圧の流体の給排を液漏れを生ずることなく、安全かつ円滑に行なえる。
したがって、従来のようにロ−タ−を一体に形成し、または複数の構成部材を一体的に連結し、該ロ−タ−の全域を後方から単一の付勢手段で一様かつ画一的に付勢する場合のように、ロ−タ−のシ−ル圧ないし耐圧が外側のロ−タ−溝を基準に画一的に設定され、適確な耐圧を得られない不具合を解消し得る。
Therefore, it is possible to accurately set the seal pressure or pressure resistance according to the pressure of the fluid guided to the rotor grooves 41, 42, 50 to 52, and to cause liquid leakage when supplying or discharging the high or low pressure fluid. It can be done safely and smoothly.
Therefore, the rotor is integrally formed as in the prior art, or a plurality of constituent members are integrally connected, and the entire area of the rotor is uniformly and uniformly distributed from the rear by a single biasing means. The rotor seal pressure or pressure resistance is set uniformly with reference to the outer rotor groove as in the case of energizing the motor, eliminating the problem that the correct pressure resistance cannot be obtained. Can do.

このような状況の下で、例えば駆動用モータ(図示略)によってバルブシャフト23を回動すると、その回動力は軸端部に固定した保持板35を介して、インナ−ロ−タ−38に伝達され、該インナ−ロ−タ−38がバルブシャフト23と同期回動する。
一方、バルブシャフト23の回動力は、ドグ26を介して回動シリンダ24に伝達され、該回動シリンダ24がバルブシャフト23と同期回動するとともに、フランジ27に固定した保持板34を介して、アウタ−ロ−タ−37に伝達され、該アウタ−ロ−タ−37がバルブシャフト23と同期回動する。
Under such circumstances, for example, when the valve shaft 23 is rotated by a drive motor (not shown), the rotational force is transferred to the inner rotor 38 via the holding plate 35 fixed to the shaft end. Then, the inner rotor 38 rotates in synchronism with the valve shaft 23.
On the other hand, the rotational force of the valve shaft 23 is transmitted to the rotary cylinder 24 via the dog 26, and the rotary cylinder 24 rotates synchronously with the valve shaft 23 and via the holding plate 34 fixed to the flange 27. The outer rotor 37 is transmitted to the outer rotor 37, and the outer rotor 37 rotates in synchronization with the valve shaft 23.

そして、通常時は図5のように、送液ポンプ47から吐出された溶離液48が、導管9cに送り出されてオリフィス19へ移動し、ロ−タ−溝51から導管10aに送り出され、プレヒ−トチュ−ブ53、オートサンプラ−54を経てオリフィス22へ移動し、ロ−タ−溝52から通路10bに送り出され、ロ−タ−溝50から導管9bに送り出される。
この後、分離カラム46、検出器45を経てオリフィス14へ移動し、ロ−タ−溝41から導管9aに送り出されて分取装置43へ移動する。
In the normal state, as shown in FIG. 5, the eluent 48 discharged from the liquid feed pump 47 is sent to the conduit 9c and moved to the orifice 19, and is sent from the rotor groove 51 to the conduit 10a. -Moves to the orifice 22 through the tube 53 and the autosampler 54, and is sent out from the rotor groove 52 to the passage 10b and from the rotor groove 50 to the conduit 9b.
After that, it moves to the orifice 14 through the separation column 46 and the detector 45, and is sent from the rotor groove 41 to the conduit 9 a to move to the sorting device 43.

その際、試料を含む溶離液48はロ−タ−溝50〜52に導かれ、その流体圧をインナ−ロ−タ−38のロータ−シ−ル面38aに作用し、またロ−タ−溝41,42に導かれた溶離溶液48等は、その流体圧をアウタ−ロ−タ−37のロータ−シ−ル面37aに作用する。
そして、各ロ−タ−38,37を保持板34,35と、フランジ27、バルブシャフト23がそれぞれ支持し、これらを皿バネ31,28が別々に支持する。
At this time, the eluent 48 containing the sample is guided to the rotor grooves 50 to 52, and the fluid pressure is applied to the rotor seal surface 38a of the inner rotor 38, and the rotor is rotated. The elution solution 48 or the like guided to the grooves 41 and 42 applies the fluid pressure to the rotor seal surface 37a of the outer rotor 37.
The rotors 38 and 37 are supported by the holding plates 34 and 35, the flange 27, and the valve shaft 23, respectively, and the disc springs 31 and 28 support them separately.

したがって、従来のようにロ−タ−全域が単一の付勢手段によって支持されるものに比べて、アウタ−ロ−タ−37とインナ−ロ−タ−38の各ロ−タ−シ−ル面37a,38aが、皿バネ31,28の弾性によって精密かつ確実にシールされ、液漏れを阻止する。
このため、例えば送液ポンプ47によって移動流体が脈動し、シ−ル面2aにおけるアウタ−ロ−タ−37のロ−タ−シ−ル面37aと、インナ−ロ−タ−38のロ−タ−シ−ル面38aの圧力変動が頻繁に行なわれても、各ロ−タ−シール面37a,38aのシールを精密かつ確実に行なえる。
Therefore, the rotor rotor 37 and the inner rotor 38 can be compared with the conventional rotor rotor 37 and the inner rotor 38, as compared with the conventional case where the entire rotor is supported by a single biasing means. The lube surfaces 37a and 38a are accurately and reliably sealed by the elasticity of the disc springs 31 and 28 to prevent liquid leakage.
Therefore, for example, the moving fluid is pulsated by the liquid feed pump 47, and the rotor seal surface 37a of the outer rotor 37 on the seal surface 2a and the rotor of the inner rotor 38 are rotated. Even if the pressure fluctuation of the turbine seal surface 38a is frequently performed, the rotor seal surfaces 37a and 38a can be sealed accurately and reliably.

一方、リサイクル時は図6のように、送液ポンプ47から吐出された溶離液48等は、導管9cに送り出されてオリフィス19へ移動し、ロ−タ−溝50から導管9bに送り出され、分離カラム46と検出器45を経てオリフィス14へ移動し、ロ−タ−溝42からオリフィス15を経て導管9cに送り出され、送液ポンプ47に戻される。   On the other hand, at the time of recycling, as shown in FIG. 6, the eluent 48 and the like discharged from the liquid feed pump 47 is sent to the conduit 9c and moved to the orifice 19, and sent from the rotor groove 50 to the conduit 9b. It moves to the orifice 14 through the separation column 46 and the detector 45, and is sent out from the rotor groove 42 through the orifice 15 to the conduit 9 c and returned to the liquid feed pump 47.

その際、溶離液48等はロ−タ−溝50に導かれ、その流体圧をインナ−ロ−タ−38のロ−タ−シ−ル面38aに作用し、またロ−タ−溝42に導かれた溶離液48等は、その流体圧をアウタ−ロ−タ−37のロ−タ−シ−ル面37aに作用する。
そして、各ロ−タ−38,37を保持板34,35と、フランジ27、バルブシャフト23がそれぞれ支持し、これらを皿バネ31,28が別々に支持する。
At this time, the eluent 48 and the like are guided to the rotor groove 50, and the fluid pressure acts on the rotor seal surface 38a of the inner rotor 38, and the rotor groove 42. The eluent 48 and the like led to the above acts on the rotor seal surface 37a of the outer rotor 37 with its fluid pressure.
The rotors 38 and 37 are supported by the holding plates 34 and 35, the flange 27, and the valve shaft 23, respectively, and the disc springs 31 and 28 support them separately.

したがって、従来のようにロ−タ−全域が単一の付勢手段によって支持されるものに比べて、各ロ−タ−シ−ル面37a,398aが皿バネ31,28の弾性によって確実かつ精密にシールされ、液漏れを阻止する。
このため、例えば送液ポンプ47によって移動流体が脈動し、前記シ−ル面2aにおけるロ−タ−シ−ル面37aとロ−タ−シ−ル面38aの圧力変動が頻繁に行なわれても、各ロ−タ−シ−ル面37a,38aのシールを精密かつ確実に行なえる。
Therefore, the rotor seal surfaces 37a and 398a are more reliably and reliably provided by the elasticity of the disc springs 31 and 28, compared to the conventional case where the entire rotor is supported by a single biasing means. Sealed precisely to prevent leakage.
For this reason, for example, the moving fluid is pulsated by the liquid feed pump 47, and the pressure fluctuations of the rotor seal surface 37a and the rotor seal surface 38a on the seal surface 2a are frequently performed. In addition, the seals of the rotor seal surfaces 37a and 38a can be precisely and reliably performed.

こうして切換バルブ1が経年的に使用されると、アウタ−ロ−タ−37とインナ−ロ−タ−38のロ−タ−シ−ル面37a,38aが、ステ−タ−2のシ−ル面2aに摺接して磨耗し、そのシ−ル作用が低下して交換する必要がある。
この場合、アウタ−ロ−タ−37はインナ−ロ−タ−38よりも周速度が速いため、早く磨耗してシ−ル作用が低下する傾向があり、一方、インナ−ロ−タ−38はアウタ−ロ−タ−37に比べて周速度が遅いため磨耗が遅く、十分にシ−ル機能を発揮する場合が多く、そのような場合はアウタ−ロ−タ−37だけを交換すれば良いこととなる。
Thus, when the switching valve 1 is used over time, the rotor seal surfaces 37a and 38a of the outer rotor 37 and the inner rotor 38 are connected to the shaft of the stator 2. The seal surface 2a is slidably contacted and worn, and the seal action is lowered and needs to be replaced.
In this case, since the outer rotor 37 has a higher peripheral speed than the inner rotor 38, the outer rotor 37 tends to wear quickly and the sealing action tends to decrease, while the inner rotor 38 tends to decrease. Since the peripheral speed is lower than that of the outer rotor 37, the wear is slow and the seal function is often exhibited sufficiently. In such a case, if only the outer rotor 37 is replaced, It will be good.

そこで、前記アウタ−ロ−タ−37を交換する場合は、ボルト3を取外し、ステ−タ2を取外してバルブハウジング4からバルブシャフトアセンブリを取出し、アウタ−ロ−タ−37だけを適宜取外して、新規なアウタ−ロ−タ−37に交換すれば良い。
したがって、従来の一体形のロ−タ−のようにロ−タ−全体を交換する不合理や面倒がなく、インナ−ロ−タ−38の交換を免れるから、小規模の交換作業で足り、この作業を容易かつ速やかに行なえる。
Therefore, when replacing the outer rotor 37, the bolt 3 is removed, the stator 2 is removed, the valve shaft assembly is removed from the valve housing 4, and only the outer rotor 37 is removed as appropriate. A new outer rotor 37 may be replaced.
Therefore, there is no unreasonable or troublesome replacement of the entire rotor as in the case of a conventional integrated rotor, and the replacement of the inner rotor 38 is avoided, so that a small-scale replacement operation is sufficient. This work can be done easily and quickly.

次に、前記切換バルブ1を備えたHPLCによる分離について説明する。
すなわち、試料の導入時と分取時の通常時は、切換バルブ1を通常作動モ−ドに設定し、各ポ−ト5,6と各オリフィス13〜22を連通し、送液ポンプ47を駆動する。
このようにすると、容器49内の溶離液48が導管9dに導かれてオリフィス16へ移動し、ロ−タ−溝42からオリフィス15を経て導管9cに送り出され、送液ポンプ47に吸入される。
この場合、送液ポンプ47の切換バルブ1からの吸引側の導管9cの内径を、各導管中、最大径に形成すれば、送液ポンプ47による吸引作動を円滑かつ能率良く行なえる。
Next, separation by HPLC equipped with the switching valve 1 will be described.
That is, at the normal time of sample introduction and fractionation, the switching valve 1 is set to the normal operation mode, the ports 5 and 6 and the orifices 13 to 22 are communicated, and the liquid feed pump 47 is connected. To drive.
In this way, the eluent 48 in the container 49 is guided to the conduit 9 d and moves to the orifice 16, is sent from the rotor groove 42 to the conduit 9 c through the orifice 15, and is sucked into the liquid feed pump 47. .
In this case, if the inner diameter of the conduit 9c on the suction side from the switching valve 1 of the liquid feed pump 47 is formed to the maximum diameter in each conduit, the suction operation by the liquid feed pump 47 can be performed smoothly and efficiently.

この後、溶離液48は送液ポンプ47から吐出され、導管9cに送り出されてオリフィ
ス19へ移動し、ロ−タ−溝51から導管10aに送り出され、プレヒ−トチュ−ブ53に導かれて加温され、またオートサンプラ−54の移動時に試料を導入され、オリフィス22を経てロ−タ−溝52から通路10bに送り出される。
Thereafter, the eluent 48 is discharged from the liquid feed pump 47, sent to the conduit 9c, moved to the orifice 19, sent from the rotor groove 51 to the conduit 10a, and led to the preheat tube 53. A sample is introduced when the autosampler 54 is moved, and is sent out from the rotor groove 52 to the passage 10b through the orifice 22.

前記試料を含む溶離液48はロ−タ−溝50から導管9bに送り出され、分離カラム46に移動して目的成分を分離され、検出器45に導かれて目的成分を検出され、オリフィス14へ移動する。この後、ロ−タ−溝41から導管9aに送り出されて分取装置43へ移動し、該分取装置43で目的成分毎に分取される。   The eluent 48 containing the sample is sent out from the rotor groove 50 to the conduit 9b, moves to the separation column 46, where the target component is separated, and is guided to the detector 45 to detect the target component, to the orifice 14. Moving. After that, it is sent out from the rotor groove 41 to the conduit 9a, moves to the sorting device 43, and is sorted by the sorting device 43 for each target component.

その際、分離カラム46は、オーブン(図示略)による加温に加え、プレヒ−トチュ−ブ53で加温した溶離液48が移動することによって、内外の温度差が無くなり、分離精度が向上する。
この場合、導管9bの内径を各導管中、中間径に形成すれば、該導管9a,9bの圧力上昇を抑制され、それらによるセル44の高圧負荷を回避し、セル44の故障を防止し得る。
At that time, the separation column 46 is heated by an oven (not shown), and the eluent 48 heated by the preheat tube 53 is moved, so that the temperature difference between the inside and outside is eliminated, and the separation accuracy is improved. .
In this case, if the inner diameter of the conduit 9b is formed to be an intermediate diameter in each conduit, the pressure increase of the conduits 9a and 9b can be suppressed, the high pressure load on the cell 44 caused by them can be avoided, and the failure of the cell 44 can be prevented. .

こうして試料の目的成分が溶出し、これを検出器45で確認したところで、ロ−タ−駆動用モ−タ(図示略)を駆動し、該モ−タを所定角度(約45°)回動する。
このようにすると、前記モ−タに連係するバルブシャフト23が同動し、軸端部に固定した保持板35を介してインナ−ロ−タ−38が同期回動する。
また、前記軸端部に突設したドグ26を介して回動シリンダ24が同期回動し、そのフランジ27に固定した保持板34が同動し、該保持板34に固定したアウタ−ロ−タ−37が同期回動する。
Thus, when the target component of the sample is eluted and confirmed by the detector 45, the motor for driving the rotor (not shown) is driven, and the motor is rotated by a predetermined angle (about 45 °). To do.
In this way, the valve shaft 23 linked to the motor moves, and the inner rotor 38 rotates synchronously via the holding plate 35 fixed to the shaft end.
Further, the rotating cylinder 24 is synchronously rotated through the dog 26 protruding from the shaft end portion, and the holding plate 34 fixed to the flange 27 is moved together, and the outer roller fixed to the holding plate 34 is moved. The counter 37 rotates synchronously.

このようにして、インナ−ロ−タ−38とアウタ−ロ−タ−37とが同期回動し、各ロ−タ−溝41,42、50〜52を同動させて、切換バルブ1ないしロ−タ−36をリサイクルモ−ドに切換える。
この状況は図6のようで、オリフィス18,19がロ−タ−溝50に連通し、オリフィス20,21がロ−タ−溝51に連通し、オリフィス22,17がロ−タ−溝49に連通する。
また、オリフィス13がロ−タ−溝41に連通し、オリフィス14〜16がロ−タ−溝42に連通する。
In this way, the inner rotor 38 and the outer rotor 37 rotate synchronously, and the rotor grooves 41, 42, and 50 to 52 are moved in synchronism, so that the switching valves 1 to Switch rotor 36 to recycle mode.
This situation is as shown in FIG. 6. The orifices 18 and 19 communicate with the rotor groove 50, the orifices 20 and 21 communicate with the rotor groove 51, and the orifices 22 and 17 communicate with the rotor groove 49. Communicate with.
Further, the orifice 13 communicates with the rotor groove 41, and the orifices 14 to 16 communicate with the rotor groove 42.

すなわち、導管9bの両端がオリフィス14,18に連通し、導管9cの両端がオリフィス15,19に連通し、導管9b,9cにロ−タ−溝42,51が連通し、これらで閉ル−プのリサイクル流路を形成する。
その際、オリフィス13に連通する導管9aと、オリフィス16に連通する導管9dと、オリフィス20,22に連通する導管10aとが前記リサイクル流路から切り離され、切換バルブ1に対する溶離液48の供給と試料の導入が停止される。
That is, both ends of the conduit 9b communicate with the orifices 14 and 18, both ends of the conduit 9c communicate with the orifices 15 and 19, and the rotor grooves 42 and 51 communicate with the conduits 9b and 9c. Form a recycling path for
At that time, the conduit 9 a communicating with the orifice 13, the conduit 9 d communicating with the orifice 16, and the conduit 10 a communicating with the orifices 20 and 22 are disconnected from the recycling flow path, and the supply of the eluent 48 to the switching valve 1 is performed. Sample introduction is stopped.

そして、前記リサイクル流路を試料を含む溶離液48が送液ポンプ47を介して循環し、試料中の目的成分が分離カラム46で分離され、これを検出器45で検出する。   Then, the eluent 48 containing the sample is circulated through the recycling channel via the liquid feed pump 47, and the target component in the sample is separated by the separation column 46, and this is detected by the detector 45.

このようなリサイクル分離では、試料を含む溶離液48が最大内径の導管9cによって、送液ポンプ47によりロ−タ−溝42から円滑かつ能率良く吸引される。
この場合、送液ポンプ47の吐出側の導管9cを最小内径で、かつその長さを可及的に短くすれば、該流路のデッドボリュ−ムが低減され、試料の拡散を抑制して分離カラム46による分離精度が向上する。
しかも、検出器45の出口側の導管9bを中間径にすれば、当該部の圧力上昇を抑制してセル44に対する高圧負荷を回避し、セル44の故障を防止する。
In such recycle separation, the eluent 48 containing the sample is sucked smoothly and efficiently from the rotor groove 42 by the liquid feed pump 47 through the conduit 9c having the maximum inner diameter.
In this case, if the conduit 9c on the discharge side of the liquid feed pump 47 has a minimum inner diameter and the length thereof is made as short as possible, the dead volume of the flow path is reduced, and the diffusion of the sample is suppressed and separated. Separation accuracy by the column 46 is improved.
Moreover, if the conduit 9b on the outlet side of the detector 45 is made to have an intermediate diameter, the pressure rise in the relevant part is suppressed to avoid a high-pressure load on the cell 44 and to prevent a failure of the cell 44.

このように実施形態の切換バルブ1はリサイクル流路に介挿され、リサイクルバルブと、流路の切換えを単一のバルブで構成し得るから、従来のように二つのバルブを要さず、その分部品点数が低減し構成が簡潔になって、HPLCの小形軽量化を図れるとともに、これを安価に製作できる。
しかも、試料導入時や分取時の通常時と、リサイクル時は、単一の切換バルブ1を切換え操作すれば良いから、従来のように二つのバルブを切換え操作する煩雑を解消し得る。
As described above, the switching valve 1 of the embodiment is inserted in the recycling flow path, and the recycling valve and the switching of the flow path can be configured by a single valve. The number of parts is reduced and the configuration is simplified, so that the HPLC can be reduced in size and weight and can be manufactured at low cost.
In addition, since it is sufficient to switch the single switching valve 1 at the normal time of sample introduction or sorting and at the time of recycling, the trouble of switching between the two valves as in the prior art can be eliminated.

図7乃至図9は本発明の他の実施形態を示し、前述した構成と対応する部分に同一の符号を用いている。
このうち、図7は本発明の第2の実施形態を示し、この実施形態は前述のアウタ−ロ−タ−37と保持板34とを同一部材によって一体に構成し、またインナ−ロ−タ−38と保持板35とを同一部材によって一体に構成し、部品点数を低減し構成を簡潔にするとともに、それらを薄厚化して小形軽量化を図り、これを容易かつ安価に製作し得るようにしている。
この場合、アウタ−ロ−タ−37とインナ−ロ−タ−38とを、前述のように互いに同一または異質部材で構成することも可能である。
7 to 9 show other embodiments of the present invention, and the same reference numerals are used for portions corresponding to the above-described configuration.
Of these, FIG. 7 shows a second embodiment of the present invention. In this embodiment, the above-described outer rotor 37 and holding plate 34 are integrally formed by the same member, and the inner rotor is also formed. -38 and the holding plate 35 are integrally formed of the same member to reduce the number of parts, simplify the structure, and reduce the thickness to reduce the size and weight so that they can be manufactured easily and inexpensively. ing.
In this case, the outer rotor 37 and the inner rotor 38 can be made of the same or different members as described above.

図8および図9は本発明の第3の実施形態を示し、この実施形態は前述のアウタ−ロ−タ−37に大小三つの円弧状のロ−タ−溝55〜57を等角度位置に形成し、このうちロ−タ−溝55,56の長さを同一に形成し、ロ−タ−溝57の長さをロ−タ−溝55,56よりも若干長く形成している。
また、インナ−ロ−タ−38は前述の実施形態と略同様に構成され、そのロ−タ−溝50〜52の位置を、前記ロ−タ−溝55〜57に対し60°位相を相違させて配置している。
FIGS. 8 and 9 show a third embodiment of the present invention. This embodiment has three outer and outer arc-shaped rotor grooves 55 to 57 at equiangular positions. Of these, the lengths of the rotor grooves 55 and 56 are the same, and the length of the rotor groove 57 is slightly longer than the rotor grooves 55 and 56.
Further, the inner rotor 38 is configured in substantially the same manner as in the above-described embodiment, and the rotor grooves 50 to 52 are positioned 60 degrees out of phase with the rotor grooves 55 to 57. It is arranged.

本発明の切換バルブは、簡単な構成によってロ−タ−シール面に異なる耐圧を容易に得られ、ロータ−の磨耗に応じて、その交換を合理的に行なえるとともに、高圧流体の給排を正確かつ円滑に行なえ、しかも製作の容易化と低廉化、並びに小形軽量化を図れる。また、単一のバルブ操作によって、移動相の供給流路とリサイクル流路の切換えを容易に行なえるから、例えばリサイクル分離機能を備えたHPLCに好適である。   The switching valve of the present invention can easily obtain different pressure resistances on the rotor seal surface with a simple structure, and can be rationally replaced according to the wear of the rotor, and can supply and discharge high-pressure fluid. It can be performed accurately and smoothly, and can be easily and inexpensively manufactured, and can be reduced in size and weight. In addition, since the mobile phase supply channel and the recycling channel can be easily switched by a single valve operation, it is suitable for, for example, HPLC having a recycling separation function.

1 切換バルブ
2 ステ−タ−
2a シ−ル面
4 バルブハウジング
9a〜9d 導管
10a 導管
1 Switching valve 2 Starter
2a Seal surface 4 Valve housing 9a to 9d Conduit
10a conduit

13〜22 オリフィス
23 バルブシャフト
24 回動シリンダ
27 フランジ
28 付勢手段(バネ)
30 フランジ
13-22 Orifice 23 Valve shaft 24 Rotating cylinder 27 Flange 28 Biasing means (spring)
30 Flange

31 付勢手段(バネ)
36 ロ−タ−
37 アウタ−ロ−タ−
37a ロ−タ−シール面
38 インナ−ロ−タ−
38a ロ−タ−シール面
41,42 ロ−タ−溝
31 Biasing means (spring)
36 rotor
37 Outer rotor
37a Rotor sealing surface 38 Inner rotor
38a Rotor seal surface 41, 42 Rotor groove

45 検出器
46 分離カラム
47 送液ポンプ
50〜52 ロ−タ−溝
45 Detector 46 Separation column 47 Liquid feed pump 50 to 52 Rotor groove

Claims (12)

外部に連通する複数のオリフィスを形成したステ−タ−と、該ステ−タ−に摺接かつ回動可能に配置され、かつ前記オリフィスに連通可能な複数のロ−タ−溝を形成したロ−タ−とを備え、該ロ−タ−のロ−タ−シール面をステ−タ−に液密に付勢した切換バルブにおいて、前記ロ−タ−をアウタ−ロ−タ−と該ロ−タ−の内側に配置するインナ−ロ−タ−とで構成し、前記アウタ−ロ−タ−とインナ−ロ−タ−をステ−タ−側へそれぞれ移動可能に設け、前記アウタ−ロ−タ−とインナ−ロ−タ−の後方に各ロ−タ−をステ−タ−側へ付勢する付勢手段を別々に配置したことを特徴とする切換バルブ。   A stator having a plurality of orifices communicating with the outside, and a rotor having a plurality of rotor grooves that are slidably contacted and rotatable with the stator and that communicate with the orifices. A switching valve in which the rotor seal surface of the rotor is urged in a fluid-tight manner to the stator, and the rotor is connected to the outer rotor and the rotor. An inner rotor disposed on the inner side of the rotor, the outer rotor and the inner rotor being provided movably toward the stator side, and the outer rotor A switching valve characterized in that urging means for urging each rotor toward the stator side is separately arranged behind the rotor and the inner rotor. 前記アウタ−ロ−タ−とインナ−ロ−タ−とを同期回動可能にした請求項1記載の切換バルブ。   2. The switching valve according to claim 1, wherein the outer rotor and the inner rotor can be rotated synchronously. 前記アウタ−ロ−タ−とインナ−ロ−タ−とを同一または異質部材で構成した請求項1
記載の切換バルブ。
2. The outer rotor and the inner rotor are made of the same or different members.
The switching valve described.
前記アウタ−ロ−タ−とインナ−ロ−タ−とを別々に着脱可能に設けた請求項1記載の切換バルブ。   2. The switching valve according to claim 1, wherein the outer rotor and the inner rotor are detachably provided separately. アウタ−ロ−タ−とインナ−ロ−タ−を収容するバルブハウジングの内部にバルブシャフトを回動かつ軸方向に移動可能に設け、該バルブシャフトの端部に前記インナ−ロ−タ−を装着するとともに、前記バルブシャフトの端部周面に回動シリンダを軸方向に摺動かつ係合可能に配置し、該回動シリンダの端部に前記アウタ−ロ−タ−を装着した請求項1乃至請求項4のうち何れか一項記載の切換バルブ。   A valve shaft is provided in the valve housing for accommodating the outer rotor and the inner rotor so as to be rotatable and movable in the axial direction, and the inner rotor is provided at the end of the valve shaft. A rotary cylinder is disposed on the peripheral surface of the end portion of the valve shaft so as to be slidable and engageable in the axial direction, and the outer rotor is mounted on an end portion of the rotary cylinder. The switching valve according to any one of claims 1 to 4. 前記回動シリンダにフランジを設け、該フランジの後方に付勢手段を係合可能に配置するとともに、前記バルブシャフトの周面にフランジを設け、該フランジの後方に付勢手段を係合可能に配置した請求項5記載の切換バルブ。   The rotating cylinder is provided with a flange, and an urging means is disposed behind the flange so as to be engageable. A flange is provided on the peripheral surface of the valve shaft, and the urging means can be engaged with the rear of the flange. 6. The switching valve according to claim 5, which is arranged. 前記ステ−タ−のシ−ル面に8個以上のオリフィスを形成した請求項1記載の切換バルブ。   2. The switching valve according to claim 1, wherein eight or more orifices are formed on the seal surface of the stator. 前記ロ−タ−のロ−タ−シール面に前記オリフィスに連通可能な4個以上のロ−タ−溝を形成した請求項1記載の切換バルブ。   2. The switching valve according to claim 1, wherein four or more rotor grooves capable of communicating with the orifice are formed on a rotor seal surface of the rotor. 前記オリフィスを大小異径に形成し、かつこれらを同心円上の内外位置に配置した請求項7記載の切換バルブ。   The switching valve according to claim 7, wherein the orifices are formed to have different diameters and are arranged at concentric inner and outer positions. 前記ロ−タ−溝の溝幅を大小異幅に形成し、かつこれらを同心円上の内外位置に配置した請求項8記載の切換バルブ。   9. The switching valve according to claim 8, wherein the rotor grooves are formed to have different widths and are arranged at concentric inner and outer positions. 前記ステ−タ−の外部に複数の導管の一端を接続し、該導管の他端を移動相の供給流路と、送液ポンプと分離カラムと検出器とを介挿し、かつ導入した試料を循環可能にしたリサイクル流路とに接続し、前記供給流路とリサイクル流路とを切換え可能にした請求項1記載の切換バルブ。   One end of a plurality of conduits is connected to the outside of the stator, the other end of the conduit is inserted through a mobile phase supply flow path, a liquid feed pump, a separation column, and a detector, and an introduced sample is inserted. The switching valve according to claim 1, wherein the switching valve is connected to a recycling flow path that can be circulated so that the supply flow path and the recycling flow path can be switched. 前記付勢手段はバネである請求項1記載の切換バルブ。   The switching valve according to claim 1, wherein the biasing means is a spring.
JP2011020829A 2011-02-02 2011-02-02 Switching valve Active JP5639914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011020829A JP5639914B2 (en) 2011-02-02 2011-02-02 Switching valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011020829A JP5639914B2 (en) 2011-02-02 2011-02-02 Switching valve

Publications (2)

Publication Number Publication Date
JP2012159460A JP2012159460A (en) 2012-08-23
JP5639914B2 true JP5639914B2 (en) 2014-12-10

Family

ID=46840107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011020829A Active JP5639914B2 (en) 2011-02-02 2011-02-02 Switching valve

Country Status (1)

Country Link
JP (1) JP5639914B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6071294B2 (en) 2011-08-19 2017-02-01 キヤノン株式会社 Differential transmission circuit and printed circuit board
EP2815160A4 (en) * 2012-02-16 2015-10-21 Mecanique Analytique Inc Diaphragm-sealed valve with improved actuator design
US9841406B2 (en) 2013-04-22 2017-12-12 Sekisui Medical Co., Ltd. Switching valve for flow type analysis apparatus
WO2018220664A1 (en) * 2017-05-29 2018-12-06 株式会社島津製作所 Flow path switching valve and liquid chromatograph
GB2593996B (en) 2018-11-01 2022-11-23 Idex Health & Science Llc Multiple channel selector valve

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307575A (en) * 1988-06-03 1989-12-12 Shimadzu Corp Change-over valve
JP3199331B2 (en) * 1992-03-10 2001-08-20 有限会社高谷エンジニアリング Rotary control valve
JP4019372B2 (en) * 2003-06-18 2007-12-12 王子製紙株式会社 Liquid sample injection device
JP4359553B2 (en) * 2004-11-11 2009-11-04 日本分析工業株式会社 Recycled liquid chromatograph
US20060219637A1 (en) * 2005-03-29 2006-10-05 Killeen Kevin P Devices, systems and methods for liquid chromatography
AU2008217771B2 (en) * 2007-02-22 2013-09-26 Ge Healthcare Bio-Sciences Ab Rotation valve for sample injection
US7811452B2 (en) * 2008-01-30 2010-10-12 Agilent Technologies, Inc. Microfluidic device for sample analysis
JP2009276110A (en) * 2008-05-13 2009-11-26 Tosoh Corp Sample injecting system for chromatographic analyzer

Also Published As

Publication number Publication date
JP2012159460A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP5639914B2 (en) Switching valve
US6889710B2 (en) Rotary sequencing valve with flexible port plate
US8011909B2 (en) Balanced variable displacement vane pump with floating face seals and biased vane seals
US9574667B2 (en) Mechanical seal device
US20130284959A1 (en) High-pressure control valve for high-performance liquid chromatography
JP5135361B2 (en) Pump or motor
CN103574098B (en) Control valve for liquid phase chromatographic analysis method
JP4834734B2 (en) Vane cell pump
JP4917256B2 (en) Radial rotary joint
EP2455641B1 (en) Mechanical sealing device
CN107407664B (en) Rotary valve and chromatography system
US9400265B2 (en) Switching valve for high-performance liquid chromatography
JP5158975B2 (en) Non-contact type sealing device
US9534595B2 (en) Variable displacement vane pump
US20210356053A1 (en) Fluid cross-free switching valve
US9709172B2 (en) Rotor shaft seal assembly
US20170284980A1 (en) High-pressure control valve for high-performance liquid chromatography
MX2011001749A (en) Actuator, valve and method.
CN116428102A (en) Rotating shaft control double-valve flow distribution radial plunger hydraulic device and working method thereof
US8196896B2 (en) Combination flow through injection and isolation valve for high pressure fluids
CN216692214U (en) High-precision rotary valve for micro-flow liquid metering
JP6266376B2 (en) Hydrostatic non-contact mechanical seal
US20150300500A1 (en) A seal
EP3077709B1 (en) Rotor shaft seal assembly
CN115467996A (en) High-pressure switching valve head and high-pressure switching valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141027

R150 Certificate of patent or registration of utility model

Ref document number: 5639914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250