WO2018219358A1 - 光学镜头、光学组件和光学模组以及制造方法 - Google Patents

光学镜头、光学组件和光学模组以及制造方法 Download PDF

Info

Publication number
WO2018219358A1
WO2018219358A1 PCT/CN2018/089841 CN2018089841W WO2018219358A1 WO 2018219358 A1 WO2018219358 A1 WO 2018219358A1 CN 2018089841 W CN2018089841 W CN 2018089841W WO 2018219358 A1 WO2018219358 A1 WO 2018219358A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
lens
lens unit
optical module
module according
Prior art date
Application number
PCT/CN2018/089841
Other languages
English (en)
French (fr)
Inventor
王明珠
庄怀港
田中武彦
赵波杰
梅其敏
陈振宇
郭楠
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to CN201880033062.9A priority Critical patent/CN110662994A/zh
Publication of WO2018219358A1 publication Critical patent/WO2018219358A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/028Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present invention relates to the field of optical lenses, and further, to an optical lens, an optical component and an optical module, and a method of fabricating the same.
  • the light reflected by the object enters the human eye, so that people can see all kinds of objects. To a certain extent, light determines the observations of people.
  • the observed object information in order to present the observed object information to the person, it can be obtained by emitting light or acquiring light.
  • the object related information is obtained by acquiring the light, and the reflected light is further obtained by emitting light in the VCSEL.
  • the light comes from the object related information, but whether it is in the process of acquiring light or reflecting light, forming an optical path is an essential part.
  • an optical lens is one of the most common optical path components.
  • a typical lens includes a plurality of lenses and a lens barrel. Each lens is independently mounted at a predetermined position in the lens barrel, and a spacer is provided between the lenses to facilitate A predetermined optical path is formed between the lenses, and there is an air gap between the lenses.
  • the lenses are manufactured separately, that is, each lens is independently manufactured in a predetermined shape, such as by injection molding. That is, they each exist independently during manufacturing. Further, the assembly of the entire optical system is completed by two steps of assembly and packaging.
  • each lens is manufactured in a predetermined shape, it is successively mounted in the lens barrel at a predetermined position, and the assembly process is limited by the mounting precision, and each assembly has a certain assembly tolerance between the lens and the lens barrel.
  • the cumulative tolerance of the entire lens after assembly is completed. It can be understood that under certain process conditions, the cumulative tolerance will increase as the number of lenses increases. At the same time, in order to ensure the yield, each lens needs to be adjusted during the assembly process.
  • the optical system is a very sensitive system, and the precision is required when the lens is assembled in the lens barrel, and the process of installing the independent lens in a closed cavity itself is a relatively difficult process, which makes the entire lens The assembly and manufacturing time takes a long time.
  • the divergence and convergence of light mainly depends on the curvature of the lens and the difference in refractive index between the lens and the air, and the optical design method naturally brings the above assembly. problem.
  • the shape of the air gap is determined by the shape of the adjacent lens.
  • the size of the air gap affects the optical effect of the lens, and the control of the air gap is difficult to accurately control during manufacturing and assembly. content.
  • the lens and the air layer are alternately arranged to form a predetermined optical path.
  • the air gap forms an "unshaped lens", and this "unshaped lens” shape needs to be controlled during manufacturing and assembly. This indirect control makes the optical path uncertain and unstable. Sex, causing a certain degree of precision reduction.
  • the light source often has a large heat situation, and the lens may affect the overall imaging due to heat, resulting in out-of-focus, imaging shift, and at the same time, the environment of high temperature throughout the year. Higher requirements are placed on the reliability of the entire module.
  • the need to emit a predetermined light usually through the lens of the light divergence, similarly, the problem of the traditional lens, the impact on the optical path and the module itself in the VCSEL module is greater, this also Directly restricts the realization of the miniaturization of the entire optical projection module.
  • An object of the present invention is to provide an optical lens, an optical component and an optical module, and a manufacturing method thereof, wherein the optical lens comprises at least two lens units, and two adjacent lens units are arranged in a superposed manner, and the light is directly in phase The adjacent two lens units propagate without passing through the air layer, replacing the traditional lens structure.
  • An object of the present invention is to provide an optical lens, an optical component and an optical module, and a manufacturing method, wherein an optical path design is formed layer by layer by a molding process, and a shading process is performed on the integrally formed lens unit, and then cut into individual Optical lens, optical component or optical module.
  • An object of the present invention is to provide an optical lens, an optical component and an optical module, and a manufacturing method, wherein the optical lens forms an entire optical path layer by layer by a molding process.
  • An object of the present invention is to provide an optical lens, an optical component, an optical module, and a manufacturing method, wherein two adjacent lens units are attached to each other to provide a more defined and stable optical path.
  • An object of the present invention is to provide an optical lens, an optical component and an optical module, and a manufacturing method, wherein each of the lens units is compact in structure, and a relatively compact and compact optical module can be formed.
  • An object of the present invention is to provide an optical lens, an optical component and an optical module, and a manufacturing method, wherein each of the lens units refracts light by using a solid, a liquid medium, and a refractive medium of different media to form a new one.
  • Optical structure
  • An object of the present invention is to provide an optical lens, an optical component and an optical module, and a manufacturing method, wherein refractive indices between two adjacent lens units are different, such that light passes from one lens unit to another Light refraction occurs.
  • An object of the present invention is to provide an optical lens, an optical component and an optical module, and a manufacturing method, wherein in the process of light propagation, the refractive index of the adjacent propagation medium is different, and the interface is curved, so that the light is made of a medium. When it comes to another medium, it produces a refraction of light.
  • An object of the present invention is to provide an optical lens, an optical component and an optical module, and a manufacturing method, wherein each of the lens units is integrally molded by molding in a unitary manner, thereby by means of adjacent lens units and molds. A lens unit is formed.
  • An object of the present invention is to provide an optical lens, an optical component and an optical module, and a manufacturing method, wherein the optical lens has a light transmitting region and a light blocking region, and the predetermined light path is defined by the light shielding structure.
  • An object of the present invention is to provide an optical lens, an optical component and an optical module, and a manufacturing method, wherein the optical component comprises a base layer and an optical component, wherein the base layer is adapted to cover the optical component, A propagation medium of a non-air layer is formed over the optical element.
  • optical lens it is an object of the present invention to provide an optical lens, a camera module and an optical assembly, and a method of fabricating the same, wherein in some embodiments, the optical lens has a mounting slot adapted to be integrally mounted to the optical component On the road, a camera module or a light source module is formed.
  • optical lens an optical assembly and an optical module, and a method of fabricating the same, wherein the optical lens further includes an optical interference element that cooperates with each of the lens unit and the optical component to form a predetermined projected image.
  • An object of the present invention is to provide an optical lens, an optical component and an optical module, and a manufacturing method in which the manufacturing is performed by integral molding, the tolerance is reduced, and the production efficiency is improved.
  • An object of the present invention is to provide an optical lens, an optical component and an optical module, and a manufacturing method in which a predetermined shape and assembly precision with higher precision are obtained by integrally molding a mold.
  • An object of the present invention is to provide an optical lens, an optical component and an optical module, and a manufacturing method, wherein the optical lens and the optical component can be arbitrarily combined and installed in a conventional lens or module structure, thereby a certain degree The requirement to reduce the installation accuracy.
  • an optical lens comprising:
  • At least two lens units wherein at least one lens unit is formed by being attached to another lens unit.
  • the optical lens has a refractive index different between two adjacent lens units.
  • the optical lens wherein the lens unit has at least one curved surface.
  • the optical lens has a light transmitting region and a non-light transmitting region, the light transmitting region is located at a central region, and the opaque region surrounds the light transmitting region .
  • the optical lens has a surface in which two adjacent lens unit surfaces are attached.
  • the optical lens wherein the lens unit is integrally molded by molding.
  • the optical lens wherein the lens unit is made of a transparent material.
  • optical module comprising:
  • An optical lens comprising at least two lens units, wherein at least one of the lens units is attached to another of the lens units;
  • optical component the optical lens being located in an optical path of the optical component.
  • the optical module wherein the optical component and the optical lens constitute a camera module.
  • the optical module wherein the optical component and the optical lens constitute a light source module.
  • Another aspect of the invention provides an optical assembly comprising:
  • a base layer wherein the base layer is integrally formed on the optical component and the circuit board.
  • Another aspect of the present invention provides an optical lens comprising: at least two lens units, wherein the two lens units are attached to each other, and the refractive indices of the two lens units are different.
  • Another aspect of the present invention provides an optical lens comprising: at least two lens units, wherein at least one of the lens units is molded with another of the lens units.
  • the optical lens has a refractive index different between two adjacent lens units.
  • the optical lens wherein the lens unit has at least one curved surface.
  • Another aspect of the present invention provides an optical lens comprising: at least two lens units, wherein each of the lens units has at least one curved surface, and the curved surfaces of adjacent two of the lens units are complementary in shape.
  • Another aspect of the invention provides an optical assembly comprising:
  • At least one optical component At least one optical component
  • the optical element is electrically connected to the circuit board, and the base layer is transparently covered by the optical element.
  • Another aspect of the invention provides an optical assembly comprising:
  • At least one optical component At least one optical component
  • a substrate wherein the optical element is electrically connected to the circuit board, and the base layer is integrally formed on the optical element to form a curved surface in a light path of the optical element.
  • optical component comprising:
  • At least one optical component At least one optical component
  • the base layer integrally formed on at least a portion of the optical component and at least a portion of the circuit board.
  • optical module comprising:
  • optical component the optical lens is integrally formed on the optical component.
  • optical module comprising:
  • An optical component comprising: an optical component; a wiring board and a base layer integrally formed on at least a portion of the optical component and at least a portion of the wiring board; wherein the optical lens is located in the optical component The light path.
  • optical lens comprising:
  • each of the lens units has a first surface and a second surface, and the adjacent first surface and the second surface of the two lens units are superposed, adjacent to the two The refractive index of the lens unit is different.
  • the optical lens according to some embodiments wherein the first face and the second face of at least one of the lens units each have a curved surface, and a lens is formed between the curved surfaces.
  • the optical lens according to some embodiments wherein the first side and the second side of the adjacent two of the lens units form a refractive interface, and the adjacent two of the refractive interfaces form a lens.
  • first face and the second face of at least one of the lens units each have an edge face, the edge face surrounding the curved surface.
  • An optical lens according to some embodiments wherein the edge face of the first face or the second face of one of the lens units is a flat surface.
  • optical lens according to some embodiments, wherein the optical lens has a light shielding area to block passage of light, and the light shielding area is disposed on at least a portion of a top surface of the optical lens.
  • optical lens wherein the optical lens has a light shielding region for blocking the passage of light, and the light shielding region is disposed on at least a portion of a top surface, a side surface, and/or a bottom surface of the optical lens.
  • optical lens according to some embodiments, wherein at least one of the lens units is provided with a light shielding area to form a predetermined light path.
  • optical lens wherein at least one of the lens units is provided with a light shielding area to form a predetermined light path, and the light shielding area is disposed in the edge area.
  • optical lens wherein the curved surface of the remaining area of the first or second side of the lens unit that is blocked by the light shielding area forms a light transmitting area.
  • optical lens according to some embodiments, wherein the second side of one of the lens units is integrally formed with the first side of the other of the first lens units.
  • An optical lens according to some embodiments wherein a second side of one of the lens units is attached to a first side of the other of the lens units.
  • An optical lens according to some embodiments wherein the second face of one of the lens units and the first face of the other of the lens units are complementary in shape.
  • optical lens according to some embodiments, wherein the first side of one of the lens units is integrally formed by a molding die.
  • optical lens according to some embodiments, wherein the lens unit at the bottom has a mounting groove to facilitate mounting of the optical lens to an optical component.
  • optical lens wherein the optical component comprises an optical component and a circuit board, the optical component is electrically connected to the circuit board, and the lens unit on the bottom side of the optical lens is adapted to Covering the optical component.
  • optical lens wherein the optical element is a photosensitive element or a light source.
  • optical lens wherein the optical lens is adapted to be disposed on an optical component to form an optical module, the optical component includes an optical component and a circuit board, and the optical component is electrically connected to the optical lens A circuit board, the lens unit located on a bottom side of the optical lens integrally covers the optical element.
  • optical lens wherein the optical element is a photosensitive element or a light source.
  • optical lens according to some embodiments, wherein the lens unit is integrally molded by a transparent material.
  • optical lens according to some embodiments, wherein the number of layers of the lens unit is from 1 to 40 layers.
  • optical lens according to some embodiments, wherein the number of layers of the lens unit is 2 to 15 layers.
  • optical lens according to some embodiments, wherein the refractive index of the lens unit ranges from 1.1 to 1.9.
  • optical lens according to some embodiments, wherein the lens unit has a center thickness ranging from 0.1 mm to 0.6 mm.
  • optical lens wherein the optical lens comprises an optical interference element disposed at a top end of the optical lens such that the optical lens produces an interference pattern.
  • optical lens according to some embodiments, wherein the material of the lens unit is selected from one or more of epoxy resin, silicon material, plastic, PC, PMMA, organic solution, aerosol.
  • optical lens comprising:
  • At least two dielectric layers each having a first side and a second side, the first side and the second side of the two dielectric layers being superposed so that the light is directly from one of the dielectric layers Refraction to another of the dielectric layers, the dielectric layers having different refractive indices.
  • the optical lens according to some embodiments wherein the first face and the second face of at least one of the dielectric layers each have a curved surface, and a lens is formed between the curved surfaces.
  • first face and the second face of at least one of the dielectric layers each have an edge face, the edge face surrounding the curved surface, the edge face It is a plane.
  • optical lens according to some embodiments, wherein the optical lens has a light shielding area for blocking light passage, and the light shielding area is disposed on the first surface and/or the second surface of at least one of the dielectric layers Edge face.
  • optical module comprising:
  • An optical lens comprising at least two lens units, each of the lens units having a first side and a second side, adjacent to the first side and the second side of the two lens units The planes are superimposed, and the refractive indices of the two lens units are different;
  • An optical assembly comprising an optical component and a circuit board, the optical component electrically connecting the circuit board, the optical lens being located in an optical path of the optical component.
  • the optical module wherein the first side and the second side of at least one of the lens units each have a curved surface, and a lens is formed between the curved surfaces.
  • the optical module wherein the first side and the second side of the adjacent two lens units form a refractive interface, and the two adjacent refractive interfaces form a lens.
  • the optical module wherein the first face and the second face of at least one of the lens units each have an edge face, the edge face surrounding the curved surface.
  • edge face of the first face or the second face of one of the lens units is a flat surface.
  • optical module wherein the optical lens has a light shielding area to block passage of light, and the light shielding area is disposed on at least a portion of a top surface of the optical lens.
  • optical module wherein the optical lens has a light shielding area for blocking the passage of light, and the light shielding area is disposed on at least a portion of the top surface, the side surface, and/or the bottom surface of the optical lens.
  • optical module wherein at least one of the lens units is provided with a light shielding area to block the passage of light.
  • optical module wherein at least one of the lens units is provided with a light shielding area to block light from passing through, and the light shielding area is disposed in the edge area.
  • optical module wherein the curved surface of the remaining area of the first or second side of the lens unit that is blocked by the light shielding area forms a light transmitting area.
  • the light shielding region is formed by attaching, plating, vacuum sputtering, coating or spraying.
  • the optical module according to some embodiments, wherein the light shielding region is a plating layer.
  • optical module according to some embodiments, wherein the second side of one of the lens units is integrally formed with the first side of the other of the first lens units.
  • optical module according to some embodiments, wherein the second side of one of the lens units is attached to the first side of the other of the lens units.
  • An optical module wherein the second face of one of the lens units and the first face of the other of the lens units are complementary in shape.
  • the optical module according to some embodiments, wherein the first side of one of the lens units is integrally formed by a molding die.
  • optical module wherein the lens unit at the bottom has a mounting groove such that the optical lens is adapted to be mounted with the optical component to cover the optical component.
  • optical module wherein the optical component is a photosensitive element or a light source.
  • optical module wherein the lens unit on the bottom side of the optical lens integrally forms the optical element.
  • optical module wherein the lens unit is integrally molded by a transparent material.
  • Another aspect of the present invention provides a molding die for molding an optical lens, the optical lens comprising at least two lens units, two adjacent lens units being superposed, wherein at least one lens unit has a first surface and A second side comprising:
  • An upper mold set wherein the upper mold set includes a plurality of upper molds, each of the upper molds and the lower mold respectively integrally forming each of the lens units.
  • the upper mold set includes a first upper mold
  • the first upper mold and the lower mold are combined to form a first molding cavity, which is suitable for integrally forming a first mold.
  • Lens unit
  • a molding die wherein the first upper mold has a first molding surface for integrally molding a first face of the first lens unit.
  • a molding die wherein the lower die has a lower molding surface for integrally molding the second face of the first lens.
  • a molding die wherein the upper die set includes a second upper die, and the second upper die and the second lower die are molded to form a second molding cavity adapted to receive the The first lens unit integrally forms a second lens unit with the first lens unit.
  • a molding die wherein the second upper mold has a second molding surface, and the second molding surface corresponds to integrally molding the first surface of the second lens unit.
  • Another aspect of the present invention provides a method of manufacturing an optical lens, comprising the steps of:
  • the first side and the second side of the second lens unit are integrally formed by a mold.
  • step (B) attaches the first face of the first lens unit to the first face of the second lens unit, and integrally molds the second mirror unit by means of a mold The first side.
  • a method comprising the step of integrally molding the plurality of stacked mirror units one after the other.
  • Another aspect of the present invention provides a method of manufacturing an optical lens, comprising the steps of:
  • a method of manufacturing an optical lens according to some embodiments wherein in the step (a), the first surface and the second surface of the plurality of continuously distributed second lens units are integrally formed by a mold.
  • step (b) comprises the step of integrally molding another layer of the first surface of the second lens unit with a layer of the first lens unit, attached
  • the mold integrally forms a plurality of first faces of the second mirror unit that are continuously distributed.
  • a method according to some embodiments wherein the method comprises the steps of: dicing a plurality of continuously distributed optical lenses to form a plurality of optical lenses.
  • Another aspect of the invention provides an optical assembly comprising:
  • a circuit board, the optical component electrically connecting the circuit board, and the base layer transparently covers the optical component.
  • the base layer is integrally formed on at least a portion of the circuit board.
  • the base layer has a top surface, the top surface being a flat surface.
  • the base layer has an edge face that surrounds the curved surface.
  • the base layer is provided with a light shielding region such that the base layer forms a predetermined light path.
  • the base layer is provided with a light shielding region such that the base layer forms a predetermined light path, and the light shielding region is disposed on at least a portion of a top surface and a side surface of the base layer.
  • the base layer is provided with a light shielding region such that the base layer forms a predetermined light path, and the light shielding region is disposed on the edge surface.
  • the light-shielding region is formed by attaching, plating, vacuum sputtering, coating, or spraying.
  • the light blocking region is a coating layer.
  • optical element is a photosensitive element or a light source.
  • the base layer is integrally molded by a transparent material.
  • optical component wherein the refractive index of the base layer ranges from 1.4 to 1.55.
  • the base layer has a center thickness ranging from 0.1 mm to 0.6 mm.
  • the material of the base layer is selected from one or more of the group consisting of epoxy resin, silicon material, plastic, PC, PMMA, organic solution, and aerosol.
  • optical module comprising:
  • An optical component comprising an optical component electrically connected to the circuit board and a circuit board transparently covering the optical component, the optical lens being located at the optical component Light path.
  • the optical module of some embodiments wherein the base layer is integrally formed on at least a portion of the circuit board.
  • optical module of some embodiments, wherein the substrate is laminated to the optical component.
  • the base layer has a top surface, the top surface being a flat surface.
  • the base layer has a curved surface, the curved surface being located in an optical path of the optical element.
  • the base layer has an edge face that surrounds the curved surface.
  • the optical module wherein the base layer is provided with a light shielding area such that the base layer forms a predetermined light path.
  • the base layer is provided with a light shielding region such that the base layer forms a predetermined light path, and the light shielding region is disposed on at least a portion of a top surface and a side surface of the base layer.
  • the base layer is provided with a light shielding region such that the base layer forms a predetermined light path, and the light shielding region is disposed on the edge surface.
  • optical lens comprises a lens unit
  • the lens unit has a first surface and a first second surface, and the first surface and the first second surface are oppositely disposed.
  • the second side of the first lens unit is superposed on the curved surface of the base layer.
  • the optical lens includes a lens unit that is superposed on the base layer.
  • optical lens comprises a lens unit
  • the lens unit has a first surface and a first second surface, and the first surface and the first second surface are oppositely disposed.
  • the second side of the lens unit is superposed on the base layer, and the refractive indices of the adjacent two lenses are different.
  • the optical module wherein the first side and the second side of the adjacent two lens units form a refractive interface, and the two adjacent refractive interfaces form a lens.
  • optical module wherein the optical lens has a light shielding region to form a predetermined light path, and the light shielding region is disposed on at least a portion of a top surface, a side surface, and/or at least a portion of a top surface of the optical lens Or the bottom.
  • optical module wherein the curved surface of the remaining area of the first or second side of the lens unit that is blocked by the light shielding area forms a light transmitting area.
  • optical module of some embodiments, wherein an air gap is formed between the first lens unit and the base layer.
  • optical module according to some embodiments, wherein the second side of one of the lens units is integrally formed with the first side of the other of the first lens units.
  • optical module according to some embodiments, wherein the second side of one of the lens units is attached to the first side of the other of the lens units.
  • An optical module wherein the second face of one of the lens units and the first face of the other of the lens units are complementary in shape.
  • the optical module according to some embodiments, wherein the base layer is integrally molded by a transparent material.
  • the base layer has a refractive index ranging from 1.1 to 1.9.
  • the base layer has a center thickness ranging from 0.1 mm to 0.6 mm.
  • optical lens comprises an optical interference element disposed at a top end of the optical lens such that the optical lens produces an interference pattern.
  • the material of the base layer is selected from one or more of epoxy resin, silicon material, plastic, PC, PMMA, organic solution, and aerosol.
  • Another aspect of the present invention provides a method of fabricating an optical module, comprising the steps of:
  • a manufacturing method of an optical module comprising the steps of: forming a first surface of the second lens unit by attaching a first surface of the first lens unit, and attaching the mold to the molding unit The first side of the second mirror unit.
  • a method comprising the step of successively integrally molding a plurality of layers of laminated lens units.
  • Another aspect of the present invention provides a method of fabricating an optical module, including the steps of:
  • a method of manufacturing an optical module comprising the steps of: integrally molding a first surface and a second surface of a plurality of continuously distributed second lens units by a mold.
  • the manufacturing method of the optical module comprising the steps of: integrally forming another layer of the first surface of the second lens unit by attaching a layer of the first surface of the first lens unit, and attaching the mold to the whole Forming a plurality of first faces of the second mirror unit that are continuously distributed.
  • a method of fabricating an optical module comprising the steps of: dividing a plurality of continuously distributed optical modules to form a plurality of optical modules.
  • FIG. 1 is a perspective view of an optical module in accordance with a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an optical module in accordance with a first embodiment of the present invention.
  • Figure 3 is a schematic illustration of an optical path in accordance with a first embodiment of the present invention.
  • Figure 4 is a schematic illustration of another optical path in accordance with a first embodiment of the present invention.
  • Figure 5 is a schematic view showing a process of forming an optical module in accordance with a first embodiment of the present invention.
  • Figure 6 is a schematic illustration of an optical module in accordance with a second embodiment of the present invention.
  • Figure 7 is a partially exploded perspective view of an optical module in accordance with a second embodiment of the present invention.
  • 8A to 8C are schematic views showing the fabrication of an optical module imposition according to a second embodiment of the present invention.
  • Figure 9 is a schematic illustration of an optical module in accordance with a third embodiment of the present invention.
  • Figure 10 is an exploded perspective view of an optical module in accordance with a third embodiment of the present invention.
  • Figure 11 is a schematic view showing a process of forming an optical module in accordance with a third embodiment of the present invention.
  • Figure 12 is a schematic view showing another forming process of an optical module in accordance with a third embodiment of the present invention.
  • Figure 13 is a schematic view of an optical module in accordance with a fourth embodiment of the present invention.
  • Figure 14 is a schematic view showing the process of forming an optical module in accordance with a fourth embodiment of the present invention.
  • Figure 15 is a schematic illustration of an optical module in accordance with a fifth embodiment of the present invention.
  • Figure 16 is a schematic illustration of different interference patterns formed by an optical module in accordance with a fifth embodiment of the present invention.
  • Figure 17 is a schematic illustration of an optical assembly in accordance with a sixth embodiment of the present invention.
  • Figure 18 is a schematic illustration of an optical assembly in accordance with a seventh embodiment of the present invention.
  • the term “a” is understood to mean “at least one” or “one or more”, that is, in one embodiment, the number of one element may be one, while in other embodiments, the element The number may be plural, and the term “a” cannot be construed as a limitation on the quantity.
  • the lenses are independently manufactured, assembled separately, and the lenses and air gaps are alternately combined to form a lens.
  • the existing lens manufacturing process uses glass/organic materials and The refraction between the air and the curvature of the different lenses to achieve the change of the optical path, but in fact, the use of different refractive indices between different materials, can also be used for optical design.
  • the difference is that the assembly of the solid or liquid cured material can reduce the design difficulty to a certain extent, and at the same time increase the reliability of the product as a whole.
  • an optical lens an optical component and an optical module, and a manufacturing method, wherein an optical lens is formed by mutually attached lens units, unlike a structure in which separate lenses are separated from each other in a conventional lens, thereby avoiding formation in respective assembly.
  • Each of the lens units of the optical lens has at least one curved surface such that the lens unit has a lens function, that is, when parallel rays are incident on the curved surface, the light is concentrated or diverged instead of being emitted in parallel;
  • the lens unit is formed by successively forming a transparent material, rather than being separately formed; wherein the optical lens has a light transmitting area and a light shielding area, and the light transmitting area forms a predetermined light path;
  • the optical lens can be integrally formed on an optical component to form an integrated optical mode For example, the camera module or the light source module; wherein the optical lens may include an optical interference component that cooperates with each of the lens units to cause incident or outgoing light to form a characteristic pattern.
  • the optical interference element is composed of a diffuser (Diffuser) and a grating piece (Raster), and the diffusion sheet functions to scatter the laser beam into an irregularly distributed dot-like speckle pattern, and then diffract the speckle pattern through the grating. After “copying”, expand its projection angle. This "copying” effect is called optical convolution.
  • the speckle produced by the beam passing through the diffuser is then convolved through the grating to obtain the speckle of the desired transmission angle.
  • the optical module can be applied to various electronic devices, such as a smart phone, a 3D sensing device, a tablet computer, a wearable device, and a monitoring device.
  • the optical module 100 includes an optical lens 10 and an optical component 20.
  • the optical lens 10 is used to optically act on light rays that reach or exit the optical component 20.
  • the optical action is by way of example not limited to the incorporation or divergence of light into the light by refraction.
  • the optical lens 10 is disposed on the optical path of the optical assembly 20 to facilitate the action of light entering or exiting the optical assembly 20.
  • the optical lens 10 is integrally formed on the optical component 20. That is to say, at the time of manufacture, the optical lens 10 is molded by attaching the optical component 20, and is not fixed by other media such as glue.
  • the optical lens 10 may be fixedly coupled to the optical component 20 by other media, and the invention is not limited in this regard.
  • the optical lens 10 includes at least two lens units 11 in which at least adjacent ones of the lens units 11 are disposed in association. Further, at least the adjacent interfaces of the two lens units 11 are attached to each other. That is, the bottom surface of the lens unit 11 located above and the top surface of the lens unit 11 located below are complementary in shape. In other words, the adjacent two lens units 11 are disposed in a superposed manner to form two laminated dielectric layers such that light rays are directly transmitted from one of the lenses when passing through the adjacent two of the lens units 11. The unit 11 reaches the other of the lens units 11 without passing through the air medium layer.
  • the lens unit 11 located above is integrally formed with the lens unit 11 located below, such that the lens unit 11 is affixed.
  • the lens unit 11 is integrally formed by a transparent material, such as by molding.
  • the refractive indices of the two adjacent lens units 11 are different, so that light is refracted when one of the lens units 11 enters the other of the lens units 11, instead of being propagated in the same straight line.
  • the refractive index of each of the lens units 11 ranges from 1.1 to 1.9, and preferably, the refractive index of the lens unit 11 ranges from 1.4 to 1.55.
  • two adjacent lens units 11 are formed from materials of different refractive indices during molding.
  • the material of the lens unit 11 may be an organic substance or an organic polymer such as an epoxy resin, a silicon material, a plastic, a PC, a PMMA, an organic solution, and an aerosol.
  • each of the lens units 11 is separately formed and assembled such that adjacent lens units 11 are attached. It will be understood by those skilled in the art that the manner in which the lens unit 11 is formed is not a limitation of the present invention.
  • the lens is successively and independently installed in the lens barrel, and an air layer is formed between the lenses, and the refractive index of the conventional lens is the same, so in the process of light passing through the lens, the lens
  • the formed medium and the air medium alternate with each other, that is, there are only two kinds of mediums of refractive index, namely glass or a refractive medium of resin and air, so that an air layer must be provided between adjacent lenses to achieve refraction.
  • the rate changes to achieve the refraction propagation of light between adjacent media. This way the lens is bulky and the lenses are not compactly arranged.
  • the adjacent two lenses are attached to each other, the shapes are complementarily arranged, the structure is compact, and the refractive indices of the adjacent two lens units are different, so that the light enters from the one lens unit 11 to the other lens.
  • the unit 11 is refracted to form a structure different from the conventional lens, and is capable of generating a refraction effect of a diverging or condensing effect.
  • the number of the lens units 11 may be 1 to 40, and preferably, the number of the lens units 11 may be 2 to 15. It is worth mentioning that in the conventional lens, the refraction propagation of light is completed by the alternating of the lens and the air gap, and in the present invention, the light is transmitted by each of the lens units 11 separately, relative to the air medium. There is a certain difference in refractive index, and in the present invention, the influence of light propagation caused by the absence of an air gap is compensated by the superposition of the plurality of lens units 11 in multiple layers.
  • the optical lens 10 is square, that is, each of the lens units 11 is square. It is worth mentioning that in the conventional lens, since the lens is separately assembled to the lens barrel, the lens is usually a circular structure for convenient adjustment, and usually it is not possible to manufacture a plurality of lenses at one time, and there is an error in the process of manufacturing the lens alone. There are also errors in the lens being assembled separately into the lens barrel, so that the overall assembly tolerance is large.
  • the prism unit 11 of the square of the present invention is convenient for mass production, and the plurality of the lens units 11 can be formed by one molding and then dicing, and a plurality of the optical lenses 10 are formed at one time, and are formed by attachment. The way to reduce errors in assembly.
  • a plurality of integrally connected lens units 11 may be integrally molded by a mold, that is, a first layer of the lens unit 11 is formed, and then the first layer is described in the first layer.
  • the top surface of the lens unit 11 integrally forms a second layer of the lens unit 11, whereby a plurality of the lens units 11 are successively formed, and finally the plurality of the lens units 11 are segmented, for example, squarely, thereby A plurality of the optical lenses 10 are formed.
  • the corresponding light shielding regions are disposed to form a predetermined optical path.
  • the error of the formed lens unit layer can be compensated for when the other layer of the lens unit 11 is formed by adjusting the mold, for example, after the first layer of the lens unit 11 is formed.
  • the optical lens 10 Detecting the error of the lens unit 11 of the first layer, and then adjusting the molding die according to the error, further forming the second layer of the lens unit 11 based on the lens unit 11 of the first layer, and in turn, correcting other
  • the lens unit 11 of the layer thereby compensating for errors in the lens by adjustment of the mold, causes the optical lens 10 to have a small assembly error, providing a better optical effect.
  • the overall mechanical assembly unilateral error is about 0.03 mm, and in the present invention, the manufacturing error of integrally molding using the molding die can be reduced to 0.01 mm.
  • the conventional lens is usually formed by injection molding, which is limited by the process level.
  • the thinnest position of the lens needs to meet the requirements of demolding and assembly strength, so the lens thickness is large, for example, it is usually required.
  • the lens unit is formed by molding in an integrated manner, and the lamination is attached such that the thickness of the lens unit 11 is small, such as the thinnest of the lens unit 11. The position can reach 0.1mm.
  • the thickness of the lens unit 11 is 0.1 mm to 0.6 mm.
  • the lens unit 11 has a thickness of 0.1 mm to 0.2 mm, 0.2 mm to 0.3 mm, 0.3 mm to 0.4 mm, 0.4 mm to 0.5 mm, and 0.5 mm to 0.6 mm.
  • the thickness of the lens unit 11 may be a center thickness.
  • the optical component 20 includes an optical component 21 and a circuit board 22, and the optical component 21 is disposed on the circuit board 22, and is electrically connected to the circuit board 22, for example, but not Limited to, through a gold wire connection.
  • the optical lens 10 is located in an optical path of the optical element 21.
  • the optical element 21 may be a photosensitive element for performing photosensitivity. That is to say, the external light reaches the photosensitive element through the optical action of the optical lens 10, and the optical signal is converted into an electrical signal by the photosensitive action of the photosensitive element, thereby transmitting information to the circuit board. twenty two. That is to say, in this embodiment, the optical lens 10 and the optical component 20 can constitute a camera module for image acquisition.
  • the optical element 21 can be a light source for emitting light. That is to say, the light emitted by the light source is emitted by the optical action of the optical lens 10, and the optical lens 10 and the optical component 20 constitute a light source module.
  • the light source is exemplified by, but not limited to, a VCSEL, and the light source module can be used to manufacture a TOF module, a structured light module, a projection module, and the like.
  • each of the lens units 11 has at least one curved surface 110 such that the lens unit 11 forms a lens structure of a predetermined shape.
  • the curved surface 110 is by way of example and not limitation to a convex or concave surface. More specifically, in some embodiments, the curved surface 110 of the lens unit 11 is located in a central region, that is, the central region of each of the lens units 11 has a curved structure, and the peripheral region has a planar structure, or Approaching the planar structure. It will be understood by those skilled in the art that the size and specific shape of the curved surface 110 is not a limitation of the present invention. That is, the peripheral region of the curved surface 110 of the lens unit 11 constitutes an edge surface 120. The edge face 120 surrounds the curved surface 110.
  • At least one of the lens units 11 of each of the lens units 11 has two curved surfaces 110, and the curved surfaces 110 form a lens structure.
  • two adjacent curved surfaces 110 of two adjacent lens units 11 are attached to each other. That is, the shapes of the adjacent two curved surfaces 110 of the adjacent two lens units 11 are complementary.
  • the curved surface 110 is disposed on the top surface and/or the bottom surface of each of the lens units 11.
  • Each of the lens units 11 has a first surface 1101 and a second surface 1102.
  • the first surface 1101 and the second surface 1102 have a curved shape such that the lens unit 11 constitutes a lens. Adjacent two surfaces of the adjacent two lens units 11 are superposed.
  • the first surface 1101 is the one on the upper side
  • the second surface 1102 is the second side on the lower side. In the same coordinate, the first surface 1101 of the lens unit 11 is located above.
  • the second surface 1102 of the other lens unit 11 is superposed so that the light entering the adjacent one of the lens units 11 passes through the first surface 1101 of the intermediate phase overlap during the propagation of the light and The second side 1102 directly enters the other of the lens units 11.
  • one of the lens units 11 is formed integrally with the other lens unit 11 by molding, and in other embodiments of the invention, it is also possible to The second face 1102 of one of the lens units 11 is superposed on the first face 1101 of the other of the lens units 11 in a fixed manner.
  • the shape of the top surface and the bottom surface of the lens unit 11 may be a spherical structure or an aspherical structure such as a convex surface, a concave surface, a groove or the like. It will be understood by those skilled in the art that the shape of the top surface and the bottom surface of the lens unit 11 is not a limitation of the present invention.
  • lens unit 111 For ease of explanation, a smaller number of the lens units are selected for illustration in the drawings of the specification, and are labeled as the first lens unit 111, the second lens unit 112, the third lens unit 113, and the fourth, respectively, from bottom to top. Lens unit 114, and fifth lens unit 115.
  • the first lens unit 111, the second lens unit 112, the third lens unit 113, the fourth lens unit 114, and the fifth lens unit 115 all have at least one curved surface 110.
  • the first lens unit 111, the second lens unit 112, the third lens unit 113, the fourth lens unit 114, and the fifth lens unit 115 are sequentially disposed to integrally form an optical lens. That is, the first face 1101 of the first lens unit 111 overlaps with the second face 1102 of the second lens unit 112, and the first face 1101 and the third face of the second lens unit 112 The second face 1102 of the lens unit 113 is superposed, and the first face 1101 of the third lens unit 113 overlaps with the second face 1102 of the fourth lens unit 114, and the fourth lens unit 114
  • the first surface 1101 is overlapped with the second surface 1102 of the fifth lens unit 115, and the first surface 1101 of the fifth lens unit 115 constitutes a light incident surface or a light exit surface. That is, the first surface 1101 and the second surface 1102 of the adjacent two lens units 11 form a refractive interface, and a lens is formed between the adjacent two refractive interfaces.
  • the first lens unit 111 has a top surface 1111, that is, the first surface 1101, and the second lens unit 112 has a top.
  • the face 1121 that is, the first face 1101 and a bottom face 1122, that is, the second face 1102.
  • the first face 1101 and the second face 1102 are oppositely disposed, that is, the first face 1101 and the second face 1102 are located on opposite sides.
  • the top surface 1111 of the first lens unit 111 overlaps the bottom surface 1122 of the second lens unit 112, in other words, the top surface 1111 of the first lens unit 111 and the second lens unit 112
  • the bottom surface 1122 is complementary in shape such that the two dielectric layers formed by the first lens unit 111 and the second lens unit 112 are directly in contact without passing through the air dielectric layer.
  • two adjacent lens units 11 are attached to each other, that is, each of the lens units respectively form a first surface 1101 and a second surface 1102 that are complementary in shape, and then each of the complementary lenses The units 11 are combined to form a dielectric layer disposed in a stack.
  • the engaging surfaces of the two adjacent lens units 11 are formed to be attached to each other.
  • the molding may be first performed by a mold.
  • a lens 111 is formed to form a top surface 1111 of a predetermined shape, and then attached to the top surface 1111, and the second lens unit 112 is further formed on the top surface 1111 by a mold, that is, in the first lens unit
  • the top surface 1111 of the 111 forms the bottom surface 1122 of the second lens unit 112, and the top surface 1111 of the second lens unit 112 is molded by a mold to form a laminated dielectric layer.
  • the curved surface 110 corresponds to an optical region of the optical assembly 20.
  • the optical element 21 is the photosensitive element
  • an optical area of the optical component 20, that is, a photosensitive area of the photosensitive element, that is, each of the lens unit 11 and the curved surface 110 and the The photosensitive region of the photosensitive member corresponds to form a predetermined light path for the photosensitive member.
  • the optical element 21 is the light source
  • each of the lens unit 11 and the curved surface 110 corresponds to a light-emitting area of the light source, thereby forming a predetermined light path for the light source.
  • the optical lens 10 has a light transmissive area 12 and a light shielding area 13 for transmitting light to form a predetermined light path.
  • the light shielding area 13 is used to block light and prevent stray light from interfering with the light path.
  • the light shielding region 13 is disposed on a top surface side and a side surface of the optical lens 10, and the light transmission is formed in a central region of the optical lens 10. District 12.
  • the light-shielding region 13 is disposed on a top surface of the lens unit 11 at the top and a side surface of each of the lens units 11. That is, the top surface and the side surface of the lens unit 11 at the top are provided with the light shielding area 13, and the side surface of the lens unit 11 at the bottom is provided with the light shielding area 13. That is, the light shielding region 13 is disposed on the top surface, the bottom surface, and/or the side surface of the optical lens 10, and more specifically, the light shielding region 13 is disposed on a portion of the bottom surface and the bottom surface of the optical lens, and The entire side surface constitutes a light shielding structure such that the optical lens 10 forms a predetermined light path.
  • the manner in which the light-shielding region 13 is formed is, for example, but not limited to, attached, plated, plated, vacuum sputtered, coated, sprayed, or the like. That is, in some embodiments, at least one of the lens units 11 is provided with a light shielding region 13 covering at least part of the top surface and the side surface of the lens unit 11 to control the light entering and/or exiting.
  • the passage that is, the shape and size of the light transmitting region 12.
  • the light transmissive region 12 is exemplified, but not limited to, an annular region through which the size of the annular region is controlled.
  • the light-shielding region 13 forms a light-shielding structure that blocks the ambient light of the light-transmitting region 12, thereby forming the light-transmitting region 12 of the predetermined light path. More specifically, the edge region 120 of the lens unit 11 is provided with the light shielding region 13, and the curved surface 110 of the lens unit 11 constitutes the light transmitting region 12.
  • the light shielding region 13 is a plating layer attached to a predetermined region of the lens unit 11, such as a predetermined region of the top surface and the bottom surface, thereby forming a predetermined optical path.
  • the coating layer blocks the top portion region and the sidewall of the optical lens, so that at least part of the top of the optical lens 10 and the sidewall are isolated from the outside, so that the optical lens 10 has a comparison. Good waterproof and wear resistance.
  • the optical module 100 may be formed by assembling the optical component 21 to the circuit board 22 to form the optical component 20, and then attaching the optical component 21 and the circuit board 22
  • the lens unit 11 at the bottom, that is, the first lens unit 111, is integrally formed, and the top surface of the lens unit 11 has the curved surface 110.
  • the molding material is filled in the mold, and the top surface forms the curved surface 110 of a predetermined shape through the inner top surface of the mold.
  • the bottom surface of the first lens unit 111 is attached to the wiring board 22 and the optical element 21, and the top surface 1111 of the first lens unit 111 is placed outside.
  • the bottom surface 1112 (or the second side 1102) of the first lens unit 111 is integrally formed to cover at least a portion of the optical component 20, preferably the bottom surface 1112 (or the second side of the first lens unit 111).
  • the top surface 1111 of the first lens unit 111 is attached, and the other lens unit 11 is integrally formed, such as the second lens unit 112, that is, the bottom surface 1122 of the second lens unit 112 is attached to the
  • the top surface 1111 of the first lens unit 111 forms a complementary structure.
  • the bottom surface 1122 of the second lens unit 112 is concave.
  • the top surface 1111 of the first lens unit 111 is a concave surface
  • the bottom surface 1122 of the second lens unit 112 is a convex surface.
  • the other lens unit 11 such as the third lens unit 113, the fourth lens unit 114, the fifth lens unit 115, and the like are successively formed.
  • each of the lens units 11 is formed adjacent to each other to form a complementary structure.
  • two adjacent lens units 11 are attached to each other without an air gap layer therebetween, thereby forming a stable structure.
  • the optical path, and complementary structure can compensate for errors formed during the manufacturing process by the mold, thereby reducing the overall cumulative tolerance.
  • each of the lens units 11 is integrally formed with the optical element 21 and the circuit board 22, and approaches the surface of the optical element 21 with a maximum limit, which greatly shortens the
  • the overall height of the optical module 100 is covered by the transparent lens unit 11 to protect the optical element 21 from damage, and a good heat dissipation effect can be achieved.
  • the optical component 21 is electrically coupled to the circuit board 22 by an electrical connection component 211, such as, but not limited to, a gold wire, a lead wire, a copper wire, an aluminum wire.
  • an electrical connection component 211 such as, but not limited to, a gold wire, a lead wire, a copper wire, an aluminum wire.
  • the optical module 100 and the optical lens 10 are integrally molded by a molding die 30.
  • the optical module 100 and the optical lens 10 are formed by integrally molding the molding die 30.
  • the molding die 30 includes a lower die 31 and an upper die set 32.
  • the lower die 31 and the upper die set 32 cooperate with each other, and the lens unit 11 is sequentially formed by a molding material molding material, thereby forming a The optical lens 10 is described.
  • the first lens unit 111, the second lens unit 112, the third lens unit 113, the The fourth lens unit 114 and the fifth lens unit 115 are described.
  • the upper mold set 32 includes a plurality of upper molds that are respectively formed in cooperation with the lower mold 31 to form each of the lens units 11.
  • the number of upper dies in the upper mold set 32 is related to the number of lenses in the lens unit 11 that needs to be imaged. For example, when five lens units are required, five of the upper molds are required to cooperate with the lower mold 31 with reference to FIG. 5 to form three of the five lens units 11 as an example.
  • the upper mold set 32 includes three upper molds, which are a first upper mold 321 , a second upper mold 322 , and a third upper mold 323 .
  • the first upper mold 321 and the lower mold 31 cooperate to form a first lens 111 of the lens unit 11, and the second upper mold 322 and the lower mold 31 cooperate to form the first portion of the lens unit 11
  • the second lens unit 112, the third mold 323 and the lower mold 31 cooperate to form the fifth lens unit 115 of the lens unit 11.
  • the first upper mold 321 and the lower mold 31 have a mold clamping state and a mold opening state, and in the mold clamping state, the first upper mold 321 and the lower mold 31 are closed to each other to form a first A molding cavity 301 for filling a molding material to form the first lens unit 111.
  • the first molding cavity 301 is for accommodating the optical component 20, and the molding material is introduced into the first molding cavity 301, thereby integrally molding the first lens unit 111 with the optical component 20.
  • the second upper mold 322 and the lower mold 31 have a mold clamping state and a mold opening state, and in the mold clamping state, the second upper mold 322 and the lower mold 31 are closed to each other to form a second
  • the molding cavity 302 is used to fill the molding material to form the first lens unit 111.
  • the second molding cavity 302 is configured to accommodate the optical component 20 and the first lens unit 111, and to cause a molding material to enter the second molding cavity 302, thereby attaching the first lens unit 111 to the body.
  • the second lens unit 112 is molded.
  • the third lens unit 113 and the fourth lens unit 114 are sequentially formed by the other two upper molds.
  • the third upper mold 323 and the lower mold 31 have a mold clamping state and a mold opening state, and in the mold clamping state, the third upper mold 323 and the lower mold 31 are closed to each other to form a third A molding cavity 303 for filling a molding material to form the fifth lens unit 115.
  • the third molding cavity 303 is configured to accommodate the optical component 20 and the first lens unit 111, the second lens unit 112, the third lens unit 113, and the fourth lens unit 114. And molding material is introduced into the third molding cavity 303, thereby integrally molding the fifth lens unit 115 with the fourth lens 111.
  • the lower mold 31 has a lower cavity 310 for accommodating the circuit board 22, that is, the first upper mold 321 and the lower mold 31 are opened during molding.
  • the circuit board 22 is placed in the lower cavity 310 to position the circuit board 22 through the lower cavity 310 to form the first lens unit at a predetermined position on the upper side of the optical component 20. 111. That is, the shape of the lower cavity 310 is adapted to the shape of the wiring board 22.
  • the lower cavity 310 is recessed inward from the surface of the lower mold 31.
  • the first upper mold 321 has a first upper cavity 3210 for filling a molding material to form the first lens unit 111. That is, when the first upper mold 321 and the lower mold 31 are clamped, the lower concave cavity 310 of the lower mold 31 and the first upper concave cavity 3210 of the first upper mold 321
  • the first molding cavity 301 is formed in communication.
  • the first molding cavity 301 has a shaped inlet to facilitate feeding of the molding material to the first molding cavity 301.
  • the first upper mold 321 has a first molding surface 3211 for molding the first surface 1101 of the first lens unit 111. That is, at the time of molding, the optical component 20 is placed in the lower cavity 310 of the lower mold 31, the first upper die 321 is clamped, and the first upper die 321 is A molding surface 3211 and a top side of the optical component 20, that is, a filling space of the molding material with the circuit board 22 and the optical component 21, that is, a molding space corresponding to the first lens unit 1111. In other words, at the time of molding, the molding material enters the first molding cavity 301, and the surface of the optical component 21 is attached to the circuit board 22 to form the bottom surface 1112 (or the second surface 1102) of the first lens.
  • the first molding surface 3211 of the first upper mold 321 is integrally formed to form the top surface 1111 (or the first surface 1101) of the first lens unit 111, that is, a top having a predetermined shape is formed.
  • the shape of the top side surface of the optical component 20 determines the bottom surface 1112 of the first lens unit 111
  • the first molding of the first upper mold 321 The shape of the surface 3211 determines the shape of the top surface 1111 of the first lens unit 111, and the space between the first molding surface 3211 of the first upper mold and the circuit board 22 and the optical element 21 is determined.
  • the molding material covers a predetermined position of the surface of the optical component 20, such as including the predetermined position of the optical component 21, thereby causing the molding material
  • the surface of the optical element 21 is covered such that light enters the optical element 21 through the molding material or light emitted by the optical element 21 is emitted through the molding material instead of being propagated through the air medium. That is, the first lens unit 111 covers the surface of the optical element 21 to form a light-transmitting medium layer.
  • the optical element 21 is electrically connected to the circuit board 22 by the electrical connection element 22, the first lens unit 111 being integrally formed with the optical component 20, such that the first lens unit 111 The surface of the optical element 21, the electrical connection element 221, and at least a portion of the surface of the wiring board 22 are covered, thereby stably fixing the relative positions of the optical element 21 and the wiring board 22.
  • the optical element 21 and the electrical connection element 221 are embedded in the first lens unit 111.
  • the second upper mold 322 has a second upper cavity 3220 for filling a molding material to form the second lens 111. That is, when the second upper mold 322 and the lower mold 31 are clamped, the lower concave cavity 310 of the lower mold 31 and the second upper concave cavity 3220 of the second upper mold 322
  • the second molding cavity 302 is formed in communication.
  • the second molding cavity 302 has a shaped inlet to facilitate the feeding of the molding material to the second molding cavity 302.
  • the second upper mold 322 has a second molding surface 3221 for molding the first surface 1101 of the second lens unit 112, that is, the first lens unit 111 is provided during molding.
  • the optical assembly 20 is placed in the lower cavity 310 of the lower mold 31, the second upper mold 322 is clamped, the second molding surface 3221 of the second upper mold 322 and the The top surface 1111 (or the first side 1101) of the first lens unit 111 forms a filling space of the molding material, that is, a molding space corresponding to the second lens unit 112.
  • the molding material enters the second molding cavity 302, and the top surface 1111 of the first lens unit 111 is attached to the bottom surface 1122 of the second lens unit 112, and is attached
  • the second molding surface 3221 of the second upper mold 322 is integrally formed to form the top surface 1121 (or the first surface 1101) of the second lens unit 112, that is, the top surface 1121 and the bottom surface 1122 having a predetermined shape are formed.
  • the shape of the top surface 1121 of the first lens unit 111 determines the shape of the bottom surface 1122 of the second lens 111, and the second upper mold 322
  • the shape of the second molding surface 3221 determines the shape of the top surface 1121 of the second lens unit 112, and the space between the second molding surface 3221 of the second upper mold 322 and the first lens unit 111.
  • the overall shape of the second lens unit 112 is determined.
  • the third upper mold 323 has a third upper cavity 3230 for filling a molding material to form the fifth lens unit 115. That is, when the third upper mold 323 and the lower mold 31 are clamped, the lower concave cavity 310 of the lower mold 31 and the third upper concave cavity 3230 of the third upper mold 323
  • the third molding cavity 303 is formed in communication.
  • the third molding cavity 303 has a molding inlet to facilitate feeding of the molding material to the third molding cavity 303.
  • the third upper mold 323 has a third molding surface 3231 for molding the first surface 1101 and the second surface 1102 of the fifth lens unit 115, that is, forming the fifth lens unit 115 and forming The first side 1101 and the second side 1102 of the predetermined shape.
  • the optical component 20 with the first lens unit 111 is placed in the lower cavity 310 of the lower mold 31, and the third upper mold 323 is closed.
  • the third molding surface 3231 of the third upper mold 323 and the top surface 1111 (or the first surface 1101) of the first lens unit 111 form a filling space of a molding material, that is, corresponding to the third lens 112. Molding space.
  • the molding material enters the third molding cavity 303, and the first face 1101 attached to the fourth lens unit 114 forms the second face 1102 of the fifth lens unit 115, and the attachment
  • the third molding surface 3231 of the third upper mold 323 is integrally formed to form the top surface (or the first surface 1101) of the fifth lens unit 115, that is, the first surface 1101 and the first shape having a predetermined shape are formed.
  • the shape of the top surface 1101 of the fourth lens unit 114 determines the shape of the bottom surface 1102 of the fifth lens unit 115, and the third upper mold 323
  • the shape of the third molding surface 3231 determines the shape of the top surface 1101 of the fifth lens unit 115, and between the third molding surface 3231 of the third upper mold 323 and the fourth lens unit 114.
  • the space determines the overall shape of the fifth lens unit 115.
  • the first lens unit 111, the second lens unit 112, the third lens unit 113, the fourth lens unit 114, and the fifth lens are successively molded by the molding die 30 described above.
  • the light shielding area 13 may be selectively disposed, such as after the first lens unit 111 is formed by the first upper mold and the lower mold, at the first lens unit 111.
  • the first surface 1101 forms the light shielding region 13, and the light shielding region 13 is formed in a predetermined region of the first surface 1101 by, for example, attaching, plating, plating, vacuum sputtering, coating, spraying, or the like.
  • the remaining portion of the first face 1101 forms the light transmissive region 12 through which light propagates.
  • the light-shielding region 13 after integrally forming the lens on the top layer, such as the fifth lens unit 115, such as forming the light-shielding region 13 in a predetermined area of the side wall and the top surface of the optical lens 10.
  • the fifth lens unit 115 is a lens located at the top, that is, the first first face 1101 of the fifth lens unit 115 is an air medium of the optical lens 10.
  • the second surface 1102 of the fifth lens unit 115 is a lamination surface, that is, a surface combined with the first surface 1101 of the fourth lens unit 114, and the first lens unit 111 and the second lens unit 112.
  • the faces of the two adjacent lenses of the third lens unit 113 and the fourth lens unit 114 are all bonding faces, that is, the first face 1101 and the second face 1102 of the adjacent two lenses overlap each other.
  • the optical lens 10 and the optical module with the optical lens 10 are obtained by sequentially molding the molding die 30.
  • three of the optical lenses 10 are molded as an example. It can be understood that the number of lenses of the optical lens 10 may be more or less, such as 6 or more. 4 and below, when the lens of the optical lens 10 is adjusted, the mold is adjusted correspondingly to the upper mold set 32, thereby integrally forming the optical lens of the predetermined number of lenses and the lens of the predetermined shape by the molding die 30. 10 and optical modules.
  • FIG. 6 a schematic diagram of an optical module 100 in accordance with a second embodiment of the present invention.
  • FIG. 7 a partial enlarged view of an optical module 100 in accordance with a second embodiment of the present invention.
  • the surface of each of the lens units 11 is provided with the light-shielding region 13 so as to form a predetermined light path in the central region of each of the lens units 11. That is, different from the above embodiment, in this embodiment of the invention, the top surface and/or the bottom surface and the side surface of each of the lens units are provided with the light shielding area 13, not just in The top surface of the lens unit 11 at the top and the sides of all the lens units 11.
  • the light shielding area 13 needs to be disposed on the top surface of the lens unit 11, and then another shape is formed.
  • the lens unit 11 forms a predetermined light path between adjacent ones of the lens units 11.
  • FIGS. 8A to 8C are schematic views showing an imposition manufacturing process of the optical module 100 according to the first embodiment of the present invention.
  • the optical module 100 is suitable for imposition manufacture, that is to say, a plurality of the optical modules 100 are manufactured simultaneously.
  • the specific process may be: mounting a plurality of the optical elements 21 respectively at predetermined positions of a spliced wiring board 50, and electrically connecting the optical element 21 to the spliced wiring board 50, and then using the respective opticals Based on the element 21 and the spliced circuit board 50, a plurality of the lens units 11 are integrally molded by mold molding, and each of the lens units 11 is integrally connected, and is controlled by a mold at a position corresponding to each of the optical elements 21.
  • Forming the curved surface 110 that is, forming a first layer of the molded lens unit; further, integrally forming each of the second lenses 112 on the basis of each of the first lenses 111, such that each of the second lenses and The first lens unit should, and form the curved surface 110 on the top surface of the second lens unit 112, that is, form a second layer of the molded lens unit on the basis of the first layer of the molded lens;
  • the light shielding area 13 is disposed on the lens unit 11; further, other lens units 11 are sequentially formed and the light shielding areas 13 are respectively disposed until the required lens units 11 are all formed; further, the The circuit board 50 is cut so that each of the optical modules 100 is independent; further, the light shielding area 13 is disposed in each of the lens units 11 to form a predetermined light path, such as at the top of the lens unit.
  • the top portion of the lens 11 and the side of each of the lens units 11 are provided with the light shielding regions 13, thereby forming a closed light path inside the optical lens 10, that is, the side stray light is blocked. Thereby, a plurality of the optical modules 100 are manufactured at one time.
  • a plurality of optical modules 100 are manufactured by the imposition operation, and more specifically, a plurality of the optical modules 100 are integrally molded by an imposition molding die 30A.
  • the stencil forming die 30A includes a lower die 31A and an upper die set 32A.
  • the lower die 31A and the upper die set 32A cooperate with each other, and a plurality of the lens units 11 are sequentially formed by a molding material molding material. Further, a plurality of the optical lenses 10 are formed.
  • the plurality of the first lens unit 111, the second lens unit 112, and the third unit are integrally formed in sequence by the plurality of the optical components 20 by the imposition molding die 30A.
  • the lens unit 113, the fourth lens unit 114, and the fifth lens unit 115 are integrally formed in sequence by the plurality of the optical components 20 by the imposition molding die 30A.
  • the upper mold set 32A includes a plurality of upper molds that respectively form a continuous plurality of the plurality of the lens units 11 in cooperation with the lower molds 31A.
  • the number of upper dies in the upper mold set 32A is related to the number of lenses in the lens unit 11 that needs to be imaged. For example, when five lens units are required, five of the upper molds are required to fit the lower mold 31A.
  • the upper mold set 32A includes three upper molds, which are a first upper mold 321A and a second upper mold 322A.
  • the lower mold 31A and each of the upper molds correspondingly form a plurality of molding units, and each molding unit correspondingly forms one of the lens units 11, each of which is formed.
  • the units may be the same or different, thereby forming a plurality of the lens units 11 having the same or different surface shapes. That is, each of the upper mold and the lower mold of the imposition molding die 30A cooperate to form a layer of lens units, and each layer of the lens unit includes a plurality of lens units 11, that is, includes a plurality of optical modes.
  • the lens unit of the group 20 is such that the lens unit 11 corresponding to the plurality of optical lenses 10 or the plurality of optical modules 100 can be formed at one time, and the plurality of lens units 11 in one layer are continuously distributed.
  • the first upper mold 321A and the lower mold 31A cooperate to form a plurality of first lenses 111 of the lens unit 11, and the second upper mold 322A and the lower mold 31A cooperate to form a plurality of consecutively distributed layers.
  • the first upper mold 321A and the lower mold 31A have a mold clamping state and a mold opening state, and in the mold clamping state, the first upper mold 321A and the lower mold 31A are closed to each other to form a first
  • the molding cavity 301A is configured to fill the molding material to form a plurality of the first lens units 111 that are continuously distributed, and the plurality of first lens units 111 are integrally connected.
  • the first molding cavity 301A is configured to accommodate the spliced wiring board 50, and the molding material is introduced into the first molding cavity 301A, thereby integrally molding the plurality of the splicing circuit boards 50.
  • a lens unit 111 is configured to accommodate the spliced wiring board 50, and the molding material is introduced into the first molding cavity 301A, thereby integrally molding the plurality of the splicing circuit boards 50.
  • the second upper mold 322A and the lower mold 31A have a mold clamping state and a mold opening state, and in the mold clamping state, the second upper mold 322A and the lower mold 31A are closed to each other to form a second
  • the molding cavity 302A is used to fill the molding material to form a plurality of the first lens units 111 that are continuously distributed.
  • the second molding cavity 302A is for accommodating the integrated circuit board 50 and a plurality of the first lens units 111 continuously distributed, and the molding material is introduced into the second molding cavity 302A, thereby A plurality of the second lens units 112 are integrally formed by a plurality of the first lens units 111 continuously distributed.
  • the lower mold 31A has a lower cavity 310A for accommodating the entire wiring board 50, that is, the first upper mold 321A and the lower mold 31A at the time of molding. Opening the mold, the spliced circuit board 50 is placed in the lower cavity 310A, thereby positioning the spliced circuit board 50 through the lower cavity 310A so as to be on the upper side of the spliced circuit board 50 A plurality of the first lens units 111 are formed at predetermined positions. That is, the shape of the lower cavity 310A is adapted to the shape of the entire wiring board 50.
  • the lower cavity 310A is recessed inward from the surface of the lower mold 31A.
  • the first upper mold 321A has a first upper cavity 3210A for filling a molding material to form a plurality of the first lens units 111 that are continuously distributed. That is, when the first upper mold 321A and the lower mold 31A are clamped, the lower concave cavity 310A of the lower mold 31A and the first upper concave cavity 3210A of the first upper mold 321A
  • the first molding cavity 301A is formed in communication.
  • the first molding cavity 301A has a molding inlet to facilitate feeding of the molding material to the first molding cavity 301A.
  • the first upper mold 321A has a first molding surface 3211A for molding a first surface 1101 of a plurality of the first lens units 111 that are continuously distributed. That is, the first molding surface 3211A has a plurality of molding regions respectively corresponding to the top surfaces of the plurality of first lens units 111.
  • the entire wiring board 50 is placed in the lower cavity 310A of the lower mold 31A, the first upper mold 321A is clamped, and the first upper mold 321A is a first molding surface 3211A and a top side of the entire wiring board 50, that is, a filling space for forming a molding material with the entire wiring board 50 and the plurality of optical elements 21, that is, corresponding to the plurality of A molding space of a lens unit 1111.
  • the molding material enters the first molding cavity 301A, and the surface of the plurality of the optical components 21 is attached to the entire wiring board 50 to form a plurality of consecutively distributed plurality of the first a bottom surface 1112 (or a second side 1102) of the lens, and the first molding surface 3211A attached to the first upper mold 321A is integrally formed to form a continuous distribution of the tops of the plurality of first lens units 111
  • the face 1111 (or the first face 1101) that is, the first lens unit 111 having a plurality of top faces 1111 and a bottom face 1112 having a predetermined shape is formed.
  • the shape of the top side surface of the integrated circuit board 50 and the plurality of optical elements 21 forming the assembly determines a plurality of the first
  • the bottom surface 1112 of the lens unit 111 the shape of the first molding surface 3211A of the first upper mold 321A determines the shape of the top surface 1111 of the plurality of first lens units 111, the first upper mold 321A
  • the space between the first molding surface 3211A and the entire wiring board 50 and the plurality of optical elements 21 determines the overall shape of the plurality of first lens units 111.
  • the molding material covers a predetermined position of the surface of the spliced wiring board 50, for example, including the optical
  • the element 21 is positioned such that the molding material covers the surface of the optical element 21 such that light enters the optical element 21 through the molding material or light emitted by the optical element 21 is emitted through the molding material instead of passing through Airborne media. That is, the first lens unit 111 covers the surface of the optical element 21 to form a light-transmitting medium layer.
  • the second upper mold 322A has a second upper cavity 3220A for filling the molding material to form a plurality of the second lenses 111 continuously distributed. That is, when the second upper mold 322A and the lower mold 31A are clamped, the lower concave cavity 310A of the lower mold 31A and the second upper concave cavity 3220A of the second upper mold 322A
  • the second molding cavity 302A is formed in communication.
  • the second molding cavity 302A has a shaped inlet to facilitate the feeding of the molding material to the second molding cavity 302A.
  • the second upper mold 322A has a second molding surface 3221A for molding a first layer 1101 and a second surface 1102 of a plurality of the second lens units 112 that are continuously distributed, that is, forming a continuous layer.
  • a plurality of the second lens units 112 are distributed and form a top surface 1121 and a bottom surface 1122.
  • the spliced wiring board 50 with the plurality of the first lens units 111 is placed in the lower cavity 310A of the lower mold 31A, and the second upper mold 322A is closed.
  • the second molding surface 3221A of the second upper mold 322A and the top surface 1111 (or the first surface 1101) of the plurality of the first lens units 111 that are continuously distributed form a filling space of the molding material. That is, corresponding to the molding space of the plurality of the second lens units 112.
  • the molding material enters the second molding cavity 302A, and is attached to a top surface 1111 of a plurality of the first lens units 111 which are continuously distributed to form a plurality of said layers continuously distributed.
  • the bottom surface 1122 of the second lens unit 112, and the second molding surface 3221A attached to the second upper mold 322A is integrally formed to form a continuous distribution of the top surfaces of the plurality of second lens units 112 1121 (or first face 1101), that is, a plurality of said second lens units 112 having a continuous distribution of a top surface 1121 and a bottom surface 1122 having a predetermined shape are formed.
  • a shape of a top surface 1121 of a plurality of the first lens units 111 that are continuously distributed determines a plurality of the second layers that are continuously distributed by another layer.
  • the shape of the bottom surface 1122 of the lens 111, the shape of the second molding surface 3221A of the second upper mold 322A determines the shape of a top surface 1121 of a plurality of the second lens units 112 that are continuously distributed.
  • the space between the second molding surface 3221A of the second upper mold 322A and the plurality of the first lens units 111 determines the overall shape of the plurality of second lens units 112.
  • FIG. 9 a schematic view of an optical module 100 in accordance with a third embodiment of the present invention.
  • FIG. 10 it is an exploded perspective view of an optical module 100 according to a third embodiment of the present invention.
  • the optical lens 10 is coupled to the optical assembly 20 by a connection medium 60. That is, the optical lens 10 is not directly connected to the optical component 20.
  • the joining medium 60 is exemplified by, but not limited to, glue, molding material.
  • the connecting medium 60 can be a transparent material.
  • the optical assembly 20 has a mounting slot 14 for mounting the optical assembly 20.
  • the optical assembly 20 and the optical lens 10 can be assembled in an active calibration.
  • FIG. 11 is a schematic view showing a forming process of an optical module 100 according to a third embodiment of the present invention.
  • the optical module 100 may be formed by sequentially forming the optical lens 10 by a mold, and forming the surface on one side surface of the optical lens 10 during molding. a mounting groove 14; further, the connecting medium 60 is disposed in a predetermined area of the optical component 20, such as providing glue around the optical element 21; further, the optical lens 10 is mounted to the optical component 20, and The optical lens and the optical component 20 are optically aligned, and the optical lens 10 and the optical component 20 are finally fixed.
  • the optical lens 10 is integrally molded by a molding die 30B.
  • the optical module 100 and the optical lens 10 are formed by molding the molding die 30B by molding.
  • the first lens unit 111 forms the mounting groove 14 , and the mounting groove 14 is adapted to fit a surface shape of the optical component 20 such that when the optical lens 10 is mounted on the optical component 20 , the first A lens unit 111 is mounted to avoid the optical element 22 and the electrical connection element 211.
  • the optical lens 10 is mounted to the optical component 20
  • the optical component 21 and the electrical connection component 211 are housed in the mounting groove.
  • the mounting groove 14 includes a side area 1401 corresponding to an edge area of the optical element 21 and an inner area 1402 corresponding to a central area of the optical element 21. Further, the side area 1401 of the mounting groove 14 is for accommodating the electrical connection element 211 electrically connected to an edge region of the optical element 21, and the central area 1402 of the mounting groove 14 is for accommodating the optical The central area of the component 21.
  • the shape of the edge region 1401 is adapted to the shape of the electrical connection element, such as forming a trapezoidal structure, the shape of the inner region 1402 being adapted to the surface shape of the optical element 21, such as a planar extension.
  • the depth D2 of the edge region 1401 is greater than the depth D1 of the central region 1402 such that the bottom surface 1112 (or the second surface 1102) of the first lens unit 111 is closer to the surface of the optical element 21.
  • the molding die 30B includes a lower die 31B and an upper die set 32B.
  • the lower die 31B and the upper die set 32B cooperate with each other, and the lens unit 11 is sequentially formed by a molding material molding material, thereby forming a The optical lens 10 is described.
  • the first lens unit 111, the second lens unit 112, the third lens unit 113, and the fourth lens unit 114 are integrally molded in sequence by the molding die 30B.
  • the fifth lens unit 115 is integrally molded in sequence by the molding die 30B.
  • the upper mold set 32B includes a plurality of upper molds, and each of the lens units 11 is formed in cooperation with the lower molds 31B.
  • the number of upper dies in the upper mold set 32B is related to the number of lenses in the lens unit 11 that needs to be imaged. For example, when five lens units are required, five of the upper molds are required to fit the lower mold 31B. Referring to Fig. 11, an example in which three of the five lens units 11 are formed is taken as an example.
  • the upper mold set 32B includes three upper molds, which are a first upper mold 321B, a second upper mold 322B, and a third upper mold 323B.
  • the first upper mold 321B and the lower mold 31B cooperate to form a first lens 111 of the lens unit 11, and the second upper mold 322B and the lower mold 31B cooperate to form the first portion of the lens unit 11
  • the second lens unit 112, the third mold 323 and the lower mold 31B cooperate to form the fifth lens unit 115 of the lens unit 11.
  • the first upper mold 321B and the lower mold 31B have a mold clamping state and a mold opening state, and in the mold clamping state, the first upper mold 321B and the lower mold 31B are closed to each other to form a first A molding cavity 301B for filling a molding material to form the first lens unit 111.
  • the second upper mold 322B and the lower mold 31B have a mold clamping state and a mold opening state, and in the mold clamping state, the second upper mold 322B and the lower mold 31B are closed to each other to form a second
  • the molding cavity 302B is used to fill the molding material to form the first lens unit 111.
  • the second molding cavity 302B is for accommodating the optical component 20 and the first lens unit 111, and the molding material is introduced into the second molding cavity 302B, thereby attaching the first lens unit 111 to the body.
  • the second lens unit 112 is molded.
  • the third lens unit 113 and the fourth lens unit 114 are sequentially formed by the other two upper molds.
  • the third upper mold 323B and the lower mold 31B have a mold clamping state and a mold opening state, and in the mold clamping state, the third upper mold 323B and the lower mold 31B are closed to each other to form a third
  • the molding cavity 303B is used to fill the molding material to form the fifth lens unit 115.
  • the third molding cavity 303B is for accommodating the first lens unit 111, the second lens unit 112, the third lens unit 113, and the fourth lens unit 114, and allows molding material to enter The third molding cavity 303B, thereby integrally molding the fifth lens unit 115 with the fourth lens 111.
  • the lower mold 31B has a one-side molding portion 311B for molding the bottom surface 1112 of the first lens unit 111, that is, the bottom surface 1112 for molding the first lens unit 111 ( Or the second side 1102).
  • the shape of the dough forming portion 311B is matched with the shape of the bottom surface 1112 of the first lens unit 111, such as a complementary shape, such as when the bottom surface 1111 of the first lens unit 111 is convex in shape.
  • the portion 311B is a concave portion for facilitating the molding material to adhere to the bottom surface 1111 of the convex surface to form a convex structure.
  • the surface forming portion 311B is a convex portion. In order to facilitate the molding material to adhere to the surface of the protrusion to form the bottom surface 1111 of the concave structure.
  • the lower mold 31B has a mold clamping surface 3101B for clamping in combination with the upper mold 32B.
  • the dough forming portion 311B has a lower molding surface 3102B for molding the bottom surface 1112 of the first lens unit 111.
  • the shape of the lower molding surface 3102B matches the shape of the bottom surface of the first lens unit 111, such as a complementary shape, such as when the bottom surface 1111 of the first lens unit 111 is convex, the lower molding surface 3102B is a concave surface, so that the molding material adheres to the concave surface to form the bottom surface 1111 of the convex structure.
  • the lower molding surface 3102B is a convex surface, so as to facilitate The molding material adheres to the convex surface to form the bottom surface 1111 of the concave structure.
  • the lower molding surface 3102B includes a first surface area 31021B and a second surface area 31022B, the first surface area 31021B corresponding to an edge area of the optical element 21, and the second surface area 31022B corresponding to the The central area of the optical element 21.
  • the first region corresponds to the electrical connection element 211
  • the second region 31022B corresponds to an inner region of the electrical connection element 211 of the optical element 21.
  • the first surface area 31021B is a convex land for forming the side area 1401 of the groove 14, and the second surface area 31022B is a concave plane.
  • the inner zone 1402 is formed. That is, the first surface area 31021B extends outwardly from the mold clamping surface 3101B, such as obliquely extending to form a convex land, and the second surface area 31022B extends horizontally from the inner side of the second surface area 31022B. Form an extended plane.
  • the height of the top side of the first surface area 31021B from the mold clamping surface 3101B is greater than the height of the top side of the second surface area 31022B from the mold clamping surface 3101B.
  • the first upper mold 321B has a first upper cavity 3210B for filling the molding material to form the first lens unit 111. That is, when the first upper mold 321B and the lower mold 31B are clamped, the surface forming portion 311 of the lower mold 31B is accommodated in the first upper cavity of the first upper mold 321B. 3210B forms the first molding cavity 301B.
  • the first molding cavity 301B has a molding inlet to facilitate feeding of the molding material to the first molding cavity 301B.
  • the first upper mold 321B has a first molding surface 3211B for molding the first surface 1101 of the first lens unit 111, that is, the first upper mold 321B and the The mold 31B is clamped to form the first molding cavity 301B, that is, the molding cavity of the first lens unit 1111, in other words, in this embodiment, the top surface 1111 and the bottom surface of the first lens unit 111. 1112 is formed by the molding die 30B instead of being attached to the optical component 20.
  • the first upper mold 321B is clamped to the lower mold 31B, and the first molding surface 3211B of the first upper mold 321B and the lower molding surface 3111 of the lower mold form the third molding cavity 303B, that is, a molding space corresponding to the first lens unit 1111.
  • the molding material enters the first molding cavity 301B, and the first molding surface 3211B of the first upper mold 321B is integrally molded to form the top surface of the first lens unit 111.
  • the bottom surface 1112 (or the second surface 1102) integrally formed by the lower molding surface 3102B attached to the lower mold 31B forms a top surface 1111 and a bottom surface having a predetermined shape
  • the shape of the first molding surface 3211B of the first upper mold 321B determines the shape of the top surface 1111 of the first lens unit 111
  • the shape of the lower mold 31B The shape of the lower molding surface 3102B determines the shape of the bottom surface 1112 of the first lens unit 111, the first molding surface 3211B of the first upper mold and the lower molding surface 3202B of the lower mold 32B. The space between them determines the overall shape of the first lens unit 111.
  • the second upper mold 322B has a second upper cavity 3220B for filling a molding material to form the second lens 111. That is, when the second upper mold 322B and the lower mold 31B are clamped, the first lens unit 111 of the lower mold 31B is accommodated in the second upper concave of the second upper mold 322B.
  • the cavity forms the second molding cavity 302B.
  • the second molding cavity 302B has a shaped inlet to facilitate feeding of the molding material to the second molding cavity 302B.
  • the second upper mold 322B has a second molding surface 3221B for molding the first surface 1101 of the second lens unit 112. That is, at the time of molding, the first lens unit 111 is positioned in the lower mold 31B, the second upper mold 322B is clamped, and the second molding surface 3221B of the second upper mold 322B and The top surface 1111 (or the first surface 1101) of the first lens unit 111 forms a filling space of a molding material, that is, a molding space corresponding to the second lens unit 112.
  • the molding material enters the second molding cavity 302B, and the top surface 1111 of the first lens unit 111 is attached to the bottom surface 1122 of the second lens unit 112, and is attached
  • the second molding surface 3221B of the second upper mold 322B is integrally formed to form the top surface 1121 (or the first surface 1101) of the second lens unit 112, that is, the top surface 1121 and the bottom surface 1122 having a predetermined shape are formed.
  • the shape of the top surface 1121 of the first lens unit 111 determines the shape of the bottom surface 1122 of the second lens 111, and the second upper mold 322B
  • the shape of the second molding surface 3221B determines the shape of the top surface 1121 of the second lens unit 112, and the space between the second molding surface 3221B of the second upper mold 322B and the first lens unit 111.
  • the overall shape of the second lens unit 112 is determined.
  • the third upper mold 323B has a third upper cavity 3230 for filling a molding material to form the fifth lens unit 115. That is, when the third upper mold 323B and the lower mold 31B are clamped, the first lens unit 111, the second lens unit 112, the third lens unit 113, and the fourth lens 113 is positioned in the lower mold 31B and is accommodated in the third upper cavity 3230 of the third upper mold 323B to form the third molding cavity 303B.
  • the third molding cavity 303B has a molding inlet to facilitate feeding of the molding material to the third molding cavity 303B.
  • the third upper mold 323B has a third molding surface 3231B for molding the first surface 1101 of the fifth lens unit 115. That is, the first lens unit 111, the second lens unit 112, the third lens unit 113, and the fourth lens 113 are positioned in the lower mold 31B at the time of molding, the third The upper mold 323B is clamped, and the third molding surface 3231B of the third upper mold 323B and the top surface (or the first surface 1101) of the fourth lens unit 114 form a filling space of a molding material, that is, corresponding The molding space of the fifth lens unit 115.
  • the molding material enters the third molding cavity 303B, and the first face 1101 attached to the fourth lens unit 114 forms the second face 1102 of the fifth lens unit 115, and the attachment
  • the third molding surface 3231B of the third upper mold 323B is integrally formed to form the top surface (or the first surface 1101) of the fifth lens unit 115, that is, the first surface 1101 and the first shape having a predetermined shape are formed.
  • the shape of the top surface 1101 of the fourth lens unit 114 determines the shape of the bottom surface 1102 of the fifth lens unit 115, and the third upper mold 323B
  • the shape of the third molding surface 3231B determines the shape of the top surface 1101 of the fifth lens unit 115, between the third molding surface 3231B of the third upper mold 323B and the fourth lens unit 114.
  • the space determines the overall shape of the fifth lens unit 115.
  • the first lens unit 111, the second lens unit 112, the third lens unit 113, the fourth lens unit 114, and the fifth lens are sequentially formed by the molding die 30B described above.
  • the light shielding area 13 may be selectively disposed, such as after the first lens unit 111 is formed by the first upper mold 32 and the lower mold 31, in the first lens unit.
  • the first surface 1101 of the 111 forms the light shielding region 13, and the light shielding region 13 is formed in a predetermined region of the first surface 1101 by, for example, attaching, plating, plating, vacuum sputtering, coating, spraying, or the like.
  • the remaining portion of the first surface 1101 forms the light transmissive region 12 through which light propagates.
  • the light-shielding region 13 after integrally forming the lens on the top layer, such as the fifth lens unit 115, such as forming the light-shielding region 13 in a predetermined area of the side wall and the top surface of the optical lens 10.
  • the fifth lens unit 115 is a lens at the top, that is, the first face 1101 of the fifth lens unit 115 is a light incident of the optical lens 10 and the air medium. Face or exit face.
  • the second surface 1102 of the fifth lens unit 115 is a lamination surface, that is, a surface combined with the first surface 1101 of the fourth lens unit 114, and the first lens unit 111 and the second lens unit 112.
  • the faces of the two adjacent lenses of the third lens unit 113 and the fourth lens unit 114 are all bonding faces, that is, the first faces and the second faces of the adjacent two lenses overlap each other.
  • the first lens 114 is a lens located at the bottom, that is, the second surface 1102 of the first lens unit 111 is a light incident surface or an exit surface of the optical lens and the air medium or the medium to which the medium is connected.
  • the optical lens 10 is obtained by sequentially molding the molding die 30B.
  • the optical lens 10 can be assembled to the optical component 20 to form an optical module.
  • the molding process of a single optical lens 10 is taken as an example, but in other embodiments of the present invention, it may also be illustrated by FIGS. 8A-8C.
  • the imposition process processes a plurality of the optical lenses at a time, and the present invention is not limited in this respect.
  • FIG. 12 is a schematic view showing another forming process of the optical module 100 according to the third embodiment of the present invention.
  • the connecting medium 60 is filled in the mounting groove 14, and the optical component 20 is fixedly connected to the optical lens 10 through the connecting medium 60.
  • the forming process of the optical module 100 may be: forming the optical lens 10 by integral molding by a mold, and forming the mounting groove 14 during the first molding; further, the optical lens 10 is Inverted, the connection medium 60 is disposed in the mounting groove 14 of the optical lens 10, and further, the optical component 20 is mounted on the optical lens 10, and is actively calibrated such that the optical lens 10 and the optical path of the optical component 20 are identical, and finally the optical lens 10 and the optical component 20 are fixed.
  • the optical module 100 includes an optical lens 10 and an optical component 20 to which the optical lens 10 is mounted.
  • the optical lens 10 can be fixedly mounted to the optical component 20 by a connection medium 60.
  • An air gap 40 is formed between the optical lens 10 and the optical component 20, that is, light passing through the optical lens 10 passes through the air gap 40 to reach the optical component 20. Alternatively, the light emitted by the optical component 20 reaches the optical lens 10 through the air gap 40.
  • the optical lens 10 includes at least two lens units 11, each of which is disposed in a stack. Further, the lens unit 11 located above is formed integrally with the lens unit 11 located below. Further, the lens unit 11 is integrally formed by a transparent material, such as by molding.
  • the refractive indices of the two adjacent lens units 11 are different, so that light is refracted when one of the lens units 11 enters the other of the lens units 11, instead of being propagated in the same straight line.
  • the refractive index of each of the lens units 11 ranges from 1.1 to 1.9, and preferably, the refractive index of the lens unit 11 ranges from 1.4 to 1.55.
  • the number of the lens units 11 may be 1 to 40, and preferably, the number of the lens units 11 may be 2 to 15. It is worth mentioning that in the conventional lens, the refraction propagation of the light is completed by the alternating of the lens and the air gap 40, and in the present invention, the light propagation is completed by each of the lens units 11 alone, relative to the air medium. There is a certain difference in refractive index, or a relatively low refractive index, and in the present invention, the superposition of the plurality of lens units 11 compensates for the influence of light propagation caused by the absence of the air gap 40, so The number of layers of the lens unit 11 is 1 to 40 layers, preferably 2 to 15 layers. However, due to the compact molding structure, it is relatively possible to provide a more compact and compact optical module.
  • each of the lens units 11 has at least one curved surface 110 such that the lens unit 11 forms a lens structure of a predetermined shape.
  • the curved surface 110 is by way of example and not limitation to a convex or concave surface. More specifically, in some embodiments, the curved surface 110 of the lens unit 11 is located in a central region, that is, the central region of each of the lens units 11 has a curved structure, and the peripheral region has a planar structure, or Approaching the planar structure. It will be understood by those skilled in the art that the size and specific shape of the curved surface 110 is not a limitation of the present invention.
  • At least one of the lenses in each of the lens units 11 has two curved surfaces 110, and the curved surfaces 110 constitute a lens structure.
  • the optical component 20 includes an optical component 21, a circuit board 22, and a base layer 23.
  • the optical component 21 is disposed on the circuit board 22 and is communicatively coupled to the circuit board 22.
  • the base layer 23 covers the optical element 21 and the wiring board 22.
  • the base layer 23 is a transparent layer.
  • the air gap 40 is formed between the base layer 23 and the optical lens 10.
  • the base layer 23 has a base top surface 231.
  • the base top surface 231 of the base layer 23 is a flat surface on which the optical lens 10 is mounted.
  • the base top surface 231 is a curved surface to which the optical lens 10 is mounted.
  • the base top surface 231 is a curved surface, and the base top surface 231 forms the air gap 40 with the optical lens 10. That is, in this embodiment of the invention, the base layer 231 forms a lens unit 11 when light enters the air gap 40 from the medium in which the base layer 23 is located, or light rays enter through the air gap 40.
  • the base layer 23 since the refractive index of the air gap 40 and the base layer 23 are different, light refraction is generated.
  • the air gap 40 may also be filled with other media, such as liquids and solids, to form different two different light propagation media, such that when light enters another medium from one medium, refraction occurs, that is, a lens The role.
  • other media such as liquids and solids
  • the base top surface 231 of the base layer 23 is a curved surface, even if parallel light is incident, the light is refracted, further reflecting the effect of the lens.
  • Figure 14 is a schematic view showing the process of forming an optical module 100 in accordance with a fourth embodiment of the present invention.
  • the forming process of the optical module 100 may be: forming the optical lens 10 by integral molding by a mold; mounting the optical component 21 on the circuit board 22, further using the optical component 21 and the circuit board Forming the base layer 23 as a basis for forming the optical component 20; further, mounting the optical lens 10 to the optical component 20, and actively aligning it, and finally fixing the optical module 100.
  • the optical lens 10 and the optical component 20 when the optical lens 10 and the optical component 20 are assembled, they can be actively calibrated to improve the optical lens 10 and the The optical axis uniformity of the optical component 20 is described, so that the image quality can be improved.
  • Figure 15 is a schematic illustration of an optical module 100 in accordance with a fifth embodiment of the present invention.
  • the optical lens 10 includes an optical interference element 15 for generating an interference pattern 1.
  • the optical interference element 15 is disposed at a top end of the optical lens 10.
  • the optical interference element 15 is configured to interfere with the emitted light of the optical lens 10, thereby generating a specific pattern for judging content that cannot be reflected by conventional photographs such as depth information.
  • Figure 16 is a diagram showing different patterns of the optical module 100 formed in accordance with a fifth embodiment of the present invention.
  • the pattern produced by the action of the optical interference element 15 is, for example but not limited to, a uniformly distributed diffraction pattern, a randomly distributed uniform pattern (to make the light at all positions as uniform as possible), a diffraction pattern or a uniform light distribution according to the position and number of the light source. Pattern.
  • the surface under the optical interference element 15 may be a spherical structure or an aspherical structure such as a convex surface, a concave surface, a groove or the like. That is, the top surface shape of the lens unit 11 at the top of the lens 10 may be a spherical structure or an aspherical structure such as a convex surface, a concave surface, a groove, or the like.
  • the optical assembly 20 includes an optical component 21, a circuit board 22, and a base layer 23.
  • the optical element 21 is electrically connected to the circuit board 22, and the base layer 23 fixes the relative positions of the optical element 21 and the circuit board 22.
  • the base layer 23 integrally connects the wiring board 22 and the side of the optical element 21, thereby fixing the relative positions of the optical element 21 and the wiring board 22.
  • the base layer 23 surrounds the outer side of the optical area of the optical element 21.
  • the base layer 23 has a base top surface 231 for providing a flat mounting plane.
  • the base top surface 231 of the base layer 23 is parallel to the surface of the optical element 21, such as parallel to the surface of the photosensitive element, in order to ensure that the optical axis of the mounted component and the optical component 21 are identical. Sex.
  • the base layer 23 is a transparent material or an opaque material and is formed by molding in one piece.
  • the optical component 20 may be formed by electrically connecting the optical component 21 to the wiring board 22, and then covering the optical area of the optical component 21 and the optical component 21 and the wiring board 22 through a mold. Electrical connection region, further, molding the side surface of the optical element 21 and the upper surface not working, fixing the relative positions of the optical element 21 and the wiring board 22 to form the base layer 23, and
  • the base layer 23 has a flat top surface 231 of the base layer.
  • the optical component 20 includes an optical component 21, a wiring board 22, and a base layer 23, and the base layer 23 covers the optical component 21.
  • a non-airborne dielectric layer is formed directly over the optical element 21.
  • the bottom surface shape of the base layer 23 is identical to the optical element 21 such that the base layer 23 is conformed to the optical element 21 in a conforming manner.
  • the base layer 23 is covered by the optical element 21 in an integrally formed manner.
  • the base layer 23 can also be formed into a bottom surface adapted to the optical element 21 by separately manufacturing, so as to fit the base layer to the optical element 21 in a snug manner. That is to say, in this way, a non-air layer propagation medium is formed above the optical element 23.
  • the base layer 23 is a transparent medium, and the material of the base layer 23 is selected from an organic material or an organic polymer such as an epoxy resin, a silicon material, a plastic, a PC, a PMMA, and an aerosol.
  • an organic material or an organic polymer such as an epoxy resin, a silicon material, a plastic, a PC, a PMMA, and an aerosol.
  • the base layer 23 has a base top surface 231 which, in this embodiment, is a flat surface. In other implementations, the base top surface 231 can be a curved surface.
  • the base top surface 231 of the base layer 23 can be used to provide a mounting location or to provide a forming base.
  • the pedestal 23 covers the optical component 21 and the circuit board 22, and in particular, the susceptor 23 is integrally formed on the optical component 21 and the circuit board 22, thereby encapsulating the optical component Fixed to the circuit board 22.
  • the optical element 21 is a light source, such as a VCSEL, such that light from the source propagates through the base layer 23 and provides better heat dissipation.
  • a light source such as a VCSEL
  • the base layer 23 may be the first lens unit 111 of the first embodiment, that is, constitute a lens structure.
  • the base layer 23 may have a curved surface that uniquely defines the optical path of the optical element 21 to facilitate refracting light emitted by the optical element or light that emits the optical element.
  • the present invention provides a method of manufacturing an optical lens, comprising the steps of:
  • the first surface and the second surface of the second lens unit are integrally formed by a mold.
  • the first surface of the second lens unit is formed by attaching the first surface of the first lens unit, and the first surface of the second mirror unit is integrally formed by the mold.
  • the method further includes the step of integrally molding the plurality of stacked lens units one after the other.
  • the present invention provides a method of manufacturing an optical lens, comprising the steps of:
  • a first surface and a second surface of a plurality of continuously distributed second lens units are integrally formed by a mold.
  • the step (b) includes the steps of: integrally forming another layer of the first surface of the second lens unit by attaching a layer of the first surface of the first lens unit, and integrally forming a plurality of consecutively distributed portions according to the mold. The first side of the second mirror unit.
  • the method includes the steps of: splitting a plurality of continuously distributed optical lenses to form a plurality of optical lenses.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)
  • Lenses (AREA)

Abstract

光学镜头(10)、光学组件(20)和光学模组(100)以及制造方法,其中光学镜头(10),其包括:至少两镜片单元(11),两镜片单元(11)分别具有一第一面(1101)和一第二面(1102),两镜片单元(11)的相邻的第一面(1101)和第二面(1102)相叠合,相邻两镜片单元(11)的折射率不同,以形成叠层布置的光学镜头(10)替代传统的光学镜头。

Description

光学镜头、光学组件和光学模组以及制造方法 技术领域
本发明涉及光学镜头领域,更进一步,涉及一光学镜头、光学组件和光学模组以及制造方法。
背景技术
光线在人们的日常生活中起着非常重要的作用,物体反射的光线进入人眼,从而使得人们可以看到形形色色的物体。在一定程度上,光线决定了人们的观察结果。
同样地,为了给人们呈现观察的物体信息,可以通过发射光线或获取光线而得到,比如在摄像模组中,通过获取光线而得到物体相关信息,在VCSEL中通过发射光线,而进一步获取反射的光线而得来物体相关信息,可是不管是在获取光线还是在反射光线的过程中,形成光路是其中必不可少的内容。
比如,光学镜头就是最常见的光路元件之一,通常的镜头包括多个镜片和一个镜筒,各镜片各自独立地被安装在镜筒中的预定位置,镜片之间设有隔圈,以便于在各镜片之间形成预定的光路,且镜片之间具有空气间隙。
传统镜头中存在一些影响光路的因素。
首先传统镜头中,镜片被单独制造,也就是说,每个镜片各自按预定的形状被独立地制造,比如通过注塑的方式。即在制造期间,各自独立存在。进一步地,再通过组装、封装两道工序,完成整个光学系统的组装。
具体地,各镜片按预定形状被制造完成后,按预定位置逐次被安装于镜筒中,组装过程中受限于安装精度,每个镜片之间以及镜片和镜筒之间都具有一定的组装公差,整个镜头在组装完成后一个累积公差,可以理解的是,在一定工艺条件下,累积公差会随着镜片的增多而增大。同时,为了保障良率,每一个镜片在组装过程中都会需要进行调整。
进一步,光学系统是个非常敏感的系统,在镜片组装于镜筒中时,精度要求较高,而独立的镜片被安装于一个封闭的腔体的过程本身就是一个相对较难的工 艺,这使得整个镜头的组装制造的需要的时间都比较久。
再者,传统镜头组件在光学成像过程中,光的发散与汇聚主要依靠的是镜片的曲率以及镜片与空气之间折射率的不同,而这种光学设计的方法,自然会带来上述的组装问题。
进一步,镜片之间具有空气间隙,这个空气间隙的形状由相邻镜片的形状来决定,空气间隙的大小影响镜头的光学效果,而空气间隙的控制在制造和组装过程都是较难精确控制的内容。换句话说,在传统的镜头中,镜片和空气层交替地排布,从而形成预定的光路。在一定程度上可以说,空气间隙形成“不定形的镜片”,而这个“不定形镜片”形状需要在制造和组装过程中控制,这种间接性的控制,使得光路存在不确定性和不稳定性,造成一定程度的精度降低。
进一步,对于很多的光学投射模组而言,比如VCSEL模组,光源常常存在很大的发热情形,镜头受热会影响整体的成像,造成失焦、成像偏移,同时,常年高温的环境,也会对整个模组的可靠性提出更高的要求。而与此同时,对于需要发射预定的光线,通常通过光线发散的镜头来完成,同样地,传统镜头存在的问题,在VCSEL模组中的对光路和模组本身产生的影响更大,这也直接制约了整个光学投射模组小型化的实现。
发明内容
本发明的一个目的在于提供一光学镜头、光学组件和光学模组及其制造方法,其中所述光学镜头包括至少两镜片单元,相邻两所述镜片单元相叠合的设置,光线直接在相邻的两镜片单元之间传播而不会经过空气层,替代传统的镜头结构。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中所述光学组件通过一次性模制成型,从而使整个模组具备更高的可靠性。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中所述光学组件的模塑成型的上表面具有曲率,可以产生光的发散或汇聚的作用。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中所述光学模组通过一次性模制成型,从而具备更好的散热性能。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中通过模制成型工艺逐层形成光路设计,并在整体成型镜片单元上进行遮光工 序,再通过切割成单独的光学镜头、光学组件或光学模组。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中所述光学镜头通过模制成型工艺逐层形成整个光路。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中所述光学镜头中包括至少两镜片单元,各所述镜片单元相互依存。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中相邻两所述镜片单元相贴合,具备更加确定、稳定的光路。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中各所述镜片单元成型结构紧凑,相对可以形成一种更加紧凑和小型化的光学模组。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中各所述镜片单元对于光的折射采用的是固体、液体介质以及气体不同介质的折射,从而形成一种新的光学结构。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中各所述镜片在制造过程中,通过模具逐层成型形成具有相同或不同曲率的表面,减少组装的误差。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中相邻两所述镜片单元之间的折射率不同,从而使得光线由一个镜片单元到另一所述镜片单元时产生光线折射。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中在光线传播的过程中,相邻传播介质的折射率不同,且界面呈曲面,从而使得光线由一种介质至另一种介质时,产生光线折射。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中各所述镜片单元通过模制一体成型的方式逐次一体成型制造,从而借助相邻的所述镜片单元和模具形成镜片单元。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中所述光学镜头具有一透光区和一遮光区,通过遮光构造限定预定光路。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中所述光学组件包括一基层和一光学元件,其中所述基层适于遮盖于所述光学元件,在所述光学元件上方形成非空气层的传播介质。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中在一些实施例中,至少一所述镜片单元依附所述光学组件成型。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中所述光学元件是一感光元件或一光源,从而接收光线或发射光线。
本发明的一个目的在于提供一光学镜头、摄像模组和光学组件及其制造方法,其中在一些实施例中,所述光学镜头具有一安装槽,适于被整体安装到所述光学组件的光路上,从而形成摄像模组或光源模组。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中所述光学镜头还包括一光学干涉元件,配合各所述镜片单元和所述光学组件形成预定的投射图像。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中通过一体成型的方式制造,降低公差,提高生产效率。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中通过模具一体成型的方式制造,得到精度更高的预定形状和装配精度。
本发明的一个目的在于提供一光学镜头、光学组件和光学模组以及制造方法,其中所述光学镜头、光学组件可以任意组合,以及被安装于传统的镜头或模组结构中去,从而一定程度上降低安装精度的要求。
为了实现以上至少一发明目的,本发明的一方面提供一光学镜头,其包括:
至少两镜片单元,其中至少一镜片单元依附于另一镜片单元而形成。
根据一些实施例,所述的光学镜头,其中相邻两所述镜片单元的折射率不同。
根据一些实施例,所述的光学镜头,其中所述镜片单元具有至少一曲表面。
根据一些实施例,所述的光学镜头,其中所述光学镜头具有透光区和一非透光区,所述透光区位于中心区域,所述不透光区环绕于所述透光区外部。
根据一些实施例,所述的光学镜头,其中相邻两所述镜片单元表面相贴合。
根据一些实施例,所述的光学镜头,其中所述镜片单元通过模塑方式一体成型。
根据一些实施例,所述的光学镜头,其中所述镜片单元由透明材料制成。
本发明的另一方面提供一光学模组,其包括:
一光学镜头,所述光学镜头包括至少两镜片单元,其中至少一所述镜片单元依附于另一所述镜片单元;和
一光学组件;所述光学镜头位于所述光学组件的光学路径。
根据一些实施例,所述的光学模组,其中所述光学组件和所述光学镜头构成一摄像模组。
根据一些实施例,所述的光学模组,其中所述光学组件和所述光学镜头构成一光源模组。
本发明的另一方面提供一光学组件,其包括:
一光学元件;
一线路板;和
一基层;其中所述基层一体成型于所述光学元件和所线路板。
本发明的另一方面提供一光学镜头,其包括:至少两镜片单元,其中两所述镜片单元相互贴合,两所述镜片单元的折射率不同。
本发明的另一方面提供一一光学镜头,其特征在于,包括:至少两镜片单元,其中至少一所述镜片单元依附另一所述镜片单元成型。
根据一些实施例,所述的光学镜头,其中相邻两所述镜片单元的折射率不同。
根据一些实施例,所述的光学镜头,其中所述镜片单元具有至少一曲表面。
本发明的另一方面提供一光学镜头,其包括:至少两镜片单元,其中各所述镜片单元具有至少一曲表面,相邻两所述镜片单元的所述曲表面形状互补。
本发明的另一方面提供一光学组件,其包括:
至少一光学元件;
一线路板;和
一基层;所述光学元件电连接于所述线路板,所述基层透光地遮盖于所述光学元件。
本发明的另一方面提供一光学组件,其包括:
至少一光学元件;
一线路板;和
一基层,其中所述光学元件电连接于所述线路板,所述基层一体成型于所述光学元件形成一曲表面位于所述光学元件的光线路径。
本发明的另一方面提供一光学元件,其包括:
至少一光学元件;
一线路板;和
一基层;所述基层一体成型于至少部分所述光学元件和至少部分所述线路板。
本发明的另一方面提供一光学模组,其包括:
一光学镜头;和
一光学组件;所述光学镜头一体成型于所述光学组件。
本发明的另一方面提供一光学模组,其包括:
一光学镜头;和
一光学组件,所述光学组件包括一光学元件;一线路板和一基层,所述基层一体成型于至少部分所述光学元件和至少部分所述线路板;其中所述光学镜头位于所述光学组件的光路上。
本发明的另一方面提供一光学镜头,其包括:
至少两镜片单元,两所述镜片单元分别具有一第一面和一第二面,两所述镜片单元的相邻的所述第一面和所述第二面相叠合,相邻两所述镜片单元的折射率不同。
根据一些实施例所述的光学镜头,其中至少一个所述镜片单元的第一面和所述第二面各具有一曲表面,两所述曲表面之间形成一透镜。
根据一些实施例所述的光学镜头,其中相邻两所述镜片单元的第一面和第二面形成一折射界面,相邻两所述折射界面形成一透镜。
根据一些实施例所述的光学镜头,其中至少一个所述镜片单元的第一面和所述第二面各具有一边缘面,所述边缘面环绕所述曲表面。
根据一些实施例所述的光学镜头,其中一个所述镜片单元的所述第一面或所述第二面的所述边缘面是平面。
根据一些实施例所述的光学镜头,其中所述光学镜头具有一遮光区,以遮挡光线的通过,所述遮光区被设置于所述光学镜头的至少部分顶面。
根据一些实施例所述的光学镜头,其中所述光学镜头具有一遮光区,以遮光光线的通过,所述遮光区被设置于所述光学镜头的至少部分顶面、侧面和/或底面。
根据一些实施例所述的光学镜头,其中至少一所述镜片单元设有一遮光区,以形成预定光路。
根据一些实施例所述的光学镜头,其中至少一所述镜片单元设有一遮光区,以形成预定光路,所述遮光区被设置于所述边缘区。
根据一些实施例所述的光学镜头,其中所述镜片单元的第一面或第二面被所述遮光区遮挡的剩余区域的所述曲表面形成一透光区。
根据一些实施例所述的光学镜头,其中所述遮光区通过贴附、电镀、真空溅镀、涂覆或喷涂方式形成。
根据一些实施例所述的光学镜头,其中所述遮光区是一镀膜层。
根据一些实施例所述的光学镜头,其中一个所述镜片单元的第二面依附另一个所述第一镜片单元的第一面一体成型。
根据一些实施例所述的光学镜头,其中一个所述镜片单元的第二面贴合于另一个所述镜片单元的第一面。
根据一些实施例所述的光学镜头,其中一个所述镜片单元的所述第二面和另一个所述镜片单元的所述第一面的形状互补。
根据一些实施例所述的光学镜头,其中一个所述镜片单元的第一面藉由一成型模具一体成型。
根据一些实施例所述的光学镜头,其中位于底部的所述镜片单元具有一安装槽,以便于所述光学镜头安装于一光学组件。
根据一些实施例所述的光学镜头,其中所述光学组件包括一光学元件和一线路板,所述光学元件电连接于所述线路板,所述光学镜头位于底侧的所述镜片单元适于遮盖所述光学元件。
根据一些实施例所述的光学镜头,其中所述光学元件是一感光元件或一光源。
根据一些实施例所述的光学镜头,其中所述光学镜头适于设置于一光学组件形成一光学模组,所述光学组件包括一光学元件和一线路板,所述光学元件电连接于所述线路板,位于所述光学镜头底侧的所述镜片单元一体成型覆盖所述光学元件。
根据一些实施例所述的光学镜头,其中所述光学元件是一感光元件或一光源。
根据一些实施例所述的光学镜头,其中所述镜片单元藉由透明材料模塑一体成型。
根据一些实施例所述的光学镜头,其中所述镜片单元的层数为1~40层。
根据一些实施例所述的光学镜头,其中所述镜片单元的层数为2~15层。
根据一些实施例所述的光学镜头,其中所述镜片单元的折射率的范围是1.1~1.9。
根据一些实施例所述的光学镜头,其中所述镜片单元的折射率的范围是1.4~1.55。
根据一些实施例所述的光学镜头,其中所述镜片单元的中心厚度范围为0.1mm~0.6mm。
根据一些实施例所述的光学镜头,其中所述光学镜头包括一光学干涉元件,所述光学干涉元件被设置于所述光学镜头的顶端,以使得所述光学镜头产生干涉图样。
根据一些实施例所述的光学镜头,其中所述镜片单元的材料选自:环氧树脂、硅材料、塑料、PC、PMMA、有机溶液、气溶胶中的一种或多种。
本发明的另一方面提供一光学镜头,其包括:
至少两介质层,两介质层分别具有一第一面和一第二面,两所述介质层相邻的第一面和和第二面相叠合,以使得光线直接地由一个所述介质层折射至另一个所述介质层,两所述介质层折射率不同。
根据一些实施例所述的光学镜头,其中至少一个所述介质层的所述第一面和所述第二面各具有一曲表面,两所述曲表面之间形成一透镜。
根据一些实施例所述的光学镜头,其中至少一个所述介质层的所述第一面和所述第二面各具有一边缘面,所述边缘面环绕于所述曲表面,所述边缘面是平面。
根据一些实施例所述的光学镜头,其中所述光学镜头具有一遮光区,以遮光光线的通过,所述遮光区被设置于至少一所述介质层的第一面和/或第二面的边缘面。
本发明的另一方面提供一光学模组,其包括:
一光学镜头,所述光学镜头包括至少两镜片单元,两所述镜片单元分别具有一第一面和一第二面,两所述镜片单元的相邻的所述第一面和所述第二面相叠合,两所述镜片单元的折射率不同;和
一光学组件,所述光学组件包括一光学元件和一线路板,所述光学元件电连接所述线路板,所述光学镜头位于所述光学元件的光路。
根据一些实施例所述的光学模组,其中至少一个所述镜片单元的第一面和所述第二面各具有一曲表面,两所述曲表面之间形成一透镜。
根据一些实施例所述的光学模组,其中相邻两所述镜片单元的第一面和第二面形成一折射界面,相邻两所述折射界面形成一透镜。
根据一些实施例所述的光学模组,其中至少一个所述镜片单元的第一面和所述第二面各具有一边缘面,所述边缘面环绕所述曲表面。
根据一些实施例所述的光学模组,其中一个所述镜片单元的所述第一面或所述第二面的所述边缘面是平面。
根据一些实施例所述的光学模组,其中所述光学镜头具有一遮光区,以遮挡光线的通过,所述遮光区被设置于所述光学镜头的至少部分顶面。
根据一些实施例所述的光学模组,其中所述光学镜头具有一遮光区,以遮光光线的通过,所述遮光区被设置于所述光学镜头的至少部分顶面、侧面和/或底面。
根据一些实施例所述的光学模组,其中至少一所述镜片单元设有一遮光区,以遮挡光线的通过。
根据一些实施例所述的光学模组,其中至少一所述镜片单元设有一遮光区,以遮挡光线通过,所述遮光区被设置于所述边缘区。
根据一些实施例所述的光学模组,其中所述镜片单元的第一面或第二面被所述遮光区遮挡的剩余区域的所述曲表面形成一透光区。
根据一些实施例所述的光学模组,其中所述遮光区通过贴附、电镀、真空溅镀、涂覆或喷涂方式形成。
根据一些实施例所述的光学模组,其中所述遮光区是一镀膜层。
根据一些实施例所述的光学模组,其中一个所述镜片单元的第二面依附另一个所述第一镜片单元的第一面一体成型。
根据一些实施例所述的光学模组,其中一个所述镜片单元的第二面贴合于另一个所述镜片单元的第一面。
根据一些实施例所述的光学模组,其中一个所述镜片单元的所述第二面和另一个所述镜片单元的所述第一面的形状互补。
根据一些实施例所述的光学模组,其中一个所述镜片单元的第一面藉由一成型模具一体成型。
根据一些实施例所述的光学模组,其中位于底部的所述镜片单元具有一安装槽,以使得所述光学镜头的适于安装与所述光学组件,遮盖所述光学元件。
根据一些实施例所述的光学模组,其中所述光学元件是一感光元件或一光源。
根据一些实施例所述的光学模组,其中位于所述光学镜头底侧的所述镜片单 元一体成型覆盖所述光学元件。
根据一些实施例所述的光学模组,其中所述镜片单元藉由透明材料模塑一体成型。
本发明的另一方面提供一成型模具,用于成型一光学镜头,所述光学镜头包括至少两镜片单元,相邻两所述镜片单元相叠合,其中至少一镜片单元具有一第一面和一第二面,其包括:
一下模具,和
一上模具组,其中所述上模具组包括多个上模具,各所述上模具分别和所述下模具配合一体成型各所述镜片单元。
根据一些实施例所述的成型模具,其中所述上模具组包括一第一上模具,所述第一上模具和所述下模具合模形成一第一成型腔,适于一体成型一第一镜片单元。
根据一些实施例所述的成型模具,其中所述第一上模具具有第一成型面,用于一体成型所述第一镜片单元的一第一面。
根据一些实施例所述的成型模具,其中所述下模具具有一下成型面,所述下成型面用于一体成型所述第一镜片的第二面。
根据一些实施例所述的成型模具,其中所述上模具组包括一第二上模具,所述第二上模具和所述第二下模具合模形成一第二成型腔,适于容纳所述第一镜片单元,依附所述第一镜片单元一体成型一第二镜片单元。
根据一些实施例所述的成型模具,其中所述第二上模具具有一第二成型面,所述第二成型面对应一体成型所述第二镜片单元的第一面。
本发明的另一方面提供一光学镜头的制造方法,其包括步骤:
(A)一体成型一第一镜片单元;和
(B)依附所述第一镜片单元一体成型一第二镜片单元。
根据一些实施例所述的方法,其中所述步骤(A)中藉由一模具一体成型一第二镜片单元的第一面和第二面。
根据一些实施例所述的方法,其中所述步骤(B)依附所述第一镜片单元的第一面一成型所述第二镜片单元的第一面,依附模具一体成型所述第二镜面单元的第一面。
根据一些实施例所述的方法,其中包括步骤:逐次一体成型多层相叠合的镜 片单元。
本发明的另一方面提供一光学镜头的制造方法,其特征在于,包括步骤:
(a)一体成型一层多个连续分布的第一镜片单元;和
(b)依附一层多个连续分布的所述第一镜片单元一体成型一层连续分布的第二镜片单元。
根据一些实施例所述的光学镜头的制造方法,其特征在于,所述步骤(a)中藉由一模具一体成型一层多个连续分布的第二镜片单元的第一面和第二面。
根据一些实施例所述的方法,其中所述步骤(b)中包括步骤:依附一层所述第一镜片单元的第一面一体成型另一层所述第二镜片单元的第一面,依附模具一体成型一层多个连续分布的所述第二镜面单元的第一面。
根据一些实施例所述的方法,其中方法包括步骤:切分多个连续分布的光学镜头,形成多个光学镜头。
本发明的另一方面提供一光学组件,其包括:
一基层;
一光学元件;和
一线路板,所述光学元件电连接所述线路板,所述基层透光地遮盖所述光学元件。
根据一些实施例所述的光学组件,其中所述基层一体成型地覆盖所述光学元件。
根据一些实施例所述的光学组件,其中所述基层一体成型于至少部分所述线路板。
根据一些实施例所述的光学组件,其中所述基层叠合于所述光学元件。
根据一些实施例所述的光学元件,其中所述基层具有一顶面,所述顶面是一平面。
根据一些实施例所述的光学组件,其中所述基层具有一曲表面,所述曲表面位于所述光学元件的光路。
根据一些实施例所述的光学组件,其中所述基层具有一边缘面,所述边缘面环绕所述曲表面。
根据一些实施例所述的光学组件,其中所述边缘面是一平面。
根据一些实施例所述的光学组件,其中所述基层设有一遮光区,以使得所述 基层形成预定光路。
根据一些实施例所述的光学组件,其中所述基层设有一遮光区,以使得所述基层形成预定光路,所述遮光区被设置于所述基层的至少部分顶面和侧面。
根据一些实施例所述的光学组件,其中所述基层设有一遮光区,以使得所述基层形成预定光路,所述遮光区被设置于所述边缘面。
根据一些实施例所述的光学组件,其中所述遮光区通过贴附、电镀、真空溅镀、涂覆或喷涂方式形成。
根据一些实施例所述的光学组件,其中所述遮光区是一镀膜层。
根据一些实施例所述的光学组件,其中所述光学元件是一感光元件或一光源。
根据一些实施例所述的光学组件,其中所述基层藉由透明材料模塑一体成型。
根据一些实施例所述的光学组件,其中所述基层的折射率的范围是1.1~1.9。
根据一些实施例所述的光学组件,其中所基层的折射率的范围是1.4~1.55。
根据一些实施例所述的光学组件,其中所述基层的中心厚度范围为0.1mm~0.6mm。
根据一些实施例所述的光学组件,其中所述基层的材料选自:环氧树脂、硅材料、塑料、PC、PMMA、有机溶液、气溶胶中的一种或多种。
本发明的另一方面提供一光学模组,其包括:
一光学镜头;和
一光学组件,所述光学组件包括一光学元件和一线路板,所述光学元件电连接所述线路板,所述基层透光地覆盖所述光学元件,所述光学镜头位于所述光学元件的光路。
根据一些实施例述的光学模组,其中所述基层一体成型地覆盖所述光学元件。
根据一些实施例所述的光学模组,其中所述基层一体成型于至少部分所述线路板。
根据一些实施例所述的光学模组,其中所述基层叠合于所述光学元件。
根据一些实施例所述的光学模组,其中所述基层具有一顶面,所述顶面是一平面。
根据一些实施例所述的光学模组,其中所述基层具有一曲表面,所述曲表面位于所述光学元件的光路。
根据一些实施例所述的光学模组,其中所述基层具有一边缘面,所述边缘面 环绕所述曲表面。
根据一些实施例所述的光学模组,其中所述基层设有一遮光区,以使得所述基层形成预定光路。
根据一些实施例所述的光学模组,其中所述基层设有一遮光区,以使得所述基层形成预定光路,所述遮光区被设置于所述基层的至少部分顶面和侧面。
根据一些实施例所述的光学模组,其中所述基层设有一遮光区,以使得所述基层形成预定光路,所述遮光区被设置于所述边缘面。
根据一些实施例所述的光学模组,其中所述光学镜头包括一镜片单元,所述镜片单元具有一第一面和第一第二面,第一面和第一第二面相对布置,所述第一镜片单元的第二面叠合于所述基层的曲表面。
根据一些实施例所述的光学模组,所述光学镜头包括一镜片单元,所述镜片单元叠合于所述基层。
根据一些实施例所述的光学模组,其中所述光学镜头包括一镜片单元,所述镜片单元具有一第一面和第一第二面,第一面和第一第二面相对布置,所述镜片单元的第二面叠合于所述基层,相邻两所述镜片的折射率不同。
根据一些实施例所述的光学模组,其中相邻两所述镜片单元的第一面和第二面形成一折射界面,相邻两所述折射界面形成一透镜。
根据一些实施例所述的光学模组,其中所述光学镜头具有一遮光区,以形成预定光路,所述遮光区被设置于所述光学镜头的至少部分顶面至少部分顶面、侧面和/或底面。
根据一些实施例所述的光学模组,其中所述镜片单元的第一面或第二面被所述遮光区遮挡的剩余区域的所述曲表面形成一透光区。
根据一些实施例所述的光学模组,其中所述第一镜片单元与所述基层之间形成一空气间隙。
根根据一些实施例所述的光学模组,其中一个所述镜片单元的第二面依附另一个所述第一镜片单元的第一面一体成型。
根据一些实施例所述的光学模组,其中一个所述镜片单元的第二面贴合于另一个所述镜片单元的第一面。
根据一些实施例所述的光学模组,其中一个所述镜片单元的所述第二面和另一个所述镜片单元的所述第一面的形状互补。
根据一些实施例所述的光学模组,其中所述基层藉由透明材料模塑一体成型。
根据一些实施例所述的光学模组,其中所述基层的折射率的范围是1.1~1.9。
根据一些实施例所述的光学模组,其中所述基层的中心厚度范围为0.1mm~0.6mm。
根据一些实施例所述的光学模组,其中所述光学镜头包括一光学干涉元件,所述光学干涉元件被设置于所述光学镜头的顶端,以使得所述光学镜头产生干涉图样。
根据一些实施例所述的光学模组,其中所述基层的材料选自:环氧树脂、硅材料、塑料、PC、PMMA、有机溶液、气溶胶中的一种或多种。
本发明的另一方面提供一光学模组的制造方法,其包括步骤:
(A)依附一光学组件一体成型一第一镜片单元;和
(B)依附所述第一镜片单元一体成型一第二镜片单元。
根据一些实施例所述的光学模组的制造方法,其特征在于,包括步骤:依附所述第一镜片单元的第一面一成型所述第二镜片单元的第一面,依附模具一体成型所述第二镜面单元的第一面。
根据一些实施例所述的方法,其中包括步骤:逐次一体成型多层相叠合的镜片单元。
本发明的另一方面提供一光学模组的制造方法,其特征在于,包括步骤:
(a)依附一整拼线路板一体成型多个连续分布的第一镜片单元;和
(b)依附一层多个连续分布的所述第一镜片单元一体成型一层连续分布第二镜片单元。
根据一些实施例所述的光学模组的制造方法,其中,包括步骤:藉由一模具一体成型一层多个连续分布的第二镜片单元的第一面和第二面。
根据一些实施例所述的光学模组的制造方法,其中包括步骤:依附一层所述第一镜片单元的第一面一体成型另一层所述第二镜片单元的第一面,依附模具一体成型一层多个连续分布的所述第二镜面单元的第一面。
根据一些实施例所述的光学模组的制造方法,其中包括步骤:切分多个连续分布的光学模组,形成多个光学模组。
附图说明
图1是根据本发明的第一个实施例的光学模组立体示意图。
图2是根据本发明的第一个实施例的光学模组剖视示意图。
图3是根据本发明的第一个实施例的一光路示意图。
图4是根据本发明的第一个实施例的另一光路示意图。
图5是根据本发明的第一个实施例的光学模组其中一形成过程示意图。
图6是根据本发明的第二个实施例的光学模组示意图。
图7是根据本发明的第二个实施例的光学模组部分分解示意图。
图8A至8C是根据本发明的第二个实施例的光学模组拼版制造示意图。
图9是根据本发明的第三个实施例的光学模组示意图。
图10是根据本发明的第三个实施例的光学模组分解示意图。
图11是根据本发明的第三个实施例的光学模组一种形成过程示意图。
图12是根据本发明的第三个实施例的光学模组另一种形成过程示意图。
图13是根据本发明的第四个实施例的光学模组示意图。
图14是根据本发明的第四个实施例的光学模组形成过程示意图。
图15是根据本发明的第五个实施例的光学模组示意图。
图16是根据本发明的第五个实施例的光学模组形成的不同干涉图样示意图。
图17是根据本发明的第六个实施例的光学组件示意图。
图18是根据本发明的第七个实施例的光学组件示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实 施例中,一个元件的数量可以为一个,而在另外的实施例中,所述元件的数量可以为多个,术语“一”不能理解为对数量的限制。
在传统的镜头中,各镜片被独立地制造,各自分离地进行组装,镜片和空气间隙交替组合形成镜头,由前述可以看到,现有的镜头制造工艺中,采用的是玻璃/有机材料和空气之间的折射以及不同的镜片的曲率来实现光路的变化,但是,事实上,利用不同材料之间的折射率不同,同样可以借鉴来进行光学设计。不同的是,通过固态或者液态固化后材料进行组装,可以一定程度上减少设计上的难度,同时整体上增加产品的可靠性。根据本发明提供一光学镜头、光学组件和光学模组以及制造方法,其中通过相互依附的镜片单元形成光学镜头,而不像传统镜头中相互独立而互相分离的结构,避免在各自组装时各自形成的误差;其中相邻两所述镜片单元的折射率不同,从而使得光线从一所述镜片单元进入另一所述镜片单元时产生光线折射,从而在多次折射后形成预定的光线通路;其中所述光学镜头的各镜片单元具有至少一曲表面,使得所述镜片单元具有透镜功能,即,使得平行光线由所述曲表面入射时,光线被汇聚或被发散,而不是平行出射;其中各所述镜片单元通过透明材料逐次依附一体成型形成,而不是各自独立成型的方式;其中所述光学镜头具有一透光区和一遮光区,所述透光区形成预定的光线通路;其中所述光学镜头可以一体成型于一光学组件,从而形成一体的光学模组,比如摄像模组或光源模组;其中所述光学镜头可以包括一光学干涉元件,所述光学干涉元件配合各所述镜片单元工作,从而使得入射或出射的光线,从而形成具备特征的图样,比如点状散斑图案。进一步地,所述光学干涉元件由扩散片(Diffuser)和光栅片(Raster)组成,扩散片作用是将激光光束散射成不规则分布的点状散斑图案,再通过光栅将散斑图案进行衍射“复制”后,扩大其投射角度。这种“复制”效果被称为光学卷积,当光束通过扩散片后产生的散斑,再经过光栅后进行卷积就能得到所需透射角度的散斑。
所述光学模组可以被应用于各种电子设备,比如,智能手机、3D感测设备、平板电脑、可穿戴设备、监控设备。
如图1所示,是根据本发明的第一个实施例的光学模组100立体示意图。如图2是所示,根据本发明的第一个实施例的光学模组100剖视示意图。所述光学模组100包括一光学镜头10和一光学组件20。
所述光学镜头10用于将到达或离开所述光学组件20的光线进行光学作用。 所述光学作用举例地担不限于,通过折射作用对光线进入汇聚或发散。
所述光学镜头10被设置于所述光学组件20光路上,以便于对进入或离开所述光学组件的20的光线进行作用。
进一步,参照图1和图2,根据本发明的这个实施例,所述光学镜头10一体成型地设置于所述光学组件20。也就是说,在制造时,所述光学镜头10依附所述光学组件20而成型,并不是通过其它介质,如胶水,连接固定。当然,在本发明的其它实施例中,所述光学镜头10可以通过其它介质固定连接于所述光学组件20,本发明在这方面并不限制。
参照图2,所述光学镜头10包括至少两镜片单元11,其中至少相邻所述镜片单元11叠层依附地设置。进一步,至少相邻两所述镜片单元11的相接界面相贴合。也就是说,位于上方的所述镜片单元11的底面和位于下方的所述镜片单元11的顶面形状互补。换句话说,相邻的两所述镜片单元11相叠合地设置,从而形成两层叠合的介质层,使得光线在通过相邻的两所述镜片单元11传播时,直接从一个所述镜片单元11到达另一个所述镜片单元11,而不会经过空气介质层的传播。
更进一步,在一些实施例中,位于上方的所述镜片单元11依附位于下方的所述镜片单元11一体成型的形成,从而使得量所述镜片单元11相贴合。更进一步,所述镜片单元11通过透明材料一体成型形成,比如通过模塑成型的方式成型。
相邻两所述镜片单元11的折射率不同,从而使得光线从而一所述镜片单元11进入另一所述镜片单元11时产生折射,而不是同一直线地传播。举例地,各所述镜片单元11的折射率的范围为1.1至1.9,优选地,所述镜片单元11的折射率的范围是1.4至1.55。换句话说,相邻两所述镜片单元11在成型时由不同折射率的材料成型而成。
所述镜片单元11的材料可以是环氧树脂、硅材料、塑料、PC、PMMA、有机溶液和气溶胶等有机物或有机聚合物。
在一些实施例中,所述各所述镜片单元11单独成型,且通过组装使得相邻所述镜片单元11相贴合。本领域的技术人员应当理解的是,所述镜片单元11的形成方式并不是本发明的限制。
值得一提的是,在传统的镜头中,镜片被逐次、独立地安装于镜筒中,镜片 之间形成空气层,且传统镜片的折射率都相同,因此在光线通过镜头传播的过程中,镜片形成的介质和空气介质相互交替,即在整个过程中,只存在两种折射率的介质,即玻璃或树脂与空气的折射介质,因此相邻的镜片之间必须设有空气层,来实现折射率的变化,从而实现光线在相邻的两种介质间的折射传播。这种方式使得镜头的体积较大,镜片之间并不能紧凑地布置。而在本发明中,相邻两镜片相贴合,形状互补地设置,结构紧凑,且相邻两镜片单元的折射率不同,因此使得光线在从一个所述镜片单元11进入另一所述镜片单元11时产生折射,从而形成不同于传统镜头的结构,且能够产生发散或汇聚效果的折射作用。所述镜片单元11的数量可以是1至40,优选地,所述镜片单元11的数量可以是2至15。值得一提的是,传统的镜头中,通过镜片和空气间隙的交替完成光线的折射传播,而在本发明的中,单独通过各所述镜片单元11来完成光线的传播,相对于空气介质,存在一定的折射率差别,而在本发明中,通过多层的所述镜片单元11的叠加,补偿不存在空气间隙而带来的光线传播的影响。
在一些实施例中,所述光学镜头10呈方形,即,各所述镜片单元11呈方形。值得一提的是,在传统的镜头中,由于镜片单独组装于镜筒,为了方便调整,镜片通常是圆形结构,通常不能一次制造多个镜片,且在镜片单独制造的过程中存在误差,在镜片单独组装于镜筒时也存在误差,因此整体具有较大的组装公差。而本发明方形的所述镜片单元11,方便批量化生产,可以通过一次成型再切分的方式形成多个所述镜片单元11,以及一次形成多个所述光学镜头10,且通过依附成型的方式减小组装中的误差。
举例地,在制造所述光学镜头10时,可以通过先通过模具一体成型多个一体连接的所述镜片单元11,即形成第一层所述镜片单元11,而后在所述第一层所述镜片单元11的顶面一体成型第二层所述镜片单元11,由此,逐次形成多层所述镜片单元11,最后对多层所述镜片单元11进行切分,比如方形地切分,从而形成多个所述光学镜头10。
值得一提的是,可以如后续所述,在形成相邻两层所述镜片单元11时,设置相应的所述遮光区,以形成预定的光路。且在成型的过程中,可以通过调整模具,在成型另一层所述镜片单元11时补偿已成型的所述镜片单元层的误差,比如,在成型得到第一层所述镜片单元11后,检测第一层所述镜片单元11的误差,进而根据误差对成型模具进行调整,进一步以所述第一层所述镜片单元11 为基础形成第二层所述镜片单元11,依次,可以校正其它层的所述镜片单元11,从而通过模具的调整补偿所述镜头的误差,使得所述光学镜头10具有较小的组装误差,提供更好的光学效果。比如,在传统制造过程中,整体机械组装单边误差在0.03mm左右,而在本发明中,利用模塑模具一体成型的制造误差可以降低至0.01mm。
还值得一提的是,传统的镜片通常是通过注塑成型的方式形成,限于工艺水平的限制,比如镜片最薄的位置需要满足脱模和组装强度的需求,因此镜片厚度较大,比如通常需要大于0.3mm,而根据本发明,通过模塑一体成型的方式形成所述镜片单元,且叠层依附的方式,使得所述镜片单元11的厚度较小,比如所述镜片单元11的最薄的位置可以达到0.1mm。
进一步地,所述镜片单元11的厚度是0.1mm~0.6mm。可选地,所述镜片单元11的厚度是0.1mm~0.2mm,0.2mm~0.3mm,0.3mm~0.4mm,0.4mm~0.5mm,0.5mm~0.6mm。所述镜片单元11的厚度可以是中心厚度。
参照图1和图2,所述光学组件20包括一光学元件21和一线路板22,所述光学元件21被设置于所述线路板22,与所述线路板22电连接,举例地但不限于,通过一金线电连接。所述光学镜头10位于所述光学元件21的光学路径。
更具体地,如图3所示,根据本发明的第一个实施例的光路示意图,所述光学元件21可以是一感光元件,可以进行感光作用。也就是说,外部的光线通过所述光学镜头10的光学的作用后到达所述感光元件,通过所述感光元件的感光作用而将光信号转变为电信号,进而将信息传输至所述线路板22。也就是说,在这种实施方式中,所述光学镜头10和所述光学组件20可以构成一用于图像采集的摄像模组。
参照图4,根据本发明的第一个实施例的另一光路示意图。所述光学元件21可以是一光源,用于发射光线。也就是说,所述光源发射的光线通过所述光学镜头10的光学作用后出射,所述光学镜头10和所述光学组件20构成一光源模组。所述光源举例地但不限于VCSEL,所述光源模组可以被用于制造TOF模组、结构光模组、投影模组等。
参照图1和图2,各所述镜片单元11具有至少一曲表面110,以使得所述镜片单元11形成预定形状的透镜结构。所述曲表面110举例地但不限于凸面或凹面。更具体地,在一些实施例中,所述镜片单元11的所述曲表面110位于中心 区域,也就是说,各所述镜片单元11的中心区域呈曲面结构,而周边区域呈平面结构,或趋近平面结构。本领域的技术人员应当理解的是,所述曲表面110的区域大小以及具体形状并不是本发明的限制。也就是说,所述镜片单元11的曲表面110周边区域构成一边缘面120。所述边缘面120环绕所述曲表面110。
进一步,各所述镜片单元11中至少一所述镜片单元11具有两所述曲表面110,两所述曲表面110构成一透镜结构。
进一步,相邻两所述镜片单元11的相邻两所述曲表面110相贴合。即,相邻两所述镜片单元11的相邻两所述曲表面110的形状互补。所述曲表面110被设置于各所述镜片单元11的所述顶面和/或所述底面。
各所述镜片单元11具有一第一面1101和一第二面1102,所述第一面1101和所述第二面1102呈曲面形状,以使得所述镜片单元11构成一透镜。相邻两所述镜片单元11的相邻两表面相叠合。举例地,以靠近上方的一侧为第一面1101,靠近下方的第二侧为所述第二面1102,则在同一个坐标中,一个所述镜片单元11的第一面1101与位于上方的另一所述镜片单元11的第二面1102相叠合,从而在光线传播的过程中,进入相邻的一个所述镜片单元11的光线经过中间相叠合的所述第一面1101以及所述第二面1102而直接进入另一个所述镜片单元11。值得一提的是,在本发明的这个实施例中,其中一个镜片单元11通过模塑一体成型的方式形成于另一个所述镜片单元11,在本发明的其他实施例中,也可以通过粘接固定的方式使得一个所述镜片单元11的第二面1102叠合于另一个所述镜片单元11的第一面1101。
值得一提的是,所述镜片单元11的顶面和底面的形状可以是球面结构,也可以是非球面结构,如凸面、凹面、凹槽等结构。本领域的技术人员应当理解的是,所述镜片单元11的所述顶面和所述底面的形状并不是本发明的限制。
为了便于说明,在说明书附图中选取了较少量的所述镜片单元进行示意,并且由下至上,分别标记为第一镜片单元111,第二镜片单元112,第三镜片单元113,第四镜片单元114,以及第五镜片单元115。所述第一镜片单元111,第二镜片单元112,第三镜片单元113,第四镜片单元114,以及第五镜片单元115的都具有至少一所述曲表面110。
所述第一镜片单元111、所述第二镜片单元112、所述第三镜片单元113、所述第四镜片单元114和所述第五镜片单元115依次叠合地设置构成整体的光学 镜头。也就是说,所述第一镜片单元111的第一面1101与所述第二镜片单元112的第二面1102相叠合,所述第二镜片单元112的第一面1101与所述第三镜片单元113的第二面1102相叠合,所述第三镜片单元113的第一面1101与所述第四镜片单元114的第二面1102的相叠合,所述第四镜片单元114的第一面1101与所述第五镜片单元115的第二面1102相叠合,所述第五镜片单元115的第一面1101构成光线入射面或光线出射面。也就是说,相邻两所述镜片单元11的第一面1101和第二面1102形成一折射界面,相邻两所述折射界面之间形成一透镜。
以所述第一镜片单元111和所述第二镜片单元112为例,所述第一镜片单元111具有一顶面1111,即所述第一面1101,所述第二镜片单元112具有一顶面1121,即所述第一面1101和一底面1122,即所述第二面1102。所述第一面1101和所述第二面1102相对布置,也就是说,所述第一面1101和所述第二面1102位于相对的两侧。
所述第一镜片单元111的顶面1111与所述第二镜片单元112的底面1122相叠合,换句话说,所述第一镜片单元111的顶面1111与所述第二镜片单元112的底面1122形状互补,从而使得第一镜片单元111和所述第二镜片单元112构成的两介质层直接相接,而不会经过空气介质层。
在一些实施例中,相邻两所述镜片单元11相互贴合,也就是说,各所述镜片单元各自形成形状互补的第一面1101以及第二面1102,而后将互补的各所述镜片单元11相结合,从而形成叠层设置的介质层。
在一些实施例中,相邻的两所述镜片单元11的接合表面相互依附地形成,比如,以所述第一镜片单元111和所述第二镜片单元112为例,可以先通过模具成型第一镜片111,使其形成预定形状的顶面1111,而后以所述顶面1111为依附,进一步通过模具在所述顶面1111成型所述第二镜片单元112,即在所述第一镜片单元111的顶面1111成型所述第二镜片单元112的底面1122,而通过模具成型所述第二镜片单元112的顶面1111,从而形成叠层设置的介质层。
更具体地,在一些实施例中,所述曲表面110与所述光学组件20的光学区域相对应。举例地,当所述光学元件21是所述感光元件时,所述光学组件20的光学区域即所述感光元件的感光区,即,各所述镜片单元11和所述曲表面110和所述感光元件的感光区相对应,从而为所述感光元件形成预定的光线通路。当所述光学元件21是所述光源时,各所述镜片单元11和所述曲表面110和所述光 源的发光区相对应,从而为所述光源形成预定的光线通路。
进一步,参照图1和图2,所述光学镜头10具有一透光区12和一遮光区13,所述透光区12用于光线的透过,形成预定的光线通路。所述遮光区13用于遮挡光线,防止杂散光干扰光路。
参照图1和图2,在本发明的这个实施例中,所述遮光区13被设置于所述光学镜头10的顶面周边和侧面,在所述光学镜头10的中心区域形成所述透光区12。
参照图1和图2,在本发明的这个实施例中,所述遮光区13被设置于位于顶部的所述镜片单元11的顶面以及各所述镜片单元11的侧面。也就是说,位于顶部的镜片单元11的顶面和侧面被设置有所述遮光区13,位于底部的所述镜片单元11的侧面被设置有所述遮光区13。也就是说,所述遮光区13被设置于所述光学镜头10的顶面、底面和/或侧面,更具体地,所述遮光区13被设置于所述光学镜头的部分底面和底面,以及整个侧面,从而构成一遮光结构,使得所述光学镜头10形成预定的光线通路。
所述遮光区13的形成方式举例地但不限于贴附、电镀、化镀、真空溅镀、涂覆、喷涂等方式形成。也就是说,在一些实施例中,其中至少一所述镜片单元11被设有一所述遮光区13,遮盖于所述镜片单元11的至少部分顶面和侧面,从而控制进入和/射出的光线通路,即所述透光区12,的形状和大小。所述透光区12举例地但不限于是环形区域,通过所述遮光区13控制所述环形区域的大小。换句话说,所述遮光区13形成遮光结构,遮挡所述透光区12的周围光线,从而形成预定光路的所述透光区12。更具体地,所述镜片单元11所述边缘区120被设有所述遮光区13,所述镜片单元11的所述曲表面110构成所述透光区12。
优选地,所述遮光区13是一镀膜层,附着于所述镜片单元11的预定区域,比如顶面和底面的预定区域,从而形成预定光路。值得一提的是,所述镀膜层遮挡于所述光学镜头的顶部部分区域和侧壁,从而使得所述光学镜头10顶部至少部分和侧壁与外界相隔离,使得所述光学镜头10具有较好的防水性能和耐磨性能。
如图5所示,是根据本发明的第一个实施例的光学模组100形成过程示意图。举例地,所述光学模组100的形成过程可以是,先将所述光学元件21组装于所述线路板22,形成所述光学组件20,而后依附所述光学元件21和所述线路 板22一体成型形成位于底部的所述镜片单元11,即,所述第一镜片单元111,并且使得所述镜片单元11的顶面具有所述曲表面110。比如,通过模具模塑成型,使得模塑材料填充于所述模具内,而顶面通过模具的内顶面形成预定形状的所述曲表面110。即,此时,所述第一镜片单元111的底面依附于所述线路板22和所述光学元件21,所述第一镜片单元111的顶面1111置于外部。换句话说,所述第一镜片单元111的底面1112(或者第二面1102)一体成型覆盖至少部分所述光学组件20,优选地,所述第一镜片单元111的底面1112(或者第二面1102)一体成型覆盖所述光学元件21以及至少部分所述线路板22,从而依附所述光学组件的表面形成所述底面1112,依附成型模具形成所述顶面1111。也就是说,所述光学元件21的表面被所述第一镜片单元111与外部空气相隔离。
进一步,依附所述第一镜片单元111的顶面1111,一体成型另一所述镜片单元11,如所述第二镜片单元112,即,所述第二镜片单元112的底面1122依附于所述第一镜片单元111的顶面1111,形成一互补的结构,比如当所述第一镜片单元111的所述顶面1111为凸面时,所述第二镜片单元112的所述底面1122为凹面,当所述第一镜片单元111的所述顶面1111为凹面时,所述第二镜片单元112所述底面1122为凸面。以此方式,逐次形成其它所述镜片单元11,如所述第三镜片单元113,所述第四镜片单元114,所述第五镜片单元115等。由此可以看到,各所述镜片单元11相互依附地形成,从而形成一互补结构,通过这样方式,相邻两所述镜片单元11相互贴付,中间不存在空气间隙层,从而形成稳定的光路,且相互补充的结构,可以通过模具补偿在制造过程中形成的误差,从而降低整体的累积公差。
值得一提的是,在本发明中,各所述镜片单元11依附所述光学元件21和所述线路板22一体成型,以最大的极限接近所述光学元件21的表面,大大缩短了所述光学模组100的整体高度,且通过透明的所述镜片单元11覆盖所述光学元件21的表面,保护所述光学元件21,避免受到损伤,且可以起到良好的散热效果。
在一些实施例中,所述光学元件21通过一电连接元件211电连接所述线路板22,所述电连接元件211举例地但不限于金线、引线、铜线、铝线。
参照图5,所述光学模组100和所述光学镜头10藉由一成型模具30一体制造成型。优选地,所述光学模组100和所述光学镜头10藉由所述成型模具30通 过模塑一体成型的方式制成。
所述成型模具30包括一下模具31和一上模具组32,所述下模具31和所述上模具组32相互配合,藉由一成型材材料成型材料依次成型所述镜片单元11,进而形成所述光学镜头10。在本发明的这个实施例中,藉由所述成型模具30依附所述光学组件依次一体成型所述第一镜片单元111、所述第二镜片单元112、所述第三镜片单元113、所述第四镜片单元114以及所述第五镜片单元115。
所述上模具组32包括多个上模具,分别配合所述下模具31形成各所述镜片单元11。所述上模具组32中的上模具的数量与需要成像的镜片单元11中镜片的数量相关。比如,当需要五个镜片单元时,需要5个所述上模具配合所述下模具31参照图5,以形成五个镜片单元11中其中三个镜片单元11为例进行说明。所述上模具组32包括三个上模具,分别为一第一上模具321、一第二上模具322、一第三上模具323。
所述第一上模具321和所述下模具31配合形成所述镜片单元11的第一镜片111,所述第二上模具322和所述下模具31配合形成所述镜片单元11的所述第二镜片单元112,所述第三模具323和所述下模具31配合形成所述镜片单元11的所述第五镜片单元115。
所述第一上模具321和所述下模具31具有一合模状态和一开模状态,在所述合模状态,所述第一上模具321和所述下模具31相互闭合形成一第一成型腔301,所述第一成型腔301用于填充成型材料而形成所述第一镜片单元111。具体地,所述第一成型腔301用于容纳所述光学组件20,并且使得成型材料进入所述第一成型腔301,从而依附所述光学组件20一体成型所述第一镜片单元111。
所述第二上模具322和所述下模具31具有一合模状态和一开模状态,在所述合模状态,所述第二上模具322和所述下模具31相互闭合形成一第二成型腔302,所述第二成型腔302用于填充成型材料而形成所述第一镜片单元111。具体地,所述第二成型腔302用于容纳所述光学组件20和所述第一镜片单元111,并且使得成型材料进入所述第二成型腔302,从而依附所述第一镜片单元111一体成型所述第二镜片单元112。
进一步,藉由另外的两个所述上模具依次成型第三镜片单元113和所述第四镜片单元114。
所述第三上模具323和所述下模具31具有一合模状态和一开模状态,在所 述合模状态,所述第三上模具323和所述下模具31相互闭合形成一第三成型腔303,所述第三成型腔303用于填充成型材料而形成所述第五镜片单元115。具体地,所述第三成型腔303用于容纳所述光学组件20和所述第一镜片单元111、所述第二镜片单元112、所述第三镜片单元113以及所述第四镜片单元114,并且使得成型材料进入所述第三成型腔303,从而依附所述第四镜片111一体成型所述第五镜片单元115。
进一步,所述下模具31具有一下凹腔310,所述凹腔310用于容纳所述线路板22,也就是说,在成型时,所述第一上模具321和所述下模具31开模,所述线路板22放置于所述下凹腔310,从而通过所述下凹腔310定位所述线路板22,以便于在所述光学组件20的上侧预定位置形成所述第一镜片单元111。也就是说,所述下凹腔310的形状与所述线路板22的形状相适应。
所述下凹腔310自所述下模具31的表面向内凹陷。
所述第一上模具321具有一第一上凹腔3210,所述第一上凹腔3210用于填充成型材料而形成所述第一镜片单元111。也就是说,所述第一上模具321和所述下模具31合模时,所述下模具31的所述下凹腔310和所述第一上模具321的所述第一上凹腔3210连通形成所述第一成型腔301。所述第一成型腔301具有一成型入口,以便于向所述第一成型腔301送入成型材料。
所述第一上模具321具有一第一成型面3211,用于成型所述第一镜片单元111的所述第一面1101。也就是说,在成型时,所述光学组件20被放置于所述下模具31的所述下凹腔310,所述第一上模具321合模,所述第一上模具321的所述第一成型面3211和所述光学组件20的顶侧,即与所述线路板22、所述光学元件21形成一成型材料的填充空间,即对应所述第一镜片单元1111的成型空间。换句话说,在成型时,成型材料进入所述第一成型腔301,依附于所述线路板22、所述光学元件21的表面形成所述第一镜片的底面1112(或者第二面1102),并且依附所述第一上模具321的所述第一成型面3211一体成型形成所述第一镜片单元111的所述顶面1111(或者第一面1101),即形成了具有预定形状的顶面1111和底面1112的所述第一镜片单元111。换句话说,在形成第一镜片111时,所述光学组件20的顶侧表面的形状决定所述第一镜片单元111的所述底面1112,所述第一上模具321的所述第一成型面3211的形状决定所述第一镜片单元111的顶面1111的形状,所述第一上模具的所述第一成型面3211与所述线路板22、 所述光学元件21之间的空间决定所述第一镜片单元111的整体形状。换句话说,在所述光学组件20预定位置成型所述第一镜片单元111时,成型材料覆盖所述光学组件20的表面的预定位置,比如包含所述光学元件21预定位置,从而使得成型材料覆盖所述光学元件21的表面,从而使得光线通过成型材料进入所述光学元件21或者所述光学元件21发出的光线通过所述成型材料而射出,而不是通过空气介质传播。即,所述第一镜片单元111覆盖所述光学元件21表面形成光线传播介质层。
在一些实施例中,所述光学元件21通过所述电连接元件22电连接所述线路板22,所述第一镜片单元111一体成型于所述光学组件20,因此所述第一镜片单元111覆盖所述光学元件21的表面、所述电连接元件221以及至少部分所述线路板22的表面,从而稳定地固定所述光学元件21和所述线路板22的相对位置。换句话说,所述光学元件21、所述电连接元件221嵌入所述第一镜片单元111。
进一步,所述第二上模具322具有一第二上凹腔3220,所述第二上凹腔3220用于填充成型材料而形成所述第二镜片111。也就是说,所述第二上模具322和所述下模具31合模时,所述下模具31的所述下凹腔310和所述第二上模具322的所述第二上凹腔3220连通形成所述第二成型腔302。所述第二成型腔302具有一成型入口,以便于向所述第二成型腔302送入成型材料。
所述第二上模具322具有一第二成型面3221,用于成型所述第二镜片单元112的所述第一面1101,也就是说,在成型时,带有所述第一镜片单元111的所述光学组件20被放置于所述下模具31的所述下凹腔310,所述第二上模具322合模,所述第二上模具322的所述第二成型面3221和所述第一镜片单元111的所述顶面1111(或第一面1101)形成成型材料的填充空间,即对应所述第二镜片单元112的成型空间。换句话说,在成型时,成型材料进入所述第二成型腔302,依附于所述第一镜片单元111的顶面1111形成所述第二镜片单元112的所述底面1122,并且依附所述第二上模具322的所述第二成型面3221一体成型形成所述第二镜片单元112的所述顶面1121(或者第一面1101),即形成了具有预定形状的顶面1121和底面1122的所述第二镜片单元112。换句话说,在形成第二镜片单元112时,所述第一镜片单元111的顶面1121的形状决定所述第二镜片111的所述底面1122的形状,所述第二上模具322的所述第二成型面3221的 形状决定所述第二镜片单元112的顶面1121的形状,所述第二上模具322的所述第二成型面3221与所述第一镜片单元111之间的空间决定所述第二镜片单元112的整体形状。
进一步,所述第三上模具323具有一第三上凹腔3230,所述第三上凹腔3230用于填充成型材料而形成所述第五镜片单元115。也就是说,所述第三上模具323和所述下模具31合模时,所述下模具31的所述下凹腔310和所述第三上模具323的所述第三上凹腔3230连通形成所述第三成型腔303。所述第三成型腔303具有一成型入口,以便于向所述第三成型腔303送入成型材料。
所述第三上模具323具有一第三成型面3231,用于成型所述第五镜片单元115的所述第一面1101和第二面1102,即成型所述第五镜片单元115并且形成具有预定形状的第一面1101和第二面1102。
也就是说,在成型时,带有所述第一镜片单元111的所述光学组件20被放置于所述下模具31的所述下凹腔310,所述第三上模具323合模,所述第三上模具323的所述第三成型面3231和所述第一镜片单元111的所述顶面1111(或第一面1101)形成成型材料的填充空间,即对应所述第三镜片112的成型空间。换句话说,在成型时,成型材料进入所述第三成型腔303,依附于所述第四镜片单元114的第一面1101形成所述第五镜片单元115的第二面1102,并且依附所述第三上模具323的所述第三成型面3231一体成型形成所述第五镜片单元115的所述顶面(或者第一面1101),即形成了具有预定形状的第一面1101和第二面1102的所述第五镜片单元115。换句话说,在形成第五镜片单元115时,所述第四镜片单元114的顶面1101的形状决定所述第五镜片单元115的所述底面1102的形状,所述第三上模具323的所述第三成型面3231的形状决定所述第五镜片单元115的顶面1101的形状,所述第三上模具323的所述第三成型面3231与所述第四镜片单元114之间的空间决定所述第五镜片单元115的整体形状。
进一步,在上述通过该所述成型模具30逐次成型所述第一镜片单元111、所述第二镜片单元112、所述第三镜片单元113、所述第四镜片单元114以及所述第五镜片单元115的过程中,可以选择地设置所述遮光区13,比如在通过所述第一上模具和所述下模具成型得到所述第一镜片单元111之后,在所述第一镜片单元111的第一面1101形成所述遮光区13,比如通过贴附、电镀、化镀、真空溅镀、涂覆、喷涂等方式在所述第一面1101的预定区域形成所述遮光区13, 所述第一面1101的剩余部分即形成所述透光区12,光线通过所述透光区12传播。当然也可以在整体形成位于顶层的镜片,如第五镜片单元115之后整体形成所述遮光区13,比如在所述光学镜头10的侧壁以及顶面的预定区域形成所述遮光区13。
在本发明的这个实施例中,所述第五镜片单元115是位于顶部的镜片,即,所述第五镜片单元115的所述第一第一面1101是所述光学镜头10的与空气介质的光线入射面或者出射面。所述第五镜片单元115的第二面1102是叠合面,即与所述第四镜片单元114的第一面1101结合的面,所述第一镜片单元111、所述第二镜片单元112、所述第三镜片单元113和所述第四镜片单元114中相邻两镜片的面都是结合面,即相邻两个镜片的第一面1101和第二面1102相互叠合。
由此,依次通过所述成型模具30成型得到所述光学镜头10以及带有所述光学镜头10的光学模组。
在本发明的这个实施例中,以成型所述光学镜头10中其中三片为例进行说明,可以理解的是,所述光学镜头10的镜片数量可以更多或者更少,比如6片及以上、4及以下,当所述光学镜头10的镜片调整时,相应调整所述模具如所述上模具组32,从而通过所述成型模具30一体成型得到预定镜片数量以及预定形状的镜片的光学镜头10和光学模组。
如图6所示,是根据本发明的第二个实施例的光学模组100示意图。如图7所示,是根据本发明的第二个实施例的光学模组100部分放大图。在本发明的这个实施例中,各所述镜片单元11的表面设有所述遮光区13,从而在各所述镜片单元11中心区域形成预定光线通路。也就是说,不同于上述实施例的是,在本发明的这个实施例中,每个所述镜片单元的顶面和/或底面以及侧面都设有所述遮光区13,而不仅仅是在位于顶部的所述镜片单元11的顶面的和所有镜片单元11的侧面。
在这种实施方式中,在制造所述光学模组100时,在成型得到一所述镜片单元11后,需要在所述镜片单元11的顶面设置所述遮光区13,而后再成型另一所述镜片单元11,从而在相邻两所述镜片单元11之间形成预定的光线通路。
如图8A至8C所示,是根据本发明的第一个实施例的光学模组100的拼版制造过程示意图。根据本发明,所述光学模组100适于拼版制造,也就是说,多个所述光学模组100同时制造。具体过程可以是:将多个所述光学元件21分别 安装于一整拼线路板50的预定位置,并且使得所述光学元件21电连接于所述整拼线路板50,而后以各所述光学元件21和所述整拼线路板50为基础,通过模具模塑一体成型多个所述镜片单元11,各所述镜片单元11一体地连接,并且通过模具控制在各所述光学元件21对应位置形成所述曲表面110,即形成模塑镜片单元的第一层;进一步,在各所述第一镜片111的基础上一体成型形成各所述第二镜片112,使得各所述第二镜片和所述第一镜片单元应,且在所述第二镜片单元112的顶面形成所述曲表面110,即,在所述模塑镜片第一层的基础上形成模塑镜片单元第二层;进一步的,在镜片单元11上设置所述遮光区13;进一步,依次形成其它镜片单元11并分别设置所述遮光区13,直到需要的所述镜片单元11全部形成;进一步,将所述整拼线路板50进行切割,使得各所述光学模组100各自独立;进一步,在各所述镜片单元11设置所述遮光区13,从而形成预定的光线通路,比如在位于顶部的所述镜片单元11的顶部和各所述镜片单元11的侧面设所述遮光区13,从而在所述光学镜头10内部形成封闭的光线通路,即,侧边的杂散光被遮挡。由此,一次制造得到多个所述光学模组100。
参照图8A-8C,多个光学模组100通过该拼版作业的方式制造,更具体地,多个所述光学模组100藉由一拼版成型模具30A一体成型制造。
所述拼版成型模具30A包括一下模具31A和一上模具组32A,所述下模具31A和所述上模具组32A相互配合,藉由一成型材材料成型材料依次成型多个所述镜片单元11,进而形成多个所述光学镜头10。在本发明的这个实施例中,藉由所述拼版成型模具30A依附多个所述光学组件20依次一体成型多个所述第一镜片单元111、所述第二镜片单元112、所述第三镜片单元113、所述第四镜片单元114以及所述第五镜片单元115。
所述上模具组32A包括多个上模具,分别配合所述下模具31A形成连续的多层多个所述镜片单元11。所述上模具组32A中的上模具的数量与需要成像的镜片单元11中镜片的数量相关。比如,当需要五个镜片单元时,需要5个所述上模具配合所述下模具31A。
参照图8A-8C,以形成五个镜片单元11中其中二个镜片单元11为例进行说明。所述上模具组32A包括三个上模具,分别为一第一上模具321A、一第二上模具322A。
值得一提的是,所述拼版成型模具30中,所述下模具31A和每一个所述上 模具对应形成多个成型单元,每一个成型单元对应成型一个所述镜片单元11,各所述成型单元可以相同,也可以不同,从而形成面形状相同或者不同的多个所述镜片单元11。也就是说,所述拼版成型模具30A中的每一个所述上模具和所述下模具配合形成一层镜片单元,而每一层镜片单元包括多个镜片单元11,即包括对应多个光学模组20的一层镜片单元,这样可以一次成型对应多个光学镜头10或者多个光学模组的100的镜片单元11,一层中的多个镜片单元11连续分布。
所述第一上模具321A和所述下模具31A配合形成多个所述镜片单元11的第一镜片111,所述第二上模具322A和所述下模具31A配合形成一层连续分布的多个所述镜片单元11的所述第二镜片单元112。
所述第一上模具321A和所述下模具31A具有一合模状态和一开模状态,在所述合模状态,所述第一上模具321A和所述下模具31A相互闭合形成一第一成型腔301A,所述第一成型腔301A用于填充成型材料而形成一层连续分布的多个所述第一镜片单元111,多个所述第一镜片单元111一体地连接。具体地,所述第一成型腔301A用于容纳所述整拼线路板50,并且使得成型材料进入所述第一成型腔301A,从而依附所述整拼线路板50一体成型多个所述第一镜片单元111。
所述第二上模具322A和所述下模具31A具有一合模状态和一开模状态,在所述合模状态,所述第二上模具322A和所述下模具31A相互闭合形成一第二成型腔302A,所述第二成型腔302A用于填充成型材料而形成一层连续分布的多个所述第一镜片单元111。具体地,所述第二成型腔302A用于容纳所述整拼线路板50和一层连续分布的多个所述第一镜片单元111,并且使得成型材料进入所述第二成型腔302A,从而依附一层连续分布的多个所述第一镜片单元111一体成型多个所述第二镜片单元112。
进一步,所述下模具31A具有一下凹腔310A,所述凹腔310用于容纳所述整拼线路板50,也就是说,在成型时,所述第一上模具321A和所述下模具31A开模,所述整拼线路板50被放置于所述下凹腔310A,从而通过所述下凹腔310A定位所述整拼线路板50,以便于在所述整拼线路板50的上侧预定位置形成多个所述第一镜片单元111。也就是说,所述下凹腔310A的形状与所述整拼线路板50的形状相适应。
所述下凹腔310A自所述下模具31A的表面向内凹陷。
所述第一上模具321A具有一第一上凹腔3210A,所述第一上凹腔3210A用于填充成型材料而形成一层连续分布的多个所述第一镜片单元111。也就是说,所述第一上模具321A和所述下模具31A合模时,所述下模具31A的所述下凹腔310A和所述第一上模具321A的所述第一上凹腔3210A连通形成所述第一成型腔301A。所述第一成型腔301A具有一成型入口,以便于向所述第一成型腔301A送入成型材料。
所述第一上模具321A具有一第一成型面3211A,用于成型一层连续分布的多个所述第一镜片单元111的所述第一面1101。也就是说,所述第一成型面3211A具有多个成型区域,分别对应多个所述第一镜片单元111的顶面。
也就是说,在成型时,所述整拼线路板50被放置于所述下模具31A的所述下凹腔310A,所述第一上模具321A合模,所述第一上模具321A的所述第一成型面3211A和所述整拼线路板50的顶侧,即与所述整拼线路板50、多个所述光学元件21形成一成型材料的填充空间,即对应多个所述第一镜片单元1111的成型空间。换句话说,在成型时,成型材料进入所述第一成型腔301A,依附于所述整拼线路板50、多个所述光学元件21的表面形成一层连续分布的多个所述第一镜片的底面1112(或者第二面1102),并且依附所述第一上模具321A的所述第一成型面3211A一体成型形成一层连续分布的多个所述第一镜片单元111的所述顶面1111(或者第一面1101),即形成了多个具有预定形状的顶面1111和底面1112的所述第一镜片单元111。换句话说,在形成一层连续分布的多个所述第一镜片单元111时,所述整拼线路板50和多个光学元件21形成组件的顶侧表面的形状决定多个所述第一镜片单元111的所述底面1112,所述第一上模具321A的所述第一成型面3211A的形状决定多个所述第一镜片单元111的顶面1111的形状,所述第一上模具321A的所述第一成型面3211A与所述整拼线路板50、多个所述光学元件21之间的空间决定多个所述第一镜片单元111的整体形状。换句话说,在所述整拼线路板50预定位置成型一层连续分布的所述第一镜片单元111时,成型材料覆盖所述整拼线路板50的表面的预定位置,比如包含所述光学元件21预定位置,从而使得成型材料覆盖所述光学元件21的表面,从而使得光线通过成型材料进入所述光学元件21或者所述光学元件21发出的光线通过所述成型材料而射出,而不是通过空气介质传播。即,所述第一镜片单元111覆盖所述光学元件21表面形成光线传播介质层。
进一步,所述第二上模具322A具有一第二上凹腔3220A,所述第二上凹腔3220用于填充成型材料而形成一层连续分布的多个所述第二镜片111。也就是说,所述第二上模具322A和所述下模具31A合模时,所述下模具31A的所述下凹腔310A和所述第二上模具322A的所述第二上凹腔3220A连通形成所述第二成型腔302A。所述第二成型腔302A具有一成型入口,以便于向所述第二成型腔302A送入成型材料。
所述第二上模具322A具有一第二成型面3221A,用于成型一层连续分布的多个所述第二镜片单元112的所述第一面1101和第二面1102,即成型一层连续分布的多个所述第二镜片单元112并且形成顶面1121和底面1122。
也就是说,在成型时,带有多个所述第一镜片单元111的整拼线路板50被放置于所述下模具31A的所述下凹腔310A,所述第二上模具322A合模,所述第二上模具322A的所述第二成型面3221A和一层连续分布的多个所述第一镜片单元111的所述顶面1111(或第一面1101)形成成型材料的填充空间,即对应多个所述第二镜片单元112的成型空间。换句话说,在成型时,成型材料进入所述第二成型腔302A,依附于一层连续分布的多个所述第一镜片单元111的顶面1111形成另一层连续分布的多个所述第二镜片单元112的所述底面1122,并且依附所述第二上模具322A的所述第二成型面3221A一体成型形成一层连续分布的多个所述第二镜片单元112的所述顶面1121(或者第一面1101),即形成了一层连续分布的具有预定形状的顶面1121和底面1122的多个所述第二镜片单元112。换句话说,在形成多个所述第二镜片单元112时,一层连续分布的多个所述第一镜片单元111的顶面1121的形状决定另一层连续分布的多个所述第二镜片111的所述底面1122的形状,所述第二上模具322A的所述第二成型面3221A的形状决定一层连续分布的多个所述第二镜片单元112的顶面1121的形状,所述第二上模具322A的所述第二成型面3221A与多个所述第一镜片单元111之间的空间决定多个所述第二镜片单元112的整体形状。
如图9所示,是根据本发明的第三个实施例的光学模组100示意图。如图10所示,是根据本发明的第三个实施例的光学模组100分解示意图。在本发明的这个实施例中,所述光学镜头10通过一连接介质60连接于所述光学组件20。也就是说,所述光学镜头10并不是直接连接于所述光学组件20。所述连接介质60举例地但不限于胶水,模塑材料。所述连接介质60可以是透明材料。
进一步,参照图9和图10,在本发明的这个实施例中,所述光学组件20具有一安装槽14,所述安装槽14用于安装所述光学组件20。优选地,所述光学组件20和所述光学镜头10可以被主动校准地组装。
如图11所示,是根据本发明的第三个实施例的光学模组100的一种形成过程示意图。在本发明的这个实施例中,所述光学模组100的形成过程可以是,通过模具逐次一体成型形成所述光学镜头10,并且在成型时在所述光学镜头10的一侧表面形成所述安装槽14;进一步,在所述光学组件20的预定区域设置所述连接介质60,比如在所述光学元件21周围设置胶水;进一步,将所述光学镜头10安装于所述光学组件20,并且对其进行主动校准,使得所述光学镜头和所述光学组件20的光路一致,最后固定所述光学镜头10和所述光学组件20。
参照图11,所述光学镜头10藉由一成型模具30B一体制造成型。优选地,所述光学模组100和所述光学镜头10藉由所述成型模具30B通过模塑一体成型的方式制成。
所述第一镜片单元111形成所述安装槽14,所述安装槽14适于配合所述光学组件20的表面形状,使得所述光学镜头10被安装于所述光学组件20时,所述第一镜片单元111的避开所述光学元件22以及所述电连接元件211进行安装。换句话说,所述当所述光学镜头10被安装于所述光学组件20时,所述光学元件21以及所述电连接元件211被容纳于所述安装槽。
进一步,所述安装槽14包括一边区1401和一内区1402,所述边区1401对应所述光学元件21边缘区域,所述内区1402对应所述光学元件21中心区。进一步,所述安装槽14的所述边区1401用于容纳电连接于所述光学元件21边缘区域的所述电连接元件211,所述安装槽14的所述中心区1402用于容纳所述光学元件21的中心区域。
进一步,所述边区1401的形状适应所述电连接元件的形状,比如形成梯形结构,所述内区1402的形状适应所述光学元件21的表面形状,比如平面延伸。
进一步,所述边区1401的深度D2大于所述中心区1402的深度D1,以使得所述第一镜片单元111的底面1112(或第二面1102)更加靠近所述光学元件21的表面。
所述成型模具30B包括一下模具31B和一上模具组32B,所述下模具31B和所述上模具组32B相互配合,藉由一成型材材料成型材料依次成型所述镜片 单元11,进而形成所述光学镜头10。在本发明的这个实施例中,藉由所述成型模具30B依次一体成型所述第一镜片单元111、所述第二镜片单元112、所述第三镜片单元113、所述第四镜片单元114以及所述第五镜片单元115。
所述上模具组32B包括多个上模具,分别配合所述下模具31B形成各所述镜片单元11。所述上模具组32B中的上模具的数量与需要成像的镜片单元11中镜片的数量相关。比如,当需要五个镜片单元时,需要5个所述上模具配合所述下模具31B。参照图11,以形成五个镜片单元11中其中三个镜片单元11为例进行说明。所述上模具组32B包括三个上模具,分别为一第一上模具321B、一第二上模具322B、一第三上模具323B。所述第一上模具321B和所述下模具31B配合形成所述镜片单元11的第一镜片111,所述第二上模具322B和所述下模具31B配合形成所述镜片单元11的所述第二镜片单元112,所述第三模具323和所述下模具31B配合形成所述镜片单元11的所述第五镜片单元115。
所述第一上模具321B和所述下模具31B具有一合模状态和一开模状态,在所述合模状态,所述第一上模具321B和所述下模具31B相互闭合形成一第一成型腔301B,所述第一成型腔301B用于填充成型材料而形成所述第一镜片单元111。
所述第二上模具322B和所述下模具31B具有一合模状态和一开模状态,在所述合模状态,所述第二上模具322B和所述下模具31B相互闭合形成一第二成型腔302B,所述第二成型腔302B用于填充成型材料而形成所述第一镜片单元111。具体地,所述第二成型腔302B用于容纳所述光学组件20和所述第一镜片单元111,并且使得成型材料进入所述第二成型腔302B,从而依附所述第一镜片单元111一体成型所述第二镜片单元112。
进一步,藉由另外的两个所述上模具依次成型第三镜片单元113和所述第四镜片单元114。
所述第三上模具323B和所述下模具31B具有一合模状态和一开模状态,在所述合模状态,所述第三上模具323B和所述下模具31B相互闭合形成一第三成型腔303B,所述第三成型腔303B用于填充成型材料而形成所述第五镜片单元115。具体地,所述第三成型腔303B用于容纳所述第一镜片单元111、所述第二镜片单元112、所述第三镜片单元113以及所述第四镜片单元114,并且使得成型材料进入所述第三成型腔303B,从而依附所述第四镜片111一体成型所述第 五镜片单元115。
进一步,所述下模具31B具有一面成型部311B,所述面成型部311B用于成型所述第一镜片单元111的底面1112,即用于成型所述第一镜片单元111的所述底面1112(或者第二面1102)。所述面成型部311B的形状与所述第一镜片单元111的底面1112的形状相配合,如互补的形状,比如当所述第一镜片单元111的底面1111形状为凸面时,所述面成型部311B是一凹部,以便于成型材料依附所述凹部表面形成凸面结构的所述底面1111,当所述第一镜片单元111的底面1111形状为凹面时,所述面成型部311B是一凸部,以便于成型材料依附所述凸部表面形成凹面结构的所述底面1111。
更具体地,在本发明的这个实施例中,所述下模具31B具有合模面3101B,所述合模面3101B用于与所述上模组32B结合进行合模。所述面成型部311B具有一下成型面3102B,所述下成型面3102B用于成型所述第一镜片单元111的底面1112。所述下成型面3102B的形状与所述第一镜片单元111的底面的形状相配合,如互补的形状,比如当所述第一镜片单元111的底面1111形状为凸面时,所述下成型面3102B是一凹面,以便于成型材料依附所述凹面形成凸面结构的所述底面1111,当所述第一镜片单元111的底面1111形状为凹面时,所述下成型面3102B是一凸面,以便于成型材料依附所述凸面形成凹面结构的所述底面1111。
进一步,所述下成型面3102B包括一第一面区31021B和一第二面区31022B,所述第一面区31021B对应所述光学元件21的边缘区域,所述第二面区31022B对应所述光学元件21的中心区。更进一步,所述第一区对应所述电连接元件211,所述第二区31022B对应所述光学元件21的电连接元件211的内侧区域。
进一步,在本发明的这个实施例中,所述第一面区31021B是一凸台面,用于形成所述凹槽14的所述边区1401,所述第二面区31022B是一凹平面,用于成型所述内区1402。也就是说,所述第一面区31021B自所述合模面3101B向外凸出延伸,比如倾斜延伸形成一凸台面,所述第二面区31022B自所述第二面区31022B内侧水平延伸形成延伸的平面。所述第一面区31021B的顶侧距离所述合模面3101B高度大于所述第二面区31022B的顶侧距离所述合模面3101B高度。
所述第一上模具321B具有一第一上凹腔3210B,所述第一上凹腔3210B用 于填充成型材料而形成所述第一镜片单元111。也就是说,所述第一上模具321B和所述下模具31B合模时,所述下模具31B的所述面成型部311容纳于所述第一上模具321B的所述第一上凹腔3210B形成所述第一成型腔301B。所述第一成型腔301B具有一成型入口,以便于向所述第一成型腔301B送入成型材料。
所述第一上模具321B具有一第一成型面3211B,用于成型所述第一镜片单元111的所述第一面1101,也就是说,在成型时,所述第一上模具321B和所述下模具31B合模形成所述第一成型腔301B,即所述第一镜片单元1111的成型腔,换句话说,在这个实施例中,所述第一镜片单元111的顶面1111和底面1112都藉由所述成型模具30B成型,而不是依附于所述光学组件20。
所述第一上模具321B合模于所述下模具31B,所述第一上模具321B的所述第一成型面3211B和所述下模具的所述下成型面3111形成所述第三成型腔303B,即对应所述第一镜片单元1111的成型空间。换句话说,在成型时,成型材料进入所述第一成型腔301B,依附所述第一上模具321B的所述第一成型面3211B一体成型形成所述第一镜片单元111的所述顶面1111(或者第一面1101),依附于所述下模具31B的所述下成型面3102B一体成型所述底面1112(或者所述第二面1102)即形成了具有预定形状的顶面1111和底面1112的所述第一镜片单元111。换句话说,在形成第一镜片111时,所述第一上模具321B的所述第一成型面3211B的形状决定所述第一镜片单元111的顶面1111的形状,所述下模具31B的所述下成型面3102B的形状决定了所述第一镜片单元111的底面1112的形状,所述第一上模具的所述第一成型面3211B与所述下模具32B的所述下成型面3202B之间的空间决定所述第一镜片单元111的整体形状。
进一步,所述第二上模具322B具有一第二上凹腔3220B,所述第二上凹腔3220B用于填充成型材料而形成所述第二镜片111。也就是说,所述第二上模具322B和所述下模具31B合模时,所述下模具31B的所述第一镜片单元111容纳于所述第二上模具322B的所述第二上凹腔形成所述第二成型腔302B。所述第二成型腔302B具有一成型入口,以便于向所述第二成型腔302B送入成型材料。
所述第二上模具322B具有一第二成型面3221B,用于成型所述第二镜片单元112的所述第一面1101。也就是说,在成型时,所述第一镜片单元111被定位于所述下模具31B,所述第二上模具322B合模,所述第二上模具322B的所述第二成型面3221B和所述第一镜片单元111的所述顶面1111(或第一面1101) 形成成型材料的填充空间,即对应所述第二镜片单元112的成型空间。换句话说,在成型时,成型材料进入所述第二成型腔302B,依附于所述第一镜片单元111的顶面1111形成所述第二镜片单元112的所述底面1122,并且依附所述第二上模具322B的所述第二成型面3221B一体成型形成所述第二镜片单元112的所述顶面1121(或者第一面1101),即形成了具有预定形状的顶面1121和底面1122的所述第二镜片单元112。换句话说,在形成第二镜片单元112时,所述第一镜片单元111的顶面1121的形状决定所述第二镜片111的所述底面1122的形状,所述第二上模具322B的所述第二成型面3221B的形状决定所述第二镜片单元112的顶面1121的形状,所述第二上模具322B的所述第二成型面3221B与所述第一镜片单元111之间的空间决定所述第二镜片单元112的整体形状。
进一步,所述第三上模具323B具有一第三上凹腔3230,所述第三上凹腔3230用于填充成型材料而形成所述第五镜片单元115。也就是说,所述第三上模具323B和所述下模具31B合模时,所述第一镜片单元111、所述第二镜片单元112、所述第三镜片单元113和所述第四镜片113被定位于所述下模具31B并且容纳于所述第三上模具323B的所述第三上凹腔3230形成所述第三成型腔303B。所述第三成型腔303B具有一成型入口,以便于向所述第三成型腔303B送入成型材料。
所述第三上模具323B具有一第三成型面3231B,用于成型所述第五镜片单元115的所述第一面1101。也就是说,在成型时所述第一镜片单元111、所述第二镜片单元112、所述第三镜片单元113和所述第四镜片113被定位于所述下模具31B,所述第三上模具323B合模,所述第三上模具323B的所述第三成型面3231B和所述第四镜片单元114的所述顶面(或第一面1101)形成成型材料的填充空间,即对应所述第五镜片单元115的成型空间。换句话说,在成型时,成型材料进入所述第三成型腔303B,依附于所述第四镜片单元114的第一面1101形成所述第五镜片单元115的第二面1102,并且依附所述第三上模具323B的所述第三成型面3231B一体成型形成所述第五镜片单元115的所述顶面(或者第一面1101),即形成了具有预定形状的第一面1101和第二面1102的所述第五镜片单元115。换句话说,在形成第五镜片单元115时,所述第四镜片单元114的顶面1101的形状决定所述第五镜片单元115的所述底面1102的形状,所述第三上模具323B的所述第三成型面3231B的形状决定所述第五镜片单元115的顶面 1101的形状,所述第三上模具323B的所述第三成型面3231B与所述第四镜片单元114之间的空间决定所述第五镜片单元115的整体形状。
进一步,在上述通过该所述成型模具30B逐次成型所述第一镜片单元111、所述第二镜片单元112、所述第三镜片单元113、所述第四镜片单元114以及所述第五镜片单元115的过程中,可以选择地设置所述遮光区13,比如在通过所述第一上模具32和所述下模具31成型得到所述第一镜片单元111之后,在所述第一镜片单元111的第一面1101形成所述遮光区13,比如通过贴附、电镀、化镀、真空溅镀、涂覆、喷涂等方式在所述第一面1101的预定区域形成所述遮光区13,所述第一面1101的剩余部分即形成所述透光区12,光线通过所述透光区12传播。当然也可以在整体形成位于顶层的镜片,如第五镜片单元115之后整体形成所述遮光区13,比如在所述光学镜头10的侧壁以及顶面的预定区域形成所述遮光区13。
在本发明的这个实施例中,所述第五镜片单元115是位于顶部的镜片,即,所述第五镜片单元115的所述第一面1101是所述光学镜头10与空气介质的光线入射面或者出射面。所述第五镜片单元115的第二面1102是叠合面,即与所述第四镜片单元114的第一面1101结合的面,所述第一镜片单元111、所述第二镜片单元112、所述第三镜片单元113和所述第四镜片单元114中相邻两镜片的面都是结合面,即相邻两个镜片的第一面和第二面相互叠合。所述第一镜片114是位于底部的镜片,即所述第一镜片单元111的第二面1102是所述光学镜头与空气介质或者与相接的介质的光线入射面或者出射面。
由此,依次通过所述成型模具30B成型得到所述光学镜头10。所述光学镜头10可以被组装于所述光学组件20构成一光学模组。
值得一提的是,在本发明的这个实施例中,以单个所述光学镜头10的成型过程为例进行说明,但是在本发明的其他实施例中,也可以藉由图8A-8C示意的拼版作业过程一次成型制造多个所述光学镜头,本发明在这方面并不限制。
图12是根据本发明的第三个实施例的光学模组100另一种形成过程示意图。在这中实施方式中,所述连接介质60被填充于所述安装槽14,所述光学组件20通过所述连接介质60固定连接于所述光学镜头10。具体地,所述光学模组100的形成过程可以是:通过模具逐次一体成型形成所述光学镜头10,并且在第一次成型时,形成所述安装槽14;进一步,将所述光学镜头10倒置,将所述连接 介质60设置于所述光学镜头10的所述安装槽14,进一步,将所述光学组件20安装于所述光学镜头10,并且对其进行主动校准,使得所述光学镜头10和所述光学组件20的光路一致,最后固定所述光学镜头10和所述光学组件20。
如图13所示,是根据本发明的第四个实施例的光学模组100示意图。根据本发明的这个实施例,所述光学模组100包括一光学镜头10和一光学组件20,所述光学镜头10被安装于所述光学组件20。举例地但不限于,所述光学镜头10可以通过一连接介质60固定安装于所述光学组件20。
所述光学镜头10和所述光学组件20之间具有一空气间隙40,也就是说,经过所述光学镜头10的光线,通过所述空气间隙40后到达所述光学组件20。或者,由所述光学组件20出射的光线,经过所述空气间隙40到达所述光学镜头10。
类似本发明的第一个实施例,所述光学镜头10包括至少两镜片单元11,各所述镜片单元11叠层依附地设置。更进一步,位于上方的所述镜片单元11依附位于下方的所述镜片单元11一体成型的形成。更进一步,所述镜片单元11通过透明材料一体成型形成,比如通过模塑成型的方式成型。相邻两所述镜片单元11的折射率不同,从而使得光线从而一所述镜片单元11进入另一所述镜片单元11时产生折射,而不是同一直线地传播。举例地,各所述镜片单元11的折射率的范围为1.1至1.9,优选地,所述镜片单元11的折射率的范围是1.4至1.55。
所述镜片单元11的数量可以是1至40,优选地,所述镜片单元11的数量可以是2至15。值得一提的是,传统的镜头中,通过镜片和空气间隙40的交替完成光线的折射传播,而在本发明的中,单独通过各所述镜片单元11来完成光线的传播,相对于空气介质,存在一定的折射率差别,或者说折射率相对较低,而在本发明中,通过多层的所述镜片单元11的叠加,补偿不存在空气间隙40而带来的光线传播的影响,所以所述镜片单元11的层数为1~40层,优选为2~15层。但是,由于成型结构紧凑,相对可以提供一种更加紧凑和小型化的光学模组。
参照图13,各所述镜片单元11具有至少一曲表面110,以使得所述镜片单元11形成预定形状的透镜结构。所述曲表面110举例地但不限于凸面或凹面。更具体地,在一些实施例中,所述镜片单元11的所述曲表面110位于中心区域,也就是说,各所述镜片单元11的中心区域呈曲面结构,而周边区域呈平面结构,或趋近平面结构。本领域的技术人员应当理解的是,所述曲表面110的区域大小 以及具体形状并不是本发明的限制。
进一步,各所述镜片单元11中至少一所述镜片具有两所述曲表面110,两所述曲表面110构成一透镜结构。
参照图13,所述光学组件20包括一光学元件21、一线路板22以及一基层23,所述光学元件21被设置于所述线路板22,与所述线路板22通信连接。所述基层23覆盖于所述光学元件21和所述线路板22。所述基层23是一透明层。
也就是说,在所述基层23和所述光学镜头10之间形成所述空气间隙40。
所述基层23具有一基层顶面231。在一些实施例中,所述基层23的所述基层顶面231是一平面,所述光学镜头10被安装于所述平面。
在一些实施例中,所述基层顶面231是一曲面,所述光学镜头10被安装于所述曲面。特别地,在本发明的这个实施例中,所述基层顶面231是一曲面,所述基层顶面231与所述光学镜头10形成所述空气间隙40。也就是说,在本发明的这个实施例中,所述基层231形成一所述镜片单元11,当光线由所述基层23所在介质进入所述空气间隙40,或者光线由所述空气间隙40进入所述基层23时,由于所述空气间隙40与所述基层23的折射率不同,因此会产生光线折射。
在一些实施例中,所述空气间隙40还可以填充其它介质,比如液体、固体,从而形成不同两种不同光线传播介质,使得光线从一种介质进入另一种介质时,产生折射,即透镜的作用。此外,由于所述基层23的所述基层顶面231是曲面,因此即使平行光入射,光线也会发生折射,进一步体现出透镜的作用。
图14是根据本发明的第四个实施例的光学模组100形成过程示意图。所述光学模组100的形成过程可以是:通过模具逐次一体成型形成所述光学镜头10;将所述光学元件21安装于所述线路板22,进一步以所述光学元件21和所述线路板22为基础形成所述基层23构成所述光学组件20;进一步,将所述光学镜头10安装于所述光学组件20,并且对其进行主动校准,最后固定所述光学模组100。
值得一体的是,在上述第三个实施例和第四个实施例中,在组装所述光学镜头10和所述光学组件20时,可以对其进行主动校准,提高所述光学镜头10和所述光学组件20的光轴一致性,从而可以提高成像质量。
图15是根据本发明的第五个实施例的光学模组100示意图。根据本发明的这个实施例,所述光学镜头10包括一光学干涉元件15,用于产生干涉图样1。 优选地,所述光学干涉元件15被设置于所述光学镜头10的顶端。
更进一步,所述光学干涉元件15用于对所述光学镜头10的出射光线进行干涉作用,从而产生特定的图样,以用于判断深度信息等常规照片无法体现的内容。图16是根据本发明的第五个实施例的光学模组100形成的不同涉图样示意图。所述光学干涉元件15作用后产生的图样举例地但不限于,均匀分布的衍射纹、随机分布的匀光纹(使所有位置光线尽量均匀)、根据光源位置和数量分布的衍射纹或匀光纹。值得一提的是,位于所述光学干涉元件15的下方的表面可以是球面结构,也可以是非球面结构,如凸面、凹面、凹槽等结构。即,所述镜头10中位于顶部的所述镜片单元11的顶面形状可以是球面结构,也可以是非球面结构,如凸面、凹面、凹槽等结构。
如图17所示,是根据本发明的第六个实施例的光学组件20示意图。根据本发明的这个实施例,所述光学组件20包括一光学元件21、一线路板22和一基层23。所述光学元件21电连接于所述线路板22,所述基层23固定所述光学元件21和所述线路板22的相对位置。
根据本发明的这个实施例,所述基层23一体连接所述线路板22和所述光学元件21的侧面,从而固定所述光学元件21和所述线路板22的相对位置。
进一步,所述基层23环绕于所述光学元件21的光学区域外侧。所述基层23具有一基层顶面231,用于提供平整的安装平面。优选地,所述基层23的所述基层顶面231平行于所述光学元件21的表面,比如平行于所述感光元件的表面,以便于保证被安装元件和所述光学元件21的光轴一致性。
进一步,所述基层23是透明材料或不透明材料,通过模塑一体成型的方式形成。
所述光学组件20的形成过程可以是:将所述光学元件21电连接于所述线路板22,而后通过模具覆盖所述光学元件21的光学区域以及所述光学元件21和所述线路板22的电连接区域,进一步,模塑所述光学元件21的侧面和不用于工作的上表面,将所述光学元件21和所述线路板22的相对位置固定,形成所述基层23,并且使得所述基层23具有平整的所述基层顶面231。
如图18,是根据本发明的第七个实施例的光学组件示意图,所述光学组件20包括一光学元件21、一线路板22和一基层23,所述基层23遮盖于所述光学元件21,从而直接在所述光学元件21上方形成一非空气传播介质层。
进一步,所述基层23的底面形状和所述光学元件21一致,从而使得所述基层23贴合地遮盖于所述光学元件21。举例地,在一些实施例中,所述基层23通过一体成型的方式遮盖于所述光学元件21。当然,所述基层23也可以通过单独制造的方式,形成与所述光学元件21相适应的底面,以便于将所述基层贴合地遮挡于所述光学元件21。也就是说,通过这种方式,在所述光学元件23上方形成一非空气层的传播介质。
优选地,所述基层23是一透明介质,所述基层23的材料选自环氧树脂、硅材料、塑料、PC、PMMA和气溶胶等有机物或有机聚合物。
所述基层23具有一基层顶面231,在这个实施例中,所述基层顶面231是一平面。在其它实施中,所述基层顶面231可以是一曲面。
所述基层23的所述基层顶面231可以用于提供安装位置或提供成型基础。
进一步地,所述基座23遮盖于所述光学元件21和线路板22,特别地,所述基座23一体成型于所述光学元件21和所述线路板22,从而将所述光学元件封装固定于所述线路板22。
优选地,所述光学元件21是一光源,如VCSEL,从而使得所述光源的光线通过所述基层23传播,且提供较好的散热效果。
值得一提的是,所述基层23可以是第一个实施例的所述第一镜片单元111,即构成一透镜结构。所述基层23可以具有一曲表面,所述曲表面唯一所述光学元件21的光路,以便于对所述光学元件发出的光线或者发出所述光学元件的光线进行折射。
根据本发明的上述实施例,本发明提供一光学镜头的制造方法,其包括步骤:
(A)一体成型一第一镜片单元;和
(B)依附所述第一镜片单元一体成型另一镜片单元。
所述步骤(A)中藉由一模具一体成型一第二镜片单元的第一面和第二面。
所述步骤(B)中依附所述第一镜片单元的第一面一成型所述第二镜片单元的第一面,依附模具一体成型所述第二镜面单元的第一面。
所述方法进一步包括步骤:逐次一体成型多层相叠合的镜片单元。
根据本发明的上述实施例,本发明提供一光学镜头的制造方法,其包括步骤:
(a)一体成型一层多个连续分布的第一镜片单元;和
(b)依附一层多个连续分布的所述第一镜片单元一体成型一层连续分布的 第二镜片单元。
所述步骤(a)中藉由一模具一体成型一层多个连续分布的第二镜片单元的第一面和第二面。
所述步骤(b)包括步骤:依附一层所述第一镜片单元的第一面一体成型另一层所述第二镜片单元的第一面,依附模具一体成型一层多个连续分布的所述第二镜面单元的第一面。
方法包括步骤:切分多个连续分布的光学镜头,形成多个光学镜头。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (144)

  1. 一光学镜头,其特征在于,包括:
    至少两镜片单元,两所述镜片单元分别具有一第一面和一第二面,两所述镜片单元的相邻的所述第一面和所述第二面相叠合,相邻两所述镜片单元的折射率不同。
  2. 根据权利要求1所述的光学镜头,其中至少一个所述镜片单元的第一面和所述第二面各具有一曲表面,两所述曲表面之间形成一透镜。
  3. 根据权利要求1所述的光学镜头,其中相邻两所述镜片单元的第一面和第二面形成一折射界面,相邻两所述折射界面形成一透镜。
  4. 根据权利要求2所述的光学镜头,其中至少一个所述镜片单元的第一面和所述第二面各具有一边缘面,所述边缘面环绕所述曲表面。
  5. 根据权利要求3所述的光学镜头,其中一个所述镜片单元的所述第一面或所述第二面的所述边缘面是平面。
  6. 根据权利要求1所述的光学镜头,其中所述光学镜头具有一遮光区,以遮挡光线的通过,所述遮光区被设置于所述光学镜头的至少部分顶面。
  7. 根据权利要求1所述的光学镜头,其中所述光学镜头具有一遮光区,以遮光光线的通过,所述遮光区被设置于所述光学镜头的至少部分顶面、侧面和/或底面。
  8. 根据权利要求2所述的光学镜头,其中至少一所述镜片单元设有一遮光区,以形成预定光路。
  9. 根据权利要求3所述的光学镜头,其中至少一所述镜片单元设有一遮光区,以形成预定光路,所述遮光区被设置于所述边缘区。
  10. 根据权利要求7所述的光学镜头,其中所述镜片单元的第一面或第二面被所述遮光区遮挡的剩余区域的所述曲表面形成一透光区。
  11. 根据权利要求6至10任一所述的光学镜头,其中所述遮光区通过贴附、电镀、真空溅镀、涂覆或喷涂方式形成。
  12. 根据权利要求6至10任一所述的光学镜头,其中所述遮光区是一镀膜层。
  13. 根据权利要求1至10任一所述的光学镜头,其中一个所述镜片单元的 第二面依附另一个所述第一镜片单元的第一面一体成型。
  14. 根据权利要求1至10任一所述的光学镜头,其中一个所述镜片单元的第二面贴合于另一个所述镜片单元的第一面。
  15. 根据权利要求1至10任一所述的光学镜头,其中一个所述镜片单元的所述第二面和另一个所述镜片单元的所述第一面的形状互补。
  16. 根据权利要求1至10任一所述的光学镜头,其中一个所述镜片单元的第一面藉由一成型模具一体成型。
  17. 根据权利要求1至10任一所述的光学镜头,其中位于底部的所述镜片单元具有一安装槽,以便于所述光学镜头安装于一光学组件。
  18. 根据权利要求17所述的光学镜头,其中所述光学组件包括一光学元件和一线路板,所述光学元件电连接于所述线路板,所述光学镜头位于底侧的所述镜片单元适于遮盖所述光学元件。
  19. 根据权利要求18所述的光学镜头,其中所述光学元件是一感光元件或一光源。
  20. 根据权利要求1至10任一所述的光学镜头,其中所述光学镜头适于设置于一光学组件形成一光学模组,所述光学组件包括一光学元件和一线路板,所述光学元件电连接于所述线路板,位于所述光学镜头底侧的所述镜片单元一体成型覆盖所述光学元件。
  21. 根据权利要求20所述的光学镜头,其中所述光学元件是一感光元件或一光源。
  22. 根据权利要求1至10任一所述的光学镜头,其中所述镜片单元藉由透明材料模塑一体成型。
  23. 根据权利要求1至10任一所述的光学镜头,其中所述镜片单元的层数为1~40层。
  24. 根据权利要求23所述的光学镜头,其中所述镜片单元的层数为2~15层。
  25. 根据权利要求1至10任一所述的光学镜头,其中所述镜片单元的折射率的范围是1.1~1.9。
  26. 根据权利要求25所述的光学镜头,其中所述镜片单元的折射率的范围是1.4~1.55。
  27. 根据权利要求1至10任一所述的光学镜头,其中所述镜片单元的中心厚度范围为0.1mm~0.6mm。
  28. 根据权利要求1至10任一所述的光学镜头,其中所述光学镜头包括一光学干涉元件,所述光学干涉元件被设置于所述光学镜头的顶端,以使得所述光学镜头产生干涉图样。
  29. 根据权利要求1至10任一所述的光学镜头,其中所述镜片单元的材料选自:环氧树脂、硅材料、塑料、PC、PMMA、有机溶液、气溶胶中的一种或多种。
  30. 一光学镜头,其特征在于,包括:
    至少两介质层,两介质层分别具有一第一面和一第二面,两所述介质层相邻的第一面和和第二面相叠合,以使得光线直接地由一个所述介质层折射至另一个所述介质层,两所述介质层折射率不同。
  31. 根据权利要求30所述的光学镜头,其中至少一个所述介质层的所述第一面和所述第二面各具有一曲表面,两所述曲表面之间形成一透镜。
  32. 根据权利要求30所述的光学镜头,其中至少一个所述介质层的所述第一面和所述第二面各具有一边缘面,所述边缘面环绕于所述曲表面,所述边缘面是平面。
  33. 根据权利要求31所述的光学镜头,其中所述光学镜头具有一遮光区,以遮光光线的通过,所述遮光区被设置于至少一所述介质层的第一面和/或第二面的边缘面。
  34. 一光学模组,其特征在于,包括:
    一光学镜头,所述光学镜头包括至少两镜片单元,两所述镜片单元分别具有一第一面和一第二面,两所述镜片单元的相邻的所述第一面和所述第二面相叠合,两所述镜片单元的折射率不同;和
    一光学组件,所述光学组件包括一光学元件和一线路板,所述光学元件电连接所述线路板,所述光学镜头位于所述光学元件的光路。
  35. 根据权利要求34所述的光学模组,其中至少一个所述镜片单元的第一面和所述第二面各具有一曲表面,两所述曲表面之间形成一透镜。
  36. 根据权利要求34所述的光学模组,其中相邻两所述镜片单元的第一面和第二面形成一折射界面,相邻两所述折射界面形成一透镜。
  37. 根据权利要求35所述的光学模组,其中至少一个所述镜片单元的第一面和所述第二面各具有一边缘面,所述边缘面环绕所述曲表面。
  38. 根据权利要求36所述的光学模组,其中一个所述镜片单元的所述第一面或所述第二面的所述边缘面是平面。
  39. 根据权利要求34所述的光学模组,其中所述光学镜头具有一遮光区,以遮挡光线的通过,所述遮光区被设置于所述光学镜头的至少部分顶面。
  40. 根据权利要求34所述的光学模组,其中所述光学镜头具有一遮光区,以遮光光线的通过,所述遮光区被设置于所述光学镜头的至少部分顶面、侧面和/或底面。
  41. 根据权利要求35所述的光学模组,其中至少一所述镜片单元设有一遮光区,以遮挡光线的通过。
  42. 根据权利要求37所述的光学模组,其中至少一所述镜片单元设有一遮光区,以遮挡光线通过,所述遮光区被设置于所述边缘区。
  43. 根据权利要求41所述的光学模组,其中所述镜片单元的第一面或第二面被所述遮光区遮挡的剩余区域的所述曲表面形成一透光区。
  44. 根据权利要求39至43任一所述的光学模组,其中所述遮光区通过贴附、电镀、真空溅镀、涂覆或喷涂方式形成。
  45. 根据权利要求39至43任一所述的光学模组,其中所述遮光区是一镀膜层。
  46. 根据权利要求39至43任一所述的光学模组,其中一个所述镜片单元的第二面依附另一个所述第一镜片单元的第一面一体成型。
  47. 根据权利要求39至43任一所述的光学模组,其中一个所述镜片单元的第二面贴合于另一个所述镜片单元的第一面。
  48. 根据权利要求39至43任一所述的光学模组,其中一个所述镜片单元的所述第二面和另一个所述镜片单元的所述第一面的形状互补。
  49. 根据权利要求39至43任一所述的光学模组,其中一个所述镜片单元的第一面藉由一成型模具一体成型。
  50. 根据权利要求39至43任一所述的光学模组,其中位于底部的所述镜片单元具有一安装槽,以使得所述光学镜头的适于安装与所述光学组件,遮盖所述光学元件。
  51. 根据权利要求50所述的光学模组,其中所述光学元件是一感光元件或一光源。
  52. 根据权利要求39至43任一所述的光学模组,其中位于所述光学镜头底侧的所述镜片单元一体成型覆盖所述光学元件。
  53. 根据权利要求52所述的光学模组,其中所述光学元件是一感光元件或一光源。
  54. 根据权利要求39至43任一所述的光学模组,其中所述镜片单元藉由透明材料模塑一体成型。
  55. 根据权利要求39至43任一所述的光学模组,其中所述镜片单元的层数为1~40层。
  56. 根据权利要求55所述的光学模组,其中所述镜片单元的层数为2~15层。
  57. 根据权利要求39至43任一所述的光学模组,其中所述镜片单元的折射率的范围是1.1~1.9。
  58. 根据权利要求57所述的光学模组,其中所述镜片单元的折射率的范围是1.4~1.55。
  59. 根据权利要求39至43任一所述的光学模组,其中所述镜片单元的中心厚度范围为0.1mm~0.6mm。
  60. 根据权利要求39至43任一所述的光学模组,其中所述光学镜头包括一光学干涉元件,所述光学干涉元件被设置于所述光学镜头的顶端,以使得所述光学镜头产生干涉图样。
  61. 根据权利要求39至43任一所述的光学模组,其中所述镜片单元的材料选自:环氧树脂、硅材料、塑料、PC、PMMA、有机溶液、气溶胶中的一种或多种。
  62. 一成型模具,用于成型一光学镜头,所述光学镜头包括至少两镜片单元,相邻两所述镜片单元相叠合,其中至少一镜片单元具有一第一面和一第二面,其特征在于,包括:
    一下模具,和
    一上模具组,其中所述上模具组包括多个上模具,各所述上模具分别和所述下模具配合一体成型各所述镜片单元。
  63. 根据权利要求62所述的成型模具,其中所述上模具组包括一第一上模具,所述第一上模具和所述下模具合模形成一第一成型腔,适于一体成型一第一镜片单元。
  64. 根据权利要求63所述的成型模具,其中所述第一上模具具有第一成型面,用于一体成型所述第一镜片单元的一第一面。
  65. 根据权利要求62所述的成型模具,其中所述下模具具有一下成型面,所述下成型面用于一体成型所述第一镜片的第二面。
  66. 根据权利要求62所述的成型模具,其中所述上模具组包括一第二上模具,所述第二上模具和所述第二下模具合模形成一第二成型腔,适于容纳所述第一镜片单元,依附所述第一镜片单元一体成型一第二镜片单元。
  67. 根据权利要求63所述的成型模具,其中所述第二上模具具有一第二成型面,所述第二成型面对应一体成型所述第二镜片单元的第一面。
  68. 一光学镜头的制造方法,其特征在于,包括步骤:
    (A)一体成型一第一镜片单元;和
    (B)依附所述第一镜片单元一体成型一第二镜片单元。
  69. 根据权利要求68所述的方法,其中所述步骤(A)中藉由一模具一体成型一第二镜片单元的第一面和第二面。
  70. 根据权利要求68所述的方法,其中所述步骤(B)依附所述第一镜片单元的第一面一成型所述第二镜片单元的第一面,依附模具一体成型所述第二镜面单元的第一面。
  71. 根据权利要求68所述的方法,其中包括步骤:逐次一体成型多层相叠合的镜片单元。
  72. 一光学镜头的制造方法,其特征在于,包括步骤:
    (a)一体成型一层多个连续分布的第一镜片单元;和
    (b)依附一层多个连续分布的所述第一镜片单元一体成型一层连续分布的第二镜片单元。
  73. 根据权利要求72所述的光学镜头的制造方法,其特征在于,所述步骤
    (a)中藉由一模具一体成型一层多个连续分布的第二镜片单元的第一面和第二面。
  74. 根据权利要求72所述的方法,其中所述步骤(b)中包括步骤:依附一 层所述第一镜片单元的第一面一体成型另一层所述第二镜片单元的第一面,依附模具一体成型一层多个连续分布的所述第二镜面单元的第一面。
  75. 根据权利要求72所述的方法,其中方法包括步骤:切分多个连续分布的光学镜头,形成多个光学镜头。
  76. 光学组件,其特征在于,包括:
    一基层;
    一光学元件;和
    一线路板,所述光学元件电连接所述线路板,所述基层透光地遮盖所述光学元件。
  77. 根据权利要求76所述的光学组件,其中所述基层一体成型地覆盖所述光学元件。
  78. 根据权利要求77所述的光学组件,其中所述基层一体成型于至少部分所述线路板。
  79. 根据权利要求76所述的光学组件,其中所述基层叠合于所述光学元件。
  80. 根据权利要求76所述的光学元件,其中所述基层具有一顶面,所述顶面是一平面。
  81. 根据权利要求76所述的光学组件,其中所述基层具有一曲表面,所述曲表面位于所述光学元件的光路。
  82. 根据权利要求81所述的光学组件,其中所述基层具有一边缘面,所述边缘面环绕所述曲表面。
  83. 根据权利要求82所述的光学组件,其中所述边缘面是一平面。
  84. 根据权利要求76所述的光学组件,其中所述基层设有一遮光区,以使得所述基层形成预定光路。
  85. 根据权利要求80所述的光学组件,其中所述基层设有一遮光区,以使得所述基层形成预定光路,所述遮光区被设置于所述基层的至少部分顶面和侧面。
  86. 根据权利要求82所述的光学组件,其中所述基层设有一遮光区,以使得所述基层形成预定光路,所述遮光区被设置于所述边缘面。
  87. 根据权利要求84至86任一所述的光学组件,其中所述遮光区通过贴附、电镀、真空溅镀、涂覆或喷涂方式形成。
  88. 根据权利要求84至86任一所述的光学组件,其中所述遮光区是一镀 膜层。
  89. 根据权利要求76至86任一所述的光学组件,其中所述光学元件是一感光元件或一光源。
  90. 根据权利要求82所述的光学组件,其中所述基层藉由透明材料模塑一体成型。
  91. 根据权利要求76至86任一所述的光学组件,其中所述基层的折射率的范围是1.1~1.9。
  92. 根据权利要求91所述的光学组件,其中所基层的折射率的范围是1.4~1.55。
  93. 根据权利要求76至86任一所述的光学组件,其中所述基层的中心厚度范围为0.1mm~0.6mm。
  94. 根据权利要求76至86任一所述的光学组件,其中所述基层的材料选自:环氧树脂、硅材料、塑料、PC、PMMA、有机溶液、气溶胶中的一种或多种。
  95. 一光学模组,其特征在于,包括:
    一光学镜头;和
    一光学组件,所述光学组件包括一光学元件和一线路板,所述光学元件电连接所述线路板,所述基层透光地覆盖所述光学元件,所述光学镜头位于所述光学元件的光路。
  96. 根据权利要求95述的光学模组,其中所述基层一体成型地覆盖所述光学元件。
  97. 根据权利要求96所述的光学模组,其中所述基层一体成型于至少部分所述线路板。
  98. 根据权利要求95所述的光学模组,其中所述基层叠合于所述光学元件。
  99. 根据权利要求95所述的光学模组,其中所述基层具有一顶面,所述顶面是一平面。
  100. 根据权利要求95所述的光学模组,其中所述基层具有一曲表面,所述曲表面位于所述光学元件的光路。
  101. 根据权利要求100所述的光学模组,其中所述基层具有一边缘面,所述边缘面环绕所述曲表面。
  102. 根据权利要求101所述的光学模组,其中所述边缘面是一平面。
  103. 根据权利要求95所述的光学模组,其中所述基层设有一遮光区,以使得所述基层形成预定光路。
  104. 根据权利要求99所述的光学模组,其中所述基层设有一遮光区,以使得所述基层形成预定光路,所述遮光区被设置于所述基层的至少部分顶面和侧面。
  105. 根据权利要求101所述的光学模组,其中所述基层设有一遮光区,以使得所述基层形成预定光路,所述遮光区被设置于所述边缘面。
  106. 根据权利要求100所述的光学模组,其中所述光学镜头包括一镜片单元,所述镜片单元具有一第一面和第一第二面,第一面和第一第二面相对布置,所述第一镜片单元的第二面叠合于所述基层的曲表面。
  107. 根据权利要求95至101任一所述的光学模组,所述光学镜头包括一镜片单元,所述镜片单元叠合于所述基层。
  108. 根据权利要求95至105任一所述的光学模组,其中所述光学镜头包括一镜片单元,所述镜片单元具有一第一面和第一第二面,第一面和第一第二面相对布置,所述镜片单元的第二面叠合于所述基层,相邻两所述镜片的折射率不同。
  109. 根据权利要求95至105任一所述的光学模组,其中所述光学镜头包括一镜片单元,所述镜片单元具有一第一面和第一第二面,所述镜片单元的第一面和所述第二面各具有一曲表面,两所述曲表面之间形成一透镜。
  110. 根据权利要求95至105任一所述的光学模组,其中所述光学镜头包括至少两镜片单元,两所述镜片单元分别具有一第一面和一第二面,两所述镜片单元的相邻的所述第一面和所述第二面相叠合。
  111. 根据权利要求110所述的光学模组,其中至少一个所述镜片单元的第一面和所述第二面各具有一曲表面,两所述曲表面之间形成一透镜。
  112. 根据权利要求110所述的光学模组,其中相邻两所述镜片单元的第一面和第二面形成一折射界面,相邻两所述折射界面形成一透镜
  113. 根据权利要求111所述的光学模组,其中至少一个所述镜片单元的第一面和所述第二面各具有一边缘面,所述边缘面环绕所述曲表面
  114. 根据权利要求113所述的光学模组,其中一个所述镜片单元的所述第一面或所述第二面的所述边缘面是平面。
  115. 根据权利要求110所述的光学模组,其中所述光学镜头具有一遮光区,以形成预定光路,所述遮光区被设置于所述光学镜头的至少部分顶面至少部分顶面、侧面和/或底面。
  116. 根据权利要求111所述的光学模组,其中至少一所述镜片单元设有一遮光区,以形成预定光路。
  117. 根据权利要求113所述的光学模组,其中至少一所述镜片单元设有一遮光区,以形成预定光路,所述遮光区被设置于所述边缘面。
  118. 根据权利要求116所述的光学模组,其中所述镜片单元的第一面或第二面被所述遮光区遮挡的剩余区域的所述曲表面形成一透光区。
  119. 根据权利要求110所述的光学模组,其中所述第一镜片单元与所述基层之间形成一空气间隙。
  120. 根据权利要求103、104、105、115、116、117或118所述的光学模组,其中所述遮光区通过贴附、电镀、真空溅镀、涂覆或喷涂方式形成。
  121. 根据权利要求103、104、105、115、116、117或118所述的光学模组,其中所述遮光区是一镀膜层。
  122. 根据权利要求111至119任一所述的光学模组,其中一个所述镜片单元的第二面依附另一个所述第一镜片单元的第一面一体成型。
  123. 根据权利要求111至119任一所述的光学模组,其中一个所述镜片单元的第二面贴合于另一个所述镜片单元的第一面。
  124. 根据权利要求111至119任一所述的光学模组,其中一个所述镜片单元的所述第二面和另一个所述镜片单元的所述第一面的形状互补。
  125. 根据权利要求95、96、97、98、99、100、101、102、103、104、105、106、111、112、113、114、115、116、117、118或119所述的光学模组,其中所述光学元件是一感光元件或一光源。
  126. 根据权利要求111至119任一所述的光学模组,其中所述镜片单元藉由透明材料模塑一体成型。
  127. 根据权利要求95至119任一所述的光学模组,其中所述基层藉由透明材料模塑一体成型。
  128. 根据权利要求111至119任一所述的光学模组,其中所述镜片单元的层数为1~40层。
  129. 根据权利要求128所述的光学模组,其中所述镜片单元的层数为2~15层。
  130. 根据权利要求111至119任一所述的光学模组,其中所述镜片单元的折射率的范围是1.1~1.9。
  131. 根据权利要求95至119任一所述的光学模组,其中所述基层的折射率的范围是1.1~1.9。
  132. 根据权利要求131所述的光学模组,其中所述镜片单元的折射率的范围是1.4~1.55。
  133. 根据权利要求111至119任一所述的光学模组,其中所述镜片单元的中心厚度范围为0.1mm~0.6mm。
  134. 根据权利要求95至119任一所述的光学模组,其中所述基层的中心厚度范围为0.1mm~0.6mm。
  135. 根据权利要求95、96、97、98、99、100、101、102、103、104、105、106、111、112、113、114、115、116、117、118或119所述的光学模组,其中所述光学镜头包括一光学干涉元件,所述光学干涉元件被设置于所述光学镜头的顶端,以使得所述光学镜头产生干涉图样。
  136. 根据权利要求111至119任一所述的光学模组,其中所述镜片单元的材料选自:环氧树脂、硅材料、塑料、PC、PMMA、有机溶液、气溶胶中的一种或多种。
  137. 根据权利要求95、96、97、98、99、100、101、102、103、104、105、106、111、112、113、114、115、116、117、118或119所述的光学模组,其中所述基层的材料选自:环氧树脂、硅材料、塑料、PC、PMMA、有机溶液、气溶胶中的一种或多种。
  138. 一光学模组的制造方法,其特征在于,包括步骤:
    (A)依附一光学组件一体成型一第一镜片单元;和
    (B)依附所述第一镜片单元一体成型一第二镜片单元。
  139. 根据权利要求138所述的光学模组的制造方法,其特征在于,包括步骤:依附所述第一镜片单元的第一面一成型所述第二镜片单元的第一面,依附模具一体成型所述第二镜面单元的第一面。
  140. 根据权利要求138所述的方法,其中包括步骤:逐次一体成型多层相 叠合的镜片单元。
  141. 一光学模组的制造方法,其特征在于,包括步骤:
    (a)依附一整拼线路板一体成型多个连续分布的第一镜片单元;和
    (b)依附一层多个连续分布的所述第一镜片单元一体成型一层连续分布第二镜片单元。
  142. 根据权利要求141所述的光学模组的制造方法,其中包括步骤:藉由一成型模具一体成型一层多个连续分布的第二镜片单元的第一面和第二面。
  143. 根据权利要求141所述的光学模组的制造方法,其中包括步骤:依附一层所述第一镜片单元的第一面一体成型另一层所述第二镜片单元的第一面,依附成型模具一体成型一层多个连续分布的所述第二镜面单元的第一面。
  144. 根据权利要求141所述的光学模组的制造方法,其中包括步骤:切分多个连续分布的光学模组,形成多个光学模组。
PCT/CN2018/089841 2017-06-02 2018-06-04 光学镜头、光学组件和光学模组以及制造方法 WO2018219358A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880033062.9A CN110662994A (zh) 2017-06-02 2018-06-04 光学镜头、光学组件和光学模组以及制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710408964 2017-06-02
CN201710408964.3 2017-06-02

Publications (1)

Publication Number Publication Date
WO2018219358A1 true WO2018219358A1 (zh) 2018-12-06

Family

ID=64455198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089841 WO2018219358A1 (zh) 2017-06-02 2018-06-04 光学镜头、光学组件和光学模组以及制造方法

Country Status (3)

Country Link
CN (5) CN209327645U (zh)
TW (1) TWI716689B (zh)
WO (1) WO2018219358A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209327645U (zh) * 2017-06-02 2019-08-30 宁波舜宇光电信息有限公司 光学镜头、成型模具和光学模组
CN111624781A (zh) 2019-02-28 2020-09-04 三赢科技(深圳)有限公司 结构光发射模组及应用其的3d结构光感测器和电子装置
CN111070742A (zh) * 2019-12-20 2020-04-28 豪威光电子科技(上海)有限公司 一种镜头模组及其制备方法、摄像头
CN112770033B (zh) * 2020-12-31 2022-09-23 之江实验室 一种光采集装置及光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020135883A1 (en) * 2001-03-23 2002-09-26 Takao Nishikawa Microlens array, manufacturing method thereof and optical instrument
CN2613049Y (zh) * 2003-01-27 2004-04-21 胜开科技股份有限公司 简化型影像感测器模组
CN1503369A (zh) * 2002-11-22 2004-06-09 陈文钦 微型化封装影像撷取芯片模块
CN101077607A (zh) * 2006-05-24 2007-11-28 鸿富锦精密工业(深圳)有限公司 复合透镜的制作方法
CN101738653A (zh) * 2008-11-12 2010-06-16 鸿富锦精密工业(深圳)有限公司 镜片结构、镜片阵列结构及镜片结构的制造方法
CN103513397A (zh) * 2012-06-29 2014-01-15 全球微型光学有限公司 多层式镜片组及其制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008020899A2 (en) * 2006-04-17 2008-02-21 Cdm Optics, Inc. Arrayed imaging systems and associated methods
CN101473439B (zh) * 2006-04-17 2013-03-27 全视技术有限公司 阵列成像系统及相关方法
EP2120451B1 (en) * 2007-01-30 2013-02-27 Konica Minolta Opto, Inc. Camera module manufacturing method and camera module
US8212271B2 (en) * 2007-10-11 2012-07-03 Hitachi Chemical Co., Ltd. Substrate for mounting an optical semiconductor element, manufacturing method thereof, an optical semiconductor device, and manufacturing method thereof
JP2010271465A (ja) * 2009-05-20 2010-12-02 Ricoh Co Ltd 遮光膜付マイクロレンズアレイの製造方法、製造装置、及び遮光膜付マイクロレンズアレイ
JP5637767B2 (ja) * 2009-09-09 2014-12-10 富士フイルム株式会社 ウェハレベルレンズの製造方法
JP2013015545A (ja) * 2009-10-27 2013-01-24 Sanyo Electric Co Ltd レンズモジュール、撮影装置、レンズモジュールの製造方法
JP2014056063A (ja) * 2012-09-11 2014-03-27 Konica Minolta Inc 撮像装置、レンズユニット、及び、レンズユニットの製造方法
WO2014148291A1 (ja) * 2013-03-19 2014-09-25 コニカミノルタ株式会社 レンズアレイユニット、撮像装置、レンズアレイユニットの製造方法、及び撮像装置の製造方法
CN105549173A (zh) * 2016-01-28 2016-05-04 宁波舜宇光电信息有限公司 光学镜头和摄像模组及其组装方法
CN206040618U (zh) * 2016-06-16 2017-03-22 宁波舜宇光电信息有限公司 感光组件和摄像模组
CN209327645U (zh) * 2017-06-02 2019-08-30 宁波舜宇光电信息有限公司 光学镜头、成型模具和光学模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020135883A1 (en) * 2001-03-23 2002-09-26 Takao Nishikawa Microlens array, manufacturing method thereof and optical instrument
CN1503369A (zh) * 2002-11-22 2004-06-09 陈文钦 微型化封装影像撷取芯片模块
CN2613049Y (zh) * 2003-01-27 2004-04-21 胜开科技股份有限公司 简化型影像感测器模组
CN101077607A (zh) * 2006-05-24 2007-11-28 鸿富锦精密工业(深圳)有限公司 复合透镜的制作方法
CN101738653A (zh) * 2008-11-12 2010-06-16 鸿富锦精密工业(深圳)有限公司 镜片结构、镜片阵列结构及镜片结构的制造方法
CN103513397A (zh) * 2012-06-29 2014-01-15 全球微型光学有限公司 多层式镜片组及其制造方法

Also Published As

Publication number Publication date
CN110662994A (zh) 2020-01-07
CN108983384A (zh) 2018-12-11
CN108983385A (zh) 2018-12-11
CN208689238U (zh) 2019-04-02
TWI716689B (zh) 2021-01-21
TW201903451A (zh) 2019-01-16
CN209327645U (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2018219358A1 (zh) 光学镜头、光学组件和光学模组以及制造方法
CN110196528B (zh) 微型化光学投射模块
TWI735232B (zh) 光發射器或光偵測器模組及製造一光發射器或光偵測器模組之方法
US10331932B2 (en) Optical sensor device and a fingerprint sensor apparatus
WO2017118029A1 (zh) 光学指纹传感器模组
KR100774775B1 (ko) 카메라 디바이스, 카메라 디바이스 제조 방법, 웨이퍼스케일 패키지 및 광학 어셈블리
CN108089394B (zh) 一种图案投影灯光学模组结构
US8102600B2 (en) Stacked disk-shaped optical lens array, stacked disk-shaped lens module array and method of manufacturing the same
CN108490631B (zh) 结构光投射器、图像获取结构和电子装置
JP2021119400A (ja) レンズ群及びカメラモジュール並びにその製造方法
US20080173790A1 (en) Motion-detecting module with a built-in light source
US20120176801A1 (en) Flash lens and flash module employing the same
CN217820943U (zh) ToF发射模组及包含其的电子设备
TWI701455B (zh) 光反射器
CN211506528U (zh) 屏下光学指纹识别组件及电子设备
TW201906190A (zh) 取像裝置及其製造方法
CN217849517U (zh) 摄像模组、多目摄像模组装置及电子设备
TWI670515B (zh) 利用不同折射率的材料所組成的鏡片結構(一)
CN210983441U (zh) 取像装置
TWI693431B (zh) 結構光投射系統
TWI418871B (zh) 鏡頭模組及其製作方法
TWI695992B (zh) 利用不同折射率的材料所組成的鏡片結構
TW201942624A (zh) 利用不同折射率的材料所組成的鏡片結構
KR101987627B1 (ko) 발광 패키지
JP4694677B2 (ja) 光学式エンコーダ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809326

Country of ref document: EP

Kind code of ref document: A1