WO2018219192A1 - 一种电源转换电路及相关装置和终端设备 - Google Patents

一种电源转换电路及相关装置和终端设备 Download PDF

Info

Publication number
WO2018219192A1
WO2018219192A1 PCT/CN2018/088049 CN2018088049W WO2018219192A1 WO 2018219192 A1 WO2018219192 A1 WO 2018219192A1 CN 2018088049 W CN2018088049 W CN 2018088049W WO 2018219192 A1 WO2018219192 A1 WO 2018219192A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
capacitor
conversion circuit
power conversion
branch
Prior art date
Application number
PCT/CN2018/088049
Other languages
English (en)
French (fr)
Inventor
宋俊
王鹏飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18810018.4A priority Critical patent/EP3637603A4/en
Publication of WO2018219192A1 publication Critical patent/WO2018219192A1/zh
Priority to US16/697,992 priority patent/US11362588B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/072Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps adapted to generate an output voltage whose value is lower than the input voltage

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a power conversion circuit, related devices, and terminal devices.
  • lithium batteries have been widely used because of their high energy density, safety and reliability.
  • the rapid and efficient charging of lithium batteries has become a research hotspot.
  • the power conversion circuit The most important part of the battery charging system is the power conversion circuit.
  • the function of this circuit is to transfer the energy from the high voltage power supply to the battery according to the needs of the battery. When energy is transferred to the battery, there is energy loss, and the lost energy is converted into heat to heat the charging system. In order to reduce energy loss, it is necessary to improve the conversion efficiency of the power conversion circuit.
  • FIG. 1 it is a schematic structural diagram of a current mainstream power conversion circuit.
  • the power conversion circuit shown in FIG. 1 includes two power tube switches Q 1 ' and Q 2 ', and a peripheral device capacitor C L and an inductor L. 1 R L is the load.
  • a complete signal period consists of two time intervals ⁇ and Wherein, in the time interval corresponding to ⁇ , Q 2 ' is closed and Q 1 ' is broken; In the corresponding time interval, Q 2 ' is off and Q 1 ' is closed.
  • DCR Direct Current Resistance
  • L X is a parasitic capacitance at the C p
  • the embodiment of the present application provides a novel power conversion circuit to improve the conversion efficiency of the power conversion circuit.
  • an embodiment of the present application provides a power conversion circuit for converting a power supply to provide a working current to a load, where the power conversion circuit includes:
  • the first end of the first capacitor is connected to the power source through the first switch branch;
  • the second end of the first capacitor is grounded through the second switch branch;
  • the filter branch includes a filter inductor and a filter capacitor connected in series; the first end of the filter inductor is connected to the first end of the first capacitor; the second end of the filter inductor is opposite to the filter capacitor Connected to one end, the second end of the filter capacitor is grounded; the filter capacitor is connected in parallel with the load;
  • the third switch branch is connected between the second end of the first capacitor and the second end of the filter inductor.
  • the power conversion circuit described in the first aspect of the present application reduces the current of the filter inductor relative to the current of the filter inductor in the conventional power conversion circuit when the circuit reaches a steady state, and accordingly, the inductance corresponding to the filter inductor The winding loss is reduced; in addition, the voltage swing at the junction of the first capacitor and the filter inductor is reduced relative to the voltage swing at the junction in the conventional power conversion circuit, thereby reducing the energy loss corresponding to the parasitic capacitance at the junction . Therefore, the conversion efficiency of the power conversion circuit described in the first aspect of the present application is improved.
  • the first switch branch includes: a first switch
  • the third switch branch includes: a third switch
  • the second switch branch includes: a second switch, a first end of the second switch is connected to a second end of the first capacitor, and a second end of the second switch is grounded.
  • the switch in the switch branch in parallel with the first capacitor, the first switch, the second switch, and the third switch At least one of the switches is a MOS tube or a BJT tube.
  • the first switch branch includes: a first switch; the third switch branch includes: a third switch; and the second switch branch includes: a second switch and a second switch switching circuit, the first end of the second switch is connected to the second end of the first capacitor, and the second end of the second switch is grounded through the i switch switching circuit, wherein , i is an integer, and i ⁇ 1.
  • any one of the i switch switching circuits includes:
  • the first end of the (i+1)th capacitor in the i-th switching circuit is connected to the power source through a (3*(i+1)-2) switching branch; the (i+1) a second end of the capacitor is grounded through the (3*(i+1)-1) switch branch; the second end of the (i+1)th capacitor passes the third *(i+1) a switch branch connected to the second end of the filter inductor;
  • the second switch of the second switch branch is connected between the first end of the second capacitor and the second end of the first capacitor;
  • the first end of the (k+1)th capacitor in the kth switch switching circuit is connected to the power source through the (3*(k+1)-2) switch branch; a (3*(k+1)-1) switch branch connected between the first end of the (k+2)th capacitor and the second end of the (k+1)th capacitor; The second end of the k+1) capacitor is connected to the second end of the filter inductor through the 3*(k+1) switch branch; wherein k is an integer and 1 ⁇ k ⁇ i.
  • the power conversion circuit further includes: a switch connected between the first end of the first capacitor and the second end of the (i+1)th capacitor Branch, the switch branch includes a switch.
  • an embodiment of the present application provides a conversion apparatus including a power source, a control signal generating circuit, and a power conversion circuit, wherein the power source supplies a low voltage working power source to the load through the power conversion circuit; the control signal Generating a circuit for providing a periodic control signal to the power conversion circuit, the control signal for controlling a switch in the power conversion circuit to be turned on or off;
  • the power conversion circuit is the power conversion circuit of the first aspect or any of the possible implementations of the first aspect.
  • the embodiment of the present application provides a terminal device, including: a power source, a control signal generating circuit, a power conversion circuit, and a load, where
  • the power source supplies a working power source to the load through the power conversion circuit
  • the control signal generating circuit is configured to provide a periodic control signal to the power conversion circuit, the control signal for controlling a switch in the power conversion circuit to be turned on or off;
  • the power conversion circuit is the power conversion circuit of the first aspect or any of the possible implementations of the first aspect.
  • the principle and the beneficial effects of the terminal device for solving the problem can be referred to the foregoing first aspect and the possible implementation manners of the first aspect and the beneficial effects thereof, and are not described again.
  • FIG. 1 is a schematic structural view of a power conversion circuit in the prior art
  • FIG. 2 is a schematic structural view of a terminal device having a power conversion circuit
  • FIG. 3 is a schematic structural diagram of a power conversion circuit according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another power conversion circuit provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another power conversion circuit according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another power conversion circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another power conversion circuit according to an embodiment of the present application.
  • Fig. 8 is a schematic structural view of a conversion device having a power conversion circuit.
  • FIG. 2 is a terminal device 200 having a power conversion circuit 202.
  • the terminal device 200 includes a power source 201, a power conversion circuit 202, a load 203, and a control signal generating circuit 204.
  • the terminal device 200 may be a battery having a power conversion circuit, a battery using a battery, an electric vehicle, or the like.
  • the terminal device 200 can convert the high voltage of the power source 201 to the low voltage power source required by the load under the action of the power conversion circuit 202 and the control signal generating circuit 204 to supply power to the load.
  • FIG. 3 is a schematic structural diagram of a power conversion circuit according to an embodiment of the present application.
  • the power conversion circuit is configured to convert the power source Vin to provide a low voltage operating power to the load R L , and the power conversion circuit includes:
  • the first end of the first capacitor C 1 is connected to the power source through the first switch branch;
  • the second end of the first capacitor C 1 is grounded through the second switch branch;
  • the filter branch includes a filter inductor L and a filter capacitor C L connected in series; a first end of the filter inductor L is connected to a first end of the first capacitor C 1 ; a second end of the filter inductor L connected to the filter capacitor C L of the first end of the filter capacitor C L to a second end; the filter capacitor C L in parallel with the load R L;
  • the third switch branch is connected between the second end of the first capacitor C 1 and the second end of the filter inductor L.
  • the first switch branch includes: a first switch Q 1 ;
  • the third switch branch includes: a third switch Q 3 ;
  • the second switch branch comprises: a second switch Q 2, a first terminal of the second switch Q 2 is connected to a second terminal of the first capacitor, the second terminal of the second switch Q 2 is .
  • a complete signal period consists of two time intervals ⁇ and Wherein, in the time interval corresponding to ⁇ , Q 1 and Q 3 are closed, Q 2 is disconnected, the power source Vin is connected to the first capacitor C 1 , and then connected to Vout, and the filter inductor L is connected to the power source Vin, at this time, the filter inductor L And the first capacitor C 1 is in a state of charge storage.
  • V C1 Vin-Vout, among them,
  • the current I L of the filter inductor L is lowered to the output current I out
  • the DCR loss of the filter inductor is Loss of DCR in the prior art
  • the power conversion circuit shown in Fig. 3 the parasitic capacitance of the switching node L X loss, the prior art V LX swing Vin, the power conversion circuit shown in Fig. 3 V LX Vout of the swing, Therefore, the power conversion circuit shown in FIG. 3 effectively reduces the loss of parasitic capacitance at the switching node L X .
  • the power conversion circuit shown in FIG. 3 reduces the current of the filter inductor relative to the current of the filter inductor in the conventional power conversion circuit when the circuit reaches a steady state, and accordingly, the inductance winding loss corresponding to the filter inductor
  • the voltage swing at the junction of the first capacitor and the filter inductor is reduced relative to the voltage swing at the junction in the conventional power conversion circuit, thereby reducing the energy loss corresponding to the parasitic capacitance at the junction. Therefore, the conversion efficiency of the power conversion circuit described in this embodiment is improved.
  • At least one of the first switch Q1, the second switch Q2, and the third switch Q3 is a metal oxide semiconductor field effect transistor (Metal Oxide) Semiconductor, MOS) or Bipolar Junction Transistor (BJT).
  • MOS Metal Oxide semiconductor field effect transistor
  • BJT Bipolar Junction Transistor
  • FIG. 4 is a schematic structural diagram of another power conversion circuit according to an embodiment of the present disclosure.
  • the branch switch includes a switch Q 0.
  • the switch Q 0 When the switch Q 0 is closed, the first capacitor C 1 is shorted.
  • a complete signal period consists of two time intervals ⁇ and Q 3 remains open for the entire switching cycle and Q 0 remains closed. Moreover, in the time interval corresponding to ⁇ , Q 1 is closed and Q 2 is turned off. At this time, the power source Vin is connected to the switching node L X in the power conversion circuit, and then connected to the filter inductor L. At this time, the filter inductor L is in charge storage. The state of energy. in In the corresponding time interval, Q 1 is turned off and Q 2 is closed. In this time interval, L X is connected to the power ground via Q 0 and Q 2 , and the filter inductor L is in a discharged state.
  • a complete signal period includes two time intervals ⁇ and Q 0 is turned off during the entire switching period, and the first capacitor C 1 is in an active state.
  • V C1 Vin-Vout, among them,
  • the current I L of the filter inductor L is lowered to the output current I out
  • the DCR loss of the filter inductor is Loss of DCR in the prior art
  • the loss of parasitic capacitance at the switching node L X in the power conversion circuit There is Vin swing V LX art, the present power conversion circuit V LX Vout of the swing, Therefore, the source conversion circuit in this embodiment effectively reduces the loss of parasitic capacitance at the switching node L X .
  • the conversion efficiency of the power conversion circuit described in this embodiment is improved.
  • FIG. 5 is a schematic structural diagram of another power conversion circuit according to an embodiment of the present application.
  • the second switch branch includes a switch switching circuit in addition to the second switch, specifically, the first end of the second switch Q 2 and the first capacitor C 1 is connected to the second end, the second end of the second switch Q 2 through the switch circuit ground.
  • the switch switching circuit includes a second capacitor C 2 , a fourth switch branch including the fourth switch Q 4 , a fifth switch branch including the fifth switch Q 5 , and a sixth switch branch including the sixth switch Q 6 road.
  • the first end of the second capacitor C 2 is connected to the power source Vin through Q 4 ; the second end of the second capacitor C 2 is connected to the power ground through Q 5 ; the second end of the second capacitor C 2 is passed through the Q 6 and the filter inductor L and The connection ends of the filter capacitors C L are connected.
  • the power conversion circuit can also be different from the power conversion circuit shown in FIG. 5 as shown in FIG. 6 in that i switch switching circuits are included.
  • the i is an integer and i ⁇ 1.
  • any one of the i-th switch switching circuits includes: a (j+1)th capacitor, a 3*(j+1)-switch branch, and a third (3) *(j+1)-1) a switch branch, and a (3*(j+1)-2) switch branch, wherein j is an integer and 1 ⁇ j ⁇ i; the ith a first end of the (i+1)th capacitor in the switching circuit is connected to the power source through a (3*(i+1)-2) switching branch; the second (i+1)th capacitor The terminal is grounded through the (3*(i+1)-1) switch branch; the second end of the (i+1)th capacitor passes through the 3*(i+1) switch branch and The second ends of the filter inductors are connected;
  • the second switch of the second switch branch is connected between the first end of the second capacitor and the second end of the first capacitor;
  • the first end of the (k+1)th capacitor in the kth switch switching circuit is connected to the power source through the (3*(k+1)-2) switch branch; a (3*(k+1)-1) switch branch connected between the first end of the (k+2)th capacitor and the second end of the (k+1)th capacitor; The second end of the k+1) capacitor is connected to the second end of the filter inductor through the 3*(k+1) switch branch; wherein k is an integer and 1 ⁇ k ⁇ i.
  • the 3*(j+1) switch branch includes a 3*(j+1) switch Q 3*(j+1)
  • the 3*(j+1)-1 switch branch includes a 3*(( j + 1) -1 switch Q 3 * (j + 1) -1
  • section 3 * (j + 1) -2 includes a first switching branch 3 * (j + 1) -2 switch Q 3 * (j + 1 )-2 .
  • the power conversion circuit may further include: a switch branch connected between the first end C 1 of the first capacitor and the second end of the i+1th capacitor
  • the switch branch can include a switch Q 3*i+2 .
  • the switch in the second switch and the third switch may be a MOS tube or a BJT tube
  • the circuit connected between the power source Vin and the output voltage Vout may be a circuit in which the circuit connected between the power source Vin and the output voltage Vout is connected in parallel in any of the foregoing embodiments, as shown in FIG. 7.
  • the circuit connected between the power source Vin and the output voltage Vout is a circuit in which the circuits connected between the power source Vin and the output voltage Vout in FIGS. 3 and 6 are connected in parallel.
  • FIG. 8 is a conversion device 800 according to an embodiment of the present application, including a power supply 801, a power conversion circuit 802, and a control signal generation circuit 803, wherein the power supply 801 passes through the power conversion circuit 802 to the load.
  • a low voltage operating power supply is provided; the control signal generating circuit 803 is configured to provide a periodic control signal to the power conversion circuit 802 for controlling whether the switch in the power conversion circuit 802 is turned on or off.
  • the power conversion circuit 802 can be the power conversion circuit described in any of the embodiments described above.
  • the power conversion circuit can be an electronic device such as a charger.
  • the conversion device adopts the power conversion circuit described above, correspondingly, the power conversion efficiency of the conversion circuit in FIG. 8 is also improved, which will not be described herein for brevity.
  • FIG. 2 is a terminal device 200 according to an embodiment of the present disclosure, which includes a power source 201, a power conversion circuit 202, a load 203, and a control signal generating circuit 204.
  • the power source 201 passes through the power conversion circuit 202 to the load.
  • 203 provides a low voltage operating power supply;
  • the control signal generating circuit 204 is configured to provide a periodic control signal to the power conversion circuit 202, the control signal for controlling a switch in the power conversion circuit 202 to be turned on or off. open.
  • the terminal device may be a battery, a mobile phone, an electric car, or the like.
  • the terminal device adopts the power conversion circuit described above, correspondingly, the power conversion efficiency of the terminal device in FIG. 2 is also improved, which will not be described herein for brevity.
  • the power conversion circuit included in the embodiment of the present application reaches a steady state, the current of the filter inductor is reduced relative to the current of the filter inductor in the conventional power conversion circuit, and accordingly, the inductance winding loss corresponding to the filter inductor is reduced;
  • the voltage swing at the junction of the first capacitor and the filter inductor is reduced relative to the voltage swing at the junction in the conventional power conversion circuit, thus reducing the energy loss corresponding to the parasitic capacitance at the junction. Therefore, the conversion efficiency of the power conversion circuit described in the present embodiment is improved, and it is understood that the conversion efficiency of the conversion device using the power conversion circuit and the terminal device is correspondingly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请实施例提供了一种电源转换电路及相关装置和终端设备,其中,电源转换电路用于对电源进行转换,向负载提供低电压工作电源,电源转换电路包括:第一开关支路、第二开关支路、第三开关支路、滤波支路、和第一电容;第一电容的第一端通过第一开关支路与电源相连;第一电容的第二端通过第二开关支路接地;滤波支路包括串联连接的滤波电感和滤波电容;滤波电感的第一端与第一电容的第一端相连;滤波电感的第二端与滤波电容的第一端相连,滤波电容的第二端接地;滤波电容与所述负载并联;第三开关支路连接在第一电容的第二端和滤波电感的第二端之间。本申请实施例能够提高电源转换电路的转换效率。

Description

一种电源转换电路及相关装置和终端设备
本申请要求于2017年6月1日提交中国专利局、申请号为201710404467.6、申请名称为“一种电源转换电路及相关装置和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子技术领域,尤其涉及一种电源转换电路及相关装置和终端设备。
背景技术
近年来,锂电池因为其高能量密度、以及安全可靠等特性得到广泛的使用,随着锂电池可存储容量逐年增加,给锂电池进行快速高效地充电成为研究的热点。
在电池充电系统中最核心的部分是电源转换电路,该电路的作用是将能量由高压电源按照电池的需要,降压传递给电池。在将能量传递给电池时,会有能量损失,损失的能量会转化为热能使充电系统升温,为了减少能量损失,需要提高电源转换电路的转换效率。
如图1所示,是目前主流的电源转换电路的结构示意图,图1所示的电源转换电路包括两个功率管开关Q 1′和Q 2′,以及外围器件电容C L和电感L,图1中R L是负载。一个完整的信号周期包括两个时间区间Φ和
Figure PCTCN2018088049-appb-000001
其中,在Φ对应的时间区间内,Q 2′闭合、Q 1′断开;在
Figure PCTCN2018088049-appb-000002
对应的时间区间内,Q 2′断开、Q 1′闭合。当图1所示的电路达到稳态时,
Figure PCTCN2018088049-appb-000003
I L=I out
制约电源转换电路转换效率的的关键点包括电感绕阻(Direct Current Resistance,DCR)的损耗以及开关节点L X处寄生电容的损耗。其中,一个周期内,DCR的损耗为DCR*I L 2,L X处寄生电容为C p,L X处寄生电容带来的损耗为
Figure PCTCN2018088049-appb-000004
需要说明的是,一方面,图1所示电源转换电路达到稳态时,由于电感电流I L等于负载电流I out,当负载电流I out确定时,降低DCR的损耗的方法只能通过减小DCR来实现,但是,由于物理工艺的限制,减小DCR比较困难,而且减小DCR会增加电感的价格和尺寸。另一方面,若要降低L X处寄生电容的损耗,唯一途径就是降低C p,但是,减小C p需要降低功率管开关的尺寸,这将导致功率管开关的内阻增大,进而增大功率管开关内阻的损耗,这样即使减小了C p,最后电源转换电路的转换效率可能并没有提高。
发明内容
本申请实施例提供了一种新型的电源转换电路,以使提高电源转换电路的转换效率。
第一方面,本申请实施例提供了一种电源转换电路,用于对电源进行转换,向负载提 供工作电流,所述电源转换电路包括:
第一开关支路、第二开关支路、第三开关支路、滤波支路、和第一电容;其中,
所述第一电容的第一端通过所述第一开关支路与所述电源相连;
所述第一电容的第二端通过所述第二开关支路接地;
所述滤波支路包括串联连接的滤波电感和滤波电容;所述滤波电感的第一端与所述第一电容的第一端相连;所述滤波电感的第二端与所述滤波电容的第一端相连,所述滤波电容的第二端接地;所述滤波电容与所述负载并联;
所述第三开关支路连接在所述第一电容的第二端和所述滤波电感的第二端之间。
基于以上技术方案,本申请第一方面描述的电源转换电路,在电路达到稳态时,滤波电感的电流相对于传统的电源转换电路中滤波电感的电流减少了,相应地,滤波电感对应的电感绕阻损耗降低了;另外,第一电容与滤波电感的连接处的电压摆幅相对于传统电源转换电路中所述连接处的电压摆幅降低了,因此减少了连接处寄生电容对应的能量损耗。因此,本申请第一方面描述的电源转换电路的转换效率提高了。
在第一方面的一种可能的实现方式中,所述第一开关支路包括:第一开关;
所述第三开关支路包括:第三开关;
所述第二开关支路包括:第二开关,所述第二开关的第一端与所述第一电容的第二端相连、所述第二开关的第二端接地。
在第一方面的另一种可能的实现方式中,所述与所述第一电容并联的开关支路中的开关、所述第一开关、所述第二开关、和所述第三开关中的至少一个开关为MOS管或者BJT管。
在第一方面的另一种可能的实现方式中,所述第一开关支路包括:第一开关;所述第三开关支路包括:第三开关;所述第二开关支路包括:第二开关和i个开关切换电路,所述第二开关的第一端与所述第一电容的第二端相连,所述第二开关的第二端通过所述i个开关切换电路接地,其中,所述i为整数,且i≥1。
在第一方面的另一种可能的实现方式中,所述i个开关切换电路中的任一开关切换电路j,包括:
第(j+1)电容、第3*(j+1)开关支路、第(3*(j+1)-1)开关支路、以及第(3*(j+1)-2)开关支路,其中,所述j为整数,且1≤j≤i;
所述第i个开关切换电路中的第(i+1)电容的第一端通过第(3*(i+1)-2)开关支路与所述电源相连;所述第(i+1)电容的第二端通过所述第(3*(i+1)-1)开关支路接地;所述第(i+1)电容的第二端通过所述第3*(i+1)开关支路与所述滤波电感的第二端相连;
当i=1时,所述第二开关支路的第二开关连接在所述第二电容的第一端和所述第一电容的第二端之间;
当所述i>1时,第k个开关切换电路中的第(k+1)电容的第一端通过第(3*(k+1)-2)开关支路与所述电源相连;第(3*(k+1)-1)开关支路连接在第(k+2)个电容的第一端和所述第(k+1)个电容的第二端之间;所述第(k+1)电容的第二端通过所述第3*(k+1)开关支路与所述滤波电感的第二端相连;其中,所述k为整数,且1≤k<i。
在第一方面的另一种可能的实现方式中,所述电源转换电路还包括:连接在所述第一 电容的第一端以及所述第i+1个电容的第二端之间的开关支路,该开关支路包括开关。
在第一方面的另一种可能的实现方式中,所述连接在所述第一电容的第一端以及所述第i+1个电容的第二端之间的开关支路中的开关、所述第一开关、所述第二开关、和所述第三开关中的至少一个为MOS管或者BJT管。
第二方面,本申请实施例提供了一种转换装置,包括电源、控制信号产生电路和电源转换电路,其中,所述电源通过所述电源转换电路向负载提供低电压工作电源;所述控制信号产生电路用于向所述电源转换电路提供周期性的控制信号,所述控制信号用于控制所述电源转换电路中的开关接通或者断开;
所述电源转换电路如第一方面或第一方面任意的可能的实现方式所述的电源转换电路。
基于同一发明构思,转换装置解决问题的原理以及有益效果可以参见上述第一方面和第一方面的各可能的实施方式以及所带来的有益效果,不再赘述。
第三方面,本申请实施例提供了一种终端设备,包括:电源、控制信号产生电路、电源转换电路、和负载,其中,
所述电源通过所述电源转换电路向所述负载提供工作电源;
所述控制信号产生电路用于向所述电源转换电路提供周期性的控制信号,所述控制信号用于控制所述电源转换电路中的开关接通或者断开;
所述电源转换电路如第一方面或第一方面任意的可能的实现方式所述的电源转换电路。
基于同一发明构思,终端设备解决问题的原理以及有益效果可以参见上述第一方面和第一方面的各可能的实施方式以及所带来的有益效果,不再赘述。
附图说明
图1是现有技术中电源转换电路的结构示意图;
图2是具有电源转换电路的终端设备的结构示意图;
图3是本申请实施例提供的一种电源转换电路的结构示意图;
图4是本申请实施例提供的另一电源转换电路的结构示意图;
图5是本申请实施例提供的另一电源转换电路的结构示意图;
图6是本申请实施例提供的另一电源转换电路的结构示意图;
图7是本申请实施例提供的另一电源转换电路的结构示意图;
图8是具有电源转换电路的转换装置的结构示意图。
具体实施方式
请参阅图2,图2为具有电源转换电路202的终端设备200,该终端设备200包括电源201、电源转换电路202、负载203、和控制信号产生电路204。在一些可能的实施方式中,终端设备200可以是具有电源转换电路的电池、使用电池的手机、电动车等设备。终端设备200可以将电源201的高电压在电源转换电路202及控制信号产生电路204的作用下转为负载所需的低压电源向负载供电。
请参阅图3,图3为本申请实施例提供的一种电源转换电路的结构示意图。如图3所示,该电源转换电路用于对电源Vin进行转换,向负载R L提供低电压工作电源,所述电源转换电路包括:
第一开关支路、第二开关支路、第三开关支路、滤波支路、和第一电容C 1;其中,
所述第一电容C 1的第一端通过所述第一开关支路与所述电源相连;
所述第一电容C 1的第二端通过所述第二开关支路接地;
所述滤波支路包括串联连接的滤波电感L和滤波电容C L;所述滤波电感L的第一端与所述第一电容C 1的第一端相连;所述滤波电感L的第二端与所述滤波电容C L的第一端相连,所述滤波电容C L的第二端接地;所述滤波电容C L与所述负载R L并联;
所述第三开关支路连接在所述第一电容C 1的第二端和所述滤波电感L的第二端之间。
在本申请一些可能的实施方式中,所述第一开关支路包括:第一开关Q 1
所述第三开关支路包括:第三开关Q 3
所述第二开关支路包括:第二开关Q 2,所述第二开关Q 2的第一端与所述第一电容的第二端相连、所述第二开关Q 2的第二端接地。
一个完整的信号周期包括两个时间区间Φ和
Figure PCTCN2018088049-appb-000005
其中,在Φ对应的时间区间内,Q 1和Q 3闭合、Q 2断开,电源Vin连接至第一电容C 1,然后连接到Vout,滤波电感L连接到电源Vin,此时滤波电感L和第一电容C 1处于充电蓄能状态。
Figure PCTCN2018088049-appb-000006
对应的时间区间内,Q 1和Q 3断开、Q 2闭合,在这个时间区间第一电容C 1的下极板经Q 2接电源地,上极板的电压为Vin-Vout,此时间间隔滤波电感L和第一电容C 1都处于放电状态。
当电源转换电路达到稳态时,
V C1=Vin-Vout,
Figure PCTCN2018088049-appb-000007
其中,
Figure PCTCN2018088049-appb-000008
因此,滤波电感L的电流I L降低到输出电流I out
Figure PCTCN2018088049-appb-000009
滤波电感的DCR的损耗为
Figure PCTCN2018088049-appb-000010
为现有技术中DCR的损耗的
Figure PCTCN2018088049-appb-000011
另外,图3所示的电源转换电路中开关节点L X处寄生电容的损耗,现有技术中V LX的摆幅为Vin,图3所示的电源转换电路中V LX的摆幅为Vout,
Figure PCTCN2018088049-appb-000012
因此图3所示的电源转换电路有效地降低了开关节点L X处寄生电容的损耗。
综上所述图3所示的电源转换电路,在电路达到稳态时,滤波电感的电流相对于传统的电源转换电路中滤波电感的电流减少了,相应地,滤波电感对应的电感绕阻损耗降低了;另外,第一电容与滤波电感的连接处的电压摆幅相对于传统电源转换电路中所述连接处的 电压摆幅降低了,因此减少了连接处寄生电容对应的能量损耗。因此,本实施例描述的电源转换电路的转换效率提高了。
需要说明的是,在一些可能的实施方式中,所述第一开关Q1、所述第二开关Q2、和所述第三开关Q3中的至少一个开关为金属氧化物半导体场效应管(Metal Oxide Semiconductor,MOS)或者双极结型晶体管(Bipolar Junction Transistor,BJT)。
请参阅图4,图4为本申请实施例提供的另一种电源转换电路的结构示意图。与图3中所示的电源转换电路的区别在于,增加了与第一电容C 1并联的开关支路,该开关支路中包括开关Q 0。在开关Q 0闭合时,第一电容C 1被短路。
一个完整的信号周期包括两个时间区间Φ和
Figure PCTCN2018088049-appb-000013
在整个开关周期内Q 3保持断开,Q 0保持闭合。并且,在Φ对应的时间区间内,Q 1闭合、Q 2断开,这时电源Vin被连接至电源转换电路中开关节点L X,然后连接至滤波电感L,此时滤波电感L处于充电蓄能的状态。在
Figure PCTCN2018088049-appb-000014
对应的时间区间内,Q 1断开、Q 2闭合,在这个时间区间内,L X经Q 0和Q 2连接到电源地,滤波电感L处于放电状态。
当电源转换电路达到稳态时,
Vout=Vin*D,I L=I out,其中,
Figure PCTCN2018088049-appb-000015
因此L X处寄生电容的损耗降低了,电源转换电路的转换效率提高了。
在另外一种工作状态时,一个完整的信号周期包括两个时间区间Φ和
Figure PCTCN2018088049-appb-000016
在整个开关周期内Q 0被断开,第一电容C 1处于工作状态。
在Φ对应的时间区间内,Q 1、Q 3闭合、Q 2断开,这时电源Vin被连接至第一电容C 1的上极板(即C 1的第一端),同时,第一电容C 1的下极板(即C 1的第二端)通过Q 3连接到Vout端为输出提供电流,此时滤波电感L和第一电容C 1处于充电蓄能的状态。
Figure PCTCN2018088049-appb-000017
对应的时间区间内,Q 1、Q 3断开、Q 2闭合。在这个时间区间内,第一电容C 1的下极板经Q 2接电源地,第一电容C 1和滤波电感L都处于放电状态。当电源转换电路达到稳态时,
V C1=Vin-Vout,
Figure PCTCN2018088049-appb-000018
其中,
Figure PCTCN2018088049-appb-000019
因此,滤波电感L的电流I L降低到输出电流I out
Figure PCTCN2018088049-appb-000020
滤波电感的DCR的损耗为
Figure PCTCN2018088049-appb-000021
为现有技术中DCR的损耗的
Figure PCTCN2018088049-appb-000022
另外,电源转换电路中开关节点L X处寄生电容的损耗
Figure PCTCN2018088049-appb-000023
有技术中V LX的摆幅为Vin,本电源转换电路中V LX的摆幅为Vout,
Figure PCTCN2018088049-appb-000024
因此本实施例中的源转换电路有效地降低了开关节点L X处寄生电容的损耗。综上,本实施例描述的电源转换电路的转换效率提高了。
请参阅图5,图5为本申请实施例提供的另一种电源转换电路的结构示意图。与图3中所示的电源转换电路的区别在于,第二开关支路除了包括第二开关还包括1个开关切换电路,具体地,第二开关Q 2第一端与所述第一电容C 1的第二端相连,所述第二开关Q 2的第二端通过所述开关切换电路接地。其中,开关切换电路包括第二电容C 2,包括第四开关Q 4的第四开关支路、包括第五开关Q 5的第五开关支路、和包括第六开关Q 6的第六开关支路。第二电容C 2的第一端通过Q 4与电源Vin相连;第二电容C 2的第二端通过Q 5接电源地;第二电容C 2的第二端通过Q 6与滤波电感L和滤波电容C L的连接端相连。
进一步地,电源转换电路也可以如图6所示,与图5所示的电源转换电路的区别在于包括i个开关切换电路。所述i为整数,且i≥1。
具体地,如图6所示,所述第i个开关切换电路中的任一开关切换电路j包括:第(j+1)电容、第3*(j+1)开关支路、第(3*(j+1)-1)开关支路、以及第(3*(j+1)-2)开关支路,其中,所述j为整数,且1≤j≤i;所述第i个开关切换电路中的第(i+1)电容的第一端通过第(3*(i+1)-2)开关支路与所述电源相连;所述第(i+1)电容的第二端通过所述第(3*(i+1)-1)开关支路接地;所述第(i+1)电容的第二端通过所述第3*(i+1)开关支路与所述滤波电感的第二端相连;
当i=1时,所述第二开关支路的第二开关连接在所述第二电容的第一端和所述第一电容的第二端之间;
当所述i>1时,第k个开关切换电路中的第(k+1)电容的第一端通过第(3*(k+1)-2)开关支路与所述电源相连;第(3*(k+1)-1)开关支路连接在第(k+2)个电容的第一端和所述第(k+1)个电容的第二端之间;所述第(k+1)电容的第二端通过所述第3*(k+1)开关支路与所述滤波电感的第二端相连;其中,所述k为整数,且1≤k<i。
其中,第3*(j+1)开关支路包括第3*(j+1)开关Q 3*(j+1),第3*(j+1)-1开关支路包括第3*(j+1)-1开关Q 3*(j+1)-1,第3*(j+1)-2开关支路包括第3*(j+1)-2开关Q 3*(j+1)-2
进一步的,在本申请一些可能的实施方式中,电源转换电路还可以包括:连接在第一电容的第一端C 1以及所述第i+1个电容的第二端之间的开关支路,该开关支路可以包括开关Q 3*i+2
在本申请一些可能的实施方式中,连接在所述第一电容的第一端以及所述第i+1个电容的第二端之间的开关支路中的开关、所述第一开关、所述第二开关、和所述第三开关中的开关可以为MOS管或者BJT管
在本申请一些可能的实施方式中,在电源Vin和输出电压Vout之间连接的电路可以是前面所述任意实施例中电源Vin和输出电压Vout之间连接的电路并联后的电路,如图7所 示的电源转换电路中,在电源Vin和输出电压Vout之间连接的电路为图3和图6中电源Vin和输出电压Vout之间连接的电路并联后的电路。
请参阅图8,图8为本申请实施例提供的一种转换装置800,包括电源801、电源转换电路802和控制信号产生电路803,其中,所述电源801通过所述电源转换电路802向负载提供低电压工作电源;所述控制信号产生电路803用于向所述电源转换电路802提供周期性的控制信号,所述控制信号用于控制所述电源转换电路802中的开关接通或者断开;所述电源转换电路802可以为前面所述任一实施例中描述的电源转换电路。电源转换电路可以是充电器等电子设备。
转换装置由于采用了前面所述的电源转换电路,相应地,图8中的转换电路的电源转换效率也提高了,为简洁描述,在这里不再赘述。
请参阅图2,图2为本申请实施例提供的一种终端设备200,包括电源201、电源转换电路202、负载203、和控制信号产生电路204,其中,电源201通过电源转换电路202向负载203提供低电压工作电源;所述控制信号产生电路204用于向所述电源转换电路202提供周期性的控制信号,所述控制信号用于控制所述电源转换电路202中的开关接通或者断开。其中终端设备可以是电池、手机、电动汽车等。
终端设备由于采用了前面所述的电源转换电路,相应地,图2中的终端设备的电源转换效率也提高了,为简洁描述,在这里不再赘述。
本申请实施例中包括的电源转换电路达到稳态时,滤波电感的电流相对于传统的电源转换电路中滤波电感的电流减少了,相应地,滤波电感对应的电感绕阻损耗降低了;另外,第一电容与滤波电感的连接处的电压摆幅相对于传统电源转换电路中所述连接处的电压摆幅降低了,因此减少了连接处寄生电容对应的能量损耗。因此,本实施例描述的电源转换电路的转换效率提高了,可以理解的,使用电源转换电路的转换装置以及终端设备的转换效率也相应地提高了。
本申请的说明书、权利要求书以及说明书中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或者单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或者单元,或可选地还包括对于这些过程、方法、系统、产品或设备固有的其他步骤或单元。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本申请也包含这些改动和变型。

Claims (10)

  1. 一种电源转换电路,用于对电源进行转换,向负载提供低电压工作电源,其特征在于,所述电源转换电路包括:
    第一开关支路、第二开关支路、第三开关支路、滤波支路、和第一电容;其中,
    所述第一电容的第一端通过所述第一开关支路与所述电源相连;
    所述第一电容的第二端通过所述第二开关支路接地;
    所述滤波支路包括串联连接的滤波电感和滤波电容;所述滤波电感的第一端与所述第一电容的第一端相连;所述滤波电感的第二端与所述滤波电容的第一端相连,所述滤波电容的第二端接地;所述滤波电容与所述负载并联;
    所述第三开关支路连接在所述第一电容的第二端和所述滤波电感的第二端之间。
  2. 根据权利要求1所述的电源转换电路,其特征在于,
    所述第一开关支路包括:第一开关;
    所述第三开关支路包括:第三开关;
    所述第二开关支路包括:第二开关,所述第二开关的第一端与所述第一电容的第二端相连、所述第二开关的第二端接地。
  3. 根据权利要求1或2所述的电源转换电路,其特征在于,所述电源转换电路还包括:与所述第一电容并联的开关支路,该开关支路包括开关。
  4. 根据权利要求3所述的电源转换电路,其特征在于,所述与所述第一电容并联的开关支路中的开关、所述第一开关、所述第二开关、和所述第三开关中的至少一个开关为MOS管或者BJT管。
  5. 根据权利要求1所述的电源转换电路,其特征在于,
    所述第一开关支路包括:第一开关;
    所述第三开关支路包括:第三开关;
    所述第二开关支路包括:第二开关和i个开关切换电路,所述第二开关的第一端与所述第一电容的第二端相连,所述第二开关的第二端通过所述i个开关切换电路接地,其中,所述i为整数,且i≥1。
  6. 根据权利要求5所述的电源转换电路,其特征在于,所述i个开关切换电路中的任一开关切换电路j,包括:
    第(j+1)电容、第3*(j+1)开关支路、第(3*(j+1)-1)开关支路、以及第(3*(j+1)-2)开关支路,其中,所述j为整数,且1≤j≤i;
    所述第i个开关切换电路中的第(i+1)电容的第一端通过第(3*(i+1)-2)开关支路与所述电源相连;所述第(i+1)电容的第二端通过所述第(3*(i+1)-1)开关支路接地;所述第(i+1)电容 的第二端通过所述第3*(i+1)开关支路与所述滤波电感的第二端相连;
    当i=1时,所述第二开关支路的第二开关连接在所述第二电容的第一端和所述第一电容的第二端之间;
    当所述i>1时,第k个开关切换电路中的第(k+1)电容的第一端通过第(3*(k+1)-2)开关支路与所述电源相连;第(3*(k+1)-1)开关支路连接在第(k+2)个电容的第一端和所述第(k+1)个电容的第二端之间;所述第(k+1)电容的第二端通过所述第3*(k+1)开关支路与所述滤波电感的第二端相连;其中,所述k为整数,且1≤k<i。
  7. 根据权利要求6所述的电源转换电路,其特征在于,所述电源转换电路还包括:连接在所述第一电容的第一端以及所述第i+1个电容的第二端之间的开关支路,该开关支路包括开关。
  8. 根据权利要求7所述的电源转换电路,其特征在于,所述连接在所述第一电容的第一端以及所述第i+1个电容的第二端之间的开关支路中的开关、所述第一开关、所述第二开关、和所述第三开关中的至少一个为MOS管或者BJT管。
  9. 一种转换装置,包括电源、控制信号产生电路和电源转换电路,其特征在于,
    所述电源通过所述电源转换电路向负载提供低电压工作电源;
    所述控制信号产生电路用于向所述电源转换电路提供周期性的控制信号,所述控制信号用于控制所述电源转换电路中的开关接通或者断开;
    所述电源转换电路如权利要求1至8中任意一项所述的电源转换电路。
  10. 一种终端设备,包括:电源、控制信号产生电路、电源转换电路、和负载,其特征在于,
    所述电源通过所述电源转换电路向所述负载提供工作电源;
    所述控制信号产生电路用于向所述电源转换电路提供周期性的控制信号,所述控制信号用于控制所述电源转换电路中的开关接通或者断开;
    所述电源转换电路如权利要求1至8中任意一项所述的电源转换电路。
PCT/CN2018/088049 2017-06-01 2018-05-23 一种电源转换电路及相关装置和终端设备 WO2018219192A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18810018.4A EP3637603A4 (en) 2017-06-01 2018-05-23 POWER SUPPLY CONVERSION CIRCUIT, AND RELATED DEVICE AND TERMINAL
US16/697,992 US11362588B2 (en) 2017-06-01 2019-11-27 Power conversion circuit and related apparatus and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710404467.6A CN108988630B (zh) 2017-06-01 2017-06-01 一种电源转换电路及相关装置和终端设备
CN201710404467.6 2017-06-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/697,992 Continuation US11362588B2 (en) 2017-06-01 2019-11-27 Power conversion circuit and related apparatus and terminal device

Publications (1)

Publication Number Publication Date
WO2018219192A1 true WO2018219192A1 (zh) 2018-12-06

Family

ID=64456166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088049 WO2018219192A1 (zh) 2017-06-01 2018-05-23 一种电源转换电路及相关装置和终端设备

Country Status (4)

Country Link
US (1) US11362588B2 (zh)
EP (1) EP3637603A4 (zh)
CN (2) CN108988630B (zh)
WO (1) WO2018219192A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8339110B2 (en) * 2010-04-05 2012-12-25 International Business Machines Corporation Single stage hybrid charge pump
CN103066841A (zh) * 2013-01-28 2013-04-24 上海电力学院 一种基于电荷泵电容的倍压型直流变换器
KR101441454B1 (ko) * 2013-10-21 2014-11-03 전남대학교산학협력단 소프트 스위칭 부스트 컨버터

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100602A (ja) * 2007-10-18 2009-05-07 Yamaha Corp Dc−dcコンバータ
CN101640478B (zh) * 2008-08-01 2014-05-14 成都芯源系统有限公司 直流变换器
US8854019B1 (en) * 2008-09-25 2014-10-07 Rf Micro Devices, Inc. Hybrid DC/DC power converter with charge-pump and buck converter
CN102075083A (zh) * 2009-11-19 2011-05-25 登丰微电子股份有限公司 电源转换电路
FR2959624A1 (fr) * 2010-04-28 2011-11-04 St Ericsson Sa Circuit de conversion de tension continue
DE102013218228A1 (de) * 2013-09-11 2015-03-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gleichspannungswandler
JP2017118607A (ja) * 2015-12-21 2017-06-29 株式会社東芝 チャージポンプ回路および降圧型レギュレータ回路
CN105763048A (zh) * 2016-04-15 2016-07-13 上海交通大学 带串联型降压升流电路的buck变换器
CN110611424B (zh) 2017-02-28 2021-10-26 华为技术有限公司 电压转换器及其控制方法和电压转换系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8339110B2 (en) * 2010-04-05 2012-12-25 International Business Machines Corporation Single stage hybrid charge pump
CN103066841A (zh) * 2013-01-28 2013-04-24 上海电力学院 一种基于电荷泵电容的倍压型直流变换器
KR101441454B1 (ko) * 2013-10-21 2014-11-03 전남대학교산학협력단 소프트 스위칭 부스트 컨버터

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637603A4

Also Published As

Publication number Publication date
US11362588B2 (en) 2022-06-14
EP3637603A1 (en) 2020-04-15
CN108988630B (zh) 2021-03-30
US20200099298A1 (en) 2020-03-26
CN112994444A (zh) 2021-06-18
CN112994444B (zh) 2022-09-23
CN108988630A (zh) 2018-12-11
EP3637603A4 (en) 2020-05-06

Similar Documents

Publication Publication Date Title
WO2018157761A1 (zh) 电压转换器及其控制方法和电压转换系统
US10554115B2 (en) Harmonic reduction apparatus for wireless power transfer systems
CN110571755B (zh) 过压保护装置及其方法
WO2018032990A1 (zh) 一种充电电路、系统、方法及电子装置
CN102651563B (zh) 电池能量平衡电路
EP3627650B1 (en) Power supply conversion circuit, charging device, and system
CN104269875A (zh) 一种基于mmc模块化多电平变换器的混合储能拓扑结构
US10003257B2 (en) Converter
CN108695928B (zh) 一种隔离式光伏充电装置与方法
CN114400890A (zh) 功率转换结构、系统、方法包括其的电子设备及芯片单元
WO2019119841A1 (zh) 一种dcdc双向变换器
Gitau et al. Multilevel switched-capacitor DC-DC converter with reduced capacitor bank
US11482949B2 (en) Electrostatic harvester device
JP7397670B2 (ja) 無線受電装置、無線充電方法及びシステム
WO2018219192A1 (zh) 一种电源转换电路及相关装置和终端设备
CN105978322A (zh) 一种开关电容型高增益准z源dc-dc变换器
WO2022047633A1 (zh) 一种dc/dc变换器、电压增益切换方法及系统
CN108233485A (zh) 一种基于直流固态变压器的多功能充电桩系统
RU2165669C1 (ru) Зарядно-разрядное устройство
WO2021097763A1 (zh) 整流器、逆变器及无线充电设备
CN110365070A (zh) 一种充电电路、电子设备和充电方法
CN216904322U (zh) 一种多极耳双电芯电池的充电系统和终端设备
TW202245392A (zh) 收集振盪能量
CN219304521U (zh) 蓄电池双向充放电系统
CN115693840A (zh) 储能设备、供电系统和储能设备的充放电控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018810018

Country of ref document: EP

Effective date: 20191209