WO2018032990A1 - 一种充电电路、系统、方法及电子装置 - Google Patents
一种充电电路、系统、方法及电子装置 Download PDFInfo
- Publication number
- WO2018032990A1 WO2018032990A1 PCT/CN2017/096200 CN2017096200W WO2018032990A1 WO 2018032990 A1 WO2018032990 A1 WO 2018032990A1 CN 2017096200 W CN2017096200 W CN 2017096200W WO 2018032990 A1 WO2018032990 A1 WO 2018032990A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- module
- charge pump
- charging
- capacitor
- pump conversion
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/06—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
- H02M3/073—Charge pumps of the Schenkel-type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/06—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/345—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
- H02J7/00036—Charger exchanging data with battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/06—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
- H02M3/072—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps adapted to generate an output voltage whose value is lower than the input voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/06—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
- H02M3/073—Charge pumps of the Schenkel-type
- H02M3/077—Charge pumps of the Schenkel-type with parallel connected charge pump stages
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application relates to the field of charging technologies, and in particular, to a charging circuit, a system, a method, and an electronic device.
- the charging circuit based on Buck circuit is often used in the industry to charge a large current to a terminal device.
- the Buck circuit since the Buck circuit includes an output inductor with coil loss and core loss, it may cause the buck conversion efficiency of the entire charging circuit to be low (generally, below 91%), making the charging circuit impossible.
- True high current charging ie, the charging current is still small
- the charging circuit have a lower charging speed, a longer charging time, and a lower charging efficiency, and the energy lost due to the output inductance is usually converted into thermal energy, and thus There is also a problem that the charging circuit is hot.
- the existing charging circuit has a problem that the buck conversion efficiency is low, the charging current is small, and the heat generation is severe.
- the embodiments of the present application provide a charging circuit, a system, a method, and an electronic device, which are used to solve the problems of low buck conversion efficiency and serious heat generation in the existing charging circuit.
- an embodiment of the present application provides a charging circuit, including a control module and a charge pump conversion module connected to the control module, where an input end of the charge pump conversion module is used to connect with an adaptation module, An output of the charge pump conversion module is configured to be connected to the battery module, wherein the charge pump conversion module includes one or more charge pump conversion sub-modules connected in parallel;
- the charge pump conversion submodule is configured to turn on the charge pump conversion submodule when receiving the first control signal sent by the control module, for any one of the charge pump conversion submodules a first set of switches that turn off a second set of switches in the charge pump conversion sub-module to enable the adaptation module to charge a capacitor in the charge pump conversion sub-module and the battery module;
- the second control signal sent by the control module is sent, the first group of switches in the charge pump conversion sub-module is turned off, and the second group of switches in the charge pump conversion sub-module is turned on, so that the charge pump The capacitor in the transform sub-module is capable of charging the battery module.
- the first group of switches includes a first switch and a second switch
- the second group of switches includes a third switch and a fourth switch
- the capacitor includes a first capacitor and a second capacitor, wherein:
- the control end of the first switch is connected to the output end of the control module, the input end of the first switch is connected to the first end of the adapting module, and the output end of the first switch is connected to the first An input end of the three switch is connected to the first end of the first capacitor;
- a control end of the second switch is connected to an output end of the control module, and an input end of the second switch is connected to a second end of the first capacitor and an input end of the fourth switch, where the An output end of the second switch is connected to the first end of the second capacitor, the first end of the battery module, and the output end of the third switch;
- a control end of the third switch is connected to an output end of the control module
- a control end of the fourth switch is connected to an output end of the control module, an output end of the fourth switch is opposite to a second end of the second capacitor, a second end of the adapter module, and the battery
- the second end of the module is connected and acts as a common negative terminal.
- the first switch, the second switch, the third switch, and the fourth switch each include at least one One or more switching elements connected in parallel.
- the one or more parallel switching elements are transistors.
- the first capacitor and the second capacitor each include at least one or more capacitive components connected in parallel .
- the charging circuit further includes the adapting module and the charge pump conversion module Connected compensation modules:
- the compensation module is configured to perform current compensation to the capacitors in the charge pump conversion submodules and the battery module when the first group of switches in each of the charge pump conversion submodules is turned on and the second group of switches is turned off.
- the compensation module includes a third capacitor, where:
- the first end of the third capacitor is connected to the first end of the adapting module and the input end of the first switch, and the second end of the third capacitor and the second end of the second capacitor, The second end of the battery module, the second end of the adapter module, and the output end of the fourth switch are connected.
- the charging circuit further includes a battery module and the adapter module Feedback unit
- the feedback unit is configured to collect power information of the battery module in real time, generate charging information according to the power information, and feed back the charging information to the adapting module, so that the adapting module can The voltage and current output to the charge pump conversion module are changed in real time according to the charging information.
- the input voltage and the input current of the charge pump conversion submodule are The relationship between the charging voltage and the charging current required by the battery module is as follows The first formula shows:
- Vc represents an input voltage of the charge pump conversion submodule
- Ic represents an input current of the charge pump conversion submodule
- Vbat represents a charging voltage required by the battery module
- the ⁇ represents the buck conversion efficiency of the charging circuit
- the M is a positive integer and represents the number of charge pump conversion sub-modules included in the charge pump conversion module.
- an embodiment of the present application provides a charging system including the charging circuit described in the first aspect of the embodiment of the present application.
- an embodiment of the present application provides a charging method, including:
- control signal is the first control signal, turning on the first group of switches in the charge pump conversion sub-module, turning off the second group of switches in the charge pump conversion sub-module, so that the power adapter can be to the charge pump Converting a first capacitor, a second capacitor, and a battery connected to the charge pump conversion submodule in the submodule; and if the control signal is determined to be a second control signal, turning on the first in the charge pump conversion submodule a second set of switches that turn off the first set of switches in the charge pump conversion sub-module such that the first capacitor and the second capacitor can charge the battery;
- the charge pump conversion sub-module is any one of the charge pump conversion sub-modules; the charge pump conversion module includes one or more parallel charge pump conversion sub-modules.
- the method further includes:
- the method further includes:
- the method further includes:
- the charging information is fed back to the power adapter to enable the power adapter to change the voltage and current output to the charge pump conversion module in real time based on the charging information.
- an electronic device including:
- a receiving unit configured to receive a control signal sent by the controller to any one of the charge pump conversion submodules
- a charging unit configured to: if the control signal is determined to be the first control signal, turn on the first group of switches in the charge pump conversion sub-module, and turn off the second group of switches in the charge pump conversion sub-module to enable the power supply
- the adapter is capable of charging a first capacitor, a second capacitor, and a battery connected to the charge pump conversion submodule in the charge pump conversion submodule; if the control signal is determined to be a second control signal, turning on the charge a second set of switches in the pump conversion sub-module, turning off the first set of switches in the charge pump conversion sub-module, so that the first capacitor and the second capacitor can charge the battery;
- the charge pump conversion module includes one or more charge pump conversion sub-modules connected in parallel.
- the device further includes:
- a compensation unit configured to: when the first group of switches is turned on, and when the second group of switches is turned off, to the first capacitor, the second capacitor, and the third capacitor connected to the two ends of the power adapter The battery is current compensated.
- the device further includes:
- a feedback unit configured to collect power information of the battery in real time, and generate information according to the power information Charging information, and feeding back the charging information to the power adapter to enable the power adapter to change the voltage and current output to the charge pump conversion module in real time according to the charging information.
- the charging circuit includes a charge pump conversion module including one or more charge pump conversion sub-modules connected in parallel, and each charge pump conversion sub-module is When receiving the first control signal sent by the control module, the first group of switches can be turned on, and the second group of switches can be turned off, so that the adaptation module can convert the capacitance in each of the charge pump submodules and the charge pump conversion submodules.
- the connected battery module is charged; when receiving the second control signal sent by the control module, the second group of switches can be turned on, and the first group of switches is turned off, so that the capacitances in the charge pump conversion sub-modules can be sent to the battery module Charging.
- the charging/discharging element used in the charging circuit described in the embodiment of the present application is a capacitor instead of an inductor, the step-down conversion efficiency of the charging circuit caused by the inductance element can be avoided, and charging is avoided.
- the problem of small current and serious heat generation; and the charge pump conversion module can realize the functions of step-down and up-flow, so that a large current can be outputted with a small input current, that is, a large current can be charged.
- the charging speed of the charging circuit is effectively accelerated, the charging time of the charging circuit is reduced, the charging efficiency of the charging circuit is improved, the heating phenomenon during charging of the terminal device is avoided, and the user experience is improved.
- FIG. 1 is a schematic structural diagram of a charging circuit in Embodiment 1 of the present application.
- FIG. 2 is a schematic structural diagram of a possible charging circuit in the first embodiment of the present application.
- FIG. 5 is a schematic flowchart diagram of a charging method in Embodiment 2 of the present application.
- FIG. 6 is a schematic structural diagram of three electronic devices according to an embodiment of the present application.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- the first embodiment of the present application provides a charging circuit, as shown in FIG. 1 , which is the present application.
- FIG. 1 A schematic structural view of a charging circuit described in Embodiment 1.
- the charging circuit can be applied to a charging scenario including a terminal device.
- the charging circuit may include an adaptation module 11 , a control module 12 , and a battery module 13 , and the charging circuit may further include the adaptation module 11 , the control module 12 , and the The battery module 13 is respectively connected to the charge pump conversion module 14, wherein the charge pump conversion module 14 may include one or more parallel charge pump conversion sub-modules (FIG. 1 includes N charge pump conversion sub-modules as an example, N Is a positive integer);
- the charge pump conversion sub-module can be used to receive the control module
- the first control signal is sent, the first group of switches in the charge pump conversion sub-module is turned on, and the second group of switches in the charge pump conversion sub-module is turned off, so that the adaptation module 11 can
- the capacitor in the charge pump conversion sub-module and the battery module 13 are charged; when receiving the second control signal sent by the control module 12, turning off the first group of switches in the charge pump conversion sub-module, Turning on a second set of switches in the charge pump conversion sub-module to cause the charge pump converter
- the capacitor in the module is capable of charging the battery module 13.
- the number of charge pump conversion sub-modules that can be included in the charge pump conversion module 14 can be flexibly set according to actual conditions, such as two, five, and ten. Etc. There is no limit to this.
- the charge pump conversion module 14 may include at least two (parallel parallel) charge pump conversion sub-modules, which are not described herein.
- first control signal and the second control signal can be flexibly set according to requirements, such as setting the first control signal to a high level 1 and setting the second control signal to a low level. 0, or the first control signal may be set to a low level 0, and the second control signal may be set to a high level 1, which is not limited in any way.
- control module 12 can not only implement the first control signal and the second control signal by software, for example, can write a corresponding software program, and implement the first control signal by executing the software program. And the sending of the second control signal, the first control signal and the second control signal are sent directly by the hardware, for example, the first control signal and the second control signal are sent by using a specific hardware chip.
- the control module 12 can issue the first control signal and the second control signal according to a certain period (which can be flexibly set according to actual conditions), such as in the first phase of a period (such as T) (previously The first control signal is sent in the T/2, and the second control signal is sent in the second phase of the cycle (the latter T/2), which is not limited in this embodiment.
- each charge pump conversion sub-module can turn on the first group of switches and close the second group of switches when receiving the first control signal sent by the control module, so that the adaptation module can
- the capacitors in each of the charge pump conversion sub-modules and the battery modules are connected to each of the charge pump conversion sub-modules; when the second control signal sent by the control module is received, the second group of switches can be turned on to close the first group.
- the switches enable capacitors in each of the charge pump conversion sub-modules to charge the battery module.
- the charging/discharging element used in the charging circuit described in the embodiment of the present application is a capacitor instead of an inductor, there is no coil loss and core loss caused by the inductance element in the circuit. There is also no circuit heating caused by the inductive component, which solves the problem of low voltage drop conversion efficiency, small charging current, and severe heat generation of the charging circuit in the prior art.
- the charge pump conversion module can realize the functions of step-down and up-flow, so that a large current can be outputted with a small input current, that is, a large current charging can be realized, thereby effectively accelerating the charging.
- the charging speed of the circuit reduces the charging time of the charging circuit, improves the charging efficiency of the charging circuit, avoids the heating phenomenon when the terminal device is charged, and improves the user experience.
- the charge pump conversion module 14 includes only one charge pump conversion sub-module.
- the first group of switches may include a first switch (such as Q1 shown in FIG. 2) and a first Two switches (such as Q2 shown in FIG. 2), the second group of switches may include a third switch (such as Q3 shown in FIG. 2) and a fourth switch (such as Q4 shown in FIG. 2).
- the capacitor may include a first capacitor (C1 as shown in FIG. 2) and a second capacitor (C2 as shown in FIG. 2), wherein:
- a control end of the first switch (such as Q1 shown in FIG. 2) is connected to an output end of the control module 12, and an input end is connected to the first end of the adapting module 11, the output end and the first end
- An input of a three switch (such as Q3 shown in FIG. 2) and a first end of the first capacitor (C1 shown in FIG. 2) are connected;
- a control end of the second switch (such as Q2 shown in FIG. 2) is connected to an output end of the control module 12, and the input end is second with the first capacitor (C1 shown in FIG. 2)
- an input end of the fourth switch (such as Q4 shown in FIG. 2) connected to the output end and the first end of the second capacitor (C2 shown in FIG. 2), the battery module 13 a first end of the first switch and an output of the third switch (such as Q3 shown in FIG. 2);
- a control end of the third switch (such as Q3 shown in FIG. 2) is connected to an output end of the control module 12;
- the control end of the fourth switch (such as Q4 shown in FIG. 2) is connected to the output end of the control module 12, and the output end is second with the second capacitor (C2 shown in FIG. 2).
- the end, the second end of the adapting module 11 and the second end of the battery module 13 are connected.
- each charge pump conversion sub-module can turn on the first group of switches in each charge pump conversion sub-module when receiving the first control signal sent by the control module 12, and close each a second set of switches in the charge pump conversion sub-module, such that the adaptation module 11 can
- the first capacitor, the second capacitor, and the battery module 13 in each of the charge pump conversion sub-modules are charged.
- the charging of the battery module 13 at this time may be the second capacitor in each charge pump conversion sub-module.
- the second group of switches in each charge pump conversion sub-module When receiving the second control signal sent by the control module 12, the second group of switches in each charge pump conversion sub-module can be turned on, and the first group of switches in each charge pump conversion sub-module is turned off, so that the charges are The first capacitor and the second capacitor in the pump conversion sub-module are capable of charging the battery module 13.
- the charging/discharging elements used in the charging circuit described in the embodiments of the present application are capacitors (ie, the first capacitor and the second capacitor) instead of the inductor, coil loss and core are not generated.
- the problem of loss and heat generation; and the charge pump conversion module can realize the functions of step-down and up-flow, so that a large current can be outputted with a small input current, that is, a true high-current charging can be realized, which is effective. Accelerating the charging speed of the charging circuit, reducing the charging time of the charging circuit, improving the charging efficiency of the charging circuit, and avoiding the heating phenomenon during charging of the terminal device and improving the user experience. No longer.
- the first switch such as Q1 shown in FIG. 2)
- the second switch such as Q2 shown in FIG. 2
- the third switch as shown in FIG. 2
- Q3 shown in 2 fourth switch (Q4 as shown in FIG. 2)
- first capacitor C1 as shown in FIG. 2)
- second capacitor C2 shown in FIG. 2
- the circuit structure is called a Charge Pump Converter circuit. Therefore, in the embodiment of the present application, the charging circuit may also be referred to as a charging circuit based on a Charge Pump Converter circuit (hereinafter also referred to as a charging circuit). I will not repeat them here.
- the first switch (such as Q1 shown in FIG. 2), the second switch (such as Q2 shown in FIG. 2), the third switch (such as Q3 shown in FIG. 2), and the fourth switch (Q4 as shown in FIG. 2) may each include at least one or more switching elements connected in parallel. This effectively reduces the on-resistance of the switching element, increases the current in the charging circuit, speeds up the charging speed of the charging circuit, reduces the charging time of the charging circuit, and improves the charging.
- the charging efficiency of the circuit is not described in detail in the embodiment of the present application.
- the one or more parallel switching elements can be transistors.
- the transistor may comprise a triode or a field effect transistor.
- the control end of the switch can be the base of the triode.
- the input end of the switch can be the collector (or emitter) of the triode, and the output end of the switch can be the emitter (or collector) of the triode;
- the control end of the switch can be the field The gate of the effect transistor, the input end of the switch can be the drain (or source) of the FET, and the output of the switch can be the source (or drain) of the FET.
- the input end and the output end of the switch can also be exchanged with each other, which is not limited in this embodiment.
- the transistor may include an NPN-type transistor and a PNP-type transistor.
- the field effect transistor may include an N-channel field effect transistor and a P-channel field effect transistor. Any restrictions.
- first switch the second switch, the third switch, and the fourth switch may also be any switching element capable of implementing a switching function, such as any single-pole double-throw switch, etc. There is no limit to this.
- first capacitor (C1 as shown in FIG. 2) and the second capacitor (C2 as shown in FIG. 2) may at least include one or more capacitive elements connected in parallel.
- the plurality of parallel capacitive elements can effectively reduce the ESR (Equivalent Series Resistance) of the first capacitor and the second capacitor, thereby effectively increasing the current in the charging circuit and speeding up the charging.
- the charging speed of the circuit, the charging time of the charging circuit are reduced, and the charging efficiency of the charging circuit is improved.
- the charging circuit may further include a compensation module 15 connected to the adaptation module 11 and the charge pump conversion module 14:
- the compensation module 15 can be configured to convert the capacitance in the sub-module to each charge pump when the first group of switches in each charge pump conversion sub-module is turned on and the second group of switches is off (such as C1 shown in FIG. 2 and C2) and the battery module 13 perform current compensation.
- the compensation module 15 may include a third capacitor (such as C3 shown in FIG. 2), where:
- a first end of the third capacitor (C3 as shown in FIG. 2) is connected to an output of the adaptation module 11 and an input of the first switch (Q1 as shown in FIG. 2).
- a second end and a second end of the second capacitor (such as C2 shown in FIG. 2), a second end of the battery module 13, and the fourth switch (such as Q4 shown in FIG. 2) The outputs are connected.
- the third capacitor may include at least one or more capacitors connected in parallel. The components are not described in detail.
- a third capacitor may be connected in parallel at the input end of the entire charge pump conversion module 14. Since the third capacitor is also connected in parallel at both ends of the adapter module 11, the adapter module 11 can always charge the third capacitor, so that the first switch Q1 and the second switch Q2 are turned on.
- the third capacitor can charge the first capacitor C1, the second capacitor C2, and the battery module 13, thereby realizing the function of current compensation, and avoiding the charging speed of the adapter module 11 being too small to cause a slow charging speed. And the problem of longer charging time.
- the Vc represents an input voltage value of the charge pump conversion submodule
- the Ic represents an input current value of the charge pump conversion submodule
- the Vbat represents a charging voltage value required by the battery module 13
- the Ibat represents a charging current value required by the battery module 13
- the ⁇ represents a step-down conversion efficiency of the charging circuit
- the M is a positive integer and represents a charge included in the charge pump conversion module 14.
- the first switch Q1, the second switch Q2, the third switch Q3, and the fourth switch Q4 are both a MOS transistor, and the on-resistances may be R Q1 , R Q2 , R Q3 , and R Q4 , respectively, and the ESRs of the first capacitor C1 and the second capacitor C2 may be R C1 and R C2 , respectively, when the charge
- the control circuit of the control module 12 received by the pump conversion sub-module is a first control signal (such as a high level 1 or the like), and the equivalent circuit of the charging circuit can be simplified to the circuit shown in FIG.
- the control signal sent by the control module 12 received by the charge pump conversion sub-module is a second control signal (such as a low level 0, etc.)
- the equivalent circuit of the charging circuit can be simplified to The circuit structure shown in Figure 4.
- the current flowing through the charging circuit ie, the The effective value of the charging current of the first capacitor C1 and the second capacitor C2 may be I c
- the received control signal sent by the control module 12 is the second control signal
- the current flowing through the charging circuit (ie, the discharge current of the first capacitor C1 and the second capacitor C2) has an effective value of I d ; assuming that the input current of the charging circuit can be I in, output current of the charging circuit may be I out, and in the first stage of the charging circuit may be a loss of power P c, in a second phase of the charging circuit may be a power loss P d, and therefore, The total power loss of the charging circuit during the entire period (ie, the first phase + the second phase) may be P t .
- Equation 5 The total loss power of the charging circuit can be obtained from the above two formulas, as shown in Equation 5:
- the power loss of the charging circuit can be calculated.
- the ESR of the capacitor element of 10 uF or more in the low frequency band (about 1 MHz) may be between 2 and 15 m ⁇ , if the present application is assumed
- the total loss power of the charging circuit described in the embodiment of the present application can be calculated, as in Equation 6. Show:
- the total power loss of the charging circuit described in the embodiment of the present application can be determined by the output current of the charging circuit.
- the output of a charging circuit taking only one charge pump conversion sub-module in the charge pump conversion module 14 as an example
- the The total power loss of the charging circuit can be 0.264W.
- the conversion efficiency of the charging circuit here, the buck conversion efficiency
- the conversion efficiency of the charging circuit can be (higher than 91%), not repeated here.
- the buck conversion efficiency of the charging circuit described in the embodiment of the present application can generally reach 98% or more (as long as a reasonable parameter is selected), which greatly improves the buck of the charging circuit compared with the prior art.
- Conversion efficiency that is, reducing energy loss of the charging circuit, thereby realizing true high current charging, effectively speeding up the charging speed of the charging circuit, reducing the charging time of the charging circuit, and improving the charging circuit Charging efficiency.
- the charging voltage of the battery of the terminal device is Vbat (ie, the input of the required charging circuit) Output voltage)
- the charging current is Ibat (ie, the output current of the required charging circuit)
- the input voltage of the charging circuit is Vc
- the input current is Ic
- the input power is Pin
- the output power is Pout
- the buck conversion efficiency is ⁇ .
- Pout Pin* ⁇
- Pout Vbat*Ibat
- the charge pump conversion module 14 in the charging circuit may include M (M ⁇ 2) charge pump conversion sub-modules, and since the charge pump conversion sub-modules are connected in parallel with each other, the entire charge pump conversion module 14 The equivalent resistance is further reduced, thereby enabling the charging circuit to output a large current, that is, realizing a high current charging, speeding up the charging speed, reducing the charging time, and improving the charging efficiency.
- the charging voltage of the battery of the terminal device is Vbat and the charging current is Ibat
- the charging circuit described in the first embodiment of the present application is not only applicable to a scenario in which an adapter is used to charge a terminal device, but also in a scenario in which a charging treasure is used to charge a terminal device.
- the adapter is replaced with a charging treasure, and the embodiment of the present application does not limit this.
- a charging system is provided in the first embodiment of the present application, which may include the charging circuit described in the first embodiment of the present application, and details are not described herein.
- Embodiment 1 of the present application provides a charging circuit and system, including a charge pump conversion module including one or more charge pump conversion sub-modules connected in parallel, and each charge pump conversion sub-module receives control
- a charge pump conversion module including one or more charge pump conversion sub-modules connected in parallel
- each charge pump conversion sub-module receives control
- the first control signal sent by the module is turned on
- the first group of switches can be turned on
- the second group of switches can be turned off, so that the adapting module can connect the capacitors in each of the charge pump conversion submodules and the battery modules connected to the respective charge pump conversion submodules.
- Charging upon receiving the second control signal sent by the control module, turning on the second group of switches, turning off the first group of switches, so that the capacitors in each of the charge pump conversion sub-modules can charge the battery module.
- the charging/discharging element used in the charging circuit described in the embodiment of the present application is a capacitor instead of an inductor, the step-down conversion efficiency of the charging circuit caused by the inductance element can be avoided, and charging is avoided.
- the problem of small current and serious heat generation; and the charge pump conversion module can realize the functions of step-down and up-flow, so that a large current can be outputted with a small input current, that is, a large current can be charged.
- the charging speed of the charging circuit is effectively accelerated, the charging time of the charging circuit is reduced, and the charging efficiency of the charging circuit is improved.
- the Charge Pump Converter circuit in the charging circuit can use an off-the-shelf chip in addition to being self-built (the chip can also include corresponding control logic to control In the embodiment of the present application, no limitation is imposed on the pin of the chip.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- FIG. 5 is a schematic flowchart of the charging method according to the second embodiment of the present application, and the charging circuit used in the embodiment of the present application can be implemented as the present application.
- the charging circuit described in the first example will not be repeated here.
- the charging method may include the following steps:
- Step 501 Receive a control signal sent by the controller.
- Step 502 If it is determined that the control signal is the first control signal, turn on the first group of switches, turn off the second group of switches, and charge the first capacitor, the second capacitor, and the battery through the power adapter; if the control signal is determined As the second control signal, the second group of switches is turned on, the first group of switches is turned off, and the battery is charged through the first capacitor and the second capacitor.
- the charging method described in the embodiments of the present application may be applicable to a charging circuit including one or more parallel branches, and each branch may include a first group switch, a second group switch, a first capacitor, and The second capacitor and other components.
- the execution body of the charging method may be corresponding
- the first set of switches may generally include a first switch (which may include one or more parallel switching elements) and a second switch (which may include one or more parallel switching elements), the second set of switches
- a third switch which may include one or more switching elements in parallel
- a fourth switch which may include one or more switching elements in parallel
- the first switch, the second switch, the third switch, and the fourth switch may be any switching element capable of implementing a switching function, such as a transistor (such as a triode or a field effect transistor), etc. No restrictions are imposed.
- the controller when receiving the control signal sent by the controller, it may first determine whether the control signal is the first control signal, and if so, the first switch in the electronic device may be turned on. a second switch, and charging the first capacitor, the second capacitor, and the battery in the electronic device through the power adapter, wherein the charging of the battery may be the second capacitor; if not, Turning on the third switch and the fourth switch in the electronic device, and charging the battery through the first capacitor and the second capacitor in the electronic device.
- the charging/discharging element used in the charging circuit described in the embodiment of the present application is a capacitor instead of an inductor, the step-down conversion efficiency of the charging circuit caused by the inductance element can be avoided, and charging is avoided.
- the problem of small current and serious heat generation; and the charge pump conversion module can realize the functions of step-down and up-flow, so that a large current can be outputted with a small input current, that is, a large current can be charged.
- the charging speed of the charging circuit is effectively accelerated, the charging time of the charging circuit is reduced, and the charging efficiency of the charging circuit is improved.
- the method may further include:
- the first capacitor, the second capacitor, and the third capacitor may each include one or more capacitive elements connected in parallel, and details are not described herein.
- the method may further include:
- the charging method described in the embodiment of the present application can also collect the power information in the rechargeable battery in real time, such as the percentage of the charged battery, etc., and generate charging information according to the power information, and the charging is performed.
- the information is fed back to the power adapter, so that the power adapter can change the output voltage, the current, and the like in real time according to the charging information, which is not described in this embodiment of the present application.
- the charging method described in the second embodiment of the present application is not only applicable to a scenario in which an adapter is used to charge a terminal device, but also in a scenario in which a charging treasure is used to charge a terminal device.
- the adapter is replaced with a charging treasure, which is not limited in this embodiment.
- the second embodiment of the present application provides a charging method.
- it may first determine whether the control signal is the first control signal, and if so, the first switch in the electronic device may be turned on. And a second switch, and charging the first capacitor, the second capacitor, and the battery in the electronic device through the power adapter; if not, turning on the third switch and the fourth switch in the electronic device, and passing the A first capacitor and a second capacitor in the electronic device charge the battery.
- the charging/discharging element used in the charging circuit described in the embodiment of the present application is a capacitor instead of an inductor, the step-down conversion efficiency of the charging circuit caused by the inductance element can be avoided, and charging is avoided.
- the problem of small current and serious heat generation; and the charge pump conversion module can realize the functions of step-down and up-flow, so that a large current can be outputted with a small input current, that is, a large current can be charged. Thereby, the charging speed of the charging circuit is effectively accelerated, the charging time of the charging circuit is reduced, and the charging efficiency of the charging circuit is improved.
- Embodiment 3 is a diagrammatic representation of Embodiment 3
- the third embodiment of the present application provides an electronic device, as shown in FIG. 6 , which is a schematic structural diagram of the electronic device according to the third embodiment of the present application.
- the electronic device may include:
- the receiving unit 61 is configured to receive a control signal sent by the controller.
- the charging unit 62 is configured to: if the control signal is determined to be the first control signal, turn on the first group of switches, turn off the second group of switches, and charge the first capacitor, the second capacitor, and the battery through the power adapter; otherwise, turn on a second set of switches that close the first set of switches and pass the first capacitor And the second capacitor charges the battery.
- the device may further include:
- the compensation unit 63 is configured to: when the first group of switches is turned on and the second group of switches is turned off, to the first capacitor, the second capacitor, and the third capacitor connected to the two ends of the power adapter The battery is current compensated.
- the device may further include:
- the feedback unit 64 is configured to collect power information of the battery in real time, generate charging information according to the power information, and feed back the charging information to the power adapter.
- the electronic device described in the third embodiment of the present application may be an independent device that is independent of the terminal device, or may be an integrated device integrated in the terminal device. No restrictions are imposed.
- Embodiment 3 of the present application is not only applicable to a scenario in which an adapter is used to charge a terminal device, but also in a scenario in which a charging treasure is used to charge a terminal device.
- the adapter is replaced with a charging treasure, which is not limited in this embodiment.
- Embodiment 2 of the present application provides an electronic device, when receiving a control signal sent by a controller, first determining whether the control signal is a first control signal, and if so, opening a first switch in the electronic device And a second switch, and charging the first capacitor, the second capacitor, and the battery in the electronic device through the power adapter; if not, turning on the third switch and the fourth switch in the electronic device, and passing the A first capacitor and a second capacitor in the electronic device charge the battery.
- the charging/discharging element used in the charging circuit described in the embodiment of the present application is a capacitor instead of an inductor, the step-down conversion efficiency of the charging circuit caused by the inductance element can be avoided, and charging is avoided.
- the problem of small current and serious heat generation; and the charge pump conversion module can realize the functions of step-down and up-flow, so that a large current can be outputted with a small input current, that is, a large current can be charged. Thereby, the charging speed of the charging circuit is effectively accelerated, the charging time of the charging circuit is reduced, and the charging efficiency of the charging circuit is improved.
- embodiments of the present application can be provided as a method, a device, and a device. Or a computer program product.
- the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
- the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Dc-Dc Converters (AREA)
- Secondary Cells (AREA)
Abstract
一种充电电路、系统、方法及电子装置,包括包含一个或多个并联的电荷泵变换子模块(141,142,……14N)的电荷泵变换模块(14),各电荷泵变换子模块(141,142,……14N)在接收到控制模块(12)下发的第一控制信号时,可开启第一组开关,关闭第二组开关,使得适配模块(11)能够向各电荷泵变换子模块(141,142,……14N)中的电容以及与各电荷泵变换子模块(141,142,……14N)均相连电池模块(13)充电;在接收到所述控制模块(12)下发的第二控制信号时,可开启第二组开关,关闭第一组开关,使得各电荷泵变换子模块(141,142,……14N)中的电容能够向所述电池模块(13)充电。该充电电路中采用的充/放电元件为电容而非电感,因而能够避免由电感元件引起的充电电路的降压转换效率较低、充电电流较小以及发热较严重的问题。
Description
本申请要求2016年08月15日提交中国专利局、申请号为201610668958.7、发明名称为“一种充电电路、系统、方法及电子装置”的中国专利申请的优先权,以及,2016年08月15日提交中国专利局、申请号为201710081785.3、发明名称为“一种充电电路、方法及电子装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及充电技术领域,尤其涉及一种充电电路、系统、方法及电子装置。
随着终端设备配置的不断提升,终端设备对电量的需求量以及消耗量变得越来越大,这就导致终端设备的充电频率也变得越来越高,严重影响了终端设备的充电效率,降低了用户的使用体验。目前,业内常采用基于Buck电路的充电电路对终端设备进行大电流的充电。
但是,由于Buck电路中包括存在线圈损耗和磁芯损耗的输出电感,因而可能会导致整个充电电路的降压转换效率较低(一般而言,在91%以下),使得所述充电电路无法实现真正的大电流充电(即充电电流仍较小),进而使得所述充电电路的充电速度较小、充电时间较长以及充电效率较低,且由于输出电感损耗的能量通常会转化成热能,进而还会存在充电电路发热的问题。
也就是说,现有的充电电路存在降压转换效率较低、充电电流较小以及发热较严重的问题。
发明内容
本申请实施例提供了一种充电电路、系统、方法及电子装置,用以解决现有的充电电路存在的降压转换效率较低以及发热较严重的问题。
第一方面,本申请实施例提供了一种充电电路,包括控制模块以及与所述控制模块连接的电荷泵变换模块,所述电荷泵变换模块的输入端用于与适配模块连接,所述电荷泵变换模块的输出端用于与电池模块连接,其中,所述电荷泵变换模块包括一个或两个以上并联的电荷泵变换子模块;
针对所述电荷泵变换模块中的任一电荷泵变换子模块,所述电荷泵变换子模块用于在接收到所述控制模块下发的第一控制信号时,开启所述电荷泵变换子模块中的第一组开关,关闭所述电荷泵变换子模块中的第二组开关,以使得所述适配模块能够向所述电荷泵变换子模块中的电容以及所述电池模块充电;在接收到所述控制模块下发的第二控制信号时,关闭所述电荷泵变换子模块中的第一组开关,开启所述电荷泵变换子模块中的第二组开关,以使得所述电荷泵变换子模块中的所述电容能够向所述电池模块充电。
结合第一方面,在第一方面的第一种可能的实现方式中,所述第一组开关包括第一开关以及第二开关,所述第二组开关包括第三开关以及第四开关,所述电容包括第一电容以及第二电容,其中:
所述第一开关的控制端与所述控制模块的输出端相连,所述第一开关的输入端与所述适配模块的第一端相连,所述第一开关的输出端与所述第三开关的输入端以及所述第一电容的第一端相连;
所述第二开关的控制端与所述控制模块的输出端相连,所述第二开关的输入端与所述第一电容的第二端以及所述第四开关的输入端相连,所述第二开关的输出端与所述第二电容的第一端、所述电池模块的第一端以及所述第三开关的输出端相连;
所述第三开关的控制端与所述控制模块的输出端相连;
所述第四开关的控制端与所述控制模块的输出端相连,所述第四开关的输出端与所述第二电容的第二端、所述适配模块的第二端以及所述电池模块的第二端相连,并作为公共负端。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述第一开关、第二开关、第三开关以及第四开关均至少包括一
个或两个以上并联的开关元件。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述一个或两个以上并联的开关元件为晶体管。
结合第一方面的第二种可能的实现方式,在第一方面的第四种可能的实现方式中,所述第一电容以及所述第二电容均至少包括一个或两个以上并联的电容元件。
结合第一方面的第二种~第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述充电电路还包括与所述适配模块以及所述电荷泵变换模块均相连的补偿模块:
所述补偿模块,用于在各电荷泵变换子模块中的第一组开关开启、第二组开关关闭时,向各电荷泵变换子模块中的电容以及所述电池模块进行电流补偿。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述补偿模块包括第三电容,其中:
所述第三电容的第一端与所述适配模块的第一端以及所述第一开关的输入端相连,所述第三电容的第二端与所述第二电容的第二端、所述电池模块的第二端、所述适配模块的第二端以及所述第四开关的输出端相连。
结合第一方面的第二种~第四种可能的实现方式,在第一方面的第七种可能的实现方式中,所述充电电路还包括连接于所述电池模块和所述适配模块之间的反馈单元;
所述反馈单元,用于实时采集所述电池模块的电量信息,并根据所述电量信息生成充电信息,以及,将所述充电信息反馈至所述适配模块,以使得所述适配模块能够根据所述充电信息实时改变输出至所述电荷泵变换模块的电压以及电流。
结合第一方面,在第一方面的第八种可能的实现方式中,针对所述电荷泵变换模块中的任一电荷泵变换子模块,所述电荷泵变换子模块的输入电压以及输入电流与所述电池模块所需要的充电电压以及充电电流之间的关系如
第一公式所示:
其中,Vc表示所述电荷泵变换子模块的输入电压;所述Ic表示所述电荷泵变换子模块的输入电流;所述Vbat表示所述电池模块所需要的充电电压;所述Ibat表示所述电池模块所需要的充电电流;所述η表示所述充电电路的降压转换效率;所述M为正整数、且表示所述电荷泵变换模块中包括的电荷泵变换子模块的数目。
第二方面,本申请实施例提供了一种充电系统,包括本申请实施例的第一方面中所述的充电电路。
第三方面,本申请实施例提供了一种充电方法,包括:
接收控制器下发的控制信号;
若确定所述控制信号为第一控制信号,则开启电荷泵变换子模块中的第一组开关,关闭所述电荷泵变换子模块中的第二组开关,使得电源适配器能够向所述电荷泵变换子模块中的第一电容、第二电容以及与所述电荷泵变换子模块相连的电池充电;若确定所述控制信号为第二控制信号,则开启所述电荷泵变换子模块中的第二组开关,关闭所述电荷泵变换子模块中的第一组开关,使得所述第一电容以及所述第二电容能够向所述电池充电;
其中,所述电荷泵变换子模块为电荷泵变换模块中的任一电荷泵变换子模块;所述电荷泵变换模块包括一个或两个以上并联的电荷泵变换子模块。
结合第三方面,在第三方面的第一种可能的实现方式中,所述方法还包括:
在所述第一组开关开启、所述第二组开关关闭时,通过并联在所述电源适配器两端的第三电容,向所述第一电容、所述第二电容以及所述电池进行电流补偿。
结合第三方面,在第三方面的第二种可能的实现方式中,所述方法还包括:
确定所述电池的充电电压以及充电电流;
根据所述电池的充电电压以及充电电流确定所述电源适配器输出至所述电荷泵变换模块的输出电压以及输出电流。
结合第三方面,在第三方面的第三种可能的实现方式中,所述方法还包括:
实时采集所述电池的电量信息,并根据所述电量信息生成充电信息;
将所述充电信息反馈至所述电源适配器,以使得所述电源适配器能够根据所述充电信息实时改变输出至所述电荷泵变换模块的电压以及电流。
第四方面,本申请实施例提供了一种电子装置,包括:
接收单元,用于接收控制器下发给电荷泵变换模块中的任一电荷泵变换子模块的控制信号;
充电单元,用于若确定所述控制信号为第一控制信号,则开启所述电荷泵变换子模块中的第一组开关,关闭所述电荷泵变换子模块中的第二组开关,使得电源适配器能够向所述电荷泵变换子模块中的第一电容、第二电容以及与所述电荷泵变换子模块相连的电池充电;若确定所述控制信号为第二控制信号,则开启所述电荷泵变换子模块中的第二组开关,关闭所述电荷泵变换子模块中的第一组开关,使得所述第一电容以及第二电容能够向所述电池充电;
所述电荷泵变换模块包括一个或两个以上并联的电荷泵变换子模块。
结合第四方面,在第四方面的第一种可能的实现方式中,所述装置还包括:
补偿单元,用于在所述第一组开关开启、所述第二组开关关闭时,通过并联在所述电源适配器两端的第三电容,向所述第一电容、所述第二电容以及所述电池进行电流补偿。
结合第四方面,在第四方面的第二种可能的实现方式中,所述装置还包括:
反馈单元,用于实时采集所述电池的电量信息,并根据所述电量信息生
成充电信息,以及,将所述充电信息反馈至所述电源适配器,以使得所述电源适配器能够根据所述充电信息实时改变输出至所述电荷泵变换模块的电压以及电流。
根据第一方面~第四方面提供的充电电路、系统、方法及电子装置,所述充电电路包括包含一个或多个并联的电荷泵变换子模块的电荷泵变换模块,各电荷泵变换子模块在接收到控制模块下发的第一控制信号时,可开启第一组开关,关闭第二组开关,使得适配模块能够向各电荷泵变换子模块中的电容以及与各电荷泵变换子模块均相连电池模块充电;在接收到所述控制模块下发的第二控制信号时,可开启第二组开关,关闭第一组开关,使得各电荷泵变换子模块中的电容能够向所述电池模块充电。相比于现有技术,由于本申请实施例中所述的充电电路中采用的充/放电元件为电容而非电感,因而能够避免由电感元件引起的充电电路的降压转换效率较低、充电电流较小以及发热较严重的问题;且,电荷泵变换模块能够实现降压和升流的功能,因而可在其输入电流较小的情况下输出较大的电流,即能够实现大电流充电,从而有效地加快了所述充电电路的充电速度、减小了所述充电电路的充电时间、提高了所述充电电路的充电效率、避免了终端设备充电时的发热现象、提高了用户的使用体验。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1所示为本申请实施例一中的充电电路的结构示意图;
图2所示为本申请实施例一中的一种可能的充电电路的具体结构示意图;
图3所示为本申请实施例一中的一种可能的充电电路在第一阶段的等效电路;
图4所示为本申请实施例一中的一种可能的充电电路在第二阶段的等效电路;
图5所示为本申请实施例二中的充电方法的流程示意图;
图6所示为本申请实施例三种的电子装置的结构示意图。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
实施例一:
为了解决现有的充电电路所存在的降压转换效率较低、充电电流较小以及发热较严重的问题,本申请实施例一提供了一种充电电路,如图1所示,其为本申请实施例一中所述的充电电路的结构示意图。需要说明的是,所述充电电路可应用于包括终端设备的充电场景。具体地,由图1可知,所述充电电路可包括适配模块11、控制模块12以及电池模块13,所述充电电路还可包括与所述适配模块11、所述控制模块12以及所述电池模块13分别相连的电荷泵变换模块14,其中,所述电荷泵变换模块14可包括一个或多个并联的电荷泵变换子模块(图1以包括N个电荷泵变换子模块为例,N为正整数);
针对所述电荷泵变换模块14中的任一电荷泵变换子模块(如图1中所示的141、142、……14N),所述电荷泵变换子模块可用于在接收到所述控制模块12下发的第一控制信号时,开启所述电荷泵变换子模块中的第一组开关,关闭所述电荷泵变换子模块中的第二组开关,以使得所述适配模块11能够向所述电荷泵变换子模块中的电容以及所述电池模块13充电;在接收到所述控制模块12下发的第二控制信号时,关闭所述电荷泵变换子模块中的第一组开关,开启所述电荷泵变换子模块中的第二组开关,以使得所述电荷泵变换子
模块中的所述电容能够向所述电池模块13充电。
其中,需要说明的是,在本申请实施例中,所述电荷泵变换模块14中可包括的电荷泵变换子模块的数量可根据实际情况灵活设置,如可设置为2个、5个、10个等,对此不作任何限定。优选地,通常情况下,所述电荷泵变换模块14可包括至少两个(相互并联)电荷泵变换子模块,对此不作赘述。
再有,所述第一控制信号以及所述第二控制信号可根据需求灵活设置,如可将所述第一控制信号设置为高电平1,将所述第二控制信号设置为低电平0,或者可将所述第一控制信号设置为低电平0,将所述第二控制信号设置为高电平1,对此不作任何限定。
另外,需要说明的是,所述控制模块12不仅可通过软件方式实现第一控制信号以及第二控制信号的下发,例如可编写相应的软件程序,通过该软件程序的执行实现第一控制信号以及第二控制信号的下发,也可直接通过硬件方式实现第一控制信号以及第二控制信号的下发,例如通过特定的硬件芯片实现第一控制信号以及第二控制信号的下发。所述控制模块12可按照一定的周期(可根据实际情况灵活设定)下发所述第一控制信号以及所述第二控制信号,如在一个周期(如T内)的第一阶段(前T/2内)下发第一控制信号,在一个周期的第二阶段(后T/2)下发第二控制信号等,本申请实施例对此不作任何限定。
也就是说,在本申请实施例中,各电荷泵变换子模块在接收到控制模块下发的第一控制信号时,可开启第一组开关,关闭第二组开关,使得适配模块能够向各电荷泵变换子模块中的电容以及与各电荷泵变换子模块均相连电池模块充电;在接收到所述控制模块下发的第二控制信号时,可开启第二组开关,关闭第一组开关,使得各电荷泵变换子模块中的电容能够向所述电池模块充电。相比于现有技术,由于本申请实施例中所述的充电电路中采用的充/放电元件为电容而非电感,因而电路中就不会存在由电感元件引起的线圈损耗以及磁芯损耗,也不会出现由电感元件所导致的电路发热,解决了现有技术中的充电电路的降压转换效率较低、充电电流较小以及发热较严重的问
题;且,电荷泵变换模块能够实现降压和升流的功能,因而可在其输入电流较小的情况下输出较大的电流,即能够实现大电流充电,从而有效地加快了所述充电电路的充电速度、减小了所述充电电路的充电时间、提高了所述充电电路的充电效率、避免了终端设备充电时的发热现象、提高了用户的使用体验。
具体地,如图2所示,以电荷泵变换模块14中仅包括一个电荷泵变换子模块为例,所述第一组开关可包括第一开关(如图2中所示的Q1)以及第二开关(如图2中所示的Q2),所述第二组开关可包括第三开关(如图2中所示的Q3)以及第四开关(如图2中所示的Q4),所述电容可包括第一电容(如图2中所示的C1)以及第二电容(如图2中所示的C2),其中:
所述第一开关(如图2中所示的Q1)的控制端与所述控制模块12的输出端相连,输入端与所述适配模块11的第一端相连,输出端与所述第三开关(如图2中所示的Q3)的输入端以及所述第一电容(如图2中所示的C1)的第一端相连;
所述第二开关(如图2中所示的Q2)的控制端与所述控制模块12的输出端相连,输入端与所述第一电容(如图2中所示的C1)的第二端以及所述第四开关(如图2中所示的Q4)的输入端相连,输出端与所述第二电容(如图2中所示的C2)的第一端、所述电池模块13的第一端以及所述第三开关(如图2中所示的Q3)的输出端相连;
所述第三开关(如图2中所示的Q3)的控制端与所述控制模块12的输出端相连;
所述第四开关(如图2中所示的Q4)的控制端与所述控制模块12的输出端相连,输出端与所述第二电容(如图2中所示的C2)的第二端、所述适配模块11的第二端以及所述电池模块13的第二端相连。
由上述内容可知,在本申请实施例中,各电荷泵变换子模块在接收到控制模块12下发的第一控制信号时,可开启各电荷泵变换子模块中的第一组开关,关闭各电荷泵变换子模块中的第二组开关,使得所述适配模块11能够向
各电荷泵变换子模块中的第一电容、第二电容以及所述电池模块13充电,需要说明的是,此时向电池模块13充电的具体可为各电荷泵变换子模块中的第二电容;在接收到所述控制模块12下发的第二控制信号时,可开启各电荷泵变换子模块中的第二组开关,关闭各电荷泵变换子模块中的第一组开关,使得各电荷泵变换子模块中的第一电容以及第二电容能够向所述电池模块13充电。相比于现有技术,由于本申请实施例中所述的充电电路中采用的充/放电元件为电容(即第一电容以及第二电容)而非电感,因而不会出现线圈损耗、磁芯损耗以及发热的问题;且,电荷泵变换模块能够实现降压和升流的功能,因而可在其输入电流较小的情况下输出较大的电流,即能够实现真正的大电流充电,可有效地加快所述充电电路的充电速度、减小所述充电电路的充电时间、提高所述充电电路的充电效率,同时还能够避免终端设备充电时的发热现象、提高了用户的使用体验,此处不再赘述。
需要说明的是,在本申请实施例中,可将由所述第一开关(如图2中所示的Q1)、第二开关(如图2中所示的Q2)、第三开关(如图2中所示的Q3)、第四开关(如图2中所示的Q4)、第一电容(如图2中所示的C1)以及第二电容(如图2中所示的C2)所组成的电路结构称为Charge Pump Converter(电荷泵变换)电路,因此,本申请实施例中,所述充电电路也可被称为基于Charge Pump Converter电路的充电电路(后续仍简称为充电电路),此处不再赘述。
进一步地,所述第一开关(如图2中所示的Q1)、第二开关(如图2中所示的Q2)、第三开关(如图2中所示的Q3)以及第四开关(如图2中所示的Q4)均至少可包括一个或多个并联的开关元件。这就有效地降低了开关元件的导通电阻,增大了所述充电电路中的电流,加快了所述充电电路的充电速度、减小了所述充电电路的充电时间、提高了所述充电电路的充电效率,本申请实施例对此不作赘述。
优选地,所述一个或多个并联的开关元件可为晶体管。
可选地,所述晶体管可包括三极管或场效应管。
需要说明的是,若开关为三极管,则开关的控制端即可为三极管的基极,
开关的输入端即可为三极管的集电极(或发射极),开关的输出端即可为三极管的发射极(或集电极);若开关为场效应管,则开关的控制端即可为场效应管的栅极,开关的输入端即可为场效应管的漏极(或源极),开关的输出端即可为场效应管的源极(或漏极)。当然,开关的输入端和输出端还可互相交换,本申请实施例对此不作任何限定。
进一步可选地,所述三极管可包括NPN型三极管、PNP型三极管,所述场效应管可包括N沟道型场效应管以及P沟道型场效应管等,本申请实施例对此也不作任何限定。
另外,需要说明的是,所述第一开关、第二开关、第三开关以及第四开关还可为任一能够实现开关功能的开关元件,如任一单刀双掷开关等,本申请实施例对此不作任何限定。
需要说明的是,所述第一电容(如图2中所示的C1)以及所述第二电容(如图2中所示的C2)均至少可包括一个或多个并联的电容元件。其中,多个并联的电容元件可有效的降低第一电容以及第二电容的ESR(Equivalent Series Resistance,等效串联电阻),从而可有效地增大所述充电电路中的电流,加快所述充电电路的充电速度、减小所述充电电路的充电时间、提高所述充电电路的充电效率,本申请实施例对此也不作赘述。
进一步地,如图2、图3所示,所述充电电路还可包括与所述适配模块11以及所述电荷泵变换模块14均相连的补偿模块15:
所述补偿模块15,可用于在各电荷泵变换子模块中的第一组开关开启、第二组开关关闭时,向各电荷泵变换子模块中的电容(如图2中所示的C1以及C2)以及所述电池模块13进行电流补偿。
可选地,所述补偿模块15可包括第三电容(如图2中所示的C3),其中:
所述第三电容(如图2中所示的C3)的第一端与所述适配模块11的输出端以及所述第一开关(如图2中所示的Q1)的输入端相连,第二端与所述第二电容(如图2中所示的C2)的第二端、所述电池模块13的第二端以及所述第四开关(如图2中所示的Q4)的输出端相连。
需要说明的是,为了进一步降低所述第三电容(如图2中所示的C3)的ESR,减小充电时间,提高充电效率,所述第三电容至少可包括一个或多个并联的电容元件,对此也不作赘述。
也就是说,与现有技术类似,在本申请实施例中,还可在整个电荷泵变换模块14的输入端并联有一个第三电容。由于所述第三电容也并联在所述适配模块11的两端,因而所述适配模块11可一直向所述第三电容充电,从而使得在第一开关Q1、第二开关Q2导通时,所述第三电容能够向第一电容C1、第二电容C2以及电池模块13充电,实现了电流补偿的作用,避免了所述适配模块11输出的电流过小导致的充电速度较慢以及充电时间较长的问题。
进一步地,针对所述电荷泵变换模块14中的任一电荷泵变换子模块,所述电荷泵变换子模块的输入电压以及输入电流与所述电池模块13所需要的充电电压以及充电电流之间的关系可如第一公式(即公式1)所示:
其中,所述Vc表示所述电荷泵变换子模块的输入电压值;所述Ic表示所述电荷泵变换子模块的输入电流值;所述Vbat表示所述电池模块13所需要的充电电压值;所述Ibat表示所述电池模块13所需要的充电电流值;所述η表示所述充电电路的降压转换效率;所述M为正整数、且表示所述电荷泵变换模块14中包括的电荷泵变换子模块的数目。
例如,以电荷泵变换模块14中仅包括一个电荷泵变换子模块为例,假设所述第一开关Q1、所述第二开关Q2、所述第三开关Q3以及所述第四开关Q4均为MOS管,且导通电阻分别可为RQ1、RQ2、RQ3以及RQ4,所述第一电容C1以及所述第二电容C2的ESR分别可为RC1以及RC2,则当该电荷泵变换子模块接收到的所述控制模块12下发的控制信号为第一控制信号(如为高电平1等),则所述充电电路的等效电路可简化为图3所示的电路结构;当该电荷泵变换子模块接收到的所述控制模块12下发的控制信号为第二控制信号(如可为低电平0等),则所述充电电路的等效电路可简化为图4所示的电路
结构。
进一步地,假设在第一阶段(即接收到的所述控制模块12下发的控制信号为第一控制信号的阶段,前T/2阶段),流过所述充电电路的电流(即所述第一电容C1以及所述第二电容C2的充电电流)的有效值可为Ic,在第二阶段(即接收到的所述控制模块12下发的控制信号为第二控制信号的阶段,后T/2阶段),流过所述充电电路的电流(即所述第一电容C1以及所述第二电容C2的放电电流)有效值为Id;假设所述充电电路的输入电流可为Iin,所述充电电路的输出电流可为Iout,且在第一阶段所述充电电路的损耗功率可为Pc,在第二阶段所述充电电路的损耗功率可为Pd,因而,整个周期内(即第一阶段+第二阶段)所述充电电路的总的损耗功率可为Pt。再有,由于所述充电电路的两个阶段的占空比始终为50%(即第一阶段以及第二阶段各占整个周期的一半),因而所述充电电路的总的损耗功率与两个阶段的所述充电电路的损耗功率之间存在公式2所示的关系:
由于P=I2*R,因而第一阶段以及第二阶段的损耗功率可表示为公式3以及公式4:
Pc=Ic
2*(RQ1+RC1+RQ3+RC2) 公式3;
由上述两个公式可以得出所述充电电路的总的损耗功率,如公式5所示:
通过以上公式,即可计算所述充电电路的损耗功率。具体地,由于通常情况下,MOS管的导通电阻一般可在2~20mΩ之间,10uF以上的电容元件的在低频段(1MHZ左右)的ESR可在2~15mΩ之间,若假设本申请实施例中的RQ1=RQ2=RQ3=RQ4=15mΩ,RC1=RC2=10mΩ,则可以计算出本申请实施例中所述的充电电路的总的损耗功率,如公式6所示:
Pt=0.025*Ic
2+0.004*Id
2 公式6;
Pt≈0.0165*Iout
2 公式7;
综上所述,本申请实施例中所述的充电电路的总的损耗功率可由所述充电电路的输出电流决定。例如,假设一个充电电路(以电荷泵变换模块14中仅包括一个电荷泵变换子模块为例)的输出为4V/4A(即输出电压为4V,输出电流为4A),则可计算得到所述充电电路的总的损耗功率可为0.264W。需要说明的是,由于电路的转换效率因而还可进一步计算得到所述充电电路的转换效率(此处可为降压转换效率)可为(高于91%),此处不再赘述。
由上述内容可知,本申请实施例中所述的充电电路的降压转换效率通常可以达到98%以上(只要选择合理的参数),相较于现有技术中,大大提升了充电电路的降压转换效率,即降低了充电电路的能量损耗,从而实现了真正的大电流充电,有效地加快了所述充电电路的充电速度、减小了所述充电电路的充电时间、提高了所述充电电路的充电效率。
进一步地,由于开关元件本身的导通电阻并不为零,因而,当开关元件串联在电路中时,在开关元件的两端会出现压降,这就导致所述充电电路的输出电压并不等于所述充电电路的输入电压的一半(即VOUT≠VIN/2)。
但是,对于电流而言,由于所述充电电路中并不存在会损耗电流的电感元件(或电阻元件),因而所述充电电路的输出电流可一直保持为所述充电电流的输入电流的2倍,即Iout=2*Iin。因此,可根据所述充电电路的输出电流的大小确定出所述充电电路的输出电压的大小,以进一步确定所述充电电路的输入电压的大小。
例如,假设终端设备的电池的充电电压为Vbat(即需要的充电电路的输
出电压),充电电流为Ibat(即需要的充电电路的输出电流),所述充电电路的输入电压为Vc,输入电流为Ic,输入功率为Pin,输出功率为Pout,降压转换效率为η。则根据Ic=Ibat/2(即Ibat=2*Ic)、Pout=Pin*η、Pout=Vbat*Ibat以及Pin=Vc*Ic,可得Vc=2*Vbat/η,因而可确定所述充电电路的输入电压(即所述充电电路的输出电压与输入电压之间的关系表达式),对此不作赘述。
也就是说,采用本申请实施例中所述的充电电路对终端设备(如手机、平板电脑等)等进行充电时,可首先确定所述终端设备中的电池的充电电压以及充电电流,然后可根据所述充电电压以及所述充电电流确定向所述终端设备充电的适配器的输出电压以及输出电流,如需要采用输出电压为Vc=2*Vbat/η、输出电流为Ic=Ibat/2的适配器向所述终端设备进行充电。从而保证了整个充电电路的安全性以及高效性,本申请实施例对此不作任何限定。
类似地,假设所述充电电路中的电荷泵变换模块14可包括M(M≥2)个电荷泵变换子模块,由于各电荷泵变换子模块是相互并联的,因而整个电荷泵变换模块14的等效电阻会进一步降低,进而可使得所述充电电路输出较大的电流,即实现真正的大电流的充电,加快充电速度、减小充电时间、提高充电效率。此时,若仍假设终端设备的电池的充电电压为Vbat,充电电流为Ibat,则可确定所述电荷泵变换模块14中的各电荷泵变换子模块的输入电压均可为Vc=2*Vbat/η、输入电流均可为Ic=Ibat/(2*M),对此不作赘述。
需要说明的是,本申请实施例一中所述的充电电路不仅仅适用于采用适配器向终端设备充电的场景,还可适用于采用充电宝向终端设备充电的场景,此时,可仅将所述适配器替换为充电宝即可,本申请实施例对此不作任何限定。
相应地,本申请实施例一还提供了一种充电系统,可包括本申请本实施例一中所述的充电电路,对此不作赘述。
本申请实施例一提供了一种充电电路及系统,包括包含一个或多个并联的电荷泵变换子模块的电荷泵变换模块,各电荷泵变换子模块在接收到控制
模块下发的第一控制信号时,可开启第一组开关,关闭第二组开关,使得适配模块能够向各电荷泵变换子模块中的电容以及与各电荷泵变换子模块均相连电池模块充电;在接收到所述控制模块下发的第二控制信号时,可开启第二组开关,关闭第一组开关,使得各电荷泵变换子模块中的电容能够向所述电池模块充电。相比于现有技术,由于本申请实施例中所述的充电电路中采用的充/放电元件为电容而非电感,因而能够避免由电感元件引起的充电电路的降压转换效率较低、充电电流较小以及发热较严重的问题;且,电荷泵变换模块能够实现降压和升流的功能,因而可在其输入电流较小的情况下输出较大的电流,即能够实现大电流充电,从而有效地加快了所述充电电路的充电速度、减小了所述充电电路的充电时间、提高了所述充电电路的充电效率。另外,需要说明的是,在实际应用中,所述充电电路中的Charge Pump Converter电路除了可自行搭建之外,还可使用现成的芯片(所述芯片中还可包括相应的控制逻辑,以控制芯片中各开关元件的导通与截止),此时,只需要在芯片的管脚上连接相应的元件即可,本申请实施例对此不作任何限定。
实施例二:
本申请实施例二提供了一种充电方法,如图5所示,其为本申请实施例二所述的充电方法的流程示意图,且本申请实施例中所采用的充电电路可如本申请实施例一中所述的充电电路,相同之处不再赘述。具体地,由图5可知,所述充电方法可包括以下步骤:
步骤501:接收控制器下发的控制信号;
步骤502:若确定所述控制信号为第一控制信号,则开启第一组开关,关闭第二组开关,并通过电源适配器向第一电容、第二电容以及电池充电;若确定所述控制信号为第二控制信号,则开启第二组开关,关闭第一组开关,并通过所述第一电容以及第二电容向所述电池充电。
其中,本申请实施例中所述的充电方法可适用于包括一条或多条并联支路的充电电路,且每一支路中均可包括第一组开关、第二组开关、第一电容以及第二电容等元件。需要说明的是,所述充电方法的执行主体可为相应的
电子装置,所述第一组开关通常可包括第一开关(可包括一个或多个并联的开关元件)以及第二开关(可包括一个或多个并联的开关元件),所述第二组开关通常可包括第三开关(可包括一个或多个并联的开关元件)以及第四开关(可包括一个或多个并联的开关元件)。另外,所述第一开关、第二开关、第三开关以及第四开关通常可为任意能够实现开关功能的开关元件,如晶体管(如三极管或场效应管等)等,本申请实施例对此不作任何限定。
也就是说,在本申请实施例中,在接收到控制器发送的控制信号时,可首先判断所述控制信号是否为第一控制信号,若是,可开启所述电子装置中的第一开关以及第二开关,并通过电源适配器向所述电子装置中的第一电容、第二电容以及电池充电,需要说明的是,此时向电池充电的具体可为所述第二电容;若否,可开启所述电子装置中的第三开关以及第四开关,并通过所述电子装置中的第一电容以及第二电容向所述电池充电。相比于现有技术,由于本申请实施例中所述的充电电路中采用的充/放电元件为电容而非电感,因而能够避免由电感元件引起的充电电路的降压转换效率较低、充电电流较小以及发热较严重的问题;且,电荷泵变换模块能够实现降压和升流的功能,因而可在其输入电流较小的情况下输出较大的电流,即能够实现大电流充电,从而有效地加快了所述充电电路的充电速度、减小了所述充电电路的充电时间、提高了所述充电电路的充电效率。
进一步地,所述方法还可包括:
在所述第一组开关开启、所述第二组开关关闭时,通过并联在所述电源适配器两端的第三电容,向所述第一电容、所述第二电容以及所述电池进行电流补偿。
可选地,所述第一电容、第二电容以及第三电容均可包括一个或多个并联的电容元件,对此不作赘述。
进一步地,所述方法还可包括:
实时采集所述电池的电量信息,并根据所述电量信息生成充电信息,以及,将所述充电信息反馈至所述电源适配器。
也就是说,本申请实施例中所述的充电方法,还可实时采集被充电池的中的电量信息,如充电电量百分比等,还可根据所述电量信息生成充电信息,并将所述充电信息反馈给所述电源适配器,以使得所述电源适配器能够根据所述充电信息实时改变输出的电压以及电流等,本申请实施例对此不作赘述。
另外,需要说明的是,本申请实施例二中所述的充电方法不仅仅适用于采用适配器向终端设备充电的场景,还可适用于采用充电宝向终端设备充电的场景,此时,可仅将所述适配器替换为充电宝即可,本申请实施例对此不作任何限定。
本申请实施例二提供了一种充电方法,在接收到控制器发送的控制信号时,可首先判断所述控制信号是否为第一控制信号,若是,可开启所述电子装置中的第一开关以及第二开关,并通过电源适配器向所述电子装置中的第一电容、第二电容以及电池充电;若否,可开启所述电子装置中的第三开关以及第四开关,并通过所述电子装置中的第一电容以及第二电容向所述电池充电。相比于现有技术,由于本申请实施例中所述的充电电路中采用的充/放电元件为电容而非电感,因而能够避免由电感元件引起的充电电路的降压转换效率较低、充电电流较小以及发热较严重的问题;且,电荷泵变换模块能够实现降压和升流的功能,因而可在其输入电流较小的情况下输出较大的电流,即能够实现大电流充电,从而有效地加快了所述充电电路的充电速度、减小了所述充电电路的充电时间、提高了所述充电电路的充电效率。
实施例三:
基于与本申请实施例二相同的发明构思,本申请实施例三提供了一种电子装置,如图6所示,其为本申请实施例三中所述的电子装置的结构示意图。具体地,由图6可知,所述电子装置可包括:
接收单元61,可用于接收控制器下发的控制信号;
充电单元62,可用于若确定所述控制信号为第一控制信号,则开启第一组开关,关闭第二组开关,并通过电源适配器向第一电容、第二电容以及电池充电,否则,开启第二组开关,关闭第一组开关,并通过所述第一电容以
及第二电容向所述电池充电。
进一步地,所述装置还可包括:
补偿单元63,可用于在所述第一组开关开启、所述第二组开关关闭时,通过并联在所述电源适配器两端的第三电容,向所述第一电容、所述第二电容以及所述电池进行电流补偿。
进一步地,所述装置还可包括:
反馈单元64,可用于实时采集的所述电池的电量信息,并根据所述电量信息生成充电信息,以及,将所述充电信息反馈至所述电源适配器。
需要说明的是,本申请实施例三中所述的电子装置,可为独立于所述终端设备的一独立装置,也可为集成于所述终端设备的一集成装置,本申请实施例对此不作任何限定。
另外,需要说明的是,本申请实施例三中所述的电子装置不仅仅适用于采用适配器向终端设备充电的场景,还可适用于采用充电宝向终端设备充电的场景,此时,可仅将所述适配器替换为充电宝即可,本申请实施例对此不作任何限定。
本申请实施例二提供了一种电子装置,在接收到控制器发送的控制信号时,可首先判断所述控制信号是否为第一控制信号,若是,可开启所述电子装置中的第一开关以及第二开关,并通过电源适配器向所述电子装置中的第一电容、第二电容以及电池充电;若否,可开启所述电子装置中的第三开关以及第四开关,并通过所述电子装置中的第一电容以及第二电容向所述电池充电。相比于现有技术,由于本申请实施例中所述的充电电路中采用的充/放电元件为电容而非电感,因而能够避免由电感元件引起的充电电路的降压转换效率较低、充电电流较小以及发热较严重的问题;且,电荷泵变换模块能够实现降压和升流的功能,因而可在其输入电流较小的情况下输出较大的电流,即能够实现大电流充电,从而有效地加快了所述充电电路的充电速度、减小了所述充电电路的充电时间、提高了所述充电电路的充电效率。
本领域技术人员应明白,本申请的实施例可提供为方法、装置(设备)、
或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (17)
- 一种充电电路,其特征在于,包括控制模块以及与所述控制模块连接的电荷泵变换模块,所述电荷泵变换模块的输入端用于与适配模块连接,所述电荷泵变换模块的输出端用于与电池模块连接,其中,所述电荷泵变换模块包括一个或两个以上并联的电荷泵变换子模块;针对所述电荷泵变换模块中的任一电荷泵变换子模块,所述电荷泵变换子模块用于在接收到所述控制模块下发的第一控制信号时,开启所述电荷泵变换子模块中的第一组开关,关闭所述电荷泵变换子模块中的第二组开关,以使得所述适配模块能够向所述电荷泵变换子模块中的电容以及所述电池模块充电;在接收到所述控制模块下发的第二控制信号时,关闭所述电荷泵变换子模块中的第一组开关,开启所述电荷泵变换子模块中的第二组开关,以使得所述电荷泵变换子模块中的所述电容能够向所述电池模块充电。
- 如权利要求1所述的充电电路,其特征在于,所述第一组开关包括第一开关以及第二开关,所述第二组开关包括第三开关以及第四开关,所述电容包括第一电容以及第二电容,其中:所述第一开关的控制端与所述控制模块的输出端相连,所述第一开关的输入端与所述适配模块的第一端相连,所述第一开关的输出端与所述第三开关的输入端以及所述第一电容的第一端相连;所述第二开关的控制端与所述控制模块的输出端相连,所述第二开关的输入端与所述第一电容的第二端以及所述第四开关的输入端相连,所述第二开关的输出端与所述第二电容的第一端、所述电池模块的第一端以及所述第三开关的输出端相连;所述第三开关的控制端与所述控制模块的输出端相连;所述第四开关的控制端与所述控制模块的输出端相连,所述第四开关的输出端与所述第二电容的第二端、所述适配模块的第二端以及所述电池模块的第二端相连,并作为公共负端。
- 如权利要求2所述的充电电路,其特征在于,所述第一开关、第二开关、第三开关以及第四开关均至少包括一个或两个以上并联的开关元件。
- 如权利要求3所述的充电电路,其特征在于,所述一个或两个以上并联的开关元件为晶体管。
- 如权利要求2所述的充电电路,其特征在于,所述第一电容以及所述第二电容均至少包括一个或两个以上并联的电容元件。
- 如权利要求1~5任一所述的充电电路,其特征在于,所述充电电路还包括与所述适配模块以及所述电荷泵变换模块均相连的补偿模块:所述补偿模块,用于在各电荷泵变换子模块中的第一组开关开启、第二组开关关闭时,向各电荷泵变换子模块中的电容以及所述电池模块进行电流补偿。
- 如权利要求6所述的充电电路,其特征在于,所述补偿模块包括第三电容,其中:所述第三电容的第一端与所述适配模块的第一端以及所述第一开关的输入端相连,所述第三电容的第二端与所述第二电容的第二端、所述电池模块的第二端、所述适配模块的第二端以及所述第四开关的输出端相连。
- 如权利要求1~5任一所述的充电电路,其特征在于,所述充电电路还包括连接于所述电池模块和所述适配模块之间的反馈单元;所述反馈单元,用于实时采集所述电池模块的电量信息,并根据所述电量信息生成充电信息,以及,将所述充电信息反馈至所述适配模块,以使得所述适配模块能够根据所述充电信息实时改变输出至所述电荷泵变换模块的电压以及电流。
- 一种充电系统,其特征在于,包括权利要求1~9任一所述的充电电路。
- 一种充电方法,其特征在于,包括:接收控制器下发的控制信号;若确定所述控制信号为第一控制信号,则开启电荷泵变换子模块中的第一组开关,关闭所述电荷泵变换子模块中的第二组开关,使得电源适配器能够向所述电荷泵变换子模块中的第一电容、第二电容以及与所述电荷泵变换子模块相连的电池充电;若确定所述控制信号为第二控制信号,则开启所述电荷泵变换子模块中的第二组开关,关闭所述电荷泵变换子模块中的第一组开关,使得所述第一电容以及所述第二电容能够向所述电池充电;其中,所述电荷泵变换子模块为电荷泵变换模块中的任一电荷泵变换子模块;所述电荷泵变换模块包括一个或两个以上并联的电荷泵变换子模块。
- 如权利要求11所述的方法,其特征在于,所述方法还包括:在所述第一组开关开启、所述第二组开关关闭时,通过并联在所述电源适配器两端的第三电容,向所述第一电容、所述第二电容以及所述电池进行电流补偿。
- 如权利要求11所述的方法,其特征在于,所述方法还包括:确定所述电池的充电电压以及充电电流;根据所述电池的充电电压以及充电电流确定所述电源适配器输出至所述电荷泵变换模块的输出电压以及输出电流。
- 如权利要求11所述的方法,其特征在于,所述方法还包括:实时采集所述电池的电量信息,并根据所述电量信息生成充电信息;将所述充电信息反馈至所述电源适配器,以使得所述电源适配器能够根据所述充电信息实时改变输出至所述电荷泵变换模块的电压以及电流。
- 一种电子装置,其特征在于,包括:接收单元,用于接收控制器下发给电荷泵变换模块中的任一电荷泵变换子模块的控制信号;充电单元,用于若确定所述控制信号为第一控制信号,则开启所述电荷泵变换子模块中的第一组开关,关闭所述电荷泵变换子模块中的第二组开关,使得电源适配器能够向所述电荷泵变换子模块中的第一电容、第二电容以及与所述电荷泵变换子模块相连的电池充电;若确定所述控制信号为第二控制信号,则开启所述电荷泵变换子模块中的第二组开关,关闭所述电荷泵变换子模块中的第一组开关,使得所述第一电容以及第二电容能够向所述电池充电;所述电荷泵变换模块包括一个或两个以上并联的电荷泵变换子模块。
- 如权利要求15所述的装置,其特征在于,所述装置还包括:补偿单元,用于在所述第一组开关开启、所述第二组开关关闭时,通过并联在所述电源适配器两端的第三电容,向所述第一电容、所述第二电容以及所述电池进行电流补偿。
- 如权利要求15所述的装置,其特征在于,所述装置还包括:反馈单元,用于实时采集所述电池的电量信息,并根据所述电量信息生成充电信息,以及,将所述充电信息反馈至所述电源适配器,以使得所述电源适配器能够根据所述充电信息实时改变输出至所述电荷泵变换模块的电压以及电流。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/321,837 US10978898B2 (en) | 2016-08-15 | 2017-08-07 | Charging circuit, system and method, and electronic device |
EP17840965.2A EP3499679A4 (en) | 2016-08-15 | 2017-08-07 | CHARGING SYSTEM, SYSTEM AND METHOD AND ELECTRONIC DEVICE |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610668958.7 | 2016-08-15 | ||
CN201610668958.7A CN106230051B (zh) | 2016-08-15 | 2016-08-15 | 一种充电电路、系统、方法及电子装置 |
CN201710081785.3A CN106849645A (zh) | 2016-08-15 | 2016-08-15 | 一种充电电路、方法及电子装置 |
CN201710081785.3 | 2016-08-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018032990A1 true WO2018032990A1 (zh) | 2018-02-22 |
Family
ID=57547400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/096200 WO2018032990A1 (zh) | 2016-08-15 | 2017-08-07 | 一种充电电路、系统、方法及电子装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10978898B2 (zh) |
EP (1) | EP3499679A4 (zh) |
CN (2) | CN106849645A (zh) |
WO (1) | WO2018032990A1 (zh) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106849645A (zh) * | 2016-08-15 | 2017-06-13 | 珠海市魅族科技有限公司 | 一种充电电路、方法及电子装置 |
CN108233454A (zh) * | 2017-07-31 | 2018-06-29 | 珠海市魅族科技有限公司 | 一种无线充电电路、系统、方法及电子设备 |
CN108233453A (zh) * | 2017-07-31 | 2018-06-29 | 珠海市魅族科技有限公司 | 一种充电方法、装置及电子设备 |
CN108233699A (zh) * | 2017-07-31 | 2018-06-29 | 珠海市魅族科技有限公司 | 一种电源管理芯片、供电系统和电子设备 |
CN207518289U (zh) * | 2017-07-31 | 2018-06-19 | 珠海市魅族科技有限公司 | 一种无线充电电路、系统及电子设备 |
CN108233506A (zh) * | 2017-07-31 | 2018-06-29 | 珠海市魅族科技有限公司 | 一种充电电路、电子设备及无线充电系统 |
CN108233456A (zh) * | 2017-07-31 | 2018-06-29 | 珠海市魅族科技有限公司 | 一种无线充电电路、系统、方法及电子设备 |
CN108233455A (zh) * | 2017-07-31 | 2018-06-29 | 珠海市魅族科技有限公司 | 一种无线充电电路、方法、系统及电子设备 |
CN108233461B (zh) * | 2017-09-04 | 2024-01-23 | 珠海市魅族科技有限公司 | 一种充电电路及终端设备 |
CN107681742A (zh) * | 2017-11-09 | 2018-02-09 | 珠海市魅族科技有限公司 | 一种充电电路以及终端设备 |
CN110970956A (zh) * | 2018-09-30 | 2020-04-07 | Oppo广东移动通信有限公司 | 充电方法、电子设备、充电装置和充电系统 |
CN109245248A (zh) * | 2018-11-27 | 2019-01-18 | 湖南衡盈电子科技有限公司 | 充电控制电路 |
CN109412408B (zh) * | 2018-12-27 | 2020-02-14 | 普冉半导体(上海)有限公司 | 一种电荷泵电路及其负载驱动方法 |
CN112311037B (zh) * | 2019-07-31 | 2022-05-06 | 北京小米移动软件有限公司 | 终端设备 |
CN112821475B (zh) * | 2019-11-15 | 2024-04-02 | 北京小米移动软件有限公司 | 充电电路、充电控制方法及装置 |
CN111277012A (zh) * | 2019-12-31 | 2020-06-12 | 华为技术有限公司 | 充电电路、充电芯片及电子设备 |
CN113394833B (zh) * | 2020-03-13 | 2023-05-02 | 北京小米移动软件有限公司 | 电子设备 |
CN111929594B (zh) * | 2020-09-23 | 2020-12-29 | 深圳英集芯科技有限公司 | 电流检测芯片、电池及电子设备 |
CN112491263B (zh) * | 2020-11-20 | 2022-11-04 | 南昌黑鲨科技有限公司 | 无极调节的供电电路、方法及具有该供电电路的充电设备 |
CN112688388B (zh) * | 2020-12-18 | 2023-11-28 | Oppo(重庆)智能科技有限公司 | 充电装置、电子设备与充电方法 |
CN113422410A (zh) * | 2021-06-23 | 2021-09-21 | 深圳传音控股股份有限公司 | 充电装置及移动终端 |
CN113725958A (zh) * | 2021-08-17 | 2021-11-30 | 珠海市魅族科技有限公司 | 电池电源调节电路、调节方法、充电线及终端设备 |
CN117996872A (zh) * | 2022-10-27 | 2024-05-07 | 北京小米移动软件有限公司 | 终端设备的充电方法、装置、终端设备和存储介质 |
CN115882568A (zh) * | 2023-02-02 | 2023-03-31 | 钰泰半导体股份有限公司 | 电荷泵充电电路、电池组件及用电装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101043177A (zh) * | 2006-02-28 | 2007-09-26 | 英飞凌科技股份公司 | 驱动电路 |
CN102082505A (zh) * | 2010-12-20 | 2011-06-01 | 惠州Tcl移动通信有限公司 | 一种升压电荷泵和其升压方法及移动终端 |
US20150028803A1 (en) * | 2013-07-23 | 2015-01-29 | Qualcomm Incorporated | Systems and methods for enabling a universal back-cover wireless charging solution |
CN204886693U (zh) * | 2015-08-24 | 2015-12-16 | 北京兆易创新科技股份有限公司 | 一种电荷泵 |
CN105703423A (zh) * | 2016-01-22 | 2016-06-22 | 珠海市魅族科技有限公司 | 充电控制方法、充电设备及充电系统 |
CN106230051A (zh) * | 2016-08-15 | 2016-12-14 | 珠海市魅族科技有限公司 | 一种充电电路、系统、方法及电子装置 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6512411B2 (en) * | 1999-08-05 | 2003-01-28 | Maxim Integrated Products, Inc. | Charge pump mode transition control |
US6538907B2 (en) * | 2000-10-26 | 2003-03-25 | Rohm Co., Ltd. | Voltage drop DC-DC converter |
US6927441B2 (en) * | 2001-03-20 | 2005-08-09 | Stmicroelectronics S.R.L. | Variable stage charge pump |
JP2003033007A (ja) * | 2001-07-09 | 2003-01-31 | Sanyo Electric Co Ltd | チャージポンプ回路の制御方法 |
US6664762B2 (en) * | 2001-08-21 | 2003-12-16 | Power Designers, Llc | High voltage battery charger |
JP2004064937A (ja) * | 2002-07-31 | 2004-02-26 | Nec Corp | チャージポンプ型昇圧回路 |
EP1568007A1 (en) * | 2002-11-25 | 2005-08-31 | Koninklijke Philips Electronics N.V. | Multi output dc/dc converter for liquid crystal display device |
JP2006158132A (ja) * | 2004-11-30 | 2006-06-15 | Renesas Technology Corp | チャージポンプ方式電源回路 |
KR100809071B1 (ko) * | 2006-09-25 | 2008-03-03 | 삼성전자주식회사 | 고전압 발생 회로를 구비하는 반도체 장치 및 그 전압 발생방법 |
US20090033293A1 (en) * | 2007-08-01 | 2009-02-05 | Intersil Americas Inc. | Voltage converter with combined capacitive voltage divider, buck converter and battery charger |
US20090066407A1 (en) * | 2007-09-12 | 2009-03-12 | Rochester Institute Of Technology | Charge pump systems and methods thereof |
US20100052771A1 (en) * | 2008-08-29 | 2010-03-04 | Hendrik Hartono | Circuit for driving multiple charge pumps |
US8854019B1 (en) * | 2008-09-25 | 2014-10-07 | Rf Micro Devices, Inc. | Hybrid DC/DC power converter with charge-pump and buck converter |
US8829979B2 (en) * | 2010-02-25 | 2014-09-09 | Broadcom Corporation | Power-efficient multi-mode charge pump |
US9276463B2 (en) * | 2010-04-05 | 2016-03-01 | Macaulay-Brown, Inc. | Low power conversion and management of energy harvesting applications |
US8699247B2 (en) * | 2011-09-09 | 2014-04-15 | Sandisk Technologies Inc. | Charge pump system dynamically reconfigurable for read and program |
CN103840655B (zh) * | 2012-11-20 | 2016-08-17 | 上海华虹宏力半导体制造有限公司 | 电荷泵 |
US9160166B2 (en) * | 2012-12-19 | 2015-10-13 | Silicon Laboratories Inc. | Charge pump for low power consumption apparatus and associated methods |
US9083231B2 (en) * | 2013-09-30 | 2015-07-14 | Sandisk Technologies Inc. | Amplitude modulation for pass gate to improve charge pump efficiency |
US20160204695A1 (en) * | 2015-01-14 | 2016-07-14 | Macronix International Co., Ltd. | Charge pump circuit and method of controlling same |
US10177576B2 (en) * | 2016-09-20 | 2019-01-08 | Richtek Technology Corporation | Charger circuit and capacitive power conversion circuit and reverse blocking switch circuit thereof |
-
2016
- 2016-08-15 CN CN201710081785.3A patent/CN106849645A/zh active Pending
- 2016-08-15 CN CN201610668958.7A patent/CN106230051B/zh active Active
-
2017
- 2017-08-07 WO PCT/CN2017/096200 patent/WO2018032990A1/zh unknown
- 2017-08-07 EP EP17840965.2A patent/EP3499679A4/en not_active Withdrawn
- 2017-08-07 US US16/321,837 patent/US10978898B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101043177A (zh) * | 2006-02-28 | 2007-09-26 | 英飞凌科技股份公司 | 驱动电路 |
CN102082505A (zh) * | 2010-12-20 | 2011-06-01 | 惠州Tcl移动通信有限公司 | 一种升压电荷泵和其升压方法及移动终端 |
US20150028803A1 (en) * | 2013-07-23 | 2015-01-29 | Qualcomm Incorporated | Systems and methods for enabling a universal back-cover wireless charging solution |
CN204886693U (zh) * | 2015-08-24 | 2015-12-16 | 北京兆易创新科技股份有限公司 | 一种电荷泵 |
CN105703423A (zh) * | 2016-01-22 | 2016-06-22 | 珠海市魅族科技有限公司 | 充电控制方法、充电设备及充电系统 |
CN106230051A (zh) * | 2016-08-15 | 2016-12-14 | 珠海市魅族科技有限公司 | 一种充电电路、系统、方法及电子装置 |
CN106849645A (zh) * | 2016-08-15 | 2017-06-13 | 珠海市魅族科技有限公司 | 一种充电电路、方法及电子装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3499679A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3499679A1 (en) | 2019-06-19 |
US20190190281A1 (en) | 2019-06-20 |
CN106849645A (zh) | 2017-06-13 |
US10978898B2 (en) | 2021-04-13 |
CN106230051A (zh) | 2016-12-14 |
CN106230051B (zh) | 2018-03-23 |
EP3499679A4 (en) | 2020-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018032990A1 (zh) | 一种充电电路、系统、方法及电子装置 | |
US10719099B2 (en) | Reconfigurable dickson star switched capacitor voltage regulator | |
US9793794B2 (en) | System and method for reducing power loss in switched-capacitor power converters | |
CN105391298B (zh) | 开关转换器控制 | |
EP2378648A1 (en) | Charge pump circuit with current peak noise reduction | |
WO2016011380A1 (en) | System and method for two-phase interleaved dc-dc converters | |
CN103580000A (zh) | 开关电源输出过压保护方法及电路及带该电路的开关电源 | |
CN104079169A (zh) | 一种开关电感电源的电路 | |
US11128215B2 (en) | Direct current voltage step-down regulation circuit structure | |
CN108233461B (zh) | 一种充电电路及终端设备 | |
RU2631265C2 (ru) | Зарядное устройство и способ зарядки | |
KR20170137806A (ko) | 비대칭형 스위칭 커패시터 레귤레이터 | |
US20140320096A1 (en) | Voltage Generator | |
CN107834857A (zh) | 电源控制装置及绝缘型开关电源装置 | |
Liu et al. | 10.3 A 94.2%-peak-efficiency 1.53 A direct-battery-hook-up hybrid Dickson switched-capacitor DC-DC converter with wide continuous conversion ratio in 65nm CMOS | |
CN109474037A (zh) | 一种电池充电电路及其控制电路和控制方法 | |
CN107834845A (zh) | 一种升压电路、升压方法及电子设备 | |
TW201125273A (en) | High-efficiency, switched-capacitor power conversion | |
WO2017168220A1 (en) | Controller for use with a power converter, and method of operating the same | |
CN105281440A (zh) | 对连接在dc极之间的电容进行充电的方法以及转换器装置 | |
Abramov et al. | Optimal design of a voltage regulator based resonant switched-capacitor converter IC | |
Qu et al. | An air-core coupled-inductor based dual-phase output stage for point-of-load converters | |
CN207853759U (zh) | 一种升压电路及电子设备 | |
CN106026719A (zh) | P-sshi有源整流电路及自供电电子设备 | |
US20190326816A1 (en) | Apparatus for Power Converter with Efficient Switching and Associated Methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17840965 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017840965 Country of ref document: EP Effective date: 20190315 |