WO2019119841A1 - 一种dcdc双向变换器 - Google Patents

一种dcdc双向变换器 Download PDF

Info

Publication number
WO2019119841A1
WO2019119841A1 PCT/CN2018/101513 CN2018101513W WO2019119841A1 WO 2019119841 A1 WO2019119841 A1 WO 2019119841A1 CN 2018101513 W CN2018101513 W CN 2018101513W WO 2019119841 A1 WO2019119841 A1 WO 2019119841A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge arm
capacitor
switch tube
bridge
bidirectional converter
Prior art date
Application number
PCT/CN2018/101513
Other languages
English (en)
French (fr)
Inventor
黄詹江勇
易龙强
吴金荣
钟小帆
Original Assignee
厦门科华恒盛股份有限公司
漳州科华技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门科华恒盛股份有限公司, 漳州科华技术有限责任公司 filed Critical 厦门科华恒盛股份有限公司
Publication of WO2019119841A1 publication Critical patent/WO2019119841A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements

Definitions

  • the present application relates to the field of electronic technology, and in particular to a DCDC bidirectional converter.
  • a DC-DC converter abbreviated as a DC-DC converter or a DCDC converter, is a DC converter that converts a DC base power source into another voltage type, and is widely used in fields such as solar power generation. It works by converting direct current to another DC voltage (boost or step down).
  • the DCDC converter can only be unidirectional boost or step-down, that is, if it is a step-up DCDC converter, one end inputs DC power, and the other end outputs higher voltage DC power, if it is a step-down DCDC. In the case of a converter, one end inputs DC power and the other end outputs a lower voltage DC power.
  • the DCDC converter of the above type can realize the conversion of direct current
  • the conversion mode is single, and when the voltage is high, such as exceeding 1000V, a switching device with a high withstand voltage must be selected, and fewer optional devices are used. It is expensive, so it cannot adapt to more application scenarios and has great limitations.
  • the embodiments of the present application provide a DCDC bidirectional converter for implementing DC power conversion, and having various transformation modes, and capable of implementing bidirectional transformation.
  • the present application provides a DCDC bidirectional converter including four sets of bridge arms, and a capacitor connected to each set of the bridge arms, each set of the bridge arms including a first switch tube and a second switch tube
  • the second end of the first switch tube is connected to the first end of the second switch tube and serves as a common end of the bridge arm, and the first end of the first switch tube serves as the bridge arm
  • the first end is connected to the first end of the capacitor
  • the second end of the second switch tube is connected to the second end of the capacitor as the second end of the bridge arm
  • the common end of the first bridge arm is connected to the common end of the third bridge arm through the first inductor
  • the common end of the second bridge arm is connected to the common end of the fourth bridge arm through the second inductor
  • the second end of the capacitor corresponding to the first bridge arm is connected to the first end of the capacitor corresponding to the second bridge arm, and the second end of the capacitor corresponding to the third bridge arm corresponds to the fourth bridge arm The first end of the capacitor is connected,
  • the first end of the first bridge arm and the second end of the second bridge arm are respectively connected to the positive and negative poles of the first power source, the first end of the third bridge arm and the fourth bridge The second ends of the arms are respectively connected to the positive and negative poles of the second power source.
  • the first switching transistor is an IGBT or a MOS transistor.
  • the second switching transistor is an IGBT or a MOS transistor.
  • the IGBT is an N-channel IGBT.
  • the parameters corresponding to the capacitance of the first bridge arm and the capacitance of the second bridge arm are the same;
  • the capacitance of the third bridge arm and the capacitance of the fourth bridge arm are the same.
  • an automatic pressure relief power distribution cabinet is selected, the first power source is an energy storage battery pack, and the second power source is a photovoltaic system.
  • the first power source is a photovoltaic system
  • the second power source is an energy storage battery pack.
  • connection relationship of the first bridge arm is that the emitter of the first switch tube of the first bridge arm is connected to the collector of the second switch tube of the first bridge arm, and is common to the first bridge arm End, the collector of the first switch tube is connected as the first end of the first bridge arm to the first end of the capacitor corresponding to the first bridge arm, and the emitter of the second switch tube is used as the second end of the first bridge arm The second end of the capacitor corresponding to the bridge arm is connected.
  • the capacitance of the first bridge arm is polar
  • the first end of the capacitor corresponding to the first bridge arm is a positive pole
  • the second end of the capacitor corresponding to the first bridge arm is a negative pole.
  • connection relationship of the second bridge arm is: the emitter of the first switch tube of the second bridge arm is connected to the collector of the second switch tube of the second bridge arm, and is common to the second bridge arm End, the collector of the first switch tube is connected as the first end of the second bridge arm to the first end of the capacitor corresponding to the second bridge arm, and the emitter of the second switch tube is used as the second end of the second bridge arm The second end of the capacitor corresponding to the second bridge arm is connected.
  • the capacitance of the second bridge arm is polar
  • the first end of the capacitor corresponding to the second bridge arm is a positive pole
  • the second end of the capacitor corresponding to the second bridge arm is a negative pole.
  • connection relationship of the third bridge arm is: the emitter of the first switch tube of the third bridge arm is connected to the collector of the second switch tube of the third bridge arm, and is common to the third bridge arm
  • the first switch of the first switch tube is connected as the first end of the third bridge arm to the first end of the capacitor corresponding to the third bridge arm
  • the emitter of the second switch tube is used as the second end of the third bridge arm
  • the second end of the capacitor corresponding to the three bridge arms is connected.
  • the capacitance of the third bridge arm is polar
  • the first end of the capacitor corresponding to the third bridge arm is a positive pole
  • the second end of the capacitor corresponding to the third bridge arm is a negative pole.
  • the connection relationship of the fourth bridge arm the emitter of the first switch tube of the fourth bridge arm is connected to the collector of the second switch tube of the fourth bridge arm, and serves as a common end of the fourth bridge arm a first end of the first switch tube as a fourth bridge arm is connected to a first end of a capacitor corresponding to the fourth bridge arm, and an emitter of the second switch tube is used as a second end and a fourth bridge arm of the fourth bridge arm The second end of the corresponding capacitor is connected.
  • the capacitance corresponding to the fourth bridge arm is polar
  • the first end of the capacitor corresponding to the fourth bridge arm is a positive pole
  • the second end of the capacitor corresponding to the fourth bridge arm is a negative pole.
  • the corresponding capacitors in the first bridge arm are two, respectively, a capacitor C11 and a capacitor C12, and the capacitor C11 and the capacitor C12 are connected in parallel.
  • the corresponding capacitors in the second bridge arm are two, respectively, a capacitor C21 and a capacitor C22, and the capacitor C21 and the capacitor C22 are connected in parallel.
  • the corresponding capacitors in the third bridge arm are two, respectively, a capacitor C31 and a capacitor C32, and a capacitor C31 and a capacitor C32 are connected in parallel.
  • the corresponding capacitors in the fourth bridge arm are two, respectively, a capacitor C41 and a capacitor C42, and the capacitor C41 and the capacitor C42 are connected in parallel. .
  • the DCDC bidirectional converter includes four sets of bridge arms, and a capacitor connected to each set of bridge arms, each set of bridge arms includes a first switch tube and a second switch tube, and the second end of the first switch tube Connected to the first end of the second switch tube, and as a common end of the bridge arm, the first end of the first switch tube is connected as the first end of the bridge arm to the first end of the capacitor, and the second end of the second switch tube
  • the second end of the bridge arm is connected to the second end of the capacitor, wherein the common end of the first bridge arm is connected to the common end of the third bridge arm through the first inductor, and the common end of the second bridge arm passes the second inductance
  • the common end of the fourth bridge arm is connected, the second end of the capacitor corresponding to the first bridge arm is connected to the first end of the capacitor corresponding to the second bridge arm, and the second end and the fourth bridge arm of the capacitor corresponding to the third bridge arm a first end of the corresponding capacitor is connected, a first end of the
  • the bidirectional lifting or stepping function can be supported by the drive circuit controlling the state of the switching tubes in each of the bridge arms.
  • the DCDC bidirectional converter can perform Buck mode and Boost mode conversion according to the state of the first power source and the second power source that are accessed, and can also perform bidirectional conversion according to the charging and discharging requirements of the first power source.
  • the voltage resistance requirement of the switching device is low, the device selection range is large, and the cost is low, so that the application range is wider, and is suitable for various occasions.
  • FIG. 1 is a topological diagram of a DCDC bidirectional converter according to an embodiment of the present application.
  • FIG. 2 is an equivalent model of a corresponding energy storage mode when a battery pack discharges a photovoltaic system and is in a Boost mode according to an embodiment of the present application;
  • FIG. 3 is an equivalent model of a battery pack for discharging a photovoltaic system and corresponding to a freewheel mode in a Boost mode according to an embodiment of the present disclosure
  • FIG. 5 is an equivalent model of a corresponding energy storage mode when a photovoltaic system charges a battery pack according to an embodiment of the present application
  • FIG. 6 is an equivalent model of a freewheeling mode corresponding to a charging of a battery pack by a photovoltaic system according to an embodiment of the present application
  • FIG. 7 is an equivalent model of a corresponding energy storage mode when a photovoltaic system charges a battery pack according to an embodiment of the present application
  • FIG. 8 is a topological diagram of another DCDC bidirectional converter according to an embodiment of the present disclosure.
  • the core of the application is to provide a DCDC bidirectional converter for realizing the conversion of direct current, and various transformation modes, which can realize bidirectional transformation, and is suitable for high voltage applications.
  • FIG. 1 is a topological diagram of a DCDC bidirectional converter according to an embodiment of the present application.
  • the DCDC bidirectional converter includes four sets of bridge arms (a first bridge arm, a second bridge arm, a third bridge arm, and a fourth bridge arm, respectively), and a capacitor connected to each set of bridge arms ( The capacitor C1 corresponding to the first bridge arm, the capacitor C2 corresponding to the second bridge arm, the capacitor C3 corresponding to the third bridge arm, and the capacitor C4 corresponding to the fourth bridge arm.
  • Each set of bridge arms includes a first switch tube and a second switch tube.
  • the first switch tube and the second switch tube are exemplified by an IGBT (N-channel).
  • IGBT N-channel
  • MOS MOS tube
  • the first switch tube and the second switch tube are IGBTs, the first end of the first switch tube is a collector, the second end of the first switch tube is an emitter; if it is a MOS tube, the first switch tube The first end of the first switch is a drain, and the second end of the first switch is a source.
  • first switch tube and the second switch tube in each set of bridge arms may be separate devices, or in order to improve integration, each bridge arm may use an IGBT module (including two IGBTs).
  • the first bridge arm includes a first switch tube M1-Q1, a second switch tube M1-Q2, the second bridge arm includes a first switch tube M2-Q1, and the second switch tube M2-Q2 includes a third switch tube.
  • the first switch tube M3-Q1, the second switch tube M1-Q2 and the fourth bridge arm include a first switch tube M4-Q1 and a second switch tube M4-Q2.
  • the connection relationship of the first bridge arm the emitter of the first switch tube M1-Q1 of the first bridge arm is connected to the collector of the second switch tube M1-Q2 of the first bridge arm, and serves as the first bridge arm
  • the common end of the first switch tube M1-Q1 is connected as the first end of the first bridge arm to the first end of the capacitor C1
  • the emitter of the second switch tube M1-Q2 is used as the second end of the first bridge arm
  • the terminal is connected to the second end of the capacitor C1.
  • the capacitor C1 is polar
  • the first end of the capacitor C1 is a positive pole
  • the second end of the capacitor C1 is a negative pole.
  • the emitter of the first switch tube M2-Q1 of the second bridge arm is connected to the collector of the second switch tube M2-Q2 of the second bridge arm, and serves as the second bridge arm
  • the common end, the collector of the first switch tube M2-Q1 is connected as the first end of the second bridge arm to the first end of the capacitor C2
  • the emitter of the second switch tube M2-Q2 is used as the second end of the second bridge arm
  • the terminal is connected to the second end of the capacitor C2.
  • the capacitor C2 is polar
  • the first end of the capacitor C2 is a positive pole
  • the second end of the capacitor C2 is a negative pole.
  • the emitter of the first switch tube M3-Q1 of the third bridge arm is connected with the collector of the second switch tube M3-Q2 of the third bridge arm, and serves as the third bridge arm
  • the collector of the first switch M3-Q1 is connected as the first end of the third bridge arm to the first end of the capacitor C3
  • the emitter of the second switch tube M3-Q2 is the second of the third bridge arm
  • the terminal is connected to the second end of the capacitor C3.
  • the capacitor C3 is polar
  • the first end of the capacitor C3 is a positive pole
  • the second end of the capacitor C3 is a negative pole.
  • the connection relationship of the fourth bridge arm the emitter of the first switch tube M4-Q1 of the fourth bridge arm is connected to the collector of the second switch tube M4-Q2 of the fourth bridge arm, and serves as the fourth bridge arm a common end, the first end of the first switch tube M4-Q1 as the fourth bridge arm is connected to the first end of the capacitor C4, and the emitter of the second switch tube M4-Q2 is used as the second end of the fourth bridge arm
  • the second end of the capacitor C4 is connected. It should be noted that the capacitor C4 is polar, the first end of the capacitor C4 is a positive pole, and the second end of the capacitor C4 is a negative pole.
  • the common end of the first bridge arm is connected to the common end of the third bridge arm through the first inductor L1, and the common end of the second bridge arm is connected to the common end of the fourth bridge arm through the second inductor L2.
  • the second end of the capacitor C1 corresponding to the first bridge arm is connected to the first end of the capacitor C2 corresponding to the second bridge arm, and the second end of the capacitor C3 corresponding to the third bridge arm and the capacitor C4 corresponding to the fourth bridge arm are Connected at one end.
  • the first end of the first bridge arm and the second end of the second bridge arm are respectively connected to the positive and negative poles of the first power source (battery pack Bat), and the first end of the third bridge arm and the fourth bridge arm The two ends are respectively connected to the positive and negative poles of the second power source (photovoltaic system, ie, PV).
  • first power source battery pack Bat
  • second power source photovoltaic system
  • FIG. 1 is only a specific topology.
  • the first power source is a battery pack
  • the second power source is a photovoltaic system.
  • the first power source and the second power source may be selected according to specific conditions. It is not necessarily the scene shown in FIG. 1, for example, the first power source may be a photovoltaic system, and the second power source may be a battery pack or the like.
  • the first switch tube and the second switch tube in each set of bridge arms may be MOS or IGBT, as shown in FIG. 1 , specifically an N-channel IGBT.
  • the topology shown in FIG. 1 includes, but is not limited to, the following four control modes, and the specific modes are as follows.
  • the battery pack discharges to the photovoltaic system and is in Boost mode.
  • FIG. 2 is an equivalent model of a corresponding energy storage mode when a battery pack discharges a photovoltaic system according to an embodiment of the present application and is in a Boost mode.
  • the driving circuit controls the first switching tube M1-Q1 in the first bridge arm to be turned on, the second switching tube M3-Q2 in the third bridge arm to be turned on, and the first switching tube M4-Q1 in the fourth bridge arm to be turned on. And the second switch tube M2-Q2 in the second bridge arm is turned on.
  • the battery pack Bat+ ie, the first end of the capacitor C1 passes through the first switch tube M1-Q1 in the first bridge arm, the first inductor L1, and the second switch in the third bridge arm.
  • the tube M3-Q2, the first switch tube M4-Q1 of the fourth bridge arm, the second inductor L2, and the second switch tube M2-Q2 of the second bridge arm return to the battery pack BAT- (the second end of the capacitor C2) ).
  • both the capacitor C1 and the capacitor C2 are discharged, and both the first inductor L1 and the second inductor L2 are stored.
  • the capacitor C1 and the capacitor C2 are connected in series and connected between the battery packs Bat+ and Bat-, and the capacitor C1 and the capacitor C2 are discharged to discharge the battery pack.
  • FIG. 3 is an equivalent model of a battery pack for discharging a photovoltaic system according to an embodiment of the present application and corresponding to a freewheel mode in a Boost mode.
  • the driving circuit controls the first switching tube M1-Q1 in the first bridge arm to be turned off, the second switching tube M3-Q2 in the third bridge arm is turned off, and the first switching tube M4-Q1 in the fourth bridge arm is turned off And the second switch tube M2-Q2 in the second bridge arm is turned off. As shown in FIG.
  • the first inductor L1 passes through the body diode of the first switch tube M3-Q1 in the third bridge arm, the capacitor C3 (ie, the positive pole of the photovoltaic system), the capacitor C4 (ie, the cathode of the photovoltaic system), a body diode of the second switch tube M4-Q2 of the four-bridge arm, a second inductor L2, a body diode of the first switch tube M2-Q1 of the second bridge arm, and a second switch tube M1- of the first bridge arm
  • the body diode of Q2 returns to the first inductor L1.
  • both the first inductor L1 and the second inductor L2 release energy, and both the capacitor C3 and the capacitor C4 are charged.
  • the capacitor C3 and the capacitor C4 are connected in series and connected in parallel with the photovoltaic system, and the capacitor C3 and the capacitor C4 are charged to charge the photovoltaic system.
  • the equivalent model shown in FIG. 2 and FIG. 3 can realize the discharge of the capacitor C1 and the capacitor C2 to the capacitor C3 and the capacitor C4, that is, the battery pack discharges to the photovoltaic system, and is in the Boost mode, that is, the boost mode.
  • the battery pack discharges to the photovoltaic system and is in Buck mode.
  • FIG. 4 is an equivalent model of a corresponding energy storage mode when a battery pack discharges a photovoltaic system and is in a Buck mode according to an embodiment of the present application.
  • the driving circuit controls the first switch tube M1-Q1 in the first bridge arm to be turned on, the second switch tube M3-Q2 in the third bridge arm to be turned off, and the first switch tube M4-Q1 in the fourth bridge arm is turned off And the second switch tube M2-Q2 in the second bridge arm is turned on.
  • the battery pack Bat+ ie, the first end of the capacitor C1 passes through the first switch in the first bridge arm M1-Q1, the first inductor L1, and the first switch in the third bridge arm.
  • both the capacitor C1 and the capacitor C2 are discharged, and both the capacitor C3 and the capacitor C4 are charged, and both the first inductor L1 and the second inductor L2 are stored.
  • Capacitor C1 and capacitor C2 are connected in series and connected between battery pack Bat+ and Bat-.
  • Capacitor C1 and capacitor C2 are discharged to discharge the battery pack.
  • Capacitor C3 and capacitor C4 are connected in series and connected in parallel with the photovoltaic system. Capacitor C3 and capacitor C4 are charged. Photovoltaic system charging.
  • the driving circuit controls the first switching tube M1-Q1 in the first bridge arm to be turned off, the second switching tube M3-Q2 in the third bridge arm is turned off, and the first switching tube M4-Q1 in the fourth bridge arm is turned off And the second switch tube M2-Q2 in the second bridge arm is turned off. As shown in FIG.
  • the first inductor L1 passes through the body diode of the first switch tube M3-Q1 in the third bridge arm, the capacitor C3 (ie, the positive pole of the photovoltaic system), the capacitor C4 (ie, the cathode of the photovoltaic system), a body diode of the second switch tube M4-Q2 of the four-bridge arm, a second inductor L2, a body diode of the first switch tube M2-Q1 of the second bridge arm, and a second switch tube M1-Q2 of the first bridge arm
  • the body diode returns to the first inductor L1.
  • both the first inductor L1 and the second inductor L2 release energy, and both the capacitor C3 and the capacitor C4 are charged.
  • the capacitor C3 and the capacitor C4 are connected in series and connected in parallel with the photovoltaic system, and the capacitor C3 and the capacitor C4 are charged to charge the photovoltaic system.
  • the equivalent model shown in FIG. 3 and FIG. 4 can realize the discharge of the capacitor C1 and the capacitor C2 to the capacitor C3 and the capacitor C4, that is, the battery pack discharges to the photovoltaic system, and is in the Buck mode, that is, the buck mode.
  • the photovoltaic system charges the battery pack and is in Boost mode.
  • FIG. 5 is an equivalent model of a corresponding energy storage mode when a photovoltaic system charges a battery pack according to an embodiment of the present application and is in a Boost mode.
  • the driving circuit controls the first switch tube M3-Q1 in the third bridge arm to be turned on, the second switch tube M1-Q2 in the first bridge arm is turned on, and the first switch tube M2-Q1 in the second bridge arm is turned on. And the second switch tube M4-Q2 in the fourth bridge arm is turned on.
  • the capacitor C3 ie, the positive pole of the photovoltaic system
  • the first switch tube M2-Q1 in the second bridge arm, the second inductor L2, and the second switch tube M4-Q2 in the fourth bridge arm return to the capacitor C4 (ie, the cathode of the photovoltaic system).
  • both the capacitor C3 and the capacitor C4 are discharged, and both the first inductor L1 and the second inductor L2 are stored.
  • both the capacitor C3 and the capacitor C4 are discharged, and both the first inductor L1 and the second inductor L2 are stored.
  • Capacitor C3 and capacitor C4 are connected in series and connected in parallel with both ends of the photovoltaic system. Capacitor C3 and capacitor C4 discharge to discharge the photovoltaic system.
  • FIG. 6 is an equivalent model of a freewheeling mode corresponding to a charging of a battery pack by a photovoltaic system according to an embodiment of the present application.
  • the driving circuit controls the first switch tube M3-Q1 in the third bridge arm to be turned off, the second switch tube M1-Q2 in the first bridge arm is turned off, and the first switch tube M2-Q1 in the second bridge arm is turned off And the second switch tube M4-Q2 in the fourth bridge arm is turned off. As shown in FIG.
  • the first inductor L1 passes through the body diode of the first switch tube M1-Q1 in the first bridge arm, the capacitor C1 (ie, the battery pack Bat+), the capacitor C2 (ie, the battery pack Bat-), a body diode of the second switch tube M2-Q2 in the second bridge arm, a second inductor L2, a body diode of the first switch tube M4-Q1 of the fourth bridge arm, and a second switch tube M3 of the third bridge arm
  • the body diode of -Q2 is returned to the first inductor L1.
  • both the first inductor L1 and the second inductor L2 release energy, and the capacitor C1 and the capacitor C2 are both charged.
  • the capacitor C1 and the capacitor C2 are connected in series and connected in parallel with the battery pack, and the capacitor C1 and the capacitor C2 are charged to charge the battery pack.
  • the equivalent model shown in FIG. 5 and FIG. 6 can realize the capacitor C3 and the capacitor C4 to charge the capacitor C1 and the capacitor C2, that is, the photovoltaic system charges the battery pack, and is in the Boost mode, that is, the boost mode.
  • the photovoltaic system charges the battery pack, and is in Buck mode
  • FIG. 7 is an equivalent model of a corresponding energy storage mode when a photovoltaic system charges a battery pack according to an embodiment of the present application.
  • the driving circuit controls the first switching tube M3-Q1 in the third bridge arm to be turned on, the second switching tube M1-Q2 in the first bridge arm is turned off, and the first switching tube M2-Q1 in the second bridge arm is turned off And the second switch tube M4-Q2 in the fourth bridge arm is turned on.
  • the capacitor C3 ie, the positive pole of the photovoltaic system
  • the capacitor C1 and the capacitor C2 are charged to charge the battery pack; the capacitor C3 and the capacitor C4 are connected in series and connected in parallel with the photovoltaic system, and the capacitor C3 and the capacitor C4 are discharged.
  • the photovoltaic system is discharged.
  • a photovoltaic system capable of charging the battery pack can be provided by the following control, and is an equivalent model of the corresponding freewheel mode in the Buck mode.
  • the driving circuit controls the first switch tube M3-Q1 in the third bridge arm to be turned off, the second switch tube M1-Q2 in the first bridge arm is turned off, and the first switch tube M2-Q1 in the second bridge arm is turned off And the second switch tube M4-Q2 in the fourth bridge arm is turned off. As shown in FIG.
  • the first inductor L1 passes through the body diode of the first switch tube M1-Q1 in the first bridge arm, the capacitor C1 (ie, the battery pack Bat+), the capacitor C2 (ie, the battery pack Bat-), a body diode of the second switch tube M2-Q2 in the second bridge arm, a second inductor L2, a body diode of the first switch tube M4-Q1 of the fourth bridge arm, and a second switch tube M3- of the third bridge arm
  • the body diode of Q2 returns to the first inductor L1.
  • both the first inductor L1 and the second inductor L2 release energy, and the capacitor C1 and the capacitor C2 are both charged.
  • the capacitor C1 and the capacitor C2 are connected in series and connected in parallel with the battery pack, and the capacitor C1 and the capacitor C2 are charged to charge the battery pack.
  • the equivalent model shown in FIG. 6 and FIG. 7 can realize the discharge of the capacitor C1 and the capacitor C2 to the capacitor C3 and the capacitor C4, that is, the photovoltaic system charges the battery pack, and is in the Buck mode, that is, the buck mode.
  • the DCDC bidirectional converter provided in this embodiment can control the state of the switch tubes in the first bridge arm, the second bridge arm, the third bridge arm, and the fourth bridge arm through the driving circuit to support the bidirectional lifting or stepping down function.
  • the DCDC bidirectional converter can perform Buck mode and Boost mode conversion according to the state of the first power source and the second power source that are accessed, and can also perform bidirectional conversion according to the charging and discharging requirements of the first power source. It has a wider range of applications and is suitable for a wide range of applications, especially in high pressure applications.
  • FIG. 8 is a topological diagram of another DCDC bidirectional converter according to an embodiment of the present disclosure.
  • the number of capacitors corresponding to the bridge arms in this embodiment is two and connected in parallel.
  • the corresponding capacitors in the first bridge arm are two, respectively, a capacitor C11 and a capacitor C12, and the capacitor C11 and the capacitor C12 are connected in parallel, which is equivalent to the capacitor C1 in FIG.
  • the corresponding capacitors in the second bridge arm are two, respectively capacitor C21 and capacitor C22, and capacitor C21 and capacitor C22 are connected in parallel, which is equivalent to capacitor C2 in FIG.
  • the corresponding capacitors in the third bridge arm are two, respectively capacitor C31 and capacitor C32, and capacitor C31 and capacitor C32 are connected in parallel, which is equivalent to capacitor C3 in FIG.
  • the corresponding capacitors in the fourth bridge arm are two, respectively capacitor C41 and capacitor C42, and capacitor C41 and capacitor C42 are connected in parallel, which is equivalent to capacitor C4 in FIG.
  • the parameters of the capacitor C1 corresponding to the first bridge arm and the capacitor C2 corresponding to the second bridge arm are the same, and the parameters of the capacitor C3 corresponding to the third bridge arm and the capacitor C4 corresponding to the fourth bridge arm are the same.
  • the DCDC bidirectional converter provided by the present application has been described in detail above.
  • the various embodiments in the specification are described in a progressive manner, and each embodiment focuses on differences from other embodiments, and the same similar parts between the various embodiments may be referred to each other.
  • the description is relatively simple, and the relevant parts can be referred to the method part. It should be noted that those skilled in the art can make several modifications and changes to the present application without departing from the scope of the present application. These modifications and modifications are also within the scope of the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本方案提供了一种DCDC双向变换器,包括4组桥臂,和与每组桥臂连接的电容,每组桥臂包括第一开关管和第二开关管,第一开关管的第二端与第二开关管的第一端连接,并作为桥臂的公共端,第一开关管的第一端作为桥臂的第一端与电容的第一端连接,第二开关管的第二端作为桥臂的第二端与电容的第二端连接。第一桥臂的公共端通过第一电感与第三桥臂的公共端连接,第二桥臂的公共端通过第二电感与第四桥臂的公共端连接,第一桥臂的第一端和第二桥臂的第二端分别用于与第一电源的正负极连接,第三桥臂的第一端和第四桥臂的第二端分别用于与第二电源的正负极连接。通过驱动电路控制各桥臂中的开关管的状态能够支持双向升降或降压功能。

Description

一种DCDC双向变换器
本申请要求于2017年12月22日提交中国专利局、申请号为201711407593.3 、申请名称为“一种DCDC双向变换器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,特别是涉及一种DCDC双向变换器。
背景技术
直流-直流变换器,简称DC-DC变换器或DCDC变换器,是一种将直流基础电源转变为其他电压种类的直流变换装置,广泛应用于太阳能发电等领域。其工作原理是将直流电变换成另一种直流电压(升压或降压)。
现有技术中,DCDC变换器只能是单向升压或降压,即如果是升压型DCDC变换器,则一端输入直流电后,另一端输出更高电压的直流电,如果是降压型DCDC变换器的话,则一端输入直流电后,另一端输出较低电压的直流电。
在具体实施中,上述类型的DCDC变换器虽然能够实现直流电的转换,但是转换方式单一,且当电压较高时,如超过1000V,须选用耐压较高的开关器件,可选器件较少、成本昂贵,故无法适应更多的应用场景,具有很大的局限性。
技术问题
有鉴于此,本申请实施例提供了提供一种DCDC双向变换器,用于实现直流电的转换,并且变换方式多样,能够实现双向变换。
技术解决方案
为解决上述技术问题,本申请提供一种DCDC双向变换器,包括4组桥臂,和与每组所述桥臂连接的电容,每组所述桥臂包括第一开关管和第二开关管,所述第一开关管的第二端与所述第二开关管的第一端连接,并作为所述桥臂的公共端,所述第一开关管的第一端作为所述桥臂的第一端与所述电容的第一端连接,所述第二开关管的第二端作为所述桥臂的第二端与所述电容的第二端连接,
其中,第一桥臂的公共端通过第一电感与第三桥臂的公共端连接,第二桥臂的公共端通过第二电感与第四桥臂的公共端连接,
所述第一桥臂对应的电容的第二端与所述第二桥臂对应的电容的第一端连接,所述第三桥臂对应的电容的第二端与所述第四桥臂对应的电容的第一端连接,
所述第一桥臂的第一端和所述第二桥臂的第二端分别用于与第一电源的正负极连接,所述第三桥臂的第一端和所述第四桥臂的第二端分别用于与第二电源的正负极连接。
优选地,所述第一开关管为IGBT或MOS管。
优选地,所述第二开关管为IGBT或MOS管。
优选地,所述IGBT为N沟道IGBT。
优选地,所述第一桥臂对应的电容和所述第二桥臂对应的电容的参数均相同;
优选地,所述第三桥臂对应的电容和所述第四桥臂对应的电容的参数均相同。
优选地,一种自动泄压配电柜选地,所述第一电源为储能电池组,所述第二电源为光伏系统。
优选地,所述第一电源为光伏系统,所述第二电源为储能电池组。
优选地,所述第一桥臂的连接关系为:第一桥臂的第一开关管的发射极与第一桥臂中的第二开关管的集电极连接,并作为第一桥臂的公共端,第一开关管的集电极作为第一桥臂的第一端与第一桥臂对应的电容的第一端连接,第二开关管的发射极作为第一桥臂的第二端与第一桥臂对应的电容的第二端连接。
优选地,所述第一桥臂对应的电容是有极性的,第一桥臂对应的电容的第一端为正极,第一桥臂对应的电容的第二端为负极。
优选地,所述第二桥臂的连接关系为:第二桥臂的第一开关管的发射极与第二桥臂中的第二开关管的集电极连接,并作为第二桥臂的公共端,第一开关管的集电极作为第二桥臂的第一端与第二桥臂对应的电容的第一端连接,第二开关管的发射极作为第二桥臂的第二端与第二桥臂对应的电容的第二端连接。
优选地,所述第二桥臂对应的电容是有极性的,第二桥臂对应的电容的第一端为正极,第二桥臂对应的电容的第二端为负极。
优选地,所述第三桥臂的连接关系为:第三桥臂的第一开关管的发射极与第三桥臂中的第二开关管的集电极连接,并作为第三桥臂的公共端,第一开关管的集电极作为第三桥臂的第一端与第三桥臂对应的电容的第一端连接,第二开关管的发射极作为第三桥臂的第二端与第三桥臂对应的电容的第二端连接。
优选地,所述第三桥臂对应的电容是有极性的,第三桥臂对应的电容的第一端为正极,第三桥臂对应的电容的第二端为负极。
优选地,所述第四桥臂的连接关系:第四桥臂的第一开关管的发射极与第四桥臂中的第二开关管的集电极连接,并作为第四桥臂的公共端,第一开关管的作为第四桥臂的第一端与第四桥臂对应的电容的第一端连接,第二开关管的发射极作为第四桥臂的第二端与第四桥臂对应的电容的第二端连接。
优选地,所述第四桥臂对应的电容是有极性的,第四桥臂对应的电容的第一端为正极,第四桥臂对应的电容的第二端为负极。
优选地,所述第一桥臂中对应的电容为两个,分别为电容C11和电容C12,电容C11和电容C12并联。
优选地,所述第二桥臂中对应的电容为两个,分别为电容C21和电容C22,电容C21和电容C22并联。
优选地,所述第三桥臂中对应的电容为两个,分别为电容C31和电容C32,电容C31和电容C32并联
优选地,所述第四桥臂中对应的电容为两个,分别为电容C41和电容C42,电容C41和电容C42并联。。
有益效果
本申请实施例提供的DCDC双向变换器,包括4组桥臂,和与每组桥臂连接的电容,每组桥臂包括第一开关管和第二开关管,第一开关管的第二端与第二开关管的第一端连接,并作为桥臂的公共端,第一开关管的第一端作为桥臂的第一端与电容的第一端连接,第二开关管的第二端作为桥臂的第二端与电容的第二端连接,其中,第一桥臂的公共端通过第一电感与第三桥臂的公共端连接,第二桥臂的公共端通过第二电感与第四桥臂的公共端连接,第一桥臂对应的电容的第二端与第二桥臂对应的电容的第一端连接,第三桥臂对应的电容的第二端与第四桥臂对应的电容的第一端连接,第一桥臂的第一端和第二桥臂的第二端分别用于与第一电源的正负极连接,第三桥臂的第一端和第四桥臂的第二端分别用于与第二电源的正负极连接。通过驱动电路控制各桥臂中的开关管的状态能够支持双向升降或降压功能。相对于现有技术而言,本DCDC双向变换器可根据接入的第一电源和第二电源的状态进行Buck模式和Boost模式转换,也可根据第一电源的充电和放电需求进行双向变换,并且第一电源和/或第二电源为高压状态时,对开关器件的耐压要求较低,器件选择范围较大、成本较低,使其应用范围更广,适用于多种场合。
附图说明
为了更清楚地说明本申请实施例,下面将对实施例中所需要使用的附图做简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种DCDC双向变换器的拓扑图;
图2为本申请实施例提供的一种电池组对光伏系统放电,且为Boost模式时对应的储能模式的等效模型;
图3为本申请实施例提供的一种电池组对光伏系统放电,且为Boost模式时对应的续流模式的等效模型;
图4为本申请实施例提供的一种电池组对光伏系统放电,且为Buck模式时对应的储能模式的等效模型;
图5为本申请实施例提供的一种光伏系统对电池组充电,且为Boost模式时对应的储能模式的等效模型;
图6为本申请实施例提供的一种光伏系统对电池组充电,且为Boost模式时对应的续流模式的等效模型;
图7为本申请实施例提供的一种光伏系统对电池组充电,且为Buck模式时对应的储能模式的等效模型;
图8为本申请实施例提供的另一种DCDC双向变换器的拓扑图。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下,所获得的所有其他实施例,都属于本申请保护范围。
本申请的核心是提供一种DCDC双向变换器,用于实现直流电的变换,并且变换方式多样,能够实现双向变换,适用于高压场合。
为了使本技术领域的人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。
图1为本申请实施例提供的一种DCDC双向变换器的拓扑图。如图1所示,该DCDC双向变换器包括4组桥臂(分别为第一桥臂、第二桥臂、第三桥臂和第四桥臂),和与每组桥臂连接的电容(分别为第一桥臂对应的电容C1、第二桥臂对应的电容C2、第三桥臂对应的电容C3和第四桥臂对应的电容C4)。
每组桥臂包括第一开关管和第二开关管,如图1所示,第一开关管和第二开关管以IGBT(N沟道)为例说明。当然除了IGBT也可以为MOS管。当第一开关管和第二开关管为IGBT时,则第一开关管的第一端为集电极,第一开关管的第二端为发射极;如果为MOS管的话,则第一开关管的第一端为漏极,第一开关管的第二端为源极。
在具体实施中,每组桥臂中的第一开关管和第二开关管可以为单独的器件,或者为了提高集成度,每个桥臂可以选用IGBT模块(包括两个IGBT)。
第一桥臂中包括第一开关管M1-Q1,第二开关管M1-Q2,第二桥臂中包括第一开关管M2-Q1,第二开关管M2-Q2、第三桥臂中包括第一开关管M3-Q1,第二开关管M1-Q2以及第四桥臂中包括第一开关管M4-Q1,第二开关管M4-Q2。
具体连接关系如下:
1)第一桥臂的连接关系:第一桥臂的第一开关管M1-Q1的发射极与第一桥臂中的第二开关管M1-Q2的集电极连接,并作为第一桥臂的公共端,第一开关管M1-Q1的集电极作为第一桥臂的第一端与电容C1的第一端连接,第二开关管M1-Q2的发射极作为第一桥臂的第二端与电容C1的第二端连接。需要说明的是,电容C1是有极性的,电容C1的第一端为正极,电容C1的第二端为负极。
2)第二桥臂的连接关系:第二桥臂的第一开关管M2-Q1的发射极与第二桥臂中的第二开关管M2-Q2的集电极连接,并作为第二桥臂的公共端,第一开关管M2-Q1的集电极作为第二桥臂的第一端与电容C2的第一端连接,第二开关管M2-Q2的发射极作为第二桥臂的第二端与电容C2的第二端连接。需要说明的是,电容C2是有极性的,电容C2的第一端为正极,电容C2的第二端为负极。
3)第三桥臂的连接关系:第三桥臂的第一开关管M3-Q1的发射极与第三桥臂中的第二开关管M3-Q2的集电极连接,并作为第三桥臂的公共端,第一开关管M3-Q1的集电极作为第三桥臂的第一端与电容C3的第一端连接,第二开关管M3-Q2的发射极作为第三桥臂的第二端与电容C3的第二端连接。需要说明的是,电容C3是有极性的,电容C3的第一端为正极,电容C3的第二端为负极。
4)第四桥臂的连接关系:第四桥臂的第一开关管M4-Q1的发射极与第四桥臂中的第二开关管M4-Q2的集电极连接,并作为第四桥臂的公共端,第一开关管M4-Q1的作为第四桥臂的第一端与电容C4的第一端连接,第二开关管M4-Q2的发射极作为第四桥臂的第二端与电容C4的第二端连接。需要说明的是,电容C4是有极性的,电容C4的第一端为正极,电容C4的第二端为负极。
其中,第一桥臂的公共端通过第一电感L1与第三桥臂的公共端连接,第二桥臂的公共端通过第二电感L2与第四桥臂的公共端连接。
第一桥臂对应的电容C1的第二端与第二桥臂对应的电容C2的第一端连接,第三桥臂对应的电容C3的第二端与第四桥臂对应的电容C4的第一端连接。
第一桥臂的第一端和第二桥臂的第二端分别用于与第一电源(电池组Bat)的正负极连接,第三桥臂的第一端和第四桥臂的第二端分别用于与第二电源(光伏系统,即PV)的正负极连接。
需要说明的是,图1只是一种具体的拓扑结构,该拓扑结构中第一电源为电池组,第二电源为光伏系统,但是在具体实施中,第一电源和第二电源可以具体情况选取,并不一定只有图1所示的场景,例如,第一电源可以为光伏系统,第二电源为电池组等。另外,每组桥臂中的第一开关管和第二开关管可以为MOS,也可以为IGBT,如图1所示,具体为N沟道IGBT。
为了让本领域技术人员更加清楚本申请所提供的DCDC双向变换器的工作原理,下文中从控制开关管的角度进行说明。图1所示的拓扑结构包括但不限于以下四种控制模式,具体模式如下。
1、电池组对光伏系统放电,且为Boost模式
图2为本申请实施例提供的一种电池组对光伏系统放电,且为Boost模式时对应的储能模式的等效模型。
驱动电路控制第一桥臂中的第一开关管M1-Q1导通、第三桥臂中的第二开关管M3-Q2导通、第四桥臂中的第一开关管M4-Q1导通,以及第二桥臂中的第二开关管M2-Q2导通。如图2所示,此时,电池组Bat+(即电容C1的第一端)通过第一桥臂中的第一开关管M1-Q1、第一电感L1、第三桥臂中的第二开关管M3-Q2、第四桥臂中的第一开关管M4-Q1、第二电感L2、第二桥臂中的第二开关管M2-Q2回至电池组BAT-(电容C2的第二端)。在该过程中,电容C1、电容C2均放电,第一电感L1和第二电感L2均储能。电容C1和电容C2串联后连接于电池组Bat+和Bat-之间,电容C1和电容C2放电即为电池组放电。
图3为本申请实施例提供的一种电池组对光伏系统放电,且为Boost模式时对应的续流模式的等效模型。
驱动电路控制第一桥臂中的第一开关管M1-Q1关断、第三桥臂中的第二开关管M3-Q2关断、第四桥臂中的第一开关管M4-Q1关断,以及第二桥臂中的第二开关管M2-Q2关断。如图3所示,此时,第一电感L1通过第三桥臂中的第一开关管M3-Q1的体二极管、电容C3(即光伏系统正极)、电容C4(即光伏系统负极)、第四桥臂中的第二开关管M4-Q2的体二极管、第二电感L2、第二桥臂中的第一开关管M2-Q1的体二极管、第一桥臂中的第二开关管M1-Q2的体二极管回至第一电感L1。在该过程中,第一电感L1和第二电感L2均释能,电容C3、电容C4均充电。电容C3和电容C4串联后与光伏系统并联,电容C3和电容C4充电即为光伏系统充电。
由此可见,图2和图3所示的等效模型能够实现电容C1、电容C2对电容C3、电容C4放电,即电池组对光伏系统放电,且为Boost模式,即升压模式。
2、电池组对光伏系统放电,且为Buck模式
图4为本申请实施例提供的一种电池组对光伏系统放电,且为Buck模式时对应的储能模式的等效模型。
驱动电路控制第一桥臂中的第一开关管M1-Q1导通、第三桥臂中的第二开关管M3-Q2关断、第四桥臂中的第一开关管M4-Q1关断,以及第二桥臂中的第二开关管M2-Q2导通。如图4所示,此时,电池组Bat+(即电容C1的第一端)通过第一桥臂中的第一开关管M1-Q1、第一电感L1、第三桥臂中的第一开关管M3-Q1的体二极管、电容C3(即光伏系统正极)、电容C4(即光伏系统负极)、第四桥臂中的第二开关管M4-Q2的体二极管、第二电感L2、第二桥臂中的第二开关管M2-Q2回至电池组BAT-(即电容C2的第二端)。在该过程中,电容C1、电容C2均放电,电容C3、电容C4均充电,第一电感L1和第二电感L2均储能。电容C1和电容C2串联后连接于电池组Bat+和Bat-之间,电容C1和电容C2放电即为电池组放电;电容C3和电容C4串联后与光伏系统并联,电容C3和电容C4充电即为光伏系统充电。
如图3所示,通过如下控制,还能够提供的一种电池组对光伏系统放电,且为Buck模式时对应的续流模式的等效模型。
驱动电路控制第一桥臂中的第一开关管M1-Q1关断、第三桥臂中的第二开关管M3-Q2关断、第四桥臂中的第一开关管M4-Q1关断,以及第二桥臂中的第二开关管M2-Q2关断。如图3所示,此时,第一电感L1通过第三桥臂中的第一开关管M3-Q1的体二极管、电容C3(即光伏系统正极)、电容C4(即光伏系统负极)、第四桥臂中的第二开关管M4-Q2的体二极管、第二电感L2、第二桥臂中的第一开关管M2-Q1的体二极管、第一桥臂的第二开关管M1-Q2的体二极管回至第一电感L1。在该过程中,第一电感L1和第二电感L2均释能,电容C3、电容C4均充电。电容C3和电容C4串联后与光伏系统并联,电容C3和电容C4充电即为光伏系统充电。
由此可见,图3和图4所示的等效模型能够实现电容C1、电容C2对电容C3、电容C4放电,即电池组对光伏系统放电,且为Buck模式,即降压模式。
3、光伏系统对电池组对充电,且为Boost模式
图5为本申请实施例提供的一种光伏系统对电池组充电,且为Boost模式时对应的储能模式的等效模型。
驱动电路控制第三桥臂中的第一开关管M3-Q1导通、第一桥臂中的第二开关管M1-Q2导通、第二桥臂中的第一开关管M2-Q1导通,以及第四桥臂中的第二开关管M4-Q2导通。如图5所示,此时,电容C3(即光伏系统正极)通过第三桥臂中的第一开关管M3-Q1、第一电感L1、第一桥臂中的第二开关管M1-Q2、第二桥臂中的第一开关管M2-Q1、第二电感L2、第四桥臂中的第二开关管M4-Q2回至电容C4(即光伏系统负极)。在该过程中,电容C3、电容C4均放电,第一电感L1和第二电感L2均储能。在该过程中,电容C3、电容C4均放电,第一电感L1和第二电感L2均储能。电容C3和电容C4串联后与光伏系统的两端并联,电容C3和电容C4放电即为光伏系统放电。
图6为本申请实施例提供的一种光伏系统对电池组充电,且为Boost模式时对应的续流模式的等效模型。
驱动电路控制第三桥臂中的第一开关管M3-Q1关断、第一桥臂中的第二开关管M1-Q2关断、第二桥臂中的第一开关管M2-Q1关断,以及第四桥臂中的第二开关管M4-Q2关断。如图6所示,此时,第一电感L1通过第一桥臂中的第一开关管M1-Q1的体二极管、电容C1(即电池组Bat+)、电容C2(即电池组Bat-)、第二桥臂中的第二开关管M2-Q2的体二极管、第二电感L2、第四桥臂中的第一开关管M4-Q1的体二极管、第三桥臂中的第二开关管M3-Q2的体二极管回至第一电感L1。在该过程中,第一电感L1和第二电感L2均释能,电容C1、电容C2均充电。电容C1和电容C2串联后与电池组并联,电容C1和电容C2充电即为电池组充电。
由此可见,图5和图6所示的等效模型能够实现电容C3、电容C4对电容C1、电容C2充电,即光伏系统对电池组充电,且为Boost模式,即升压模式。
4、光伏系统对电池组对充电,且为Buck模式
图7为本申请实施例提供的一种光伏系统对电池组充电,且为Buck模式时对应的储能模式的等效模型。
驱动电路控制第三桥臂中的第一开关管M3-Q1导通、第一桥臂中的第二开关管M1-Q2关断、第二桥臂中的第一开关管M2-Q1关断,以及第四桥臂中的第二开关管M4-Q2导通。如图7所示,此时,电容C3(即光伏系统正极)通过第三桥臂中的第一开关管M3-Q1、第一电感L1、第一桥臂中的第一开关管M1-Q1的体二极管、电容C1(即电池组Bat+)、电容C2(即电池组Bat-)、第二桥臂中的第二开关管M2-Q2的体二极管、第二电感L2、第四桥臂中的第二开关管M4-Q2回至电容C4(即光伏系统负极)。在该过程中,电容C3、电容C4均放电,电容C1、电容C2均充电,第一电感L1和第二电感L2均储能。电容C1和电容C2串联后连接于电池组Bat+和Bat-之间,电容C1和电容C2充电即为电池组充电;电容C3和电容C4串联后与光伏系统并联,电容C3和电容C4放电即为光伏系统放电。
如图6所示,通过如下控制,能够提供的一种光伏系统对电池组充电,且为Buck模式时对应的续流模式的等效模型。
驱动电路控制第三桥臂中的第一开关管M3-Q1关断、第一桥臂中的第二开关管M1-Q2关断、第二桥臂中的第一开关管M2-Q1关断,以及第四桥臂中的第二开关管M4-Q2关断。如图6所示,此时,第一电感L1通过第一桥臂中的第一开关管M1-Q1的体二极管、电容C1(即电池组Bat+)、电容C2(即电池组Bat-)、第二桥臂中的第二开关管M2-Q2的体二极管、第二电感L2、第四桥臂中的第一开关管M4-Q1的体二极管、第三桥臂的第二开关管M3-Q2的体二极管回至第一电感L1。在该过程中,第一电感L1和第二电感L2均释能,电容C1、电容C2均充电。电容C1和电容C2串联后与电池组并联,电容C1和电容C2充电即为电池组充电。
由此可见,图6和图7所示的等效模型能够实现电容C1、电容C2对电容C3、电容C4放电,即光伏系统对电池组充电,且为Buck模式,即降压模式。
本实施例提供的DCDC双向变换器,通过驱动电路控制第一桥臂、第二桥臂、第三桥臂以及第四桥臂中的开关管的状态能够支持双向升降或降压功能。相对于现有技术而言,本DCDC双向变换器可根据接入的第一电源和第二电源的状态进行Buck模式和Boost模式转换,也可根据第一电源的充电和放电需求进行双向变换,其应用范围更广,适用于多种场合,特别是高压场合。
图8为本申请实施例提供的另一种DCDC双向变换器的拓扑图。在上述实施例的基础上,本实施例中桥臂对应的电容的数量为两个且并联连接。
如图8所示,第一桥臂中对应的电容为两个,分别为电容C11和电容C12,电容C11和电容C12并联,相当于图1中的电容C1。第二桥臂中对应的电容为两个,分别为电容C21和电容C22,电容C21和电容C22并联,相当于图1中的电容C2。第三桥臂中对应的电容为两个,分别为电容C31和电容C32,电容C31和电容C32并联,相当于图1中的电容C3。第四桥臂中对应的电容为两个,分别为电容C41和电容C42,电容C41和电容C42并联,相当于图1中的电容C4。
作为优选地实施方式,第一桥臂对应的电容C1和第二桥臂对应的电容C2的参数相同,第三桥臂对应的电容C3和第四桥臂对应的电容C4的参数相同。
以上对本申请所提供的DCDC双向变换器进行了详细介绍。说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (20)

  1. 一种DCDC双向变换器,其特征在于,包括4组桥臂,和与每组所述桥臂连接的电容,每组所述桥臂包括第一开关管和第二开关管,所述第一开关管的第二端与所述第二开关管的第一端连接,并作为所述桥臂的公共端,所述第一开关管的第一端作为所述桥臂的第一端与所述电容的第一端连接,所述第二开关管的第二端作为所述桥臂的第二端与所述电容的第二端连接,
    其中,第一桥臂的公共端通过第一电感与第三桥臂的公共端连接,第二桥臂的公共端通过第二电感与第四桥臂的公共端连接,
    所述第一桥臂对应的电容的第二端与所述第二桥臂对应的电容的第一端连接,所述第三桥臂对应的电容的第二端与所述第四桥臂对应的电容的第一端连接,
    所述第一桥臂的第一端和所述第二桥臂的第二端分别用于与第一电源的正负极连接,所述第三桥臂的第一端和所述第四桥臂的第二端分别用于与第二电源的正负极连接。
  2. 根据权利要求1所述的DCDC双向变换器,其特征在于,所述第一开关管为IGBT或MOS管。
  3. 根据权利要求1所述的DCDC双向变换器,其特征在于,所述第二开关管为IGBT或MOS管。
  4. 根据权利要求2所述的DCDC双向变换器,其特征在于,所述IGBT为N沟道IGBT。
  5. 根据权利要求1所述的DCDC双向变换器,其特征在于,所述第一桥臂对应的电容和所述第二桥臂对应的电容的参数均相同。
  6. 根据权利要求1所述的DCDC双向变换器,其特征在于,所述第三桥臂对应的电容和所述第四桥臂对应的电容的参数均相同。
  7. 根据权利要求1所述的DCDC双向变换器,其特征在于,所述第一电源为储能电池组,所述第二电源为光伏系统。
  8. 根据权利要求1所述的DCDC双向变换器,其特征在于,所述第一电源为光伏系统,所述第二电源为储能电池组。
  9. 根据权利要求1所述的DCDC双向变换器,其特征在于,所述第一桥臂的连接关系为:第一桥臂的第一开关管的发射极与第一桥臂中的第二开关管的集电极连接,并作为第一桥臂的公共端,第一开关管的集电极作为第一桥臂的第一端与第一桥臂对应的电容的第一端连接,第二开关管的发射极作为第一桥臂的第二端与第一桥臂对应的电容的第二端连接。
  10. 根据权利要求9所述的DCDC双向变换器,其特征在于,所述第一桥臂对应的电容的第一端为正极,第一桥臂对应的电容的第二端为负极。
  11. 根据权利要求1所述的DCDC双向变换器,其特征在于,所述第二桥臂的连接关系为:第二桥臂的第一开关管的发射极与第二桥臂中的第二开关管的集电极连接,并作为第二桥臂的公共端,第一开关管的集电极作为第二桥臂的第一端与第二桥臂对应的电容的第一端连接,第二开关管的发射极作为第二桥臂的第二端与第二桥臂对应的电容的第二端连接。
  12. 根据权利要求11所述的DCDC双向变换器,其特征在于,所述第二桥臂对应的电容的第一端为正极,第二桥臂对应的电容的第二端为负极。
  13. 根据权利要求1所述的DCDC双向变换器,其特征在于,所述第三桥臂的连接关系为:第三桥臂的第一开关管的发射极与第三桥臂中的第二开关管的集电极连接,并作为第三桥臂的公共端,第一开关管的集电极作为第三桥臂的第一端与第三桥臂对应的电容的第一端连接,第二开关管的发射极作为第三桥臂的第二端与第三桥臂对应的电容的第二端连接。
  14. 根据权利要求13所述的DCDC双向变换器,其特征在于,所述第三桥臂对应的电容的第一端为正极,第三桥臂对应的电容的第二端为负极。
  15. 根据权利要求1所述的DCDC双向变换器,其特征在于,所述第四桥臂的连接关系:第四桥臂的第一开关管的发射极与第四桥臂中的第二开关管的集电极连接,并作为第四桥臂的公共端,第一开关管的作为第四桥臂的第一端与第四桥臂对应的电容的第一端连接,第二开关管的发射极作为第四桥臂的第二端与第四桥臂对应的电容的第二端连接。
  16. 根据权利要求15所述的DCDC双向变换器,其特征在于,所述第四桥臂对应的电容的第一端为正极,第四桥臂对应的电容的第二端为负极。
  17. 根据权利要求1所述的DCDC双向变换器,其特征在于,所述第一桥臂中对应的电容为两个,分别为电容C11和电容C12,电容C11和电容C12并联。
  18. 根据权利要求1所述的DCDC双向变换器,其特征在于,所述第二桥臂中对应的电容为两个,分别为电容C21和电容C22,电容C21和电容C22并联。
  19. 根据权利要求1所述的DCDC双向变换器,其特征在于,所述第三桥臂中对应的电容为两个,分别为电容C31和电容C32,电容C31和电容C32并联。
  20. 根据权利要求1所述的DCDC双向变换器,其特征在于,所述第四桥臂中对应的电容为两个,分别为电容C41和电容C42,电容C41和电容C42并联。
PCT/CN2018/101513 2017-12-22 2018-08-21 一种dcdc双向变换器 WO2019119841A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711407633.4 2017-12-22
CN201711407633.4A CN108183613A (zh) 2017-12-22 2017-12-22 一种dcdc双向变换器

Publications (1)

Publication Number Publication Date
WO2019119841A1 true WO2019119841A1 (zh) 2019-06-27

Family

ID=62546713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101513 WO2019119841A1 (zh) 2017-12-22 2018-08-21 一种dcdc双向变换器

Country Status (2)

Country Link
CN (1) CN108183613A (zh)
WO (1) WO2019119841A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183613A (zh) * 2017-12-22 2018-06-19 厦门科华恒盛股份有限公司 一种dcdc双向变换器
WO2019120302A1 (en) * 2017-12-22 2019-06-27 Kehua Hengsheng Co., Ltd. Voltage converting device and method of controlling voltage converting device
CN111146808A (zh) * 2020-01-03 2020-05-12 云南电网有限责任公司电力科学研究院 一种多能源能量路由器电路拓扑结构和供电系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203398991U (zh) * 2013-04-26 2014-01-15 丰郅(上海)新能源科技有限公司 升降压双向直流变换器
CN104124866A (zh) * 2013-04-26 2014-10-29 丰郅(上海)新能源科技有限公司 升降压双向直流变换器拓扑
CN107959417A (zh) * 2017-12-22 2018-04-24 厦门科华恒盛股份有限公司 一种dcdc双向变换器的控制方法
CN107994774A (zh) * 2017-12-22 2018-05-04 厦门科华恒盛股份有限公司 一种dcdc双向变换器的控制方法
CN108111015A (zh) * 2017-12-22 2018-06-01 厦门科华恒盛股份有限公司 一种dcdc双向变换器
CN108183613A (zh) * 2017-12-22 2018-06-19 厦门科华恒盛股份有限公司 一种dcdc双向变换器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513928B2 (en) * 2011-01-05 2013-08-20 Eaton Corporation Bidirectional buck-boost converter
CN103746557B (zh) * 2013-12-17 2017-06-16 中国船舶重工集团公司第七一九研究所 一种双向多电平升降压变换器及其控制方法
CN205622509U (zh) * 2016-05-18 2016-10-05 大连新大路电气传动技术有限责任公司 具有电能双向传输功能的机车车辆直流电压变换器
CN207542996U (zh) * 2017-11-17 2018-06-26 阳光电源股份有限公司 一种双向升降压dc/dc变换器及其主电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203398991U (zh) * 2013-04-26 2014-01-15 丰郅(上海)新能源科技有限公司 升降压双向直流变换器
CN104124866A (zh) * 2013-04-26 2014-10-29 丰郅(上海)新能源科技有限公司 升降压双向直流变换器拓扑
CN107959417A (zh) * 2017-12-22 2018-04-24 厦门科华恒盛股份有限公司 一种dcdc双向变换器的控制方法
CN107994774A (zh) * 2017-12-22 2018-05-04 厦门科华恒盛股份有限公司 一种dcdc双向变换器的控制方法
CN108111015A (zh) * 2017-12-22 2018-06-01 厦门科华恒盛股份有限公司 一种dcdc双向变换器
CN108183613A (zh) * 2017-12-22 2018-06-19 厦门科华恒盛股份有限公司 一种dcdc双向变换器

Also Published As

Publication number Publication date
CN108183613A (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
WO2017054680A1 (zh) 多电平逆变器
Tang et al. Analysis of active-network converter with coupled inductors
CN101552554A (zh) 一种级联型升降压变换器控制电路及其控制方法
CN108988634B (zh) 一种三相交错式双向大变比dcdc变换器及其控制方法
CN103746554B (zh) 光伏模块用双向电压输出的高升压比变换器
CN102684482A (zh) 一种单开关高增益直流升压型变换器
WO2019119841A1 (zh) 一种dcdc双向变换器
CN106026657A (zh) 非隔离高增益dc-dc升压变换器
CN110912245A (zh) 一种三端口集成式光伏储能变换器
CN108054920B (zh) 一种dcdc变换器
Kosenko et al. Full-soft-switching high step-up bidirectional isolated current-fed push-pull DC-DC converter for battery energy storage applications
WO2022184132A1 (zh) 电压转换电路及供电系统
CN112003474A (zh) 一种新型级联Buck-Boost高增益变换器
CN105827109B (zh) 一种冗余直流变换电路及其控制方法
CN106026728A (zh) 一种光伏微型逆变器
CN203775027U (zh) 一种光伏模块用双向电压输出的高升压比变换器
CN203827175U (zh) 一种新型软开关双向dc-dc变换器
CN104319798A (zh) 一种双向dcdc变换器及光储系统
CN106787899A (zh) 一种新型两级式多电平功率逆变系统
Kosenko et al. Full soft-switching bidirectional isolated current-fed dual inductor push-pull DC-DC converter for battery energy storage applications
CN209896911U (zh) 燃料电池的直流-直流变换器
Hasan et al. A high gain flyback DC-DC converter for PV applications
CN103746556A (zh) 基于耦合电感的直流模块用高升压比变换器
CN108736707B (zh) 一种具有开关电感结构的boost变换器
CN203775030U (zh) 一种基于耦合电感的直流模块用高升压比变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891616

Country of ref document: EP

Kind code of ref document: A1