WO2018219130A1 - 光纤内窥镜及其制作方法 - Google Patents
光纤内窥镜及其制作方法 Download PDFInfo
- Publication number
- WO2018219130A1 WO2018219130A1 PCT/CN2018/086699 CN2018086699W WO2018219130A1 WO 2018219130 A1 WO2018219130 A1 WO 2018219130A1 CN 2018086699 W CN2018086699 W CN 2018086699W WO 2018219130 A1 WO2018219130 A1 WO 2018219130A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode layer
- image
- layer
- image beam
- fiber
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/07—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00165—Optical arrangements with light-conductive means, e.g. fibre optics
- A61B1/00167—Details of optical fibre bundles, e.g. shape or fibre distribution
Definitions
- the present disclosure relates to the field of medical device technology, and in particular, to a fiber optic endoscope and a method of fabricating the same.
- a medical endoscope is a tube that is equipped with a light that can enter the stomach through the mouth or enter the body through other natural conduits.
- the endoscope can be used to see lesions that X-rays cannot display, so it is very useful for doctors.
- Medical endoscopes are classified according to their development and imaging structure: they can be broadly classified into three categories: rigid tube endoscopes, optical fiber (tube type) endoscopes, and electronic endoscopes. Among them, the rigid endoscope is no longer used with the development of new technology; the optical fiber (hose) endoscope consists of two parts: the endoscope scope and the cold light source.
- the fiber bundle that conducts the image forms the core of the fiberscope. It consists of tens of thousands of extremely fine glass fibers.
- all glass fibers must be coated with a film with a lower refractive index. Cladding) to ensure that all core-conducted light can be totally reflected. Since the transmission of a single fiber can only produce one spot, in order to see the complete image, it is necessary to integrate a large number of fibers, and to ensure that the image is transmitted to the other end and the same image, it is necessary to make each
- the root fiber is arranged at the same position at both ends, and is called a guide beam.
- the difference between the electronic endoscope and the optical fiber endoscope is that the latter uses a fiber-optic image transmission and the former uses a miniature image sensor called a CCD (Charge-coupled Device, Chinese full name: charge coupled device, also called CCD Image sensors) devices whose light source is the same. Based on this, the surgery can be done with an endoscope and a laser that can deliver a laser beam, burn a neoplasm or tumor, and block the bleeding blood vessels.
- CCD Charge-coupled Device, Chinese full name: charge coupled device, also called CCD Image sensors
- the fiber optic endoscope in the related art transmits light emitted from an external light source to a concave lens at the end of the endoscope through a light guide beam, and is diverged through the concave lens to obtain a wider illumination field of view, and the reflected light enters.
- the observation system passes through the image beam to the other end, and a clear object image can be seen from the eyepiece. Since the fiberscope includes a light guide beam and an image beam, it is disadvantageous for reducing the size of the endoscope end portion and is limited by the proportion of the light guide beam, and the brightness of the external light source propagating through the light guide beam to the surface of the organ is limited.
- the purpose of the present disclosure is to provide a fiber optic endoscope and a manufacturing method thereof, which simplifies the structure of the fiber optic endoscope, and is advantageous for reducing the size of the image acquisition end of the fiber endoscope under the premise of ensuring illumination brightness, and at the same time,
- the illuminating light source is disposed at the image collecting end of the image beam, which can fully ensure the brightness of the endoscope during operation, ensure the image quality, and make the returned image more full.
- a fiber optic endoscope comprising an image beam for conducting an image, the image beam comprising an image acquisition end and an image output end; and an illumination at an image acquisition end of the image beam light source.
- the image beam includes at least one image beam fiber, and the light source is disposed at an image acquisition end of each of the image beam fibers.
- the illuminating light source is an organic light emitting diode, comprising a first electrode layer, a luminescent layer and a second electrode layer which are sequentially wrapped from the inside to the outside on the outer circumferential surface of the image beam fiber;
- a first lead connected to the first electrode layer for applying an electrical signal to the first electrode layer; and, and the second electrode layer A second lead for connecting an electrical signal to the second electrode layer.
- the first electrode layer is at least partially not covered by the illuminating layer, so that the boundary of the first electrode layer is beyond a boundary of the light emitting layer, and an insulating layer is covered on a portion of the first electrode layer not covered by the light emitting layer, for insulating the first electrode layer and the second electrode layer, and The insulating layer completely covers the boundary of the first electrode layer, and forms a first transition slope structure at a boundary position of the first electrode layer;
- the luminescent layer completely covers the boundary of the first electrode layer and extends beyond the boundary of the first electrode layer to enable The first electrode layer and the second electrode layer are insulated, and the light emitting layer forms a second transition slope structure at a boundary position of the first electrode layer;
- the illuminating layer is at least partially not covered by the second electrode layer, so that a boundary of the luminescent layer exceeds the second a boundary of the electrode layer for insulating the first electrode layer and the second electrode layer.
- the boundary of the first electrode layer, the illuminating layer and the second electrode layer are flush;
- an edge of the luminescent layer is at least partially not covered by the second electrode layer such that a boundary of the luminescent layer exceeds the a boundary of the second electrode layer for insulating the first electrode layer and the second electrode layer;
- the first electrode layer is at least partially not covered by the luminescent layer, so that the boundary of the first electrode layer exceeds the A boundary of the light emitting layer, and a portion of the first electrode layer not covered by the light emitting layer is covered with an insulating layer for insulating the first electrode layer and the second electrode layer.
- the reflectivity of the first electrode layer is higher than a preset value to prevent light emitted by the luminescent layer from entering the image fiber bundle.
- a light-transmissive encapsulating protective film layer for protecting the organic light emitting diode, the first lead and the second lead is further disposed on the image beam fiber.
- forming the illuminating light source at the image collecting end of the image beam comprises: forming the illuminating light source at an image collecting end of each of the image beam fibers of the image beam; specifically comprising:
- a second lead is formed in a radial direction on an outer peripheral surface of the image beam fiber.
- the first electrode layer is formed on an outer peripheral surface of the image beam fiber by electroless plating or magnetron sputtering; the first lead and the second lead are both Formed on the image beam fiber by ink jet printing.
- the method further includes:
- first protective layer Before forming the first electrode layer on the outer circumferential surface of the image beam fiber, forming a first protective layer on a region of the image beam fiber that does not need to form a first electrode layer; After forming the first electrode layer, removing the first protective layer;
- the second protective layer Before forming the light-emitting layer on the outer peripheral surface of the image-beam fiber, forming a second protective layer on a region of the image-beam fiber that does not need to form the light-emitting layer; forming on the image-beam fiber After the luminescent layer, the second protective layer is removed;
- the first protective layer, the second protective layer and the third protective layer are all formed on the image beam fiber by inkjet printing.
- the method further includes:
- the illuminating light source is fabricated on the image capturing end of each of the image beam fibers of the image beam, forming, on the image beam fiber, protecting the OLED, the first lead And a transparent encapsulating protective film layer of the second lead; wherein the transparent encapsulating protective film layer is formed by inkjet printing.
- the optical fiber endoscope and the manufacturing method thereof provide the illuminating light source integrated in the image collecting end of the image beam, eliminating the external light source and the guiding beam, simplifying the structure of the fiber endoscope, and ensuring the brightness of the illumination.
- the utility model is advantageous for reducing the size of the image acquisition end of the fiber endoscope.
- the illuminating light source is disposed at the image collecting end of the image beam, the brightness of the endoscope during operation can be fully ensured, and the image quality is ensured. The returned image is more full.
- FIG. 1 is a cross-sectional structural view showing a single image beam fiber of a fiberscope provided in an embodiment of the present disclosure
- FIG. 2 is a schematic structural view showing a method of forming a first electrode layer on an image beam fiber by an electroless plating method in a method for fabricating a fiber endoscope according to an embodiment of the present disclosure
- FIG. 3 is a schematic structural view showing a method of forming a first electrode layer on a beam of optical fiber by a magnetron sputtering coating method in a method for fabricating a fiber endoscope according to an embodiment of the present disclosure
- FIG. 4 is a schematic cross-sectional view showing a first electrode layer formed on a beam of an optical fiber in a method for fabricating a fiber optic endoscope according to an embodiment of the present disclosure
- FIG. 5 is a schematic structural view showing a method of fabricating a first lead on a beam of optical fiber in a method for fabricating a fiber optic endoscope according to an embodiment of the present disclosure
- FIG. 6 is a schematic structural view showing a method of fabricating a light-emitting layer on an image-beam optical fiber in a method for fabricating a fiber-optic endoscope according to an embodiment of the present disclosure
- FIG. 7 is a schematic cross-sectional view showing a structure in which a light-emitting layer is formed on a beam of an optical fiber in a method for fabricating a fiber-optic endoscope according to an embodiment of the present disclosure
- FIG. 8 is a cross-sectional structural view showing the formation of an insulating layer on the image beam fiber in the method of fabricating the fiber endoscope provided in the embodiment of the present disclosure
- FIG. 9 is a schematic structural view showing a second electrode layer and a second lead formed on a beam of optical fiber in a method for fabricating a fiber endoscope according to an embodiment of the present disclosure
- FIG. 10 is a cross-sectional structural view showing the second electrode layer and the second lead formed on the image beam fiber in the method for fabricating the fiber endoscope according to the embodiment of the present disclosure
- FIG. 11 is a schematic structural view showing a light-transmissive encapsulating protective film layer formed on a beam of an optical fiber in a method for fabricating a fiber optic endoscope according to an embodiment of the present disclosure
- FIG. 12 is a perspective view showing a three-dimensional structure of a light-emitting source formed on a single image beam fiber in the fiberscope provided in the embodiment of the present disclosure
- FIG. 13 is a structural diagram showing the integration of a plurality of image beam fibers in a fiberscope provided in an embodiment of the present disclosure.
- the present disclosure provides a fiber optic endoscope and a technical problem that the light source of the fiber endoscope in the related art is disposed outside, which is disadvantageous to the size of the endoscope end, and the brightness of the external light source is limited by the light guide beam.
- the manufacturing method can integrate the illuminating light source on the image collecting end of the image beam, eliminating the external light source and the guiding beam, simplifying the structure of the fiber endoscope, and facilitating the reduction of the fiber endoscope under the premise of ensuring the illumination brightness.
- the illuminating light source is disposed at the image collecting end of the image beam, the brightness of the endoscope during operation can be fully ensured, the image quality is ensured, and the returned image is more full.
- the fiber optic endoscope provided in the embodiment of the present disclosure includes an image beam for conducting an image, the image beam includes an image acquisition end and an image output end; and an illumination source is disposed at an image acquisition end of the image beam .
- the fiber optic endoscope provided by the present disclosure integrates the illuminating light source into the image collecting end of the image beam, eliminating the external light source and the guiding beam, simplifying the structure of the fiber endoscope, and under the premise of ensuring the brightness of the illumination, It is beneficial to reduce the size of the image acquisition end of the fiberscope; at the same time, since the illumination source is disposed at the image acquisition end of the image beam, the brightness of the endoscope during operation can be fully ensured, and the image quality is ensured and returned. The image is more full.
- the image beam includes at least one image beam fiber 100 at the image acquisition end of each of the image beam fibers 100.
- the illuminating light source 200 is provided.
- the fiber endoscope may be a single image beam fiber 100 or a plurality of image beam fibers 100, as shown in FIG. 13, when the fiber endoscope includes a plurality of image beam fibers 100. , which is a collection of a plurality of single image beam fibers 100, and a plurality of the image beam fibers 100 are protected and fixed by an external transparent outer protective layer 300, in each of the image beam fibers.
- the illuminating light source 200 is integrated with the image capturing end of 100.
- the illuminating light source 200 is an organic light emitting diode, and includes the image beam fiber 100 sequentially wrapped from the inside to the outside. a first electrode layer 210, a light-emitting layer 220, and a second electrode layer 230 on the outer peripheral surface; and an outer peripheral surface of the image-beam optical fiber 100 is further connected to the first electrode layer 210 for a first lead 240 to which an electrical signal is applied by the first electrode layer 210; and a second lead 250 connected to the second electrode layer 230 for applying an electrical signal to the second electrode layer 230.
- the illuminating light source 200 is an organic light emitting diode (OLED), which is an organic light-emitting diode (Organic Light-Emitting Diode), which is also called an organic electroluminescence display (OLED).
- OLED organic light emitting diode
- the thin, transparent semiconductor-indium tin oxide is connected to the positive electrode of the power, plus another metal cathode, which is wrapped into a sandwich structure.
- the entire structural layer includes a hole transport layer, a light emitting layer, an electron transport layer, and the like.
- the power supply is at an appropriate voltage, generally within 10V, the positive hole and the cathode charge are combined in the light-emitting layer to produce light, and the heat generated when the light-emitting layer emits light is small, generally around 30 degrees Celsius.
- the illuminating light source 200 is an organic light emitting diode that can be fabricated on the outer surface of the image capturing end of the conventional image beam fiber 100 by conventional image beam fiber.
- the first electrode layer 210, the light emitting layer 220, and the second electrode layer 230 are sequentially formed from the inside to the outside on the outer surface of 100, and are fabricated on the outer surface of the image beam fiber 100 for applying an electrical signal to the first electrode layer 210.
- the first lead 240 and the second lead 250 for applying an electrical signal to the second electrode layer 230 achieve the purpose of integrating the organic light emitting diode onto the image beam fiber 100.
- the first electrode layer 210 may be a cathode layer, which may be a metal film layer, and the metal film layer may include any one of silver, magnesium, and lithium, or silver, magnesium, or lithium.
- the second electrode layer 230 may be an anode layer, which may be an indium tin oxide layer;
- the first lead 240 and the second lead 250 may each adopt nano silver line.
- first electrode layer 210, the second electrode layer 230, the first lead 240, and the second lead 250 may be made of other materials, and are not limited thereto.
- the cross-section of the image beam fiber 100 is as shown in FIG. 1 , and is mainly composed of a core 110 , a cladding layer 120 and a coating layer 130 .
- the outermost layer of 100 is a coating layer 130, that is, a resin coating, which functions to protect the fragile cladding layer 120 and the core 110, and strengthen the overall strength of the optical fiber;
- the intermediate layer is a cladding layer 120, that is, a low refractive index layer, and its function Is to provide a refractive index difference with the core 110 medium, so that the total reflection of light in the optical fiber, in some cases can also be an important part of the light;
- at the center of the fiber core 110 that is, high refractive index core, It is the main optical transmission channel.
- the core 110 of the single mode fiber has a diameter of 8-10 ⁇ m
- the core 110 of the multimode fiber has a diameter ranging from 50 to 100 ⁇ m.
- the first electrode layer 210, the light emitting layer 220, and the second electrode layer 230 may all be along the image beam fiber 100.
- the circumferential direction is sequentially wrapped from the inside to the outside on the outer surface of the image beam fiber 100, and the first lead 240 and the second lead 250 may be parallel to each other along the axial direction of the image beam fiber 100.
- the first lead 240 is connected to one end of the first electrode layer 210 away from the image collecting end of the image fiber bundle 100, and the second lead 250 Connected to one end of the second electrode layer 230 away from the image capturing end of the image beam fiber 100, in order to insulate the first electrode layer 210 and the second electrode layer 230, in the fiberscope provided by the present disclosure
- the first electrode layer 210 is at least partially not covered by the illuminating layer 220, so that the first A boundary of the electrode layer 210 is beyond the boundary of the light emitting layer 220, and a portion of the first electrode layer 210 not covered by the light emitting layer 220 is covered with an insulating layer 260 for the first electrode
- the layer 210 and the second electrode layer 230 are insulated.
- the distance of the illuminating layer 220 from the boundary of the first electrode layer 210 is d, and the insulating layer 260 is used to cover the first The portion of the electrode layer 210 that is not covered by the light emitting layer 220, so that the second lead 250 and the organic light emitting diode can be prevented from being subsequently formed when the second lead 250 connecting the second electrode layer 230 of the organic light emitting diode is fabricated.
- a short circuit occurs between the connections between the first electrode layers 210.
- the insulating layer 260 completely covers the boundary of the first electrode layer 210, and is in the first electrode layer 210.
- a first transitional ramp structure is formed at the boundary location.
- the boundary of the insulating layer 260 should be slightly longer than the boundary of the first electrode layer 210 to completely cover the protection center.
- the boundary of the first electrode layer 210 is described, and the insulating layer 260 is formed at an appropriate position at a position covering the boundary of the first electrode layer 210 so as to be subsequently formed for connecting the second electrode layer 230.
- the second lead 250 can be buffered by the insulating layer 260 when passing through the boundary fault position of the first electrode layer 210, so that the second lead 250 can be better attached to the The surface of the beam of optical fiber 100 is transmitted.
- the distance d between the boundary of the illuminating layer 220 and the boundary of the first electrode layer 210 generally take 10-50 ⁇ m.
- the luminescent layer 220 completely covers the boundary of the first electrode layer 210 and exceeds the boundary of the first electrode layer 210.
- the first electrode layer 210 and the second electrode layer 230 are insulated.
- the boundary of the illuminating layer 220 is beyond the boundary of the first electrode layer 210, thereby preventing the subsequent connection of the organic light emitting diode.
- the second lead 250 of the second electrode layer 230 is formed, a short circuit occurs between the second lead 250 and the first electrode layer 210 of the organic light emitting diode.
- the light emitting layer 220 forms a second transition slope structure at a boundary position of the first electrode layer 210.
- the illuminating layer 220 is formed at an appropriate position at a position covering the boundary of the first electrode layer 210.
- the second lead 250 for subsequently connecting the second electrode layer 230 can be buffered by the light-emitting layer 220 when passing through the boundary fault position of the first electrode layer 210.
- the second lead 250 can be better attached to the surface of the image beam fiber 100.
- the luminescent layer 220 is at least partially not covered by the second electrode layer 230 such that the boundary of the luminescent layer 220 exceeds A boundary of the second electrode layer 230 is used to insulate the first electrode layer 210 and the second electrode layer 230.
- the boundary of the illuminating layer 220 is beyond the boundary of the second electrode layer 230, that is, at least a part of the illuminating layer 220 is not
- the second electrode layer 230 is covered, thereby preventing the second lead 250 from being connected to the first electrode layer 210 of the organic light emitting diode when the second lead 250 connecting the second electrode layer 230 of the organic light emitting diode is subsequently fabricated.
- the connection is shorted.
- the first electrode layer 210, the illuminating layer 220, and the first The boundary of the two electrode layers 230 is flush.
- the illuminating light source One end of the image collecting end of the image beam fiber 100 is 200, the boundary of the first electrode layer 210, the light emitting layer 220, and the second electrode layer 230 may be flush with the image beam
- the end face 101 of the image acquisition end of the optical fiber 100 is flush, which is advantageous for structural simplification.
- the illuminating light source 200 at an end of the illuminating light source 200 near the image collecting end of the image beam fiber 100, it may also be:
- An edge of the light emitting layer 220 is at least partially not covered by the second electrode layer 230 such that a boundary of the light emitting layer 220 exceeds a boundary of the second electrode layer 230 or, in proximity to the light emitting source 200
- the first electrode layer 210 is at least partially not covered by the light emitting layer 220 such that the boundary of the first electrode layer 210 exceeds the boundary of the light emitting layer 220
- a portion of the first electrode layer 210 not covered by the light emitting layer 220 is covered with an insulating layer 260 for insulating the first electrode layer 210 and the second electrode layer 230 to further The risk of a short circuit between the first electrode layer 210 and the second electrode layer 230 is reduced.
- the reflectivity of the first electrode layer 210 is higher than The preset value, that is, the first electrode layer 210 has a higher reflectance to prevent light emitted from the luminescent layer 220 from coupling into the image beam fiber 100, thereby interfering with imaging.
- a package is further disposed on the image beam fiber 100 to protect the organic light emitting diode, the first lead 240, and the second The transparent layer of the lead 250 encapsulates the protective film layer 270.
- a method of fabricating a fiber optic endoscope according to an embodiment of the present disclosure is also provided in an embodiment of the present disclosure, the method comprising: forming an illuminating light source 200 at an image acquisition end of the image beam.
- the forming of the illuminating light source 200 is performed on the image collecting end of the image beam, and specifically includes: at the image collecting end of each of the image beam fibers 100 of the image bundle
- the illuminating light source 200 is fabricated to form a single fiberscope.
- the steps of fabricating the illuminating light source 200 at the image capturing end of each of the image beam fibers 100 include the following:
- Step S1 forming a first electrode layer 210 on the outer peripheral surface of the image beam fiber 100, near the image collecting end of the image beam fiber 100;
- Step S2 forming a first lead 240 in the radial direction on the outer peripheral surface of the image beam fiber 100;
- Step S3 forming a light-emitting layer 220 on the first electrode layer 210;
- Step S4 forming a second electrode layer 230 on the light emitting layer 220;
- Step S5 forming a second lead 250 in the radial direction on the outer peripheral surface of the image-beam optical fiber 100.
- the first electrode layer may be formed on the outer peripheral surface of the image beam fiber 100 by electroless plating or magnetron sputtering. 210.
- the method further includes: before forming the first electrode layer on the outer circumferential surface of the image beam fiber 100, it is not required to form on the image beam fiber 100.
- the region of the first electrode layer forms a first protective layer; after the first electrode layer is formed on the image beam fiber 100, the first protective layer is removed.
- the first protective layer is formed on the image fiber bundle 100 by inkjet printing.
- the following describes a specific procedure for forming the first electrode layer 210 on the outer peripheral surface of the image-beam optical fiber 100 by an electroless plating method and a magnetron sputtering coating method, respectively.
- FIGS. 2 and 4 are schematic views showing the structure of forming a first electrode layer by an electroless plating method.
- the electroless silver plating film layer has good uniformity, and the electroless silver plating reaction solution is composed of a silver salt, a complex and a strong reducing agent, due to instability of electroless silver plating and fast reaction time. Since the life is short, the stabilizer is added to the reaction liquid, and the decomposition of the plating solution can be effectively prevented.
- the specific process of forming the first electrode layer 210 by electroless plating is described below in a specific embodiment:
- the image beam fiber 100 is placed in a culture dish, and the silver ammonia reaction solution and the reducing agent solution are poured into the culture dish at a volume ratio of 3:1, and after being reacted for a certain time at room temperature, the sample is taken out from the culture dish and used.
- the ionized water is gently rinsed and baked in a high temperature chamber at 90 ⁇ 10 ° C for 5 to 10 minutes to enhance the adhesion of the silver film.
- the silver film prepared by the above electroless plating method has high reflectance, uniform film quality, and good adhesion to the image-beam optical fiber 100, and is suitable as a cathode of an organic light-emitting diode, and the film thickness is generally 10 nm to 200 nm.
- a first protective layer needs to be formed on the image beam fiber 100 to protect the end surface 101 of the image capturing end of the image beam fiber 100 and not The part that needs to be coated with a silver film. Specifically, as shown in FIG.
- a surface of the image beam fiber 100 having a length L from the end face 101 of the image pickup end of the image beam fiber 100 is plated with a silver film as the first electrode layer 210 of the organic light emitting diode (cathode Wherein the size of L is preferably from 0.1 mm to 2 mm, and in one embodiment, the photoresist is printed at the end face 101 of the image beam fiber 100 and other non-silvered film on the surface of the fiber by inkjet printing.
- a protective layer ie, the first protective layer to protect the regions from being covered by the silver film during the electroless plating; after the electroless silver plating film is completed, the photoresist protective layer on the surface of the image beam fiber 100 is peeled off, To remove the silver film on the surface of the photoresist protective layer, thereby preparing a silver film on the outer surface of the image beam fiber 100 from the end face 101 of the image beam fiber 100 as the L region as the first electrode layer 210 of the organic light emitting diode. .
- FIG. 3 is a schematic view showing the structure of forming a first electrode layer by magnetron sputtering.
- the image beam fiber 100 is axially fixed on the rotating shaft of the micro motor 10; the micro motor 10 is fixed on the magnetron splash In the coating chamber, the rotating shaft of the micromotor 10 is rotated, so that the image beam fiber 100 is continuously rotated around the central axis of the image beam fiber 100 during the coating process to grow the surface of the image fiber 100.
- a film layer having a uniform thickness, that is, the first electrode layer 210 is formed.
- the first electrode layer 210 prepared on the surface of the image beam fiber 100 by means of magnetron sputtering may be a cathode metal film layer of an organic light emitting diode having a lower work function, for example, silver, magnesium, a metal film layer of any one of lithium, or an alloy film layer of any two or three metals of silver, magnesium, lithium; preferably, the first electrode layer 210 may be Mg:Ag (10:1) Or a Li:Al (0.6%Li) alloy metal film layer or the like.
- the first electrode layer 210 of the organic light emitting diode on the surface of the image beam fiber 100 is produced by magnetron sputtering, it is also required to adopt inkjet printing or the like at the end surface 101 of the image beam fiber 100.
- the photoresist protective layer (ie, the first protective layer) is printed on the surface of the bundle fiber 100 other than the coating, so as to protect these regions from being covered by the silver film during magnetron sputtering; in magnetron sputtering
- the photoresist protective layer on the surface of the image beam fiber 100 is peeled off to remove the metal film layer on the surface of the photoresist protective layer, so as to be L at the image capturing end face 101 of the image beam fiber 100.
- the surface area of the image beam fiber 100 is plated with a silver film as the first electrode layer 210 (cathode) of the organic light emitting diode, wherein L is preferably 0.1 mm to 2 mm in size.
- the organic light emitting diode prepared by electroless plating or magnetron sputtering is used.
- An electrode layer 210 has a higher reflectance, thereby preventing light of the organic light emitting diode from directly coupling into the optical fiber to interfere with imaging.
- step S2 forming the first lead 240 in the radial direction on the outer peripheral surface of the image beam fiber 100 may specifically include the following steps:
- the nanometer connecting the first electrode layer 210 of the organic light emitting diode is printed on the outer surface of the image beam fiber 100 by inkjet printing.
- a silver wire is used as the first lead 240.
- first lead 240 may be formed by other means, and the material of the first lead 240 may also be other metal materials, which is not limited thereto.
- step S3 forming the light-emitting layer 220 on the first electrode layer 210, specifically comprising: forming the photo on the first electrode layer 210 by evaporation. Light emitting layer 220.
- a region in which the light-emitting layer 220 is not required to be formed on the image-beam optical fiber 100 forms a second protective layer; After the light emitting layer 220 is formed on the image beam fiber 100, the second protective layer is removed.
- the second protective layer is formed on the image beam fiber 100 by inkjet printing.
- the image beam fiber 100 having the first electrode layer 210 and the first lead 240 which have been fabricated with the organic light emitting diode is axially fixed on the rotating shaft of the micro motor, and the micro motor is fixed in the vapor deposition chamber, and the micro motor is used to transmit
- the image beam fiber 100 is continuously rotated around the central axis of the image beam fiber 100 during the coating process to grow a uniform organic light emitting film layer on the surface of the image beam fiber 100;
- the photoresist protective layer on the surface of the image beam fiber 100 is peeled off to remove the organic light emitting film layer on the photoresist film layer, and finally formed on the surface of the first electrode layer 210 of the organic light emitting diode.
- Organic light emitting layer 220 is
- the organic light emitting layer 220 is spaced apart from the first electrode layer 210 of the organic light emitting diode.
- the first electrode layer 210 of the organic light emitting diode is short-circuited, and the distance d may be maintained to form an appropriate slope at the boundary of the first electrode layer 210 for subsequent printing of the second electrode layer 230 for connecting the organic light emitting diode.
- the second lead 250 is such that the second lead 250 can be better attached to the surface of the image beam fiber 100.
- the distance d is set according to requirements, and generally takes 10-50 ⁇ m;
- the method further includes: after the light emitting layer 220 is formed on the first electrode layer 210, the Before the second electrode layer 230 is formed on the light emitting layer 220, the insulating layer 260 is formed on a portion of the first electrode layer 210 that is not covered by the light emitting layer 220.
- the insulating layer 260 can be formed by inkjet printing.
- an insulating layer 260 is printed on a portion of the upper surface of the length D of the exposed portion of the organic light emitting diode that is not covered by the light emitting layer 220 by inkjet printing (preferably, The insulating layer 260 is a PMMA insulating layer 260) to prevent the second lead 250 of the subsequently fabricated second electrode layer 230 for connecting the organic light emitting diode from being short-circuited with the edge of the first electrode layer 210 of the organic light emitting diode.
- the boundary of the insulating layer 260 slightly exceeds the boundary of the first electrode layer 210 of the organic light emitting diode to completely cover the boundary of the first electrode layer 210 protecting the organic light emitting diode.
- the illuminating layer is at one end of the illuminating light source 200 away from the image collecting end of the image beam fiber 100. 220 completely covering the boundary of the first electrode layer 210 and beyond the boundary of the first electrode layer 210 for insulating the first electrode layer 210 and the second electrode layer 230, and the light emitting layer 220 forms a second transition slope structure at a boundary position of the first electrode layer 210.
- the second electrode layer 230 is formed on the light-emitting layer 220, and specifically includes: using a magnetron sputtering coating method or a thermal evaporation method.
- the second electrode layer 230 is formed on the light emitting layer 220.
- the second electrode layer 230 is formed on the outer circumferential surface of the image beam fiber 100, a region in which the second electrode layer 230 is not required to be formed on the image beam fiber 100 forms a third protective layer.
- the third protective layer is removed.
- the third protective layer is formed on the image beam fiber 100 by inkjet printing.
- the second electrode layer 230 of the organic light emitting diode is formed by a plating method such as magnetron sputtering or thermal evaporation
- the second electrode layer 230 of the organic light emitting diode of transparent ITO transparent indium tin oxide
- the image beam fiber 100 of the first electrode layer 210 having the organic light emitting diode and the first lead 240 (for the fiber endoscope provided in the embodiment 1 and the insulating layer 260) is fixed in the axial direction.
- the micro motor On the rotating shaft of the micro motor, the micro motor is fixed in the coating chamber, and the microbeam motor is used to continuously rotate the image beam fiber 100 in the process of coating, and the image beam fiber 100 is continuously rotated around the central axis of the image beam fiber 100.
- a second electrode layer 230 of the uniform organic light emitting diode is grown on the surface;
- the photoresist protective layer on the surface of the image beam fiber 100 is peeled off to remove the second electrode layer 230 of the organic light emitting diode on the photoresist film layer, thereby preparing a second desired organic light emitting diode. Electrode layer 230.
- the light emitting layer 220 is at least partially not covered by the second electrode layer 230 such that a boundary of the light emitting layer 220 exceeds the second electrode A boundary of the layer 230 is used to insulate the first electrode layer 210 and the second electrode layer 230.
- the second lead 250 is formed on the outer peripheral surface of the image beam fiber 100 in a radial direction, and specifically includes: printing and organic printing by inkjet printing
- the second lead 250 of the second electrode layer 230 of the light emitting diode is electrically connected.
- the second lead 250 passes through the insulating layer 260 and the first electrode layer 210 of the organic light emitting diode. Insulation isolation, the second lead 250 in the non-organic light emitting diode region is formed on the surface of the image beam fiber 100, and is parallel to the first lead 240. As shown in FIG. 9, the first lead 240 is electrically connected to the first of the organic light emitting diode.
- the electrode layer 210, the second lead 250 is electrically connected to the second electrode layer 230 of the organic light emitting diode, and the first lead 240 and the second lead 250 are respectively connected to the positive and negative electrodes of the external power source to supply power to the organic light emitting diode.
- the method further includes:
- the first lead 240 and the second lead 250 are transparently encapsulating the protective film layer 270.
- the light transmissive encapsulating protective film layer 270 is formed by inkjet printing.
- the transparent encapsulating protective film layer 270 is covered by inkjet printing on the region of the organic light emitting diode and the first lead 240 and the second lead 250 to protect the layers of the organic light emitting diode and a first lead 240 and a second lead 250, and at a portion of the image capturing end face 101 of the image beam fiber 100, except at a cross section of the region other than the core 110, the cladding 120, and the coating layer 130 of the image beam fiber 100,
- the light transmissive encapsulating protective film layer 270 is also printed to cover the organic light emitting diode.
- the transparent encapsulating protective film layer 270 can be made of PMMA material. PMMA is commonly known as acrylic, which has good light transmittance and insulation, and can function as a package to protect the organic light emitting diode and the wiring.
- a transparent light-transmissive protective film layer 270 may be uniformly grown on the entire outer surface of the image-emitting fiber 100 by vapor deposition or PECVD (plasma enhanced chemical vapor deposition).
- the material of the light-transmitting protective film layer 270 may be a high light transmittance material such as silicon nitride or silicon oxide.
- the image beam fiber 100 that has been fabricated with the organic light emitting diode is axially fixed on the rotating shaft of the micro motor, and the micro motor is fixed in the coating chamber, and the optical fiber is continuously wound during the coating process by using the micro motor.
- the central axis of the fiber is rotated at a constant speed to grow a uniform light-transmissive encapsulating protective film layer 270 on the outer surface of the image beam fiber 100 (including the image capturing end face 101 of the image beam fiber 100).
- a cross-sectional view of the image capturing end face 101 of the image beam fiber 100 is as shown in the drawing, and a light-transmissive protective film layer 270 is also grown on the image capturing end face 101 of the image beam fiber 100, and the light-transmissive protective film layer is formed.
- the light-transmissive encapsulating protective film layer 270 of the image capturing end face 101 of 100 is integrally formed with the light-transmissive encapsulating protective film layer 270 on the surface of the image-forming optical fiber 100 to jointly protect the outer surface of the image-forming optical fiber 100.
- forming the illuminating light source 200 at the image collecting end of the image beam further includes: forming an illuminating light source at an image collecting end of each of the image beam fibers 100. After 200, a plurality of the image beam fibers 100 are integrated into the image bundle.
- integrating the plurality of the image beam fibers 100 into the image bundle comprises: protecting and fixing a plurality of the image bundle fibers 100 through an external transparent outer protective layer 300.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
- Endoscopes (AREA)
Abstract
一种光纤内窥镜及其制造方法,光纤内窥镜包括用于传导图像的传像束(100),传像束(100)包括图像采集端和图像输出端;在传像束(100)的图像采集端设有发光光源(200)。光纤内窥镜及其制作方法,简化了光纤内窥镜的结构,在保证照明亮度的前提下,有利于缩小光纤内窥镜的图像采集端的尺寸,同时,由于发光光源(200)设置在传像束(100)的图像采集端,能够充分的保证内窥镜在工作时四周的亮度,保证了成像质量,使传回的图像更加饱满。
Description
相关申请的交叉引用
本申请主张在2017年6月1日在中国提交的中国专利申请号No.201710404520.2的优先权,其全部内容通过引用包含于此。
本公开涉及医疗器械技术领域,尤其涉及一种光纤内窥镜及其制作方法。
医用内窥镜是一个配备有灯光的管子,它可以经过口腔进入胃内或经其他天然管道进入体内。利用内窥镜可以看到X射线不能显示的病变,因此它对医生非常有用。医用内窥镜按其发展及成像构造分类:可大体分为三大类:硬管式内窥镜、光学纤维(软管式)内窥镜和电子内窥镜。其中,硬管式内镜随着新技术的发展已经不再使用;光学纤维(软管式)内窥镜由内窥镜镜体和冷光源两部分组成,镜体内有两条光导纤维束:一条叫导光束,它是用来将冷光源产生的光线传导到被观测的物体表面,从而将被观测物表面照亮;另一条叫传像束的光纤束,一端对准目镜,另一端通过物镜片对准被观测物表面,医生通过目镜能够非常直观地看到脏器表面的情况,便于及时准确地诊断病情。传导图像的光纤束构成了纤维内窥镜的核心部分,它由数万根极细的玻璃纤维组成,根据光学的全反射原理,所有玻璃纤维外面必须再被覆一层折射率较低的膜(包层),以保证所有纤芯传导的光线都能发生全反射。由于单根光纤的传递只能产生一个光点,要想看到完整的图像,就必须把大量的光纤集成束,而要保证把图像传递到另一端也成同样的图像,就必须使每一根光纤在其两端所排列的位置相同,称为导像束。电子内窥镜与光学纤维内窥镜的不同之处是后者使用光纤传像而前者使用的称为微型图像传感器的CCD(Charge-coupled Device,中文全称:电荷耦合元件,也可称为CCD图像传感器)器件,它们的光源是一样的。基于此,手术可以用内窥镜和激光来做,内窥镜的光导纤维能输送激光束,烧灼赘生物或肿瘤,封闭出血的 血管。
相关技术中的光纤内窥镜是通过设置在外部的光源发出的光经导光束传至内窥镜端部的一个凹透镜上,经过凹透镜发散以获得更宽广的照明视场,反射回来的光线进入观察系统经过传像束传到其另一端,从目镜后即可看到清晰的物像。由于光纤内窥镜包括导光束和传像束,因此不利于缩小内窥镜端部的尺寸,并且受限于导光束所占的比例,外部光源通过导光束传播到脏器表面的亮度有限。
发明内容
本公开的目的在于提供一种光纤内窥镜及其制作方法,简化了光纤内窥镜的结构,在保证照明亮度的前提下,有利于缩小光纤内窥镜的图像采集端的尺寸,同时,由于发光光源设置在传像束的图像采集端,能够充分的保证内窥镜在工作时四周的亮度,保证了成像质量,使传回的图像更加饱满。
本公开所提供的技术方案如下:
一种光纤内窥镜,所述光纤内窥镜包括用于传导图像的传像束,所述传像束包括图像采集端和图像输出端;在所述传像束的图像采集端设有发光光源。
进一步的,所述传像束包括至少一根传像束光纤,在每一根所述传像束光纤的图像采集端均设置有所述发光光源。
进一步的,所述发光光源为有机发光二极管,包括由内至外依次包裹在所述传像束光纤的外周面的第一电极层、发光层及第二电极层;
在所述传像束光纤的外周面上还设有:与所述第一电极层连接、用于向所述第一电极层施加电信号的第一引线;及,与所述第二电极层连接、用于向所述第二电极层施加电信号的第二引线。
进一步的,在所述发光光源的远离所述传像束光纤的图像采集端的一端,所述第一电极层至少部分未被所述发光层覆盖,以使所述第一电极层的边界超出所述发光层的边界,且在所述第一电极层未被所述发光层所覆盖的部分上覆盖有绝缘层,用于使所述第一电极层和所述第二电极层绝缘,且所述绝缘层完全覆盖住所述第一电极层的边界,并在所述第一电极层的边界位置处 形成第一过渡斜坡结构;
或者,在所述发光光源的远离所述传像束光纤的图像采集端的一端,所述发光层完全覆盖住所述第一电极层的边界,并超出所述第一电极层的边界,用以使所述第一电极层和所述第二电极层绝缘,且所述发光层在所述第一电极层的边界位置处形成第二过渡斜坡结构;
或者,在所述发光光源的远离所述传像束光纤的图像采集端的一端,所述发光层至少部分未被所述第二电极层覆盖,以使所述发光层的边界超出所述第二电极层的边界,用于使所述第一电极层和所述第二电极层绝缘。
进一步的,在所述发光光源的靠近所述传像束光纤的图像采集端的一端,所述第一电极层、所述发光层及所述第二电极层的边界齐平;
或者,在所述发光光源的靠近所述传像束光纤的图像采集端的一端,所述发光层的边缘至少部分未被所述第二电极层覆盖,以使所述发光层的边界超出所述第二电极层的边界,用以使所述第一电极层和所述第二电极层绝缘;
或者,在所述发光光源的靠近所述传像束光纤的图像采集端的一端,所述第一电极层至少部分未被所述发光层覆盖,以使所述第一电极层的边界超出所述发光层的边界,且在所述第一电极层未被所述发光层所覆盖的部分上覆盖有绝缘层,用于使所述第一电极层和所述第二电极层绝缘。
进一步的,所述第一电极层的反射率高于预设值,用以避免所述发光层发出的光进入所述传像束光纤内。
进一步的,在所述传像束光纤上还设置有封装保护所述有机发光二极管、所述第一引线和所述第二引线的透光封装保护膜层。
一种如上所述的光纤内窥镜的制造方法,所述方法包括:在所述传像束的图像采集端制作形成发光光源。
进一步的,在所述传像束的图像采集端制作形成发光光源,包括:在所述传像束的每一根传像束光纤的图像采集端均制作所述发光光源;具体包括:
在所述传像束光纤的外周面上、靠近所述传像束光纤的图像采集端的位置处形成第一电极层;
在所述传像束光纤的外周面上沿径向形成第一引线;
在所述第一电极层上形成发光层;
在所述发光层上形成第二电极层;
在所述传像束光纤的外周面上沿径向形成第二引线。
进一步的,在所述方法中,采用化学镀膜或者磁控溅射的方式在所述传像束光纤的外周面上形成所述第一电极层;所述第一引线和所述第二引线均采用喷墨打印的方式形成在所述传像束光纤上。
进一步的,所述方法还包括:
在所述传像束光纤的外周面上形成所述第一电极层之前,在所述传像束光纤上不需要形成第一电极层的区域形成第一保护层;在所述传像束光纤上形成所述第一电极层之后,除去所述第一保护层;
在所述传像束光纤的外周面上形成所述发光层之前,在所述传像束光纤上不需要形成所述发光层的区域形成第二保护层;在所述传像束光纤上形成所述发光层之后,除去所述第二保护层;
在所述传像束光纤的外周面上形成所述第二电极层之前,在所述传像束光纤上不需要形成所述第二电极层的区域形成第三保护层;在所述传像束光纤上形成所述第二电极层之后,除去所述第三保护层;
其中,所述第一保护层、所述第二保护层和所述第三保护层均采用喷墨打印方式形成于所述传像束光纤上。
进一步的,所述方法还包括:
在所述传像束的每一根传像束光纤的图像采集端均制作所述发光光源之后,在所述传像束光纤上形成用于封装保护所述有机发光二极管、所述第一引线和所述第二引线的透光封装保护膜层;其中采用喷墨打印方式形成所述透光封装保护膜层。
本公开所带来的有益效果如下:
本公开提供的光纤内窥镜及其制作方法,将发光光源集成在传像束的图像采集端,省去了外部光源及导光束,简化了光纤内窥镜的结构,在保证照明亮度的前提下,有利于缩小光纤内窥镜的图像采集端的尺寸,同时,由于发光光源设置在传像束的图像采集端,能够充分的保证内窥镜在工作时四周的亮度,保证了成像质量,使传回的图像更加饱满。
图1表示本公开实施例中所提供的光纤内窥镜的单根传像束光纤的截面结构示意图;
图2表示本公开实施例中所提供的光纤内窥镜制作方法中采用化学镀膜方式在传像束光纤上形成第一电极层的结构示意图;
图3表示本公开实施例中所提供的光纤内窥镜制作方法中采用磁控溅射镀膜方式在传像束光纤上形成第一电极层时的结构示意图;
图4表示本公开实施例中所提供的光纤内窥镜制作方法中在传像束光纤上形成第一电极层时的截面结构示意图;
图5表示本公开实施例中所提供的光纤内窥镜制作方法中在传像束光纤上形成第一引线时的结构示意图;
图6表示本公开实施例中所提供的光纤内窥镜制作方法中在传像束光纤上形成发光层时的结构示意图;
图7表示本公开实施例中所提供的光纤内窥镜制作方法中在传像束光纤上形成发光层时的截面结构示意图;
图8表示本公开实施例中所提供的光纤内窥镜制作方法中在传像束光纤上形成绝缘层时的截面结构示意图;
图9表示本公开实施例中所提供的光纤内窥镜制作方法中在传像束光纤上形成第二电极层及第二引线时的结构示意图;
图10表示本公开实施例中所提供的光纤内窥镜制作方法中在传像束光纤上形成第二电极层及第二引线时的截面结构示意图;
图11表示本公开实施例中所提供的光纤内窥镜制作方法中在传像束光纤上形成透光封装保护膜层时的结构示意图;
图12表示本公开实施例中所提供的光纤内窥镜中单根传像束光纤上形成发光光源的立体结构示意图;
图13表示本公开实施例中所提供的光纤内窥镜中多根传像束光纤集成在一起的结构示意图。
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
针对相关技术中光纤内窥镜的光源设置在外部,不利于内窥镜端部的尺寸,且外部光源通过导光束传播的亮度有限的技术问题,本公开提供了一种光纤内窥镜及其制作方法,能够将发光光源集成在传像束的图像采集端,省去了外部光源及导光束,简化了光纤内窥镜的结构,在保证照明亮度的前提下,有利于缩小光纤内窥镜的图像采集端的尺寸,同时,由于发光光源设置在传像束的图像采集端,能够充分的保证内窥镜在工作时四周的亮度,保证了成像质量,使传回的图像更加饱满。
本公开实施例中所提供的光纤内窥镜包括用于传导图像的传像束,所述传像束包括图像采集端和图像输出端;在所述传像束的图像采集端设有发光光源。
本公开提供的光纤内窥镜,其是将发光光源集成在传像束的图像采集端,省去了外部光源及导光束,简化了光纤内窥镜的结构,在保证照明亮度的前提下,有利于缩小光纤内窥镜的图像采集端的尺寸;同时,由于发光光源设置在传像束的图像采集端,能够充分的保证内窥镜在工作时四周的亮度,保证了成像质量,使传回的图像更加饱满。
在本公开所提供的优选实施例中,如图12和13所示,所述传像束包括至少一根传像束光纤100,在每一根所述传像束光纤100的图像采集端均设置有所述发光光源200。
采用上述方案,所述光纤内窥镜可以是单根传像束光纤100或多根传像束光纤100,如图13所示,当所述光纤内窥镜包括多根传像束光纤100时,其是将大量的单根传像束光纤100集合在一起,多根所述传像束光纤100通过外部的透明的外部保护层300进行保护与固定,在每一根所述传像束光纤100的图像采集端均集成有所述发光光源200。
此外,在本公开所提供的优选实施例中,如图1、图11和图12所示, 所述发光光源200为有机发光二极管,包括由内至外依次包裹在所述传像束光纤100的外周面的第一电极层210、发光层220及第二电极层230;在所述传像束光纤100的外周面上还设有:与所述第一电极层210连接、用于向所述第一电极层210施加电信号的第一引线240;及,与所述第二电极层230连接、用于向所述第二电极层230施加电信号的第二引线250。
采用上述方案,所述发光光源200是采用的有机发光二极管,OLED即有机发光二极管(Organic Light-Emitting Diode),又称为有机电激光显示(Organic Electroluminescence Display,OLED),其基本结构是由一薄而透明具半导体特性之铟锡氧化物,与电力正极相连,再加上另一个金属阴极,包成如三明治的结构。整个结构层中包括:空穴传输层、发光层与电子传输层等。当电力供应之适当电压时,一般为10V以内,正极空穴与阴极电荷就会在发光层中结合,产生光亮,并且发光层发光时产生的热量很小,一般在30摄氏度左右。
在本公开所提供的优选实施例中,所述发光光源200就是采用的有机发光二极管,其可以制作在传统的传像束光纤100的图像采集端的外表面上,通过在传统的传像束光纤100的外表面上由内至外依次形成第一电极层210、发光层220和第二电极层230,并在传像束光纤100的外表面上制作用于向第一电极层210施加电信号的第一引线240及用于向第二电极层230施加电信号的第二引线250来实现将有机发光二极管集成于传像束光纤100上的目的。
其中所述第一电极层210可以是阴极层,其可以是采用金属膜层,所述金属膜层可以包括银、镁、锂中的任意一种金属膜层,或者,银、镁、锂中任意两种或三种金属的合金膜层;所述第二电极层230可以是阳极层,其可以采用氧化铟锡层;所述第一引线240和所述第二引线250均可以采用纳米银线。
需要说明的是,所述第一电极层210、所述第二电极层230及所述第一引线240、所述第二引线250均可以采用其他材质,对此并不进行限定。
需要说明的是,在上述方案中,所述传像束光纤100的横截面如图1所示,其主要是由纤芯110、包层120和涂覆层130构成,所述传像束光纤100 的最外层为涂覆层130,即树脂涂层,其作用是保护脆弱的包层120和纤芯110,加强光纤整体的强度;中间层为包层120即低折射率层,其作用是提供与纤芯110介质间的折射率差,从而实现光在光纤中全反射式传输,在某些时候也能够作为重要传光部分;中心处为光纤纤芯110,即高折射率芯,是主要的光传输通道。一般单模光纤的纤芯110直径为8-10μm,多模光纤的纤芯110直径范围为50-100μm。
还需要说明的是,在上述方案中,如图12所示,所述第一电极层210、所述发光层220及所述第二电极层230均可以是沿所述传像束光纤100的周向由内至外依次包裹于所述传像束光纤100的外表面,而所述第一引线240和所述第二引线250可以是沿所述传像束光纤100的轴向方向相互平行设置,以与外部的信号加载装置连接。
此外,在本公开所提供的光纤内窥镜中,所述第一引线240连接在所述第一电极层210的远离所述传像束光纤100的图像采集端的一端,所述第二引线250连接在所述第二电极层230的远离所述传像束光纤100的图像采集端的一端,为了使得第一电极层210和第二电极层230绝缘,在本公开所提供的光纤内窥镜中,可以采用以下三种实施方式:
实施例1
如图9所示,在所述发光光源200的远离所述传像束光纤100的图像采集端的一端,所述第一电极层210至少部分未被所述发光层220覆盖,以使所述第一电极层210的边界超出所述发光层220的边界,且在所述第一电极层210未被所述发光层220所覆盖的部分上覆盖有绝缘层260,用于使所述第一电极层210和所述第二电极层230绝缘。
采用上述方案,在所述发光光源200的远离所述图像采集端的一端,所述发光层220距离所述第一电极层210的边界的距离为d,并采用绝缘层260来覆盖住所述第一电极层210上未被所述发光层220所覆盖住的部分,如此,可以防止在后续制作连接有机发光二极管的第二电极层230的第二引线250时,第二引线250与有机发光二极管的第一电极层210之间连接发生短路。
优选的,在所述发光光源200的远离所述传像束光纤100的图像采集端的一端,所述绝缘层260完全覆盖住所述第一电极层210的边界,并在所述 第一电极层210的边界位置处形成第一过渡斜坡结构。
采用上述方案,在所述发光光源200的远离所述传像束光纤100的图像采集端的一端,所述绝缘层260的边界应略微长于所述第一电极层210的边界,以完全覆盖保护所述第一电极层210的边界,并将所述绝缘层260在覆盖所述第一电极层210的边界的位置处制作出适当的坡度,以便后续制作的用于连接所述第二电极层230的第二引线250在经过所述第一电极层210的边界断层位置时,能由所述绝缘层260起到一缓冲作用,而使得所述第二引线250能更好地贴附在所述传像束光纤100的表面。
需要说明的是,在上述方案中,在所述发光光源200的远离所述图像采集端的一端,所述发光层220的边界与所述第一电极层210的边界之间的上述距离d的大小根据需要设置,一般取10-50μm即可。
实施例2
在所述发光光源200的远离所述传像束光纤100的图像采集端的一端,所述发光层220完全覆盖住所述第一电极层210的边界,并超出所述第一电极层210的边界,用以使所述第一电极层210和所述第二电极层230绝缘。
采用上述方案,在所述发光光源200的远离所述图像采集端的一端,所述发光层220的边界超出所述第一电极层210的边界,从而,可以防止在后续制作连接有机发光二极管的第二电极层230的第二引线250时,第二引线250与有机发光二极管的第一电极层210之间连接发生短路。
优选的,所述发光层220在所述第一电极层210的边界位置处形成第二过渡斜坡结构。
采用上述方案,在所述发光光源200的远离所述传像束光纤100的图像采集端的一端,所述发光层220在覆盖所述第一电极层210的边界的位置处制作出适当的坡度,以便后续制作的用于连接所述第二电极层230的第二引线250在经过所述第一电极层210的边界断层位置时,能由所述发光层220起到一缓冲作用,而使得所述第二引线250能更好地贴附在所述传像束光纤100的表面。
实施例3
在所述发光光源200的远离所述传像束光纤100的图像采集端的一端, 所述发光层220至少部分未被所述第二电极层230覆盖,以使所述发光层220的边界超出所述第二电极层230的边界,用于使所述第一电极层210和所述第二电极层230绝缘。
采用上述方案,在所述发光光源200的远离所述图像采集端的一端,所述发光层220的边界超出所述第二电极层230的边界,也就是说,所述发光层220至少一部分未被所述第二电极层230覆盖,由此,可以防止在后续制作连接有机发光二极管的第二电极层230的第二引线250时,第二引线250与有机发光二极管的第一电极层210之间连接发生短路。
需要说明的是,在实际应用中,除了以上三种实施方式,还可以采用其他方式来使得在所述发光光源200的远离所述图像采集端的一端,所述第一电极层210和所述第二电极层230绝缘。
此外,在本公开所提供的实施例中,在所述发光光源200的靠近所述传像束光纤100的图像采集端的一端,所述第一电极层210、所述发光层220及所述第二电极层230的边界齐平。
采用上述方案,由于所述第一引线240和第二引线250分别连接在所述第一电极层210和所述第二电极层230的远离所述图像采集端的一端,因此,在所述发光光源200的靠近所述传像束光纤100的图像采集端的一端,所述第一电极层210、所述发光层220及所述第二电极层230的边界可以齐平,并与所述传像束光纤100的图像采集端的端面101齐平,有利于结构简化。
需要说明的是,在本公开的其他实施例中,在所述发光光源200的靠近所述传像束光纤100的图像采集端的一端,还可以是:
所述发光层220的边缘至少部分未被所述第二电极层230覆盖,以使所述发光层220的边界超出所述第二电极层230的边界,或者,在所述发光光源200的靠近所述传像束光纤100的图像采集端的一端,所述第一电极层210至少部分未被所述发光层220覆盖,以使所述第一电极层210的边界超出所述发光层220的边界,且在所述第一电极层210未被所述发光层220所覆盖的部分上覆盖有绝缘层260,用于使所述第一电极层210和所述第二电极层230绝缘,以进一步减少所述第一电极层210和所述第二电极层230之间的短路的风险。
此外,在本公开所提供的优选实施例中,为了防止所述传像束光纤100表面的有机发光二极管发出的光直接耦合进光纤,优选的,所述第一电极层210的反射率高于预设值,也就是说,所述第一电极层210具有较高的反射率,用以避免所述发光层220发出的光耦合进入所述传像束光纤100内,从而干扰成像。
此外,在本公开所提供的优选实施例中,如图11所示,在所述传像束光纤100上还设置有封装保护所述有机发光二极管、所述第一引线240和所述第二引线250的透光封装保护膜层270。
在本公开的实施例中还提供了一种本公开实施例所提供的光纤内窥镜的制作方法,所述方法包括:在所述传像束的图像采集端制作形成发光光源200。
其中,在所述方法中,优选的,在所述传像束的图像采集端制作形成发光光源200,具体包括:在所述传像束的每一根传像束光纤100的图像采集端均制作所述发光光源200,以制作形成单根光纤内窥镜。
其中在每一根所述传像束光纤100的图像采集端制作发光光源200的步骤包括如下:
步骤S1、在所述传像束光纤100的外周面上、靠近所述传像束光纤100的图像采集端的位置处形成第一电极层210;
步骤S2、在所述传像束光纤100的外周面上沿径向形成第一引线240;
步骤S3、在所述第一电极层210上形成发光层220;
步骤S4、在所述发光层220上形成第二电极层230;
步骤S5、在所述传像束光纤100的外周面上沿径向形成第二引线250。
其中,在本公开实施例所提供的方法中,步骤S1中,优选的,可以采用化学镀膜或者磁控溅射的方式在所述传像束光纤100的外周面上形成所述第一电极层210。
在本公开实施例所提供的方法中,所述方法还包括:在所述传像束光纤100的外周面上形成所述第一电极层之前,在所述传像束光纤100上不需要形成第一电极层的区域形成第一保护层;在所述传像束光纤100上形成所述第一电极层之后,除去所述第一保护层。优选的,所述第一保护层是采用喷墨打印方式形成于所述传像束光纤100上。
以下说明分别说明采用化学镀膜方式和采用磁控溅射镀膜方式在所述传像束光纤100的外周面上形成所述第一电极层210的具体步骤。
(一)化学镀膜方式:
图2和图4所示为采用化学镀膜方式形成第一电极层的结构示意图。
以化学镀银膜为例,化学镀银膜层具有良好的均匀性,化学镀银的反应溶液由银盐、络合物和强还原剂组成,由于化学镀银的不稳定、以及反应时间快,寿命短,所以在反应液中加入稳定剂,可以有效地防止镀液的分解。以下以一种具体的实施例来说明采用化学镀膜方式来形成所述第一电极层210的具体过程:
1)银氨反应液的配置:取1.0~2.0g硝酸银,搅拌溶解于100ml的去离子水中;配置氨水,缓缓地加入硝酸银溶液中,同时搅拌,溶液发生反应生成沉淀,继续添加氨水至沉淀消失;称取0.5~0.9g氢氧化钾(KOH),搅拌溶解于50ml水中,将KOH溶液缓缓加入反应液中,同时搅拌,溶液发生反应生成沉淀;继续滴加氨水溶液,直至溶液基本澄清,若还有少量沉淀存在可以用过滤的方法滤清溶液,注意氨水不要过量;
2)还原剂溶液的配置:用电子天平称量0.5~0.9g葡萄糖,搅拌溶解于95ml去离子水中;加入5ml乙醇作为稳定剂;
3)将传像束光纤100置于培养皿中,银氨反应液与还原剂溶液按3:1的体积比例倒入培养皿中,在室温下反应一定时间后从培养皿中取出,并用去离子水轻轻的冲洗,置于高低温箱中90±10℃环境下烘烤5~10min,可增强银膜的附着力。
通过上述化学镀膜方式制备的银膜反射率高,膜质均匀,且与传像束光纤100附着力良好,适合作为有机发光二极管的阴极,膜层厚度一般为10nm-200nm。
需要说明的是,在上述方案中,在进行化学镀膜之前,需要在所述传像束光纤100上形成第一保护层,以保护好所述传像束光纤100的图像采集端的端面101以及不需要镀银膜的部分。具体地,如图2所示,在距离传像束光纤100的图像采集端端面101处长为L的传像束光纤100表面区域镀上银膜作为有机发光二极管的第一电极层210(阴极),其中L的大小优选为 0.1mm-2mm,在一具体实施例中,采用喷墨打印的方式在传像束光纤100的端面101处以及光纤表面其他不需要镀银膜处打印光刻胶保护层(即所述第一保护层),以保护这些区域在化学镀膜时不会被银膜覆盖;在化学镀银膜完成后,剥离掉传像束光纤100表面的光刻胶保护层,以去除光刻胶保护层表面的银膜,从而制备出距离传像束光纤100端面101长为L区域的传像束光纤100的外表面上的银膜作为有机发光二极管的第一电极层210。
(二)磁控溅射镀膜方式:
图3所示为采用磁控溅射镀膜方式形成第一电极层的结构示意图。
在磁控溅射镀膜方式制备有机发光二极管的第一电极层210时,将所述传像束光纤100沿轴向固定在微型电动机10的转轴上;将所述微型电动机10固定在磁控溅射镀膜腔室内,利用微型电动机10的转轴旋转,使传像束光纤100在镀膜的过程中不停地绕传像束光纤100中心轴匀速旋转,以使所述传像束光纤100的表面生长出厚度均匀的膜层,即,所述第一电极层210。
其中,利用磁控溅射的方式在所述传像束光纤100的表面制备出的第一电极层210,可以是功函数较低的有机发光二极管的阴极金属膜层,例如:银、镁、锂中的任意一种金属膜层,或者,银、镁、锂中任意两种或三种金属的合金膜层;优选的,所述第一电极层210可以是Mg:Ag(10:1)或者Li:Al(0.6%Li)合金金属膜层等。
需要说明的是,在磁控溅射制作传像束光纤100表面上的有机发光二极管的第一电极层210之前,同样需要采用喷墨打印等方式在传像束光纤100的端面101处以及传像束光纤100的表面其他不需要镀膜处打印光刻胶保护层(即所述第一保护层),以保护这些区域在磁控溅射镀膜时不会被银膜覆盖;在磁控溅射镀膜完成后,剥离掉传像束光纤100表面的光刻胶保护层,以去除光刻胶保护层表面的金属膜层,从而在距离传像束光纤100的图像采集端端面101处长为L的传像束光纤100表面区域镀上银膜作为有机发光二极管的第一电极层210(阴极),其中L的大小优选为0.1mm-2mm。
需要说明的是,为了防止传像束光纤100表面的有机发光二极管发出的光直接耦合进传像束光纤100,优选的,采用化学镀膜或者磁控溅射镀膜方式制备出的有机发光二极管的第一电极层210具有较高的反射率,从而避免 有机发光二极管的光直接耦合进光纤而干扰成像。
在本公开实施例所提供的方法中,步骤S2中,在所述传像束光纤100的外周面上沿径向形成所述第一引线240,具体可以包括如下步骤:
如图5所示,在有机发光二极管的第一电极层210制备完成后,通过喷墨打印的方式,在传像束光纤100的外表面打印出连接有机发光二极管的第一电极层210的纳米银线,作为所述第一引线240。
应当理解的是,在实际应用中,所述第一引线240还可以采用其他方式来形成,所述第一引线240的材料也可以采用其他金属材料,对此不进行限定。
此外,在本公开实施例所提供的方法中,步骤S3中,在所述第一电极层210上形成发光层220,具体包括:采用蒸镀方式在所述第一电极层210上形成所述发光层220。
并且,在所述传像束光纤100的外周面上形成所述发光层220之前,在所述传像束光纤100上不需要形成所述发光层220的区域形成第二保护层;在所述传像束光纤100上形成所述发光层220之后,除去所述第二保护层。优选的,所述第二保护层采用喷墨打印方式形成于所述传像束光纤100上。
以下以一具体实施例来说明采用蒸镀方式来形成所述发光层220的具体步骤:
采用喷墨打印的方式在传像束光纤100的图像采集端端面101处以及传像束光纤100的表面其他不需要蒸镀有机发光层220处打印光刻胶保护层(即所述第二保护层),以保护这些区域在蒸镀时不会被有机发光层220覆盖;
将已经制作有有机发光二极管的第一电极层210和第一引线240的传像束光纤100沿轴向固定在微型电动机的转轴上,微型电动机固定在蒸镀腔室中,利用微型电动机使传像束光纤100在镀膜的过程中不停地绕传像束光纤100中心轴匀速旋转,以使传像束光纤100的表面生长出均匀的有机发光膜层;
在镀膜完成后,剥离掉传像束光纤100表面的光刻胶保护层,以去除光刻胶膜层上的有机发光膜层,最终在有机发光二极管的第一电极层210的表面上制备出有机发光层220。
需要说明的是,当本公开所提供的方法应用于制作本公开实施例1中所提供的光纤内窥镜时,如图6所示,有机发光层220距离有机发光二极管的第一电极层210的远离所述图像采集端的一端的边界的距离为d,以防止在后续打印制作连接有机发光二极管的第二电极层230的第二引线250时,在远离所述图像采集端的一端的边界处与有机发光二极管的第一电极层210短路,且保留上述距离d也可以在第一电极层210的边界处制作出适当的坡度,以便后续打印制作的用于连接有机发光二极管的第二电极层230的第二引线250时,使得第二引线250能更好地贴附在传像束光纤100表面。上述距离d大小根据需要设置,一般取10-50μm即可;
当本公开所提供的方法应用于制作本公开实施例1中所提供的光纤内窥镜时,所述方法还包括:在所述第一电极层210上形成所述发光层220之后,所述发光层220上形成第二电极层230之前,在所述第一电极层210未被所述发光层220所覆盖的部分上形成绝缘层260。
优选的,可以采用喷墨打印的方式来形成所述绝缘层260。
具体地,通过喷墨打印的方式在有机发光二极管的第一电极层210上裸露出来的长度为d的未被所述发光层220所覆盖的部分上表面打印一层绝缘层260(优选的,所述绝缘层260为PMMA绝缘层260),以避免后续制作的用于连接有机发光二极管的第二电极层230的第二引线250与有机发光二极管的第一电极层210的边缘短路。
在远离所述图像采集端的一端,所述绝缘层260的边界略微超出有机发光二极管的第一电极层210的边界,以完全覆盖保护有机发光二极管的第一电极层210的边界。
当本公开所提供的方法应用于制作本公开实施例2中所提供的光纤内窥镜时,在所述发光光源200的远离所述传像束光纤100的图像采集端的一端,所述发光层220完全覆盖住所述第一电极层210的边界,并超出所述第一电极层210的边界,用以使所述第一电极层210和所述第二电极层230绝缘,且所述发光层220在所述第一电极层210的边界位置处形成第二过渡斜坡结构。
此外,在本公开实施例所提供的方法中,步骤S4中,在所述发光层220 上形成所述第二电极层230,具体包括:采用磁控溅射镀膜方式或者热蒸镀方式在所述发光层220上形成所述第二电极层230。
并且,在所述传像束光纤100的外周面上形成所述第二电极层230之前,在所述传像束光纤100上不需要形成所述第二电极层230的区域形成第三保护层;在所述传像束光纤100上形成所述第二电极层230之后,除去所述第三保护层。优选的,所述第三保护层采用喷墨打印方式形成于所述传像束光纤100上。
以下分别说明采用磁控溅射镀膜方式或热蒸发方式来形成所述发光层220的具体步骤:
采用磁控溅射或者热蒸发等镀膜方式制作有机发光二极管的第二电极层230时,优选地,选择透明ITO(透明氧化铟锡)材质的有机发光二极管的第二电极层230,在镀膜之前,通过喷墨打印的方式在传像束光纤100的图像采集端端面101处以及传像束光纤100表面其他不需要生长第二电极层230处打印光刻胶保护层(即第三保护层),以保护这些区域在镀膜时不会被第二电极层230覆盖;
将已经制作有有机发光二极管的第一电极层210、第一引线240(对于实施例1所提供的光纤内窥镜来说,还有绝缘层260)的传像束光纤100沿轴向固定在微型电动机的转轴上,微型电动机固定在镀膜腔室中,利用微型电动机使传像束光纤100在镀膜的过程中不停地绕传像束光纤100中心轴匀速旋转,以使传像束光纤100的表面生长出均匀的有机发光二极管的第二电极层230;
在镀膜完成后,剥离掉传像束光纤100表面的光刻胶保护层,以去除光刻胶膜层上的有机发光二极管的第二电极层230,从而制备出所需要的有机发光二极管的第二电极层230。
需要说明的是,在上述方法中,当本公开所提供的方法应用于制作本公开实施例3中所提供的光纤内窥镜时,在形成所述第二电极层230时,在所述发光光源200的远离所述传像束光纤100的图像采集端的一端,所述发光层220至少部分未被所述第二电极层230覆盖,以使所述发光层220的边界超出所述第二电极层230的边界,用于使所述第一电极层210和所述第二电 极层230绝缘。
此外,在本公开实施例所提供的方法中,步骤S4中,在所述传像束光纤100的外周面上沿径向形成第二引线250,具体包括:通过喷墨打印方式打印出与有机发光二极管的第二电极层230电连接的第二引线250。
需要说明的是,当本公开所提供的方法应用于制作本公开实施例3中所提供的光纤内窥镜时,所述第二引线250通过绝缘层260与有机发光二极管的第一电极层210绝缘隔离,在非有机发光二极管区域的第二引线250制作在传像束光纤100的表面,并且与第一引线240平行,如图9所示,第一引线240电连接有机发光二极管的第一电极层210,第二引线250电连接有机发光二极管的第二电极层230,第一引线240与第二引线250分别连接外部电源的正负极,以为有机发光二极管供电。
此外,在本公开实施例所提供的方法中,所述方法还包括:
在所述传像束的每一根传像束光纤100的图像采集端均制作所述发光光源200之后,在所述传像束光纤100上形成用于封装保护所述有机发光二极管、所述第一引线240和所述第二引线250的透光封装保护膜层270。
优选的,在所述方法中,采用喷墨打印方式形成所述透光封装保护膜层270。
具体地,一实施例中,在有机发光二极管所在区域以及第一引线240和第二引线250上通过喷墨打印的方式覆盖透光封装保护膜层270,以保护有机发光二极管的各膜层及第一引线240和第二引线250,并且在传像束光纤100的图像采集端端面101处,除传像束光纤100的纤芯110、包层120以及涂覆层130以外的区域截面处,也全部打印覆盖所述透光封装保护膜层270,以封装保护有机发光二极管。所述透光封装保护膜层270可以采用PMMA材质,PMMA俗称亚克力,具有良好的透光率与绝缘性,能起到封装保护有机发光二极管与布线的作用。
在另一个实施例中,可以利用蒸镀或者PECVD(等离子体增强化学气相沉积法)等镀膜方式,在传像束光纤100的整个外表面上均匀地生长一层透光封装保护膜层270,透光封装保护膜层270的材质可以为氮化硅或者氧化硅等高透光率材料。具体地,将已经制作有有机发光二极管的传像束光纤100 沿轴向固定在微型电动机的转轴上,微型电动机固定在镀膜腔室中,利用微型电动机使光纤在镀膜的过程中不停地绕光纤中心轴匀速旋转,以使传像束光纤100的外表面(包括传像束光纤100的图像采集端端面101)生长出均匀的透光封装保护膜层270。传像束光纤100的图像采集端端面101处的截面图如图所示,传像束光纤100的图像采集端端面101上同样会生长有透光封装保护膜层270,透光封装保护膜层270完全覆盖传像束光纤100的图像采集端端面101处的纤芯110、包层120和涂覆层130以及第一电极层210、发光层220和第二电极层230;覆盖传像束光纤100的图像采集端端面101的透光封装保护膜层270与传像束光纤100表面的透光封装保护膜层270是一体形成的,共同保护传像束光纤100的外表面。
此外,在本公开实施例所提供的方法中,在所述传像束的图像采集端制作形成发光光源200,还包括:在每一根所述传像束光纤100的图像采集端制作发光光源200之后,将多根所述传像束光纤100集成为所述传像束。
具体地,将多根所述传像束光纤100集成为所述传像束,具体包括:将多根所述传像束光纤100通过外部透明的外部保护层300进行保护与固定。
以上所述仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本公开的保护范围。
Claims (10)
- 一种光纤内窥镜,所述光纤内窥镜包括用于传导图像的传像束,所述传像束包括图像采集端和图像输出端;其中,在所述传像束的图像采集端设有发光光源。
- 根据权利要求1所述的光纤内窥镜,其中,所述传像束包括至少一根传像束光纤,在每一根所述传像束光纤的图像采集端均设置有所述发光光源。
- 根据权利要求2所述的光纤内窥镜,其中,所述发光光源为有机发光二极管,包括由内至外依次包裹在所述传像束光纤的外周面的第一电极层、发光层及第二电极层;在所述传像束光纤的外周面上还设有:与所述第一电极层连接、用于向所述第一电极层施加电信号的第一引线;及,与所述第二电极层连接、用于向所述第二电极层施加电信号的第二引线。
- 根据权利要求3所述的光纤内窥镜,其中,在所述发光光源的远离所述传像束光纤的图像采集端的一端,所述第一电极层至少部分未被所述发光层覆盖,以使所述第一电极层的边界超出所述发光层的边界,且在所述第一电极层未被所述发光层所覆盖的部分上覆盖有绝缘层,用于使所述第一电极层和所述第二电极层绝缘,且所述绝缘层完全覆盖住所述第一电极层的边界,并在所述第一电极层的边界位置处形成第一过渡斜坡结构;或者,在所述发光光源的远离所述传像束光纤的图像采集端的一端,所述发光层完全覆盖住所述第一电极层的边界,并超出所述第一电极层的边界,用以使所述第一电极层和所述第二电极层绝缘,且所述发光层在所述第一电极层的边界位置处形成第二过渡斜坡结构;或者,在所述发光光源的远离所述传像束光纤的图像采集端的一端,所述发光层至少部分未被所述第二电极层覆盖,以使所述发光层的边界超出所述第二电极层的边界,用于使所述第一电极层和所述第二电极层绝缘。
- 根据权利要求3所述的光纤内窥镜,其中,在所述发光光源的靠近所述传像束光纤的图像采集端的一端,所述第一电极层、所述发光层及所述第二电极层的边界齐平;或者,在所述发光光源的靠近所述传像束光纤的图像采集端的一端,所述发光层的边缘至少部分未被所述第二电极层覆盖,以使所述发光层的边界超出所述第二电极层的边界,用以使所述第一电极层和所述第二电极层绝缘;或者,在所述发光光源的靠近所述传像束光纤的图像采集端的一端,所述第一电极层至少部分未被所述发光层覆盖,以使所述第一电极层的边界超出所述发光层的边界,且在所述第一电极层未被所述发光层所覆盖的部分上覆盖有绝缘层,用于使所述第一电极层和所述第二电极层绝缘。
- 根据权利要求3所述的光纤内窥镜,其中,所述第一电极层的反射率高于预设值,用以避免所述发光层发出的光进入所述传像束光纤内。
- 根据权利要求3所述的光纤内窥镜,其中,在所述传像束光纤上还设置有封装保护所述有机发光二极管、所述第一引线和所述第二引线的透光封装保护膜层。
- 一种如权利要求1至7任一项所述的光纤内窥镜的制造方法,其中,所述方法包括:在所述传像束的图像采集端制作形成发光光源。
- 根据权利要求8所述的方法,其中,在所述传像束的图像采集端制作形成发光光源,包括:在所述传像束的每一根传像束光纤的图像采集端均制作所述发光光源;具体包括:在所述传像束光纤的外周面上、靠近所述传像束光纤的图像采集端的位置处形成第一电极层;在所述传像束光纤的外周面上沿径向形成第一引线;在所述第一电极层上形成发光层;在所述发光层上形成第二电极层;在所述传像束光纤的外周面上沿径向形成第二引线。
- 根据权利要求9所述的方法,其中,在所述方法中,采用化学镀膜或者磁控溅射的方式在所述传像束光纤的外周面上形成所述第一电极层;所述第一引线和所述第二引线均采用喷墨打印的方式形成在所述传像束光纤上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710404520.2A CN107252300B (zh) | 2017-06-01 | 2017-06-01 | 光纤内窥镜及其制作方法 |
CN201710404520.2 | 2017-06-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018219130A1 true WO2018219130A1 (zh) | 2018-12-06 |
Family
ID=60022897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/086699 WO2018219130A1 (zh) | 2017-06-01 | 2018-05-14 | 光纤内窥镜及其制作方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107252300B (zh) |
WO (1) | WO2018219130A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107252300B (zh) * | 2017-06-01 | 2020-06-30 | 京东方科技集团股份有限公司 | 光纤内窥镜及其制作方法 |
CN111340715B (zh) * | 2019-09-19 | 2024-02-06 | 杭州海康慧影科技有限公司 | 一种图像的网格纹弱化方法、装置及电子设备 |
CN117590515A (zh) * | 2023-11-30 | 2024-02-23 | 中国建筑材料科学研究总院有限公司 | 高均匀性、高透过率的光纤面板及其制备方法和应用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040170371A1 (en) * | 2003-01-10 | 2004-09-02 | Vladimir Arkhipov | Integrated optical device and method of making the same |
US20050137459A1 (en) * | 2003-12-17 | 2005-06-23 | Scimed Life Systems, Inc. | Medical device with OLED illumination light source |
CN102316784A (zh) * | 2009-02-12 | 2012-01-11 | 皇家飞利浦电子股份有限公司 | 具有照明装置的可插入设备 |
CN102711304A (zh) * | 2012-05-28 | 2012-10-03 | 昆山维信诺显示技术有限公司 | 环形oled光源及其制备方法 |
CN203364849U (zh) * | 2013-05-28 | 2013-12-25 | 福州英诺电子科技有限公司 | 一种荧光光纤传感器的荧光材料层软性固定结构 |
US20150073212A1 (en) * | 2013-09-11 | 2015-03-12 | Semiconductor Energy Laboratory Co., Ltd. | Endoscope Apparatus |
CN205083432U (zh) * | 2015-09-06 | 2016-03-16 | 深圳英美达医疗技术有限公司 | 一种光纤内窥镜 |
CN107252300A (zh) * | 2017-06-01 | 2017-10-17 | 京东方科技集团股份有限公司 | 光纤内窥镜及其制作方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6538375B1 (en) * | 2000-08-17 | 2003-03-25 | General Electric Company | Oled fiber light source |
CN101470259A (zh) * | 2007-12-26 | 2009-07-01 | 上海虹基电子科技有限公司 | 工业探视镜 |
CN101966076B (zh) * | 2010-09-29 | 2012-03-28 | 中山联合光电科技有限公司 | 一种带数码镜头的前置式环形照明系统 |
CN205507227U (zh) * | 2016-03-25 | 2016-08-24 | 温州市鹿城区中津先进科技研究院 | 用于体内介入式检测的手机显微镜 |
CN105996969A (zh) * | 2016-07-21 | 2016-10-12 | 王雅 | 一种医用内窥镜的视频采集处理装置 |
CN106725294A (zh) * | 2017-03-03 | 2017-05-31 | 杨勋 | 一种透明外管内窥镜结构 |
-
2017
- 2017-06-01 CN CN201710404520.2A patent/CN107252300B/zh active Active
-
2018
- 2018-05-14 WO PCT/CN2018/086699 patent/WO2018219130A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040170371A1 (en) * | 2003-01-10 | 2004-09-02 | Vladimir Arkhipov | Integrated optical device and method of making the same |
US20050137459A1 (en) * | 2003-12-17 | 2005-06-23 | Scimed Life Systems, Inc. | Medical device with OLED illumination light source |
CN102316784A (zh) * | 2009-02-12 | 2012-01-11 | 皇家飞利浦电子股份有限公司 | 具有照明装置的可插入设备 |
CN102711304A (zh) * | 2012-05-28 | 2012-10-03 | 昆山维信诺显示技术有限公司 | 环形oled光源及其制备方法 |
CN203364849U (zh) * | 2013-05-28 | 2013-12-25 | 福州英诺电子科技有限公司 | 一种荧光光纤传感器的荧光材料层软性固定结构 |
US20150073212A1 (en) * | 2013-09-11 | 2015-03-12 | Semiconductor Energy Laboratory Co., Ltd. | Endoscope Apparatus |
CN205083432U (zh) * | 2015-09-06 | 2016-03-16 | 深圳英美达医疗技术有限公司 | 一种光纤内窥镜 |
CN107252300A (zh) * | 2017-06-01 | 2017-10-17 | 京东方科技集团股份有限公司 | 光纤内窥镜及其制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107252300A (zh) | 2017-10-17 |
CN107252300B (zh) | 2020-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018219130A1 (zh) | 光纤内窥镜及其制作方法 | |
US6551240B2 (en) | Endoscope | |
US9804339B2 (en) | Optical connector and medical device | |
CN104411227B (zh) | 内窥镜的插入部的前端硬质部以及使用该前端硬质部的内窥镜 | |
US20020123666A1 (en) | Light source device for endoscopes | |
JP5649747B2 (ja) | 内視鏡用照明ユニット及び内視鏡 | |
US8573824B2 (en) | Illumination optical unit for endoscope and method of manufacturing the same | |
JP5905980B1 (ja) | 内視鏡 | |
JP2008522790A (ja) | 密閉封止型内視鏡アセンブリ | |
CN104042179A (zh) | 一体式医疗内窥镜系统 | |
US20150073212A1 (en) | Endoscope Apparatus | |
JP2012517314A (ja) | 照明手段を備える介入機器 | |
US5774615A (en) | Optical fiber with a metal layer to maintain the desired shape of the optical fiber | |
CN202695555U (zh) | 环形oled光源 | |
CN107019489B (zh) | 一种oct内窥成像探头及其制造方法 | |
JP4043686B2 (ja) | 反射防止膜付きレンズ及び内視鏡 | |
CN206315076U (zh) | 一种oct内窥成像探头 | |
CN102711304B (zh) | 环形oled光源及其制备方法 | |
CN207168469U (zh) | 一种新型医疗内窥镜镜头 | |
TWI355256B (zh) | ||
JP2012225719A (ja) | ラマンプローブ及びその製法 | |
JPH09243935A (ja) | 多層膜フィルター付きのレンズ | |
JP3668371B2 (ja) | 内視鏡用光学装置 | |
JP2013233257A (ja) | 光学ユニットおよび内視鏡システム | |
WO2023125872A1 (zh) | 胶囊内窥镜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18808762 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 07/04/20 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18808762 Country of ref document: EP Kind code of ref document: A1 |