WO2018219052A1 - 一种基于对偶模态方程的确定性声固耦合响应预示方法 - Google Patents
一种基于对偶模态方程的确定性声固耦合响应预示方法 Download PDFInfo
- Publication number
- WO2018219052A1 WO2018219052A1 PCT/CN2018/083242 CN2018083242W WO2018219052A1 WO 2018219052 A1 WO2018219052 A1 WO 2018219052A1 CN 2018083242 W CN2018083242 W CN 2018083242W WO 2018219052 A1 WO2018219052 A1 WO 2018219052A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acoustic
- subsystem
- modal
- deterministic
- coupling
- Prior art date
Links
- 238000010168 coupling process Methods 0.000 title claims abstract description 61
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 61
- 230000008878 coupling Effects 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000009977 dual effect Effects 0.000 title claims abstract description 31
- 238000007781 pre-processing Methods 0.000 claims abstract description 4
- 239000011159 matrix material Substances 0.000 claims description 30
- 239000007787 solid Substances 0.000 claims description 20
- 238000006073 displacement reaction Methods 0.000 claims description 12
- 238000012546 transfer Methods 0.000 claims description 6
- 230000010349 pulsation Effects 0.000 claims description 4
- 238000013016 damping Methods 0.000 claims description 3
- 230000001755 vocal effect Effects 0.000 abstract 2
- 230000005284 excitation Effects 0.000 description 8
- 238000013461 design Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Definitions
- the invention relates to the technical field of acoustic-coupling response prediction, in particular to a deterministic acoustic-solid coupling response prediction method based on a dual-modal equation.
- test methods theoretical methods and numerical methods can be used to predict the acoustic-solid coupling response of the system under deterministic load excitation. Among them, the test method can obtain reliable results, but the cost of conducting test analysis is high, and the design cycle is long; the theoretical method is only applicable to simple systems, and it is difficult to solve the problem of predicting the acoustic-solid coupling response of complex systems; the numerical method has good performance for complex systems. Applicability is an effective aid to experimental analysis.
- the dual-modal equation theory uses a fictitious interface to divide the system into coupled subsystems, and based on the finite element calculation subsystem's modality, rather than the modality of the entire coupled system, therefore, the dual modal equation method is more traditional than the finite element.
- the method has higher analytical efficiency.
- the present invention discloses a deterministic acoustic-solid coupling response prediction method based on a dual modal equation, which can effectively improve the deterministic load.
- the acoustic-solid coupling response of the structure under excitation indicates the efficiency.
- a deterministic acoustic-solid coupling response prediction method based on dual modal equations comprising the following steps:
- the acoustic-coupling system in the step (1) is a coupling system between the structure and the acoustic cavity, the structural vibration affects the sound pressure pulsation of the acoustic cavity, and the sound pressure pulsation of the acoustic cavity also affects the structural vibration; the structural subsystem is coupled with the acoustic cavity subsystem.
- the boundary conditions on the interface are approximated to a free state, and the boundary conditions of the acoustic cavity subsystem at the interface with the structural subsystem are approximated as fixed boundaries.
- the modal parameters and the mode shapes of the structural subsystem and the acoustic cavity subsystem are calculated based on the finite element method.
- the coupling parameter between the modalities in the adjacent subsystems in the step (3) is calculated by the following formula:
- W mn is the coupling parameter between the mth-order displacement mode of the structural subsystem and the nth-order acoustic pressure mode of the acoustic cavity subsystem. Is the mode shape of the mth-order displacement mode of the structural subsystem, For the mode of the nth-order sound pressure mode of the acoustic cavity subsystem, S c is the coupling interface between the structural subsystem and the acoustic cavity subsystem, and s is the spatial position.
- M where M is the m-th sub-structure displacement modal mass, M n is the n-order sound quality stamper state tune subsystem, ⁇ m and [eta] n are modal damping loss factor m and n are modal, ⁇ For the angular frequency, ⁇ m ( ⁇ ) is the participation factor of the modal m, For the participation factor of modal n, F m ( ⁇ ) and F n ( ⁇ ) are the generalized force loads received on the modal m and the modal n, respectively.
- step (6) the system dual modal equation is written in the form of a block matrix:
- the kth modal participation factor in the i-th subsystem can be obtained by inverting the coefficient matrix to the left of equation (5):
- the superscript "-1" indicates the inverse matrix of the matrix.
- step (7) the displacement response of the structural subsystem is calculated by:
- step (2-7) only the mode of the subsystem whose natural frequency is lower than the upper limit of the analysis band of 1.25 times is included.
- the present invention discloses a deterministic acoustic-solid coupling response prediction method based on a dual-modal equation, which is a deterministic acoustic-solid coupling response prediction method superior to the conventional finite element method, which can effectively improve certainty
- the acoustic-solid coupling response of the structure under load excitation predicts efficiency, shortens the design cycle, and saves design costs.
- Figure 1 is a logic flow diagram of the present invention
- Figure 2 is a schematic view of a stiffened plate/acoustic cavity coupling model
- Figure 3 is a finite element model of a stiffened panel
- Figure 4 is the acoustic-solid coupling response at the response point in the subsystem under deterministic concentrated force load excitation (a) stiffened plate, (b) acoustic cavity;
- Figure 5 is the acoustic-solid coupling response at the response point in the subsystem under deterministic noise load excitation (a) stiffened plate, (b) acoustic cavity.
- Figure 1 shows a logic flow diagram of a deterministic acoustic-solid coupling response prediction method based on the dual modal equation, which mainly includes the following steps:
- Step (1) divides the structure and acoustic cavity in the acoustic-coupling system into different subsystems;
- the acoustic-coupling system is a coupling system between the structure and the acoustic cavity
- the structural vibration affects the sound pressure fluctuation of the acoustic cavity
- the sound pressure fluctuation of the acoustic cavity also affects the structural vibration.
- the boundary condition of the structural subsystem at the coupling interface with the acoustic cavity subsystem is approximated to a free state, and the boundary condition of the acoustic cavity subsystem at the coupling interface with the structural subsystem is approximated as a fixed boundary.
- Step (2) calculates the modality of the structural subsystem and the acoustic cavity subsystem with the natural frequency lower than 1.25 times the upper limit of the analysis band; the modal parameters and mode shapes of the structural subsystem and the acoustic cavity subsystem are calculated based on the finite element method.
- Step (3) calculates a coupling parameter between modes in which the natural frequency of the adjacent subsystem is less than 1.25 times the upper limit of the analysis band; the specific formula is calculated by:
- W mn is the coupling parameter between the mth-order displacement mode of the structural subsystem and the nth-order acoustic pressure mode of the acoustic cavity subsystem.
- W mn is the coupling parameter between the mth-order displacement mode of the structural subsystem and the nth-order acoustic pressure mode of the acoustic cavity subsystem.
- Step (4) establishes the dual mode equation of the coupled system:
- M where M is the m-th sub-structure displacement modal mass, M n is the n-order sound quality stamper state tune subsystem, ⁇ m and [eta] n are modal damping loss factor m and n are modal, ⁇ For the angular frequency, ⁇ m ( ⁇ ) is the participation factor of the modal m, For the participation factor of modal n, F m ( ⁇ ) and F n ( ⁇ ) are the generalized force loads received on the modal m and the modal n, respectively.
- Step (5) obtains the generalized force load received by the subsystem mode under the action of the deterministic load through the pre-processing; when the structural subsystem is excited by the deterministic surface pressure load P(s, ⁇ ), the mode m
- the generalized force load received is given by:
- Step (6) calculates a dual mode equation and obtains a participation factor for all modes
- the kth modal participation factor in the i-th subsystem can be obtained by inverting the coefficient matrix to the left of equation (5):
- the superscript "-1" indicates the inverse matrix of the matrix.
- Step (7) calculates the deterministic acoustic-solid coupling response of the system by modal superposition; specifically calculates the displacement response of the structural subsystem by the following formula:
- the boundary conditions of the stiffened plate are: simply supported on four sides, the finite element model of the stiffened plate is shown in Figure 3; the parameters of the panel of the stiffened plate are given in Table 1, the material parameters of the rib and the material parameters of the panel Similarly, the dimension parallel to the x-axis rib is 1 m ⁇ 0.03 m ⁇ 0.005 m, the pitch is 1 / 6 m, and the dimension of the rib parallel to the y-axis is 1 m ⁇ 0.02 m ⁇ 0.005 m, and the pitch is 1 / 6 m.
- the boundary conditions of the acoustic cavity are: except for the face coupled with the stiffened plate, the remaining faces are fixed boundaries; the parameters of the acoustic cavity are given in Table 2.
- a unit deterministic noise load is applied to the outer surface of the stiffened panel, and after the above steps, the acceleration response spectrum at the response point of the coordinate plate (0.3 m, 0.1 m) on the stiffened panel is obtained, and the coordinates in the acoustic cavity are (
- the sound pressure response spectrum at the response point of 0.3m, 0.1m, 0m) is shown in Fig. 5(a) and Fig. 5(b), respectively.
- the final result of the embodiment shows that the method proposed by the invention can effectively solve the problem of predicting the acoustic-solid coupling response of the complex system under the deterministic load excitation, and improve the efficiency of the analysis.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- External Artificial Organs (AREA)
Abstract
Description
Claims (9)
- 一种基于对偶模态方程的确定性声固耦合响应预示方法,其特征在于:包括以下步骤:(1)将声固耦合系统中的结构和声腔划分成不同的子系统;(2)计算结构子系统和声腔子系统的模态;(3)计算相邻子系统中模态间的耦合参数;(4)建立耦合系统的对偶模态方程;(5)通过前置处理,获得确定性载荷作用下,子系统模态上受到的广义力载荷;(6)计算对偶模态方程,获得所有模态的参与因子;(7)通过模态叠加,计算系统确定性声固耦合响应。
- 根据权利要求1所述的基于对偶模态方程的确定性声固耦合响应预示方法,其特征在于:所述步骤(1)中的声固耦合系统为结构与声腔耦合系统,结构振动会影响声腔声压脉动,声腔声压脉动也会影响结构振动;结构子系统在与声腔子系统耦合界面上的边界条件被近似为自由状态,声腔子系统在与结构子系统耦合界面上的边界条件被近似为固定边界。
- 根据权利要求1所述的基于对偶模态方程的确定性声固耦合响应预示方法,其特征在于:所述步骤(2)中基于有限元法计算了结构子系统和声腔子系统的模态参数和模态振型。
- 根据权利要求1所述的基于对偶模态方程的确定性声固耦合响应预示方法,其特征在于:所述步骤(2~7)中,仅包含固有频率低于1.25倍分析频带上限的子系统的模态。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710403615.2A CN107133422B (zh) | 2017-06-01 | 2017-06-01 | 一种基于对偶模态方程的确定性声固耦合响应预示方法 |
CN201710403615.2 | 2017-06-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018219052A1 true WO2018219052A1 (zh) | 2018-12-06 |
Family
ID=59733415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/083242 WO2018219052A1 (zh) | 2017-06-01 | 2018-04-16 | 一种基于对偶模态方程的确定性声固耦合响应预示方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107133422B (zh) |
WO (1) | WO2018219052A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113836773A (zh) * | 2021-09-29 | 2021-12-24 | 九江学院 | 声固耦合系统结构振动响应预示方法、系统及可存储介质 |
CN114169096A (zh) * | 2021-12-03 | 2022-03-11 | 中国核电工程有限公司 | 解耦位置响应谱的生成方法及装置、抗震分析方法及系统 |
CN118070611A (zh) * | 2024-03-13 | 2024-05-24 | 华中科技大学 | 内部含液舱的圆柱壳结构耦合振动的建模计算方法及系统 |
CN118657032A (zh) * | 2024-08-21 | 2024-09-17 | 南昌华翔汽车内外饰件有限公司 | 内饰车身噪声性能分析方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107133422B (zh) * | 2017-06-01 | 2018-04-24 | 东南大学 | 一种基于对偶模态方程的确定性声固耦合响应预示方法 |
CN107748815B (zh) * | 2017-10-16 | 2018-08-21 | 东南大学 | 一种随机噪声环境下基于对偶模态方程的动响应分析方法 |
CN108491595B (zh) * | 2018-03-07 | 2019-03-29 | 东南大学 | 一种声-固耦合结构的高频局部响应预示方法 |
CN109145369B (zh) * | 2018-07-11 | 2019-05-31 | 东南大学 | 一种计及非共振传输的中高频局部动响应预示方法 |
CN109635507A (zh) * | 2019-01-11 | 2019-04-16 | 汽-大众汽车有限公司 | 基于仿真与实验结合的汽车阻尼片的布置方法 |
CN111159950B (zh) * | 2019-12-30 | 2021-06-01 | 北京理工大学 | 基于声固耦合的复合材料螺旋桨预应力湿模态预测方法 |
CN113688551A (zh) * | 2021-09-01 | 2021-11-23 | 九江学院 | 一种声固耦合系统噪声优化方法、系统及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120239358A1 (en) * | 2011-03-16 | 2012-09-20 | Yiu Hoi | Stresses induced by random loading |
CN104112070A (zh) * | 2014-07-11 | 2014-10-22 | 长沙理工大学 | 用于弹性边界浅拱发生内共振时动力响应的求解方法 |
CN104850713A (zh) * | 2015-05-28 | 2015-08-19 | 西北工业大学 | 机械结构随机振动动态应力高精度计算方法 |
CN107133422A (zh) * | 2017-06-01 | 2017-09-05 | 东南大学 | 一种基于对偶模态方程的确定性声固耦合响应预示方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2730195B2 (ja) * | 1989-06-30 | 1998-03-25 | 三菱電機株式会社 | 結合振動特性解析装置 |
US6090147A (en) * | 1997-12-05 | 2000-07-18 | Vibro-Acoustics Sciences, Inc. | Computer program media, method and system for vibration and acoustic analysis of complex structural-acoustic systems |
-
2017
- 2017-06-01 CN CN201710403615.2A patent/CN107133422B/zh active Active
-
2018
- 2018-04-16 WO PCT/CN2018/083242 patent/WO2018219052A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120239358A1 (en) * | 2011-03-16 | 2012-09-20 | Yiu Hoi | Stresses induced by random loading |
CN104112070A (zh) * | 2014-07-11 | 2014-10-22 | 长沙理工大学 | 用于弹性边界浅拱发生内共振时动力响应的求解方法 |
CN104850713A (zh) * | 2015-05-28 | 2015-08-19 | 西北工业大学 | 机械结构随机振动动态应力高精度计算方法 |
CN107133422A (zh) * | 2017-06-01 | 2017-09-05 | 东南大学 | 一种基于对偶模态方程的确定性声固耦合响应预示方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113836773A (zh) * | 2021-09-29 | 2021-12-24 | 九江学院 | 声固耦合系统结构振动响应预示方法、系统及可存储介质 |
CN114169096A (zh) * | 2021-12-03 | 2022-03-11 | 中国核电工程有限公司 | 解耦位置响应谱的生成方法及装置、抗震分析方法及系统 |
CN118070611A (zh) * | 2024-03-13 | 2024-05-24 | 华中科技大学 | 内部含液舱的圆柱壳结构耦合振动的建模计算方法及系统 |
CN118657032A (zh) * | 2024-08-21 | 2024-09-17 | 南昌华翔汽车内外饰件有限公司 | 内饰车身噪声性能分析方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107133422B (zh) | 2018-04-24 |
CN107133422A (zh) | 2017-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018219052A1 (zh) | 一种基于对偶模态方程的确定性声固耦合响应预示方法 | |
WO2019076015A1 (zh) | 一种随机噪声环境下基于对偶模态方程的动响应分析方法 | |
WO2021164250A1 (zh) | 一种湍流场更新方法、装置及其相关设备 | |
WO2019076016A1 (zh) | 一种针对复杂结构的瞬态能量响应高精度预示方法 | |
WO2018233361A1 (zh) | 一种获取耦合损耗因子的数值方法 | |
CN105678015B (zh) | 一种高超声速三维机翼的非概率可靠性气动结构耦合优化设计方法 | |
CN104484502A (zh) | 一种基于正向子结构的有限元模型修正方法 | |
WO2019144384A1 (zh) | 一种航空发动机启动过程排气温度预测方法 | |
WO2024113711A1 (zh) | 工程岩体应力-渗流耦合的pd-fem-fvm高效模拟分析方法及系统 | |
CN115495965A (zh) | 复杂航空结构在混合不确定性下时变可靠性的分析方法 | |
Bhaskar et al. | An elasticity approach for simply-supported isotropic and orthotropic stiffened plates | |
WO2018214658A1 (zh) | 一种计及非共振传输的中频动响应预示方法 | |
Fan et al. | A novel numerical manifold method with derivative degrees of freedom and without linear dependence | |
CN112577657B (zh) | 一种分离激波振荡产生的脉动载荷快速预测方法 | |
US8983817B2 (en) | Dynamic load balancing for adaptive meshes | |
Zhao et al. | An iterative algorithm for analysis of coupled structural-acoustic systems subject to random excitations | |
Dazel et al. | Discontinuous Galerkin methods for poroelastic materials | |
CN112149323B (zh) | 一种卫星噪声预示的方法及装置 | |
CN107103126B (zh) | 一种铆接结构干涉量快速预测方法 | |
CN109635312A (zh) | 基于功率流法与统计能量法的结构中频振动计算方法 | |
CN115510759A (zh) | 基于时域数据的桥梁结构参数修正模型建立及预测方法 | |
CN115544653A (zh) | 刚度仿真测试方法、装置、电子设备以及存储介质 | |
CN112541276B (zh) | 一种基于缩比模型的动态响应预测等效方法 | |
Buscaglia et al. | An adaptive finite element approach for frictionless contact problems | |
CN108491595B (zh) | 一种声-固耦合结构的高频局部响应预示方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18810251 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18810251 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.09.2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18810251 Country of ref document: EP Kind code of ref document: A1 |