WO2018218797A1 - 用于处理工件的等离子体反应装置 - Google Patents
用于处理工件的等离子体反应装置 Download PDFInfo
- Publication number
- WO2018218797A1 WO2018218797A1 PCT/CN2017/100466 CN2017100466W WO2018218797A1 WO 2018218797 A1 WO2018218797 A1 WO 2018218797A1 CN 2017100466 W CN2017100466 W CN 2017100466W WO 2018218797 A1 WO2018218797 A1 WO 2018218797A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plasma
- process chamber
- electron beam
- chamber
- electromagnetic coil
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
Definitions
- the present invention relates to the field of microelectronics, and in particular to a plasma reaction apparatus for processing a workpiece.
- microelectronic devices With the development of semiconductor technology, the feature size of microelectronic devices is continuously decreasing, which makes people have higher requirements for plasma etch rate uniformity and critical size control. Moreover, due to the reduced feature size of microelectronic devices, microelectronic devices are also more sensitive to wafer surface damage due to plasma.
- Plasma-based generation is the use of electrons as a medium for energy transfer, so fundamentally, wafer surface damage due to plasma can often be achieved by reducing electron temperature and increasing the uniformity of electron density distribution.
- the plasma source used in the prior art plasma processing apparatus utilizes a magnetic field formed by an induction coil to excite a process gas in the process chamber to form a plasma.
- the magnetic field described above is generated by applying a pulsed RF power to the induction coil using a radio frequency power source.
- the frequency of the RF power supply is generally 13.56 MHz.
- the average electron temperature per unit time can be reduced by adjusting the pulse frequency and duty cycle.
- gas breakdown is required due to plasma ignition.
- the process when the electron temperature is high, it is easy to cause damage to the wafer surface in an instant.
- the present invention aims to solve at least one of the technical problems existing in the prior art, and proposes a plasma reaction apparatus for processing a workpiece, which can reduce the temperature of the electron, thereby solving the problem of the electron The problem of wafer surface damage caused by excessive temperature.
- a plasma reaction apparatus for processing a workpiece including an electron beam generating chamber, a filtering device, and a process chamber, is provided for the purpose of the present invention, wherein
- the electron beam generating chamber is located outside the process chamber, and communicates with the process chamber through the filtering device, and the electron beam generating chamber includes an inductively coupled plasma source, and the inductively coupled plasma source Generating a first plasma;
- the filtering device is configured to form an electron beam when the first plasma enters the process chamber through the filtering device; the electron beam is used to excite a process gas in the process chamber to generate a second plasma The second plasma is used to process the workpiece.
- the inductively coupled plasma source comprises an induction coil, a first matching device and a first RF power source, the electron beam generating chamber further comprising a medium cylinder and a first air intake device, wherein
- the medium cylinder is disposed outside the process chamber and has an opening communicating with the process chamber;
- the first air intake device is configured to transport a first gas that does not react with the process gas into the medium cylinder;
- the induction coil is wrapped around a wall of the medium cylinder, and an axis of the induction coil is horizontally disposed;
- the first RF power source is electrically connected to the induction coil through the first matching device for exciting the first gas to generate the first plasma.
- the first gas comprises an inert gas or nitrogen.
- the filtering device comprises an electrode plate and a first DC power source, wherein
- the electrode plate is disposed at a communication between the electron beam generating chamber and the process chamber, and a plurality of through holes are disposed on the electrode plate, and the plurality of through holes are radial with respect to the communication portion
- the cross-section is evenly distributed, and each of the through holes has a diameter smaller than 2 times the thickness of the sheath of the first plasma; the first direct current power source is electrically connected to the electrode plate for loading DC into the electrode plate Positive bias.
- the direct current bias voltage ranges from 500 to 3000V.
- the material used for the electrode plate comprises molybdenum or tungsten.
- an electron collecting device disposed on a chamber wall of the process chamber and located on an opposite side of the electron beam generating chamber for collecting movement in the electron beam to the Electrons at the electron collection device.
- the electron collecting device comprises a metal member, a resistive element and a dielectric spacer, wherein
- the metal member is disposed in a chamber wall of the process chamber and penetrates the thickness of the chamber wall and is electrically grounded through the resistive element located outside the process chamber;
- the dielectric spacer is disposed between the metal member and the chamber wall of the process chamber for electrically isolating the two.
- the material used for the metal member comprises molybdenum or tungsten.
- the material used for the dielectric spacer comprises ceramic or quartz.
- the resistance value of the resistance element ranges from 100 to 1000 ⁇ .
- a restraining device is further included for restraining the direction of movement of the electron beam to move in a horizontal direction.
- the restraining device comprises a first electromagnetic coil, a second electromagnetic coil and a second direct current power source, wherein
- the first electromagnetic coil is located outside the process chamber and surrounds a periphery of a communication between the electron beam generating chamber and the process chamber
- the second electromagnetic coil is located outside the process chamber, and surrounds
- the first electromagnetic coil and the second electromagnetic coil are both used to generate a magnetic field capable of restraining a moving direction of the electron beam to move in a horizontal direction;
- the second direct current power source is electrically connected to the first electromagnetic coil and the second electromagnetic coil, respectively, for respectively inputting direct current to the first electromagnetic coil and the second electromagnetic coil.
- the intensity of the magnetic field ranges from 0 to 1000 G.
- a protective layer is disposed on a chamber wall of the process chamber and at a communication between the electron beam generating chamber and the process chamber to protect a chamber wall of the process chamber from being Electron beam corrosion.
- the material used for the protective layer comprises molybdenum or tungsten.
- the present invention provides a plasma reaction apparatus for processing a workpiece, which is provided with an electron beam generating chamber outside the process chamber, which is connected to the process chamber through a filtering device. Moreover, the electron beam generating cavity generates the first plasma by using the inductively coupled plasma source, and since the inductively coupled plasma source does not need to use the metal electrode to discharge, metal contamination can be avoided.
- a filter device is used to cause the first plasma to form an electron beam as it passes through the filter device into the process chamber. The electron beam is used to excite a process gas within the process chamber to produce a second plasma for processing the workpiece.
- the temperature of the electrons in the second plasma generated by the electron excitation in the electron beam is low, thereby avoiding the cause of excessive electron temperature. Surface damage of a workpiece such as a wafer.
- FIG. 1 is a partial cross-sectional view of a plasma reactor for processing a workpiece according to a first embodiment of the present invention
- Figure 2 is a cross-sectional view showing an electron beam generating chamber employed in the first embodiment of the present invention
- Figure 3A is a cross-sectional view of an electrode plate used in a first embodiment of the present invention.
- 3B is a structural view of an electrode plate used in the first embodiment of the present invention.
- FIG. 4 is a cross-sectional view of a plasma reactor for processing a workpiece according to a second embodiment of the present invention.
- a plasma reaction apparatus is used for performing processing such as etching, deposition, and the like on a workpiece.
- the plasma reaction device includes an electron beam generating chamber 100.
- the electron beam generating cavity 100 is located outside the chamber side wall 201 of the process chamber 200 (for example, the left side wall in the drawing), and the side wall 201 of the chamber is provided with a side wall penetrating the chamber.
- a channel 202 having a thickness of 201 which may be, for example, a through hole.
- the electron beam generating chamber 100 communicates with the interior of the process chamber 200 through the passage 202.
- the chamber sidewall 201 of the process chamber 200 may be a cylindrical ring body (ie, a circular cylindrical structure) or a square ring body (ie, a square cylindrical structure), in which case the chamber
- the outer surface of the side wall 201 may be a circular arc surface, or may be a flat surface.
- the electron beam generating chamber 100 may directly abut on the chamber side wall 201, and for the cavity Where the chamber side wall 201 is a cylindrical ring body, the electron beam generating chamber 100 can be docked with the chamber side wall 201 by a mounting flange.
- the electron beam generating cavity 100 includes an Inductive Coupled Plasma (ICP) that generates a high frequency electromagnetic field from an RF coil through an induction coil to excite the process gas to generate a first plasma.
- ICP Inductive Coupled Plasma
- This plasma generation method eliminates the need for metal electrode discharge compared to plasma generation using a DC electrode or a hot wire (for example, a tungsten wire), thereby avoiding metal contamination.
- the inductively coupled plasma source includes a dielectric can 101, an induction coil 102, a first air intake device 105, a first matching device 103, and a first RF power source 104, wherein the dielectric can 101 is made of an insulating material such as quartz.
- the dielectric can 101 is made of an insulating material such as quartz.
- the cavity 100 is in communication with the interior of the process chamber 200.
- the induction coil 102 surrounds the wall of the cylinder of the dielectric cylinder 101, and the axis of the induction coil 102 is horizontally disposed, that is, parallel to or coincide with the horizontal axis of the passage 202 of the chamber sidewall 201 described above.
- the orthographic projection shape of the cylinder wall of the dielectric cylinder 101 is rectangular, and the induction coil 102 is wound around the cylinder wall of the dielectric cylinder 101 to the induction coil 102.
- the direction of current flow is shown by the arrow in Figure 2.
- the first RF power source 104 is electrically coupled to the induction coil 102 via a first matcher 103.
- the first air intake device 105 communicates with a space defined by the medium cylinder 101 for transporting a first gas that does not react with a process gas in the process chamber 200 into a space defined by the medium cylinder 101, for example, An inert gas such as helium or argon or nitrogen or the like.
- the first air intake device 105 is turned on to transport the first gas into the space defined by the dielectric can 101, and then the first RF power source 104 is turned on to load the RF coil into the induction coil 102 through the first matcher 103.
- the power, the RF energy generated by the induction coil 102 is fed into the space defined by the dielectric cylinder 101, and the first gas is excited to form a first plasma.
- the filtering device 300 is configured to form the electron beam S when the first plasma enters the process chamber 200 through the filtering device 300, and the electron beam S is used to excite the process gas in the process chamber 200 to generate a second plasma, the second The plasma is used to process the workpiece, such as etching the surface of the workpiece.
- the filtering device 300 includes an electrode plate 301 and a first DC power source 302, wherein the electrode plate 301 is disposed at a communication between the electron beam generating cavity 100 and the process chamber 200, that is, disposed in the electron beam generating cavity 100.
- the opening is between the opening and the channel 202 of the chamber sidewall 201. Further, as shown in FIG.
- a plurality of through holes 303 are provided in the electrode plate 301, and the plurality of through holes 303 are evenly distributed at least in the region of the electrode plate 301 at the communication, and each through hole
- the diameter D of 303 is less than twice the thickness of the sheath of the first plasma, so that there is no plasma generation condition in the through hole 303, so that only the electron beam S is allowed to pass, and other particles in the first plasma cannot be passed.
- the orthographic shape of the electrode plate 301 on the radial section of the dielectric cylinder 101 may be a rectangle corresponding to the orthographic shape of the above-described dielectric cylinder 101, and the plate of the electrode plate 301 closes the dielectric cylinder 101. The above opening.
- the material used for the electrode plate 301 is a metal material having a relatively high melting point such as molybdenum or tungsten, which can overcome the problem of being corroded by electron beams due to a high energy density of the electron beam, thereby avoiding metal generation. Pollution.
- the first DC power source 302 is electrically connected to the electrode plate 301 for loading the electrode plate 301
- the flow is positively biased.
- the DC positive bias mainly affects the direction of movement of the ions so as to be deflected so as not to pass through the through hole 302 (here, the so-called passage means to enter or pass through), but the DC positive bias biases the direction of movement of the electron.
- the influence is small so that electrons can smoothly pass through the through holes 302 to form an electron beam S.
- the DC positive bias voltage ranges from 500 to 3000 V to ensure that the moving speed of the electrons meets the requirements.
- the inner wall of the channel 202 of the chamber sidewall 201 is covered with a protective layer (not shown) for protecting the chamber sidewall 201 of the process chamber 200 from being corroded by the electron beam S.
- the protective layer may employ a metal material having a relatively high melting point such as molybdenum or tungsten, which is capable of overcoming the problem of being corroded by electron beams due to a high energy density of the electron beam, thereby avoiding metal contamination.
- the electron beam generating cavity 100 and the process chamber 200 may also be connected in any other manner, and are not limited to providing the channel 202 on the chamber sidewall 201 of the process chamber 200, for different communication modes, the above
- the protective layer is only required to cover the chamber wall of the process chamber 200 located at the communication between the electron beam generating chamber 100 and the process chamber 200, so as to protect the chamber wall from corrosion by the electron beam S.
- the electron beam S collides with the process gas in the process chamber 200 to ionize the process gas to generate a second plasma.
- the process chamber 200 does not use a magnetic field excitation mechanism to generate a second plasma, and after entering the process chamber 200, the electron beam S is cooled by the process gas in the process chamber 200, which causes the generation of electrons generated by the electron beam S.
- the temperature of the electrons in the second plasma is low, so that the surface damage of the workpiece due to excessive electron temperature can be avoided.
- the electron beam generating cavity 100 is located outside the chamber sidewall 201 of the process chamber 200, but the present invention is not limited thereto. In practical applications, electron beam generation The cavity 100 can also be located anywhere other than the process chamber 200, depending on the particular needs.
- a plasma reaction apparatus is an improvement based on the above first embodiment.
- the plasma reaction apparatus further includes an electron collecting device disposed on the chamber sidewall 201 of the process chamber 200 and located on the opposite side of the electron beam generating chamber 100 for collecting the electron beam S The electrons that move to the electron collection device.
- the electron collecting device includes a metal member 401, a resistive element 402, and a dielectric spacer 403, wherein the metal member 401 is disposed in the chamber sidewall 201 of the process chamber 200 and is located on the opposite side of the electron beam generating chamber 100, And the metal member 401 penetrates the thickness of the chamber sidewall 201 and is electrically grounded through the resistive element 402 located outside the process chamber 200, thereby providing a ground path for the electrons moving to the metal member 401.
- the material used for the metal member 401 may include a metal material having a relatively high melting point such as molybdenum or tungsten, which is capable of overcoming the problem of being corroded by electron beams due to a high energy density of the electron beam, thereby avoiding generation. Metal pollution.
- a metal material having a relatively high melting point such as molybdenum or tungsten
- the resistive element 402 is used to function as a current limiting protection.
- the resistance value of the resistance element 402 ranges from 100 to 1000 ⁇ .
- a dielectric spacer 403 is disposed between the metal member 401 and the chamber sidewall 201 of the process chamber 200 for electrically isolating the two.
- the material used for the dielectric spacer 403 includes an insulating material such as ceramic or quartz.
- the height of the metal member 401 relative to the channel 202 of the process chamber 200 on the opposite side thereof, and the shape and size of the end surface of the metal member 401 opposite to the channel 202 may be according to the moving direction of the electron beam S and the electron beam.
- the parameters such as the cross-sectional dimension of S are set to ensure that the electron beam can be received.
- the shape and size of the end face of the metal member 401 opposite the passage 202 may correspond to the radial cross-sectional shape and size of the passage 202.
- the electron beam generating cavity 100 may also be located at any other position outside the process chamber 200 according to specific needs, and the electron collecting device may be correspondingly located on the opposite side of the electron beam generating cavity 100.
- the plasma reaction apparatus further includes a restraining device for restraining the moving direction of the electron beam S to move in the horizontal direction, that is, the electron beam S is parallel to the workpiece.
- the direction of the surface moves.
- the restraining device includes a first electromagnetic coil 501, a second electromagnetic coil 502, and a second direct current power source (not shown), wherein the first electromagnetic coil 501 is located outside the process chamber 200 and surrounds the electron beam generation
- the periphery of the chamber 100 is in communication with the process chamber 200, i.e., at a location near the channel 202.
- the second electromagnetic coil 502 is located outside of the process chamber 200 and surrounds the periphery of the above-described electron collecting device.
- the axes of the first electromagnetic coil 501 and the second electromagnetic coil 502 are both disposed in parallel, that is, parallel to the axis of the channel 202.
- the first electromagnetic coil 501 and the second electromagnetic coil 502 may be installed in two manners: two annular steps are respectively formed on the chamber sidewall 201 of the process chamber 200, and the first electromagnetic coil 501 and the second electromagnetic coil 502 are respectively Wrap around the two annular steps.
- the second DC power source is electrically connected to the first electromagnetic coil 501 and the second electromagnetic coil 502 for respectively inputting direct current to the first electromagnetic coil 501 and the second electromagnetic coil 502 to make the first electromagnetic coil 501 and the second electromagnetic coil
- Each of 502 generates a magnetic field capable of constraining the direction of movement of the electron beam S, which is capable of constraining the electron beam S within a specified spatial scale to effect movement of the electron beam S in the horizontal direction.
- the intensity of the magnetic field ranges from 0 to 1000 G.
- the first electromagnetic coil 501 and the second electromagnetic coil 502 may share a second DC power source, or both may be electrically connected to a second DC power source.
- a permanent magnet may be used instead of the electromagnetic coil, and the permanent magnet can also generate a magnetic field that constrains the moving direction of the electron beam to move in the horizontal direction.
- a base 203 for carrying a workpiece is disposed within the process chamber 200, and the base 203 is preferably an electrostatic chuck.
- the plasma reaction device further includes a second RF power source 213, a second matcher 212, and a second air intake device, wherein the second RF power source 213 is electrically connected to the base 203 through the second matcher 212 for
- the holder 203 is loaded with a radio frequency negative bias to attract the second plasma formed within the process chamber 200 toward the surface of the workpiece placed on the pedestal 203.
- a second air intake device is used to pass the process gas into the process chamber 200.
- the second air intake device includes a merging chamber 206, an air inlet passage 205, and a process air source 204, wherein the merging chamber 206 is disposed at the top of the process chamber 200 and includes a cavity 2061 and a flow plate 2062 at the bottom of the cavity 2061.
- the cavity 2061 and the flow plate 2062 constitute a closed flow space 208; and, at the flow plate 2062
- a plurality of vent holes 207 are provided, and the inside of the shimming space 208 and the process chamber 200 are communicated through the plurality of vent holes 207, and the plurality of vent holes 207 are evenly distributed on the shimming plate 2062.
- the intake passages 205 are respectively connected to the flow mixing chamber 206 and the process gas source 204; the process gas source 204 supplies the process gas to the above-described uniform flow space 208 through the intake passage 205.
- the process gas entering the flow equalization space 208 is diffused toward both side edges of the flow equalization space 208 to achieve the purpose of the flow distribution, thereby facilitating the improvement of the uniformity of the distribution of the process gas.
- the process gas that has been subjected to diffusion and homogenization in the flow-through space 208 flows into the inside of the process chamber 200 through the respective vent holes 207, thereby uniformly transferring the process gas to the inside of the process chamber 200.
- the second RF power source 213 is electrically connected to the pedestal 203 through the second matching unit 212.
- a dielectric spacer 210 is disposed at the bottom of the pedestal 203 for supporting the pedestal 203, and The pedestal 203 is electrically insulated from the chamber bottom wall 209 of the process chamber 200; and a first through hole penetrating in the vertical direction is disposed in the dielectric spacer 210; correspondingly, in the chamber of the process chamber 200 A second through hole penetrating the thickness thereof is disposed in the bottom wall 209; the plasma reaction device further includes an electrode 211, the lower end of the electrode 211 is electrically connected to the second matching device 212, and the upper end of the electrode 211 is vertically passed through the above The through hole and the first through hole are electrically connected to the base 203.
- an insulating member is disposed between the electrode 211 and the chamber bottom wall 209 in the second through hole to seal the second through hole, and the electrode 211 and the chamber bottom wall 209 are
- the plasma reaction apparatus further includes a protective cover 107 that is disposed outside the plasma source to avoid radio frequency leakage.
- the vertical distance between the electron beam generating cavity 100 and the process chamber 200 that is, the vertical distance between the channel 202 of the chamber sidewall 201 of the process chamber 200 and the upper surface of the pedestal 203 is generally 10 to 40 mm. In order to ensure that the plasma generating region in the process chamber 200 meets the requirements.
- the present invention provides a plasma reaction apparatus for processing a workpiece, which is provided with an electron beam generating chamber outside the process chamber, which is connected to the process chamber through a filtering device. And, electricity The beamlet generation cavity is generated by the inductively coupled plasma source, and since the inductively coupled plasma source does not require the use of a metal electrode discharge, metal contamination can be avoided.
- a filter device is used to cause the first plasma to form an electron beam as it passes through the filter device into the process chamber.
- the electron beam is used to excite a process gas within the process chamber to produce a second plasma for processing the workpiece. Since the electron beam is cooled by the process gas in the process chamber after entering the process chamber, the temperature of the electrons in the second plasma generated by the electron excitation in the electron beam is low, thereby avoiding the cause of excessive electron temperature. Surface damage of the workpiece.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
Abstract
本发明提供一种用于处理工件的等离子体反应装置,其包括电子束产生腔、过滤装置和工艺腔,其中,电子束产生腔位于工艺腔的外部,且通过过滤装置与工艺腔相连通,并且电子束产生腔包括电感耦合等离子体源,该电感耦合等离子体源用于产生第一等离子体;过滤装置用于使第一等离子体在经过过滤装置进入工艺腔时,形成电子束,该电子束用于激励工艺腔内的工艺气体产生第二等离子体,该第二等离子体用于处理工件。本发明提供的用于处理工件的等离子体反应装置,其可以降低电子温度,从而可以解决因电子温度过高引起的工件表面损伤的问题。
Description
本发明涉及微电子技术领域,具体地,涉及一种用于处理工件的等离子体反应装置。
随着半导体技术的发展,微电子器件的特征尺寸不断减小,这使得人们对等离子体刻蚀速率均匀性、关键尺寸控制等指标要求越来越高。而且,由于微电子器件的特征尺寸的减小,微电子器件对因等离子体导致的晶片表面损伤也更加敏感。
基于等离子体的产生是通过电子作为能量传递的媒介,因此从根本上讲,因等离子体导致的晶片表面损伤通常可以通过降低电子温度和提高电子密度分布的均匀性来实现。
现有的等离子体加工设备所采用的等离子体源是利用感应线圈形成的磁场激发工艺腔内的工艺气体形成等离子体。具体地,通过使用射频电源向感应线圈加载脉冲射频功率,来产生上述磁场。该射频电源的频率一般为13.56MHz。
为了降低电子温度,避免产生晶片表面损伤,可以通过调节脉冲频率和占空比,来降低单位时间内的平均电子温度,但是,在脉冲功率开启时,由于等离子体启辉时要进行气体击穿过程,此时电子温度较高,很容易瞬间对晶片表面造成损伤。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种用于处理工件的等离子体反应装置,其可以降低电子温度,从而可以解决因电子
温度过高引起的晶片表面损伤的问题。
为实现本发明的目的而提供一种用于处理工件的等离子体反应装置,包括电子束产生腔、过滤装置和工艺腔,其中,
所述电子束产生腔位于所述工艺腔的外部,且通过所述过滤装置与所述工艺腔相连通,并且所述电子束产生腔包括电感耦合等离子体源,所述电感耦合等离子体源用于产生第一等离子体;
所述过滤装置用于使所述第一等离子体在经过所述过滤装置进入所述工艺腔时,形成电子束;所述电子束用于激励所述工艺腔内的工艺气体产生第二等离子体,所述第二等离子体用于处理工件。
优选的,所述电感耦合等离子体源包括感应线圈、第一匹配器和第一射频电源,所述电子束产生腔还包括介质筒和第一进气装置,其中,
所述介质筒设置在所述工艺腔的外侧,且具有与所述工艺腔相连通的开口;
所述第一进气装置用于向所述介质筒内输送不与所述工艺气体反应的第一气体;
所述感应线圈环绕在所述介质筒的筒壁周围,且所述感应线圈的轴线水平设置;
所述第一射频电源通过所述第一匹配器与所述感应线圈电连接,用于激励所述第一气体产生所述第一等离子体。
优选的,所述第一气体包括惰性气体或者氮气。
优选的,所述过滤装置包括电极板和第一直流电源,其中,
所述电极板设置在所述电子束产生腔与所述工艺腔的连通处,并且在所述电极板上设置有多个通孔,所述多个通孔相对于所述连通处的径向截面均匀分布,且每个通孔的直径小于所述第一等离子体的鞘层厚度的2倍;所述第一直流电源与所述电极板电连接,用于向所述电极板加载直流正偏压。
优选的,所述直流正偏压的取值范围在500~3000V。
优选的,所述电极板所采用的材料包括钼或者钨。
优选的,还包括电子收集装置,所述电子收集装置设置在所述工艺腔的腔室壁上,且位于所述电子束产生腔的对侧,用于收集所述电子束中运动至所述电子收集装置处的电子。
优选的所述电子收集装置包括金属件、电阻元件和介质隔离件,其中,
所述金属件设置在所述工艺腔的腔室壁中,且贯穿该腔室壁的厚度,并通过位于所述工艺腔之外的所述电阻元件电接地;
所述介质隔离件设置在所述金属件与所述工艺腔的所述腔室壁之间,用以对二者电绝缘。
优选的,所述金属件所采用的材料包括钼或者钨。
优选的,所述介质隔离件所采用的材料包括陶瓷或石英。
优选的,所述电阻元件的电阻值的取值范围在100~1000Ω。
优选的,还包括约束装置,所述约束装置用于约束所述电子束的运动方向,使之沿水平方向运动。
优选的,所述约束装置包括第一电磁线圈、第二电磁线圈和第二直流电源,其中,
所述第一电磁线圈位于所述工艺腔的外部,且环绕在所述电子束产生腔与所述工艺腔的连通处的外围,所述第二电磁线圈位于所述工艺腔的外部,且环绕在所述电子收集装置的外围,所述第一电磁线圈和所述第二电磁线圈均用于产生能够约束所述电子束的运动方向的磁场,使之沿水平方向运动;
所述第二直流电源分别与所述第一电磁线圈和所述第二电磁线圈电连接,用以分别向所述第一电磁线圈和所述第二电磁线圈通入直流电。
优选的,所述磁场的强度的取值范围在0~1000G。
优选的,在所述工艺腔的腔室壁上,且位于所述电子束产生腔与所述工艺腔的连通处覆盖有保护层,用以保护所述工艺腔的腔室壁不被所述电子束腐蚀。
优选的,所述保护层所采用的材料包括钼或者钨。
本发明具有以下有益效果:
本发明提供的用于处理工件的等离子体反应装置,其在工艺腔的外部设置有电子束产生腔,其通过过滤装置与工艺腔相连通。并且,电子束产生腔是利用电感耦合等离子体源产生第一等离子体,由于电感耦合等离子体源无需使用金属电极放电,因此可以避免产生金属污染。过滤装置用于使第一等离子体在经过该过滤装置进入工艺腔时,形成电子束。该电子束用于激励工艺腔内的工艺气体产生第二等离子体,用于处理工件。由于电子束在进入工艺腔之后,会被工艺腔内的工艺气体冷却,这使得由电子束中的电子激励产生的第二等离子体中的电子温度较低,从而可以避免因电子温度过高引起的诸如晶片等的工件的表面损伤。
图1为本发明第一实施例提供的用于处理工件的等离子体反应装置的局部剖视图;
图2为本发明第一实施例采用的电子束产生腔的截面图;
图3A为本发明第一实施例采用的电极板的剖视图;
图3B为本发明第一实施例采用的电极板的结构图;以及
图4为本发明第二实施例提供的用于处理工件的等离子体反应装置的剖视图。
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图来对本发明提供的用于处理工件的等离子体反应装置进行详细描述。
请参阅图1,本发明第一实施例提供的等离子体反应装置,用于对工件进行诸如刻蚀、沉积等的工艺处理。该等离子体反应装置包括电子束产生腔
100、工艺腔200和过滤装置300,其中,电子束产生腔100位于工艺腔200的外部,且通过过滤装置300与工艺腔200相连通。在本实施例中,电子束产生腔100位于工艺腔200的腔室侧壁201(例如,图中左侧侧壁)外侧,且在该腔室侧壁201上设置有贯穿该腔室侧壁201厚度的通道202,该通道202例如可以为直通孔。电子束产生腔100通过与该通道202与工艺腔200的内部相连通。
在实际应用中,工艺腔200的腔室侧壁201可以为圆柱形环体(即,圆形筒状结构)或者方形环体(即,方形筒状结构),在这种情况下,腔室侧壁201的外表面可能是圆弧面,或者也可能是平面,对于腔室侧壁201是方形环体的情况,电子束产生腔100可以直接对接在腔室侧壁201上,而对于腔室侧壁201是圆柱形环体的情况,可以通过安装法兰将电子束产生腔100与腔室侧壁201对接在一起。
电子束产生腔100包括电感耦合等离子体源(ICP,Inductive Coupled Plasma),该电感耦合等离子体源是由射频电流通过感应线圈产生高频电磁场,以激发工艺气体产生第一等离子体。这种等离子体产生方式与使用直流电极或热丝(例如钨丝)的等离子体产生方式相比,无需使用金属电极放电,从而可以避免产生金属污染。
具体地,上述电感耦合等离子体源包括介质筒101、感应线圈102、第一进气装置105、第一匹配器103和第一射频电源104,其中,介质筒101采用例如石英等的绝缘材料制作,其设置在工艺腔200的腔室侧壁201的外侧,且具有与该腔室侧壁201上的通道202相连通的开口,用以使介质筒101所限定的空间(即,电子束产生腔100)与工艺腔200的内部相连通。感应线圈102环绕在介质筒101的筒壁周围,且该感应线圈102的轴线水平设置,即与上述腔室侧壁201的通道202的水平轴线相互平行或者相互重合。如图2所示,在介质筒101的径向截面上,介质筒101的筒壁的正投影形状为矩形,感应线圈102缠绕在该介质筒101的筒壁周围,向该感应线圈102
通入的电流方向如图2中的箭头所示。
第一射频电源104通过第一匹配器103与感应线圈102电连接。第一进气装置105与介质筒101所限定的空间相连通,用于向介质筒101所限定的空间内输送不与工艺腔200内的工艺气体反应的第一气体,该第一气体例如为诸如氦气或氩气等的惰性气体或者氮气等。
在进行工艺时,开启第一进气装置105,以向介质筒101所限定的空间内输送上述第一气体,然后开启第一射频电源104,以通过第一匹配器103向感应线圈102加载射频功率,由该感应线圈102产生的射频能量通过介质筒101馈入其限定的空间内,并激发第一气体形成第一等离子体。
过滤装置300用于使上述第一等离子体在经过过滤装置300进入工艺腔200时,形成电子束S,该电子束S用于激励工艺腔200内的工艺气体产生第二等离子体,该第二等离子体用于处理工件,例如刻蚀工件表面。在本实施例中,过滤装置300包括电极板301和第一直流电源302,其中,电极板301设置在电子束产生腔100与工艺腔200的连通处,即设置在电子束产生腔100的开口与腔室侧壁201的通道202之间。并且,如图3A所示,在电极板301上设置有多个通孔303,所述多个通孔303至少是在电极板301的位于该连通处的区域内均匀分布,且每个通孔303的直径D小于第一等离子体的鞘层厚度的2倍,使得通孔303中不存在等离子体产生的条件,从而只允许电子束S通过,而无法使第一等离子体中的其他粒子通过。如图3B所示,电极板301在介质筒101的径向截面上的正投影形状可以为与上述介质筒101的正投影形状相对应的矩形,并且电极板301的板体封闭介质筒101的上述开口。
优选的,电极板301所采用的材料为诸如钼或者钨等的熔点较高的金属材料,该金属材料能够克服因电子束的能量密度较高而被电子束腐蚀的问题,从而可以避免产生金属污染。
第一直流电源302与上述电极板301电连接,用于向电极板301加载直
流正偏压。在等离子体中,电子的质量小、速度高,而离子的质量大,速度低。基于此,该直流正偏压主要影响离子的运动方向,使之偏转,以致无法通过通孔302(在此,所谓通过是指进入或者穿过),但是该直流正偏压对电子的运动方向影响较小,从而电子可以顺利通过通孔302,形成电子束S。优选的,直流正偏压的取值范围在500~3000V,以保证电子的运动速度满足要求。
另外,通过设定不同的介质筒101的径向截面的面积以及各个通孔302的径向截面的面积,在工艺腔200内获得第一等离子体的不同的密度分布,以提高第一等离子体的密度分布均匀性,以及该装置的适用范围。
优选的,在腔室侧壁201的通道202的内壁上覆盖有保护层(图中未示出),用以保护工艺腔200的腔室侧壁201不被电子束S腐蚀。该保护层可以采用诸如钼或者钨等的熔点较高的金属材料,该金属材料能够克服因电子束的能量密度较高而被电子束腐蚀的问题,从而可以避免产生金属污染。在实际应用中,电子束产生腔100与工艺腔200还可以采用其他任意方式相连通,而并不局限于在工艺腔200的腔室侧壁201上设置通道202,针对不同的连通方式,上述保护层只要能够覆盖在位于电子束产生腔100与工艺腔200的连通处的工艺腔200的腔室壁上,以达到保护该腔室壁不被电子束S腐蚀的目的即可。
综上所述,上述电子束S在进入工艺腔200之后,会与工艺腔200内的工艺气体发生碰撞,以将工艺气体离化产生第二等离子体。该工艺腔200没有采用磁场激发机制产生第二等离子体,而电子束S在进入工艺腔200之后,会被工艺腔200内的工艺气体冷却,这使得由电子束S中的电子激励产生的第二等离子体中的电子温度较低,从而可以避免因电子温度过高引起的工件表面损伤。
需要说明的是,在本实施例中,电子束产生腔100位于工艺腔200的腔室侧壁201的外侧,但是本发明并不局限于此,在实际应用中,电子束产生
腔100也可以根据具体需要位于工艺腔200之外的其他任意位置。
请参阅图4,本发明第二实施例提供的等离子体反应装置是在上述第一实施例的基础上进行的改进。具体地,该等离子体反应装置还包括电子收集装置,该电子收集装置设置在工艺腔200的腔室侧壁201上,且位于上述电子束产生腔100的对侧,用以收集电子束S中运动至该电子收集装置的电子。
具体地,电子收集装置包括金属件401、电阻元件402和介质隔离件403,其中,金属件401设置在工艺腔200的腔室侧壁201中,且位于上述电子束产生腔100的对侧,且该金属件401贯穿该腔室侧壁201的厚度,并通过位于工艺腔200之外的电阻元件402电接地,从而为运动至金属件401的电子提供了接地路径。优选的,金属件401所采用的材料可以包括诸如钼或者钨等的熔点较高的金属材料,该金属材料能够克服因电子束的能量密度较高而被电子束腐蚀的问题,从而可以避免产生金属污染。
电阻元件402用于起到限流保护的作用。优选的,该电阻元件402的电阻值的取值范围在100~1000Ω。介质隔离件403设置在金属件401与工艺腔200的腔室侧壁201之间,用以对二者电绝缘。该介质隔离件403所采用的材料包括陶瓷或石英等的绝缘材料。
需要说明的是,上述金属件401相对于位于其对侧的工艺腔200的通道202的高度、上述金属件401与该通道202相对的端面形状和尺寸可以根据电子束S的运动方向和电子束S的截面尺寸等参数来设定,以保证能够接收到电子束。例如,金属件401与通道202相对的端面形状和尺寸可以与该通道202的径向截面形状和尺寸相对应。
还需要说明的是,电子束产生腔100也可以根据具体需要位于工艺腔200之外的其他任意位置,电子收集装置只要对应地位于电子束产生腔100的对侧即可。
在本实施例中,等离子体反应装置还包括约束装置,该约束装置用于约束电子束S的运动方向,使之沿水平方向运动,即,电子束S沿平行于工件
表面的方向运动。具体地,约束装置包括第一电磁线圈501、第二电磁线圈502和第二直流电源(图中未示出),其中,第一电磁线圈501位于工艺腔200的外部,且环绕在电子束产生腔100与工艺腔200的连通处的外围,即,靠近通道202的位置处。第二电磁线圈502位于工艺腔200的外部,且环绕在上述电子收集装置的外围。
上述第一电磁线圈501和第二电磁线圈502的轴线均平行设置,即与通道202的轴线相互平行。上述第一电磁线圈501和第二电磁线圈502的安装方式可以为:在工艺腔200的腔室侧壁201上分别形成有两个环形台阶,上述第一电磁线圈501和第二电磁线圈502分别缠绕在这两个环形台阶上。
第二直流电源与上述第一电磁线圈501和第二电磁线圈502电连接,用以分别向第一电磁线圈501和第二电磁线圈502通入直流电,使第一电磁线圈501和第二电磁线圈502均产生能够约束电子束S的运动方向的磁场,该磁场能够将电子束S约束在指定的空间尺度内,实现电子束S沿水平方向运动。优选的,上述磁场的强度的取值范围在0~1000G。
在实际应用中,上述第一电磁线圈501和第二电磁线圈502可以共用一个第二直流电源,或者二者也可以各自与一个第二直流电源电连接。
需要说明的是,在实际应用中,也可以采用永磁体代替上述电磁线圈,该永磁体同样能够产生约束电子束的运动方向的磁场,使之沿水平方向运动。
在本实施例中,在工艺腔200内设置有用于承载工件的基座203,该基座203优选为静电卡盘。另外,等离子体反应装置还包括第二射频电源213、第二匹配器212和第二进气装置,其中,第二射频电源213通过第二匹配器212与基座203电连接,用以向基座203加载射频负偏压,以吸引工艺腔200内形成的第二等离子体朝向置于基座203上的工件表面运动。
第二进气装置用于向工艺腔200内通入工艺气体。在本实施例中,该第二进气装置包括匀流腔206、进气通道205和工艺气源204,其中,匀流腔
206设置在工艺腔200的顶部,且包括腔体2061和位于该腔体2061底部的匀流板2062,腔体2061和匀流板2062构成封闭的匀流空间208;并且,在匀流板2062中设置有多个通气孔207,匀流空间208和工艺腔200的内部通过多个通气孔207相连通,并且多个通气孔207在匀流板2062上均匀分布。进气通道205分别与匀流腔206和工艺气源204连接;工艺气源204通过进气通道205向上述匀流空间208提供工艺气体。进入匀流空间208的工艺气体朝向匀流空间208的两侧边缘扩散,以实现匀流的目的,进而有利于提高工艺气体的分布均匀性。在匀流空间208内进行扩散匀流后的工艺气体通过各个通气孔207流入工艺腔200的内部,从而均匀地向工艺腔200的内部输送工艺气体。
在本实施例中,第二射频电源213通过第二匹配器212与基座203电连接的方式具体为:在基座203的底部设置有介质隔离件210,用以支撑基座203,且将基座203与工艺腔200的腔室底壁209电绝缘;并且,在介质隔离件210中设置有沿竖直方向贯穿的第一通孔;与之相对应的,在工艺腔200的腔室底壁209中设置有贯穿其厚度的第二通孔;等离子体反应装置还包括电极211,该电极211的下端与第二匹配器212电连接,电极211的上端竖直向上依次穿过上述第二通孔和第一通孔,并与基座203电连接。在实际应用中,在上述第二通孔中,且位于电极211与上述腔室底壁209之间设置有绝缘部件,用以密封该第二通孔,并使电极211与腔室底壁209电绝缘。
优选的,等离子体反应装置还包括保护罩107,该保护罩107罩设在上述等离子体源的外部,用以避免射频泄漏。
在实际应用中,电子束产生腔100与工艺腔200的连通处,即,工艺腔200的腔室侧壁201的通道202与基座203的上表面之间的垂直距离一般在10~40mm,以保证工艺腔200内的等离子体产生区域满足要求。
综上所述,本发明提供的用于处理工件的等离子体反应装置,其在工艺腔的外部设置有电子束产生腔,其通过过滤装置与工艺腔相连通。并且,电
子束产生腔是利用电感耦合等离子体源产生第一等离子体,由于电感耦合等离子体源无需使用金属电极放电,因此可以避免产生金属污染。过滤装置用于使第一等离子体在经过该过滤装置进入工艺腔时,形成电子束。该电子束用于激励工艺腔内的工艺气体产生第二等离子体,用于处理工件。由于电子束在进入工艺腔之后,会被工艺腔内的工艺气体冷却,这使得由电子束中的电子激励产生的第二等离子体中的电子温度较低,从而可以避免因电子温度过高引起的工件表面损伤。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。
Claims (16)
- 一种用于处理工件的等离子体反应装置,其特征在于,包括电子束产生腔、过滤装置和工艺腔,其中,所述电子束产生腔位于所述工艺腔的外部,且通过所述过滤装置与所述工艺腔相连通,并且所述电子束产生腔包括电感耦合等离子体源,所述电感耦合等离子体源用于产生第一等离子体;所述过滤装置用于使所述第一等离子体在经过所述过滤装置进入所述工艺腔时,形成电子束;所述电子束用于激励所述工艺腔内的工艺气体产生第二等离子体,所述第二等离子体用于处理工件。
- 根据权利要求1所述的等离子体反应装置,其特征在于,所述电感耦合等离子体源包括感应线圈、第一匹配器和第一射频电源,所述电子束产生腔还包括介质筒和第一进气装置,其中,所述介质筒设置在所述工艺腔的外侧,且具有与所述工艺腔相连通的开口;所述第一进气装置用于向所述介质筒内输送不与所述工艺气体反应的第一气体;所述感应线圈环绕在所述介质筒的筒壁周围,且所述感应线圈的轴线水平设置;所述第一射频电源通过所述第一匹配器与所述感应线圈电连接,用于激励所述第一气体产生所述第一等离子体。
- 根据权利要求2所述的等离子体反应装置,其特征在于,所述第一气体包括惰性气体或者氮气。
- 根据权利要求1所述的等离子体反应装置,其特征在于,所述过滤 装置包括电极板和第一直流电源,其中,所述电极板设置在所述电子束产生腔与所述工艺腔的连通处,并且在所述电极板上设置有多个通孔,所述多个通孔相对于所述连通处的径向截面均匀分布,且每个通孔的直径小于所述第一等离子体的鞘层厚度的2倍;所述第一直流电源与所述电极板电连接,用于向所述电极板加载直流正偏压。
- 根据权利要求4所述的等离子体反应装置,其特征在于,所述直流正偏压的取值范围在500~3000V。
- 根据权利要求4所述的等离子体反应装置,其特征在于,所述电极板所采用的材料包括钼或者钨。
- 根据权利要求1所述的等离子体反应装置,其特征在于,还包括电子收集装置,所述电子收集装置设置在所述工艺腔的腔室壁上,且位于所述电子束产生腔的对侧,用于收集所述电子束中运动至所述电子收集装置处的电子。
- 根据权利要求7所述的等离子体反应装置,其特征在于,所述电子收集装置包括金属件、电阻元件和介质隔离件,其中,所述金属件设置在所述工艺腔的腔室壁中,且贯穿该腔室壁的厚度,并通过位于所述工艺腔之外的所述电阻元件电接地;所述介质隔离件设置在所述金属件与所述工艺腔的所述腔室壁之间,用以对二者电绝缘。
- 根据权利要求8所述的等离子体反应装置,其特征在于,所述金属件所采用的材料包括钼或者钨。
- 根据权利要求8所述的等离子体反应装置,其特征在于,所述介质隔离件所采用的材料包括陶瓷或石英。
- 根据权利要求8所述的等离子体反应装置,其特征在于,所述电阻元件的电阻值的取值范围在100~1000Ω。
- 根据权利要求1所述的等离子体反应装置,其特征在于,还包括约束装置,所述约束装置用于约束所述电子束的运动方向,使之沿水平方向运动。
- 根据权利要求12所述的等离子体反应装置,其特征在于,所述约束装置包括第一电磁线圈、第二电磁线圈和第二直流电源,其中,所述第一电磁线圈位于所述工艺腔的外部,且环绕在所述电子束产生腔与所述工艺腔的连通处的外围,所述第二电磁线圈位于所述工艺腔的外部,且环绕在所述电子收集装置的外围,所述第一电磁线圈和所述第二电磁线圈均用于产生能够约束所述电子束的运动方向的磁场,使之沿水平方向运动;所述第二直流电源分别与所述第一电磁线圈和所述第二电磁线圈电连接,用以分别向所述第一电磁线圈和所述第二电磁线圈通入直流电。
- 根据权利要求13所述的等离子体反应装置,其特征在于,所述磁场的强度的取值范围在0~1000G。
- 根据权利要求1所述的等离子体反应装置,其特征在于,在所述工艺腔的腔室壁上,且位于所述电子束产生腔与所述工艺腔的连通处覆盖有保护层,用以保护所述工艺腔的腔室壁不被所述电子束腐蚀。
- 根据权利要求15所述的等离子体反应装置,其特征在于,所述保 护层所采用的材料包括钼或者钨。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710407698.2 | 2017-06-02 | ||
CN201710407698.2A CN108987228B (zh) | 2017-06-02 | 2017-06-02 | 用于处理工件的等离子体反应装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018218797A1 true WO2018218797A1 (zh) | 2018-12-06 |
Family
ID=64454399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/100466 WO2018218797A1 (zh) | 2017-06-02 | 2017-09-05 | 用于处理工件的等离子体反应装置 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN108987228B (zh) |
TW (1) | TWI658750B (zh) |
WO (1) | WO2018218797A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111328174A (zh) * | 2018-12-17 | 2020-06-23 | 北京北方华创微电子装备有限公司 | 反应腔室及等离子体产生方法 |
CN110335802B (zh) * | 2019-07-11 | 2022-03-22 | 北京北方华创微电子装备有限公司 | 预清洗腔室及其过滤装置 |
CN112509901B (zh) * | 2020-11-19 | 2022-03-22 | 北京北方华创微电子装备有限公司 | 工艺腔室及半导体工艺设备 |
CN114078685B (zh) * | 2021-11-17 | 2024-05-17 | 北京北方华创微电子装备有限公司 | 半导体工艺设备 |
CN115613140B (zh) * | 2022-12-16 | 2023-03-21 | 江苏邑文微电子科技有限公司 | 横向等离子体发生室和多功能高温反应装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5350480A (en) * | 1993-07-23 | 1994-09-27 | Aspect International, Inc. | Surface cleaning and conditioning using hot neutral gas beam array |
CN101999155A (zh) * | 2008-03-21 | 2011-03-30 | 东京毅力科创株式会社 | 单能中性束激活的化学处理系统及其使用方法 |
CN103155103A (zh) * | 2010-08-02 | 2013-06-12 | 国立大学法人大阪大学 | 等离子体处理装置 |
CN103766003A (zh) * | 2011-10-20 | 2014-04-30 | 应用材料公司 | 用于产生均匀等离子体的具有分段束收集器的电子束等离子体源 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1197430A (ja) * | 1997-07-14 | 1999-04-09 | Applied Materials Inc | 高密度プラズマプロセスチャンバ |
CN102300383B (zh) * | 2010-06-23 | 2013-03-27 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 一种电感耦合装置及应用该装置的等离子体处理设备 |
US20130098552A1 (en) * | 2011-10-20 | 2013-04-25 | Applied Materials, Inc. | E-beam plasma source with profiled e-beam extraction grid for uniform plasma generation |
US9721760B2 (en) * | 2013-05-16 | 2017-08-01 | Applied Materials, Inc. | Electron beam plasma source with reduced metal contamination |
US20140360670A1 (en) * | 2013-06-05 | 2014-12-11 | Tokyo Electron Limited | Processing system for non-ambipolar electron plasma (nep) treatment of a substrate with sheath potential |
US20160042961A1 (en) * | 2014-08-06 | 2016-02-11 | Applied Materials, Inc. | Electron beam plasma source with rotating cathode, backside helium cooling and liquid cooled pedestal for uniform plasma generation |
US10032604B2 (en) * | 2015-09-25 | 2018-07-24 | Applied Materials, Inc. | Remote plasma and electron beam generation system for a plasma reactor |
CN207183207U (zh) * | 2017-06-02 | 2018-04-03 | 北京北方华创微电子装备有限公司 | 用于处理工件的等离子体反应装置 |
-
2017
- 2017-06-02 CN CN201710407698.2A patent/CN108987228B/zh active Active
- 2017-08-30 TW TW106129449A patent/TWI658750B/zh active
- 2017-09-05 WO PCT/CN2017/100466 patent/WO2018218797A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5350480A (en) * | 1993-07-23 | 1994-09-27 | Aspect International, Inc. | Surface cleaning and conditioning using hot neutral gas beam array |
CN101999155A (zh) * | 2008-03-21 | 2011-03-30 | 东京毅力科创株式会社 | 单能中性束激活的化学处理系统及其使用方法 |
CN103155103A (zh) * | 2010-08-02 | 2013-06-12 | 国立大学法人大阪大学 | 等离子体处理装置 |
CN103766003A (zh) * | 2011-10-20 | 2014-04-30 | 应用材料公司 | 用于产生均匀等离子体的具有分段束收集器的电子束等离子体源 |
Also Published As
Publication number | Publication date |
---|---|
TW201904359A (zh) | 2019-01-16 |
CN108987228B (zh) | 2024-05-17 |
TWI658750B (zh) | 2019-05-01 |
CN108987228A (zh) | 2018-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018218797A1 (zh) | 用于处理工件的等离子体反应装置 | |
US20170004966A1 (en) | Substrate Processing Apparatus and Method of Manufacturing Semiconductor Device | |
US20080041312A1 (en) | Stage for plasma processing apparatus, and plasma processing apparatus | |
TW202333196A (zh) | 電漿處理裝置 | |
US11437222B2 (en) | Plasma processing apparatus and method of manufacturing semiconductor device using the same | |
WO2015018316A1 (zh) | 预清洗腔室及半导体加工设备 | |
JP2001185542A (ja) | プラズマ処理装置及びそれを用いたプラズマ処理方法 | |
US20120241090A1 (en) | Plasma processing apparatus | |
CN207183207U (zh) | 用于处理工件的等离子体反应装置 | |
KR102218686B1 (ko) | 플라스마 처리 장치 | |
TWI791615B (zh) | 電漿處理裝置 | |
US20190214235A1 (en) | Plasma processing apparatus | |
WO2022100538A1 (zh) | 等离子体浸没离子注入设备 | |
TW201430898A (zh) | 在電漿增強型基板處理室中的偏斜消除與控制 | |
CN111183504B (zh) | 制造过程中的超局部和等离子体均匀性控制 | |
US20240063000A1 (en) | Method of cleaning plasma processing apparatus and plasma processing apparatus | |
US20090137128A1 (en) | Substrate Processing Apparatus and Semiconductor Device Producing Method | |
KR102285126B1 (ko) | 플라스마 처리 장치 | |
JPH07106314A (ja) | プラズマ処理装置 | |
US20090283502A1 (en) | Plasma processing apparatus and control method for plasma processing apparatus | |
JPH06120169A (ja) | プラズマ生成装置 | |
CN117894662B (zh) | 一种工艺腔室及半导体工艺设备 | |
US20230207262A1 (en) | Plasma generation unit, and apparatus for treating substrate with the same | |
KR102275509B1 (ko) | 지지 유닛 및 기판 처리 장치 | |
KR20240077563A (ko) | 기판 처리 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17911899 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17911899 Country of ref document: EP Kind code of ref document: A1 |