WO2018216338A1 - Driver circuit - Google Patents
Driver circuit Download PDFInfo
- Publication number
- WO2018216338A1 WO2018216338A1 PCT/JP2018/011739 JP2018011739W WO2018216338A1 WO 2018216338 A1 WO2018216338 A1 WO 2018216338A1 JP 2018011739 W JP2018011739 W JP 2018011739W WO 2018216338 A1 WO2018216338 A1 WO 2018216338A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- driver circuit
- transistor
- current
- power supply
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0175—Coupling arrangements; Interface arrangements
Definitions
- the present disclosure relates to a driver circuit that supplies an output voltage to a drive target.
- the switching element that constitutes the motor drive circuit the switching element that functions as a power relay that cuts off the power supply to the control circuit, the driver circuit that drives the switching element that constitutes the charge pump circuit, etc.
- a voltage is output (see, for example, Patent Document 1).
- the power supply voltage is a voltage having a relatively large fluctuation range such as a voltage of a battery mounted on the vehicle
- the following problem may occur. That is, in the above configuration, the output voltage of the driver circuit increases as the power supply voltage increases, and therefore, when the power supply voltage increases greatly, there is a possibility that it exceeds the withstand voltage of the switching element serving as a load.
- an N-channel MOS transistor is used as a high-side switching element that constitutes the output stage of the driver circuit, and the gate voltage is limited to an arbitrary voltage or less. It is considered. According to such a configuration, even when the power supply voltage greatly increases, the output voltage is limited to a voltage equal to or lower than a desired voltage value regardless of the increase.
- a resistor is provided between the gate and source of the MOS transistor for fixing the potential when the MOS transistor is turned off. For this reason, in the above configuration, a leakage current flows to the output node of the driver circuit through the resistor during the period when the MOS transistor is turned on, and the output voltage rises from the target value due to the leakage current. .
- An object of the present disclosure is to provide a driver circuit that can suppress an increase in output voltage caused by a leakage current while limiting the output voltage to a desired voltage.
- a driver circuit includes two switching elements connected in series between a pair of power supply lines to which a power supply voltage is supplied, and a driving unit that complementarily drives the two switching elements according to an input signal
- the output voltage output from the output node connected to the interconnection point of the two switching elements is supplied to the drive target.
- the switching element on the high potential side is an N-channel MOS transistor.
- the driver circuit includes a voltage limiting unit that limits the gate voltage of the switching element on the high potential side to a predetermined clamp voltage. According to such a configuration, even when the power supply voltage greatly increases, the output voltage can be limited to a voltage equal to or lower than a desired voltage value regardless of the increase.
- the driver circuit also includes a potential fixing resistor connected between the gate and source of the switching element on the high potential side. As a result, when the switching element on the high potential side is driven off, the switching element can be reliably turned off. Further, the driver circuit includes a leak suppression unit that suppresses the generation of a leak current that flows from the gate of the switching element on the high potential side to the output node. According to such a configuration, the leakage current flowing to the output node via the potential fixing resistor or the like can be kept low during the period in which the switching element on the high potential side is turned on. Therefore, according to the above configuration, it is possible to suppress an increase in the output voltage due to the leakage current while limiting the output voltage to a desired voltage.
- the leak suppression unit suppresses generation of the leak current by executing a current extracting operation of extracting a predetermined current from the output node.
- the current flows to the output node through the potential fixing resistor during the period when the switching element on the high potential side is turned on, the current is caused by the current extraction operation by the leak suppression unit. Since it is pulled out, the leakage current flowing out from the output node can be kept low. Therefore, according to the above configuration, it is possible to reliably suppress an increase in output voltage due to a leakage current flowing through the potential fixing resistor.
- FIG. 1 is a diagram schematically showing the configuration of the driver circuit according to the first embodiment.
- FIG. 2 is a diagram schematically showing a configuration of a conventional driver circuit.
- FIG. 3 is a timing chart schematically showing the output voltage when the on-drive period is short.
- FIG. 4 is a timing chart schematically showing the output voltage when the on-drive period is long.
- FIG. 5 is a first diagram illustrating a specific application example of the driver circuit according to the first embodiment.
- FIG. 6 is a second diagram illustrating a specific application example of the driver circuit according to the first embodiment.
- FIG. 7 is a third diagram illustrating a specific application example of the driver circuit according to the first embodiment.
- FIG. 8 is a diagram schematically illustrating the configuration of the driver circuit according to the second embodiment.
- FIG. 9 is a diagram schematically illustrating the configuration of the driver circuit according to the third embodiment.
- FIG. 10 is a diagram schematically illustrating the configuration of the driver circuit according to the fourth embodiment.
- FIG. 11 is a diagram schematically illustrating the configuration of the driver circuit according to the fifth embodiment.
- FIG. 12 is a diagram schematically illustrating the configuration of the driver circuit according to the sixth embodiment.
- a driver circuit 1 shown in FIG. 1 is provided, for example, in an electronic control device mounted on a vehicle and drives a load connected to an output node No.
- examples of the load to be driven by the driver circuit 1 include a MOS transistor used in a motor drive circuit or the like.
- the driver circuit 1 includes transistors Q1 and Q2, a drive unit 2 that drives the transistors Q1 and Q2, a Zener diode 3, a potential fixing resistor 4, a leak suppression unit 5, and the like.
- the driver circuit 1 is configured as, for example, an ASIC (Application Specific Integrated Circuit).
- a power supply voltage VS is supplied to the driver circuit 1 via a pair of power supply lines L1 and L2.
- the power supply voltage VS is a battery voltage supplied from a battery mounted on the vehicle, and its fluctuation range is relatively large.
- the transistors Q1 and Q2 are N-channel MOS transistors and correspond to switching elements.
- the drain of the transistor Q1 is connected to the high potential side power supply line L1 to which the power supply voltage VS is applied, and the source thereof is connected to the drain of the transistor Q2.
- the transistors Q1 and Q2 are connected in series between the pair of power supply lines L1 and L2.
- the transistor Q1 corresponds to a switching element on the high potential side.
- the interconnection point of the transistors Q1 and Q2 is connected to the output node No, and the output voltage Vo output from the output node No is supplied to the load to be driven.
- the driving unit 2 includes transistors Q3 and Q4, inverting buffers 6 and current sources 7 and 8 which are N channel type MOS transistors.
- the drain of the transistor Q3 is connected to the power supply line L1 through the current source 7, and the source thereof is connected to the power supply line L2.
- the drain of the transistor Q4 is connected to the power supply line L1 through the current source 8, and the source thereof is connected to the power supply line L2.
- the inverting buffer 6 receives an input signal Si given from the outside through the input node Ni, and outputs the inverted signal.
- the gate of the transistor Q3 is connected to the output terminal of the inverting buffer 6.
- the gate of the transistor Q4 is connected to the input node Ni.
- the drain of the transistor Q3 is connected to the gate of the transistor Q1.
- the drain of the transistor Q4 is connected to the gate of the transistor Q2.
- the drive unit 2 drives the transistors Q1 and Q2 in a complementary manner in accordance with the input signal Si. Specifically, the drive unit 2 drives the transistor Q1 on and drives the transistor Q2 off while the input signal Si is at a high level (for example, 5 V). Further, the drive unit 2 drives the transistor Q1 off and the transistor Q2 on while the input signal Si is at a low level (eg, 0 V).
- the cathode of the Zener diode 3 is connected to the gate of the transistor Q1, and the anode thereof is connected to the power line L2.
- the Zener diode 3 limits the gate voltage of the transistor Q1 to a predetermined clamp voltage, and corresponds to a voltage limiting unit.
- the clamp voltage is the Zener voltage Vz of the Zener diode 3.
- the Zener voltage Vz is a voltage value lower than the steady value of the power supply voltage VS.
- the gate voltage of the transistor Q1 during the period in which the transistor Q1 is turned on has a voltage value equal to or lower than the Zener voltage Vz without being affected by fluctuations in the power supply voltage VS. Therefore, according to the above configuration, even when the power supply voltage VS is greatly increased, the output voltage Vo can be limited to the limit voltage VL expressed by the following equation (1) regardless of the increase.
- the Zener voltage Vz of the Zener diode 3 is a voltage value smaller than the steady value of the power supply voltage VS. Therefore, the target value of the output voltage Vo of the driver circuit 1, that is, the target output voltage, is a voltage that is lower than the Zener voltage Vz by the threshold voltage Vt, that is, the same voltage as the limit voltage VL described above.
- the limit voltage VL may vary depending on the temperature characteristics of the Zener diode 3. Therefore, the specifications (temperature characteristics and Zener voltage Vz) of the Zener diode 3 are selected so that the output voltage Vo does not exceed the withstand voltage of the elements constituting the load of the supply destination in the operating temperature range of the driver circuit 1. There is a need.
- the potential fixing resistor 4 is connected between the gate and source of the transistor Q1.
- the potential fixing resistor 4 is provided to fix the gate-source voltage to a voltage lower than the threshold voltage Vt and reliably maintain the off state when the transistor Q1 is driven off.
- a minute leak current flows from the gate of the transistor Q1 to the source of the transistor Q1, that is, the output node No, via the potential fixing resistor 4 during the period when the transistor Q1 is turned on.
- the current value IL of such a leakage current is determined from the threshold voltage Vt of the transistor Q1 and the resistance value Ra of the potential fixing resistor 4, as shown in the following equation (2).
- IL Vt / Ra (2)
- the leak suppression unit 5 is provided to suppress the occurrence of such a leak current, and includes a transistor Q5 that is an N-channel MOS transistor and a current source 9.
- the drain of the transistor Q5 is connected to the output node No via the current source 9, and the source thereof is connected to the power supply line L2.
- the gate of the transistor Q5 is connected to the input node Ni.
- the current source 9 corresponds to a load connected between the output node No and the power supply line L2.
- the transistor Q5 corresponds to a switch connected in series with the current source 9 between the output node No and the power supply line L2.
- the transistor Q5 is turned on, thereby providing a load between the output node No and the power supply line L2.
- a current source 9 is connected. Therefore, a predetermined current corresponding to the current value of the current source 9 is drawn from the output node No to the power supply line L2 while the transistor Q1 is turned on.
- the current value of the current source 9 is a value equal to or greater than the current value IL of the leakage current expressed by the above equation (2), specifically, a current value obtained by adding a predetermined margin to the current value IL. Is set.
- the leak suppression unit 5 is omitted from the driver circuit 1 as in the driver circuit 21 shown in FIG. 2 (hereinafter referred to as a conventional configuration)
- the following problem occurs. That is, in the conventional configuration, during the period in which the transistor Q1 is turned on (hereinafter referred to as the on drive period), the leakage current IL flows from the gate of the transistor Q1 to the output node No via the potential fixing resistor 4, Due to the current IL, there arises a problem that the output voltage Vo rises from the target value.
- the leakage current IL is a very small current
- the on-drive period is a relatively short period, as shown by a dotted line in FIG. 3, the increase in the output voltage Vo in the on-drive period is relatively small.
- the ON drive period is also shortened, so that the increase in the output voltage Vo is very small. Therefore, in such a case, the increase of the output voltage Vo caused by the leakage current IL does not become a big problem.
- the time Ta in FIG. 3 and FIG. 4 to be described later is described for comparing the lengths of the respective ON drive periods, and indicates the same time.
- the output voltage Vo gradually increases due to the leakage current IL as shown by the dotted line in FIG.
- the voltage value is about the same as the gate voltage Vg of the transistor Q1.
- the output voltage Vo rises higher than the target value, for example, a voltage exceeding the withstand voltage is applied to the element constituting the load, and there is a possibility that the element may be damaged.
- the Zener voltage Vz fluctuates in a higher direction with temperature fluctuation, such a problem may become more apparent.
- the driver circuit 1 of the present embodiment includes a leak suppression unit 5 that suppresses the occurrence of a leak current flowing from the gate of the transistor Q1 to the output node No. According to such a configuration, the leakage current flowing to the output node No via the potential fixing resistor 4 can be kept low during the period in which the transistor Q1 is turned on.
- the leak suppression unit 5 suppresses the generation of leak current by executing a current extraction operation for extracting a predetermined current from the output node No. According to such a configuration, although the current flows toward the output node No through the potential fixing resistor 4 during the period when the transistor Q1 is turned on, the current is extracted by the current extraction operation by the leak suppression unit 5. Therefore, the leakage current flowing out from the output node No can be suppressed low.
- the generation of the leakage current flowing through the potential fixing resistor 4 can be suppressed, so that the increase in the output voltage Vo resulting therefrom can be reliably suppressed.
- the leak suppression unit 5 of the present embodiment includes a current source 9 connected between the output node No and the power supply line L2.
- the current value of the current source 9 is set to a current value equal to or greater than the current value of the leakage current. In this way, when the current suppressing operation is performed, the leakage suppressing unit 5 can always extract a current equal to or higher than the leakage current, and as a result, the output voltage Vo caused by the leakage current can be reliably increased (floated). It becomes possible to suppress.
- the leakage suppression unit 5 of this embodiment includes a transistor Q5 connected in series between the output node No and the power supply line L2 together with the current source 9. In this way, by turning off the transistor Q5, the current source 9 can be disconnected from between the output node No and the power supply line L2, and the following effects are obtained.
- the gate voltage of the transistor Q1 is slightly higher than 0V because the on-resistance of the transistor Q3 is high, for example, during a period when the input signal Si is at a low level.
- the output voltage Vo is not completely 0V during the period when the input signal Si is at the low level, and the transistor Q1 A voltage obtained by dividing the gate voltage by the potential fixing resistor 4 and the current source 9 is output.
- the transistor Q5 since the transistor Q5 is turned off while the input signal Si is at a low level, the current source 9 is disconnected from the output node No and the power supply line L2. Even if the voltage is higher than 0V, the output voltage Vo becomes 0V and there is no possibility that a minute voltage is output.
- the leakage inspection of the transistor Q2 may be performed in the screening of the driver circuit 1.
- a predetermined voltage is applied between the drain and source of the transistor Q2.
- the current source 9 is always connected between the output node No and the power supply line L2
- the current source 9 is connected in parallel between the drain and source of the transistor Q2. The test may not be performed correctly.
- the leakage inspection of the transistor Q2 can be normally performed.
- the driver circuit 1 can achieve the above-described effects, the power supply voltage VS has a large fluctuation range such as a battery voltage, and the power supply voltage VS is either low or high. However, it is suitable for applications where loss of function is not permitted.
- the driver circuit 1 can be used for a motor drive driver, an output buffer driver, a relay driver, a charge pump driver, and the like. As specific application examples of the driver circuit 1, for example, configurations shown in FIGS.
- the driver circuit 1 can be used as a motor drive driver that drives a switching element that constitutes a motor drive circuit 31 that drives a motor M used in an electric power steering system, for example.
- the motor drive circuit 31 is configured as an H bridge circuit including four N channel type MOS transistors Q31 to Q34.
- the driver circuit 1 can be used as a high-side driver that drives the high-side transistor Q31 that constitutes the motor drive circuit 31, as shown in FIG. Further, as shown in FIG. 6, the driver circuit 1 can be used as a low-side driver that drives the low-side transistor Q ⁇ b> 32 that constitutes the motor drive circuit 31.
- the driver circuit 1 can be used as a relay driver that drives an N-channel MOS transistor Q41 that functions as a power supply relay that cuts off power supply to a circuit 41 such as a control circuit.
- the driver circuit 51 of the present embodiment is different from the driver circuit 1 of the first embodiment in that a leak suppression unit 52 is provided instead of the leak suppression unit 5.
- the leak suppression unit 52 is different from the leak suppression unit 5 in that a resistor 53 is provided instead of the current source 9.
- the resistor 53 corresponds to a load connected between the output node No and the power supply line L2.
- the transistor Q5 is turned on during the period when the transistor Q1 is turned on, whereby the resistor 53 as a load is connected between the output node No and the power supply line L2. Therefore, a predetermined current corresponding to the resistance value of the resistor 53 is drawn from the output node No to the power supply line L2 while the transistor Q1 is turned on.
- the leak suppression unit 52 By performing such a current extracting operation by the leak suppression unit 52, the occurrence of a leak current flowing from the gate of the transistor Q1 to the output node No can be suppressed.
- the value of the current drawn by the current drawing operation is determined by the resistance value of the resistor 53. Therefore, in the present embodiment, the resistance value of the resistor 53 is set so that the current value is equal to or greater than the current value IL of the leak current. The resistance value of the resistor 53 is set to be higher than the resistance value of the potential fixing resistor 4.
- the driver circuit 51 of the present embodiment described above also suppresses the leakage current flowing to the output node No via the potential fixing resistor 4 during the period when the transistor Q1 is turned on, the same as in the first embodiment. The effect is obtained. Also, according to the present embodiment, the accuracy of setting the current value to be extracted by the current extraction operation is lower than that of the first embodiment, but the configuration of the leak suppression unit 52 can be simplified, and consequently the driver circuit 51. The manufacturing cost can be reduced.
- the driver circuit 61 of the present embodiment is different from the driver circuit 1 of the first embodiment in that a leak suppression unit 62 is provided instead of the leak suppression unit 5.
- the leak suppression unit 62 is different from the leak suppression unit 5 in that the transistor Q5 is omitted.
- the current source 9 is always connected between the output node No and the power supply line L2.
- a predetermined current corresponding to the current value of the current source 9 is drawn from the output node No to the power supply line L2 during the period when the transistor Q1 is turned on.
- the driver circuit 61 of the present embodiment described above also suppresses the leakage current flowing to the output node No via the potential fixing resistor 4 during the period when the transistor Q1 is turned on, the same as in the first embodiment. The effect is obtained. Further, according to the present embodiment, compared with the first embodiment, the circuit scale can be reduced by the amount that the transistor Q5 is omitted, and thus the manufacturing cost of the driver circuit 61 can be reduced.
- the driver circuit 71 of this embodiment is different from the driver circuit 51 of the second embodiment in that a leak suppression unit 72 is provided instead of the leak suppression unit 52.
- the leak suppression unit 72 is different from the leak suppression unit 52 in that the transistor Q5 is omitted.
- the resistor 53 is always connected between the output node No and the power supply line L2.
- a predetermined current corresponding to the resistance value of the resistor 53 is drawn from the output node No to the power supply line L2 during the period when the transistor Q1 is turned on.
- the driver circuit 71 of the present embodiment described above also suppresses the leakage current flowing to the output node No via the potential fixing resistor 4 during the period in which the transistor Q1 is turned on, so that it is the same as in the second embodiment. The effect is obtained. Further, according to the present embodiment, compared with the second embodiment, the circuit scale can be reduced by the amount that the transistor Q5 is omitted, and thus the manufacturing cost of the driver circuit 71 can be reduced.
- the driver circuit 81 of the present embodiment is different from the driver circuit 1 of the first embodiment in that a leak suppression unit 82 is provided instead of the leak suppression unit 5.
- the leak suppression unit 82 includes transistors Q81 and Q82.
- Transistors Q81 and Q82 are both NPN bipolar transistors.
- the transistor Q81 is in the form of a diode connection in which the collector and the base are connected.
- the collector of the transistor Q81 is connected to the anode of the Zener diode 3, and the emitter thereof is connected to the power supply line L2.
- the base of the transistor Q81 is connected to the base of the transistor Q82.
- Transistor Q82 has a collector connected to output node No, and an emitter connected to power supply line L2. In this case, transistor Q82 corresponds to a load connected between output node No and power supply line L2.
- the transistors Q81 and Q82 constitute a current mirror circuit 83.
- a current corresponding to the input current of the current mirror circuit 83 that is, the current flowing through the Zener diode 3 flows through the transistor Q82 which is a load.
- the Zener diode 3 allows a current to flow and limit the gate voltage of the transistor Q1 when the power supply voltage VS becomes equal to or higher than the Zener voltage Vz.
- the leak suppression unit 82 configured as described above performs the current extraction operation during the period in which the transistor Q1 is turned on and the gate voltage is limited by the Zener diode 3.
- the value of the current drawn by the current drawing operation is determined by the value of the current flowing through the Zener diode 3 during the period when the gate voltage is limited and the mirror ratio of the current mirror circuit 83. Therefore, in the present embodiment, the specification of the Zener diode 3 and the setting of the mirror ratio of the current mirror circuit 83 are performed so that the current value is equal to or greater than the leakage current value IL. ing.
- the driver circuit 81 of the present embodiment described above also suppresses the leakage current flowing to the output node No via the potential fixing resistor 4 during the period in which the transistor Q1 is turned on, so that it is the same as in the first embodiment. The effect is obtained.
- the current extraction operation by the leak suppression unit 82 of the present embodiment is executed in a period during which the transistor Q1 is turned on and a period in which the gate voltage is limited by the Zener diode 3. That is, in the present embodiment, even when the transistor Q1 is turned on, the current extraction operation is not performed during the period when the gate voltage is not limited by the Zener diode 3. The reason for this is as follows.
- the power supply voltage VS is lower than the Zener voltage Vz. Therefore, even if the output voltage Vo increases due to the leakage current during such a period, the output voltage Vo does not exceed the target value, and a voltage exceeding the withstand voltage is applied to the circuit elements constituting the load. There is no fear of being applied. Therefore, the current extraction operation by the leak suppression unit 82 does not have to be performed during a period in which the gate voltage is not limited by the Zener diode 3.
- the current extraction operation is executed only during the period when the gate voltage is limited by the Zener diode 3. According to such a configuration, the current extraction operation is not performed during the period in which the power supply voltage VS is lower than the Zener voltage Vz, and thus the current consumption can be reduced by that amount.
- the driver circuit 91 of the present embodiment is different from the driver circuit 1 of the first embodiment in that a leak suppression unit 92 is provided instead of the leak suppression unit 5.
- Leakage suppression unit 92 includes transistors Q91 to Q93 and resistors R91 to R93.
- the transistor Q91 is an N-channel MOS transistor, and an input signal Si is given to the gate thereof.
- the source of the transistor Q91 is connected to the power supply line L2, and the drain thereof is connected to the power supply line L91 via resistors R91 and R92.
- a power supply voltage such as 5 V is applied to the power supply line L91.
- Transistors Q92 and Q93 are PNP type bipolar transistors.
- the emitter of the transistor Q92 is connected to the power supply line L91, and the base thereof is connected to the interconnection point of the resistors R91 and R92.
- the collector of the transistor Q92 is connected to the collector of the transistor Q93 via the resistor R93 and is also connected to the base of the transistor Q93.
- the collector of the transistor Q93 is connected to the source of the transistor Q1, and the emitter thereof is connected to the gate of the transistor Q1 through the potential fixing resistor 4. That is, in this case, the potential fixing resistor 4 is connected between the gate and source of the transistor Q1 via the transistor Q93.
- the potential fixing resistor 4 is connected between the gate and source of the transistor Q1 by turning on the transistor Q93 during a period when the input signal Si is at a low level, that is, during a period when the transistor Q1 is driven to turn off.
- the gate-source voltage is fixed to a voltage lower than the threshold voltage Vt, and the transistor Q1 can be reliably turned off.
- the potential fixing resistor 4 is disconnected from the gate and the source of the transistor Q1 by turning off the transistor Q93 during the period when the input signal Si is at a high level, that is, the period when the transistor Q1 is turned on. .
- the transistor Q1 when the transistor Q1 is turned on, there is no path through which the leakage current flows from the gate of the transistor Q1 to the output node No.
- the present embodiment also has the same effect as that of the first embodiment, that is, the excellent effect that the output voltage Vo caused by the leakage current can be suppressed while limiting the output voltage Vo to a desired voltage. Is obtained.
- Leakage suppression units 5, 52, 62, and 72 may be configured to perform a current extraction operation for extracting a predetermined current from output node No at least during a period in which transistor Q1 is turned on. The configuration can be changed as appropriate.
- the leak suppression unit 82 is configured to perform a current extraction operation for extracting a predetermined current from the output node No at least during a period in which the transistor Q1 is turned on and a period in which the gate voltage is limited by the Zener diode 3. What is necessary is just to change the specific structure suitably.
- the current drawn by the current drawing operation is preferably set to a current value equal to or greater than the leak current value, but may be set to a current value less than the leak current value. Even in such a setting, it is possible to obtain the effect of reducing the increase in the output voltage Vo due to the leakage current.
- the leak suppression unit 92 may be configured to be able to isolate the potential fixing resistor 4 from between the gate and source of the transistor Q1 during the period when the transistor Q1 is turned on, and the specific configuration can be changed as appropriate.
- the drive unit 2 only needs to have a configuration capable of driving the transistors Q1 and Q2 in a complementary manner, and the specific configuration thereof can be changed as appropriate.
- the Zener diode 3 connected between the gate of the transistor Q1 and the power supply line L2 is used as a voltage limiting unit that limits the gate voltage of the transistor Q1 to a predetermined clamp voltage.
- Other circuit elements or circuits may be used.
- the transistor Q2 is not limited to an N-channel MOS transistor, and various switching elements can be used.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Power Engineering (AREA)
- Power Conversion In General (AREA)
- Logic Circuits (AREA)
- Electronic Switches (AREA)
Abstract
A driver circuit (1, 51, 61, 71, 81, 91) is provided with: two switching elements (Q1, Q2) connected in series between a pair of power supply lines (L1, L2), to which a power supply voltage is supplied; and a drive unit (2) that complementarily drives the two switching elements corresponding to an input signal. The driver circuit supplies an output voltage to a subject to be driven, said output voltage having been outputted from an output node (No) connected to an interconnection point between the two switching elements. The high-potential-side switching element (Q1) is an N channel type MOS transistor. The driver circuit is provided with: a voltage limiting unit (3) that limits the gate voltage of the high-potential-side switching element to a predetermined clamp voltage; a potential fixing resistor (4) connected between the gate and the source of the high-potential-side switching element; and a leak suppressing unit (5, 52, 62, 72, 82, 92) that suppresses occurrence of leak current flowing from the gate of the high-potential-side switching element to the output node.
Description
本出願は、2017年5月25日に出願された日本出願番号2017-103604号に基づくもので、ここにその記載内容を援用する。
This application is based on Japanese Application No. 2017-103604 filed on May 25, 2017, the contents of which are incorporated herein by reference.
本開示は、出力電圧を駆動対象に供給するドライバ回路に関する。
The present disclosure relates to a driver circuit that supplies an output voltage to a drive target.
モータ駆動回路を構成するスイッチング素子、制御回路などへの電源供給を通断電する電源リレーとして機能するスイッチング素子、チャージポンプ回路を構成するスイッチング素子などを駆動するドライバ回路は、電源電圧に応じた電圧を出力するようになっている(例えば特許文献1参照)。
The switching element that constitutes the motor drive circuit, the switching element that functions as a power relay that cuts off the power supply to the control circuit, the driver circuit that drives the switching element that constitutes the charge pump circuit, etc. A voltage is output (see, for example, Patent Document 1).
ここで、電源電圧が、例えば車両に搭載されたバッテリの電圧など、その変動幅が比較的大きい電圧である場合、次のような問題が生じるおそれがある。すなわち、上記構成では、ドライバ回路の出力電圧は、電源電圧の上昇に応じて上昇するため、電源電圧が大きく上昇した場合、負荷となるスイッチング素子の耐圧などを超える可能性がある。
Here, when the power supply voltage is a voltage having a relatively large fluctuation range such as a voltage of a battery mounted on the vehicle, the following problem may occur. That is, in the above configuration, the output voltage of the driver circuit increases as the power supply voltage increases, and therefore, when the power supply voltage increases greatly, there is a possibility that it exceeds the withstand voltage of the switching element serving as a load.
このような問題への対策として、ドライバ回路の出力段を構成するハイサイド側のスイッチング素子として、Nチャネル型のMOSトランジスタを用い、そのゲート電圧を任意の電圧以下となるように制限する構成が考えられている。このような構成によれば、電源電圧が大きく上昇した場合でも、その上昇に関係なく、出力電圧が所望する電圧値以下の電圧に制限される。
As a countermeasure against such a problem, an N-channel MOS transistor is used as a high-side switching element that constitutes the output stage of the driver circuit, and the gate voltage is limited to an arbitrary voltage or less. It is considered. According to such a configuration, even when the power supply voltage greatly increases, the output voltage is limited to a voltage equal to or lower than a desired voltage value regardless of the increase.
上記構成では、MOSトランジスタのゲート・ソース間には、そのMOSトランジスタをオフする際における電位固定を目的とした抵抗が設けられる。そのため、上記構成では、MOSトランジスタがオンされる期間、上記抵抗を介してドライバ回路の出力ノードへとリーク電流が流れ、そのリーク電流に起因して出力電圧が狙い値よりも上昇する問題が生じる。
In the above configuration, a resistor is provided between the gate and source of the MOS transistor for fixing the potential when the MOS transistor is turned off. For this reason, in the above configuration, a leakage current flows to the output node of the driver circuit through the resistor during the period when the MOS transistor is turned on, and the output voltage rises from the target value due to the leakage current. .
本開示の目的は、出力電圧を所望する電圧に制限しつつ、リーク電流に起因する出力電圧の上昇を抑制することができるドライバ回路を提供することにある。
An object of the present disclosure is to provide a driver circuit that can suppress an increase in output voltage caused by a leakage current while limiting the output voltage to a desired voltage.
本開示の一態様において、ドライバ回路は、電源電圧が供給される一対の電源線間に直列接続された2つのスイッチング素子と、入力信号に応じて2つのスイッチング素子を相補的に駆動する駆動部と、を備え、2つのスイッチング素子の相互接続点に接続される出力ノードから出力される出力電圧を駆動対象に供給する。上記2つのスイッチング素子のうち高電位側のスイッチング素子は、Nチャネル型のMOSトランジスタである。ドライバ回路は、高電位側のスイッチング素子のゲート電圧を所定のクランプ電圧に制限する電圧制限部を備えている。このような構成によれば、電源電圧が大きく上昇した場合でも、その上昇に関係なく、出力電圧を所望する電圧値以下の電圧に制限することができる。
In one embodiment of the present disclosure, a driver circuit includes two switching elements connected in series between a pair of power supply lines to which a power supply voltage is supplied, and a driving unit that complementarily drives the two switching elements according to an input signal The output voltage output from the output node connected to the interconnection point of the two switching elements is supplied to the drive target. Of the two switching elements, the switching element on the high potential side is an N-channel MOS transistor. The driver circuit includes a voltage limiting unit that limits the gate voltage of the switching element on the high potential side to a predetermined clamp voltage. According to such a configuration, even when the power supply voltage greatly increases, the output voltage can be limited to a voltage equal to or lower than a desired voltage value regardless of the increase.
また、ドライバ回路は、高電位側のスイッチング素子のゲート・ソース間に接続された電位固定用抵抗を備えている。これにより、高電位側のスイッチング素子がオフ駆動される際、当該スイッチング素子を確実にオフ状態にすることができる。さらに、ドライバ回路は、高電位側のスイッチング素子のゲートから出力ノードへと流れるリーク電流の発生を抑えるリーク抑制部を備えている。このような構成によれば、高電位側のスイッチング素子がオン駆動される期間において、電位固定用抵抗などを介して出力ノードへと流れるリーク電流を低く抑えることができる。したがって、上記構成によれば、出力電圧を所望する電圧に制限しつつ、リーク電流に起因する出力電圧の上昇を抑制することができる。
The driver circuit also includes a potential fixing resistor connected between the gate and source of the switching element on the high potential side. As a result, when the switching element on the high potential side is driven off, the switching element can be reliably turned off. Further, the driver circuit includes a leak suppression unit that suppresses the generation of a leak current that flows from the gate of the switching element on the high potential side to the output node. According to such a configuration, the leakage current flowing to the output node via the potential fixing resistor or the like can be kept low during the period in which the switching element on the high potential side is turned on. Therefore, according to the above configuration, it is possible to suppress an increase in the output voltage due to the leakage current while limiting the output voltage to a desired voltage.
また、本開示の一態様において、ドライバ回路では、リーク抑制部は、出力ノードから所定の電流を引き抜く電流引き抜き動作を実行することによりリーク電流の発生を抑える。このような構成によれば、高電位側のスイッチング素子がオン駆動される期間、電位固定用抵抗を介して出力ノードに向けて電流が流れるものの、その電流は、リーク抑制部による電流引き抜き動作により引き抜かれるため、出力ノードから流れ出すリーク電流が低く抑えられる。したがって、上記構成によれば、電位固定用抵抗を介して流れるリーク電流に起因する出力電圧の上昇を確実に抑制することができる。
Further, in one aspect of the present disclosure, in the driver circuit, the leak suppression unit suppresses generation of the leak current by executing a current extracting operation of extracting a predetermined current from the output node. According to such a configuration, although the current flows to the output node through the potential fixing resistor during the period when the switching element on the high potential side is turned on, the current is caused by the current extraction operation by the leak suppression unit. Since it is pulled out, the leakage current flowing out from the output node can be kept low. Therefore, according to the above configuration, it is possible to reliably suppress an increase in output voltage due to a leakage current flowing through the potential fixing resistor.
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係るドライバ回路の構成を模式的に示す図であり、
図2は、従来のドライバ回路の構成を模式的に示す図であり、
図3は、オン駆動期間が短い場合の出力電圧を模式的に表すタイミングチャートであり、
図4は、オン駆動期間が長い場合の出力電圧を模式的に表すタイミングチャートであり、
図5は、第1実施形態に係るドライバ回路の具体的な適用例を示す図その1であり、
図6は、第1実施形態に係るドライバ回路の具体的な適用例を示す図その2であり、
図7は、第1実施形態に係るドライバ回路の具体的な適用例を示す図その3であり、
図8は、第2実施形態に係るドライバ回路の構成を模式的に示す図であり、
図9は、第3実施形態に係るドライバ回路の構成を模式的に示す図であり、
図10は、第4実施形態に係るドライバ回路の構成を模式的に示す図であり、
図11は、第5実施形態に係るドライバ回路の構成を模式的に示す図であり、
図12は、第6実施形態に係るドライバ回路の構成を模式的に示す図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram schematically showing the configuration of the driver circuit according to the first embodiment. FIG. 2 is a diagram schematically showing a configuration of a conventional driver circuit. FIG. 3 is a timing chart schematically showing the output voltage when the on-drive period is short. FIG. 4 is a timing chart schematically showing the output voltage when the on-drive period is long. FIG. 5 is a first diagram illustrating a specific application example of the driver circuit according to the first embodiment. FIG. 6 is a second diagram illustrating a specific application example of the driver circuit according to the first embodiment. FIG. 7 is a third diagram illustrating a specific application example of the driver circuit according to the first embodiment. FIG. 8 is a diagram schematically illustrating the configuration of the driver circuit according to the second embodiment. FIG. 9 is a diagram schematically illustrating the configuration of the driver circuit according to the third embodiment. FIG. 10 is a diagram schematically illustrating the configuration of the driver circuit according to the fourth embodiment. FIG. 11 is a diagram schematically illustrating the configuration of the driver circuit according to the fifth embodiment. FIG. 12 is a diagram schematically illustrating the configuration of the driver circuit according to the sixth embodiment.
以下、複数の実施形態について図面を参照して説明する。なお、各実施形態において実質的に同一の構成には同一の符号を付して説明を省略する。
(第1実施形態)
以下、第1実施形態について図1~図7を参照して説明する。 Hereinafter, a plurality of embodiments will be described with reference to the drawings. In each embodiment, substantially the same components are denoted by the same reference numerals and description thereof is omitted.
(First embodiment)
Hereinafter, the first embodiment will be described with reference to FIGS.
(第1実施形態)
以下、第1実施形態について図1~図7を参照して説明する。 Hereinafter, a plurality of embodiments will be described with reference to the drawings. In each embodiment, substantially the same components are denoted by the same reference numerals and description thereof is omitted.
(First embodiment)
Hereinafter, the first embodiment will be described with reference to FIGS.
図1に示すドライバ回路1は、例えば車両に搭載される電子制御装置などに設けられるものであり、出力ノードNoに接続される負荷を駆動する。なお、図1では図示を省略しているが、ドライバ回路1の駆動対象となる負荷としては、例えばモータ駆動回路などで用いられるMOSトランジスタを挙げることができる。
A driver circuit 1 shown in FIG. 1 is provided, for example, in an electronic control device mounted on a vehicle and drives a load connected to an output node No. Although not shown in FIG. 1, examples of the load to be driven by the driver circuit 1 include a MOS transistor used in a motor drive circuit or the like.
ドライバ回路1は、トランジスタQ1、Q2、それらトランジスタQ1、Q2を駆動する駆動部2、ツェナーダイオード3、電位固定用抵抗4、リーク抑制部5などを備えている。本実施形態では、ドライバ回路1は、例えばASIC(Application Specific Integrated Circuit)として構成されている。
The driver circuit 1 includes transistors Q1 and Q2, a drive unit 2 that drives the transistors Q1 and Q2, a Zener diode 3, a potential fixing resistor 4, a leak suppression unit 5, and the like. In the present embodiment, the driver circuit 1 is configured as, for example, an ASIC (Application Specific Integrated Circuit).
ドライバ回路1には、一対の電源線L1、L2を介して電源電圧VSが供給されている。この場合、電源電圧VSは、車両に搭載されたバッテリから供給されるバッテリ電圧となっており、その変動幅は比較的大きい。トランジスタQ1、Q2は、Nチャネル型のMOSトランジスタであり、スイッチング素子に相当する。
A power supply voltage VS is supplied to the driver circuit 1 via a pair of power supply lines L1 and L2. In this case, the power supply voltage VS is a battery voltage supplied from a battery mounted on the vehicle, and its fluctuation range is relatively large. The transistors Q1 and Q2 are N-channel MOS transistors and correspond to switching elements.
トランジスタQ1のドレインは、電源電圧VSが与えられる高電位側の電源線L1に接続され、そのソースはトランジスタQ2のドレインに接続されている。トランジスタQ2のソースは、回路の基準電位(=0V)が与えられる低電位側の電源線L2に接続されている。このように、トランジスタQ1、Q2は、一対の電源線L1、L2間に直列接続されている。なお、トランジスタQ1は、高電位側のスイッチング素子に相当する。トランジスタQ1、Q2の相互接続点は出力ノードNoに接続されており、その出力ノードNoから出力される出力電圧Voは、駆動対象となる負荷に供給される。
The drain of the transistor Q1 is connected to the high potential side power supply line L1 to which the power supply voltage VS is applied, and the source thereof is connected to the drain of the transistor Q2. The source of the transistor Q2 is connected to the low potential side power supply line L2 to which the reference potential (= 0V) of the circuit is applied. Thus, the transistors Q1 and Q2 are connected in series between the pair of power supply lines L1 and L2. The transistor Q1 corresponds to a switching element on the high potential side. The interconnection point of the transistors Q1 and Q2 is connected to the output node No, and the output voltage Vo output from the output node No is supplied to the load to be driven.
駆動部2は、Nチャネル型のMOSトランジスタであるトランジスタQ3、Q4、反転バッファ6および電流源7、8を備えている。トランジスタQ3のドレインは電流源7を介して電源線L1に接続され、そのソースは電源線L2に接続されている。トランジスタQ4のドレインは電流源8を介して電源線L1に接続され、そのソースは電源線L2に接続されている。
The driving unit 2 includes transistors Q3 and Q4, inverting buffers 6 and current sources 7 and 8 which are N channel type MOS transistors. The drain of the transistor Q3 is connected to the power supply line L1 through the current source 7, and the source thereof is connected to the power supply line L2. The drain of the transistor Q4 is connected to the power supply line L1 through the current source 8, and the source thereof is connected to the power supply line L2.
反転バッファ6は、入力ノードNiを通じて外部から与えられる入力信号Siを入力し、その反転信号を出力する。トランジスタQ3のゲートは、反転バッファ6の出力端子に接続されている。トランジスタQ4のゲートは、入力ノードNiに接続されている。トランジスタQ3のドレインは、トランジスタQ1のゲートに接続されている。トランジスタQ4のドレインは、トランジスタQ2のゲートに接続されている。
The inverting buffer 6 receives an input signal Si given from the outside through the input node Ni, and outputs the inverted signal. The gate of the transistor Q3 is connected to the output terminal of the inverting buffer 6. The gate of the transistor Q4 is connected to the input node Ni. The drain of the transistor Q3 is connected to the gate of the transistor Q1. The drain of the transistor Q4 is connected to the gate of the transistor Q2.
このような構成により、駆動部2は、入力信号Siに応じてトランジスタQ1、Q2を相補的に駆動する。具体的には、駆動部2は、入力信号Siがハイレベル(例えば5V)である期間、トランジスタQ1をオン駆動するとともにトランジスタQ2をオフ駆動する。また、駆動部2は、入力信号Siがロウレベル(例えば0V)である期間、トランジスタQ1をオフ駆動するとともにトランジスタQ2をオン駆動する。
With this configuration, the drive unit 2 drives the transistors Q1 and Q2 in a complementary manner in accordance with the input signal Si. Specifically, the drive unit 2 drives the transistor Q1 on and drives the transistor Q2 off while the input signal Si is at a high level (for example, 5 V). Further, the drive unit 2 drives the transistor Q1 off and the transistor Q2 on while the input signal Si is at a low level (eg, 0 V).
ツェナーダイオード3のカソードはトランジスタQ1のゲートに接続され、そのアノードは電源線L2に接続されている。ツェナーダイオード3は、トランジスタQ1のゲート電圧を所定のクランプ電圧に制限するものであり、電圧制限部に相当する。なお、この場合、クランプ電圧は、ツェナーダイオード3のツェナー電圧Vzとなる。本実施形態では、ツェナー電圧Vzは、電源電圧VSの定常値よりも低い電圧値となっている。
The cathode of the Zener diode 3 is connected to the gate of the transistor Q1, and the anode thereof is connected to the power line L2. The Zener diode 3 limits the gate voltage of the transistor Q1 to a predetermined clamp voltage, and corresponds to a voltage limiting unit. In this case, the clamp voltage is the Zener voltage Vz of the Zener diode 3. In the present embodiment, the Zener voltage Vz is a voltage value lower than the steady value of the power supply voltage VS.
このような構成によれば、トランジスタQ1がオン駆動される期間におけるトランジスタQ1のゲート電圧は、電源電圧VSの変動に影響を受けることなく、ツェナー電圧Vz以下の電圧値となる。したがって、上記構成によれば、電源電圧VSが大きく上昇した場合でも、その上昇に関係なく、出力電圧Voを、下記(1)式により表される制限電圧VLに制限することができる。ただし、トランジスタQ1のしきい値電圧をVtとする。
VL=Vz-Vt …(1) According to such a configuration, the gate voltage of the transistor Q1 during the period in which the transistor Q1 is turned on has a voltage value equal to or lower than the Zener voltage Vz without being affected by fluctuations in the power supply voltage VS. Therefore, according to the above configuration, even when the power supply voltage VS is greatly increased, the output voltage Vo can be limited to the limit voltage VL expressed by the following equation (1) regardless of the increase. However, the threshold voltage of the transistor Q1 is Vt.
VL = Vz−Vt (1)
VL=Vz-Vt …(1) According to such a configuration, the gate voltage of the transistor Q1 during the period in which the transistor Q1 is turned on has a voltage value equal to or lower than the Zener voltage Vz without being affected by fluctuations in the power supply voltage VS. Therefore, according to the above configuration, even when the power supply voltage VS is greatly increased, the output voltage Vo can be limited to the limit voltage VL expressed by the following equation (1) regardless of the increase. However, the threshold voltage of the transistor Q1 is Vt.
VL = Vz−Vt (1)
また、前述したように、ツェナーダイオード3のツェナー電圧Vzは、電源電圧VSの定常値よりも小さい電圧値となっている。したがって、ドライバ回路1の出力電圧Voの狙い値、つまり目標出力電圧は、ツェナー電圧Vzよりしきい値電圧Vtだけ低い電圧、つまり上記した制限電圧VLと同じ電圧となる。
As described above, the Zener voltage Vz of the Zener diode 3 is a voltage value smaller than the steady value of the power supply voltage VS. Therefore, the target value of the output voltage Vo of the driver circuit 1, that is, the target output voltage, is a voltage that is lower than the Zener voltage Vz by the threshold voltage Vt, that is, the same voltage as the limit voltage VL described above.
なお、制限電圧VLは、ツェナーダイオード3の温度特性に依存して変動する可能性がある。そのため、ドライバ回路1の使用温度範囲において、出力電圧Voが、その供給先の負荷を構成する素子の耐圧などを超えないように、ツェナーダイオード3の仕様(温度特性およびツェナー電圧Vz)を選定する必要がある。
Note that the limit voltage VL may vary depending on the temperature characteristics of the Zener diode 3. Therefore, the specifications (temperature characteristics and Zener voltage Vz) of the Zener diode 3 are selected so that the output voltage Vo does not exceed the withstand voltage of the elements constituting the load of the supply destination in the operating temperature range of the driver circuit 1. There is a need.
電位固定用抵抗4は、トランジスタQ1のゲート・ソース間に接続されている。電位固定用抵抗4は、トランジスタQ1がオフ駆動される際、そのゲート・ソース間電圧をしきい値電圧Vt未満の電圧に固定して確実にオフ状態を保つために設けられている。このような構成では、トランジスタQ1がオン駆動される期間、トランジスタQ1のゲートから電位固定用抵抗4を介してトランジスタQ1のソース、つまり出力ノードNoへと流れる微小なリーク電流が生じるおそれがある。このようなリーク電流の電流値ILは、下記(2)式に示すように、トランジスタQ1のしきい値電圧Vtと、電位固定用抵抗4の抵抗値Raとから定まる。
IL=Vt/Ra …(2) Thepotential fixing resistor 4 is connected between the gate and source of the transistor Q1. The potential fixing resistor 4 is provided to fix the gate-source voltage to a voltage lower than the threshold voltage Vt and reliably maintain the off state when the transistor Q1 is driven off. In such a configuration, there is a possibility that a minute leak current flows from the gate of the transistor Q1 to the source of the transistor Q1, that is, the output node No, via the potential fixing resistor 4 during the period when the transistor Q1 is turned on. The current value IL of such a leakage current is determined from the threshold voltage Vt of the transistor Q1 and the resistance value Ra of the potential fixing resistor 4, as shown in the following equation (2).
IL = Vt / Ra (2)
IL=Vt/Ra …(2) The
IL = Vt / Ra (2)
リーク抑制部5は、このようなリーク電流の発生を抑えるために設けられたものであり、Nチャネル型のMOSトランジスタであるトランジスタQ5および電流源9を備えている。トランジスタQ5のドレインは電流源9を介して出力ノードNoに接続され、そのソースは電源線L2に接続されている。トランジスタQ5のゲートは、入力ノードNiに接続されている。
The leak suppression unit 5 is provided to suppress the occurrence of such a leak current, and includes a transistor Q5 that is an N-channel MOS transistor and a current source 9. The drain of the transistor Q5 is connected to the output node No via the current source 9, and the source thereof is connected to the power supply line L2. The gate of the transistor Q5 is connected to the input node Ni.
上記構成において、電流源9は、出力ノードNoと電源線L2との間に接続された負荷に相当する。また、トランジスタQ5は、電流源9とともに出力ノードNoと電源線L2との間に直列接続されたスイッチに相当する。
In the above configuration, the current source 9 corresponds to a load connected between the output node No and the power supply line L2. The transistor Q5 corresponds to a switch connected in series with the current source 9 between the output node No and the power supply line L2.
このような構成によれば、入力信号Siがハイレベルである期間、つまりトランジスタQ1がオン駆動される期間、トランジスタQ5がオン駆動され、それにより出力ノードNoおよび電源線L2の間に負荷である電流源9が接続される。したがって、トランジスタQ1がオン駆動される期間、出力ノードNoから電流源9の電流値に対応した所定の電流が電源線L2へと引き抜かれる。
According to such a configuration, during a period when the input signal Si is at a high level, that is, during a period in which the transistor Q1 is turned on, the transistor Q5 is turned on, thereby providing a load between the output node No and the power supply line L2. A current source 9 is connected. Therefore, a predetermined current corresponding to the current value of the current source 9 is drawn from the output node No to the power supply line L2 while the transistor Q1 is turned on.
リーク抑制部5によって、このような電流引き抜き動作が実行されることにより、トランジスタQ1のゲートから出力ノードNoへと流れるリーク電流の発生が抑えられる。本実施形態では、電流源9の電流値は、上記(2)式により表されるリーク電流の電流値IL以上の値、具体的には、電流値ILに所定のマージンを加えた電流値に設定されている。
By performing such a current extraction operation by the leak suppression unit 5, the occurrence of a leak current flowing from the gate of the transistor Q1 to the output node No can be suppressed. In the present embodiment, the current value of the current source 9 is a value equal to or greater than the current value IL of the leakage current expressed by the above equation (2), specifically, a current value obtained by adding a predetermined margin to the current value IL. Is set.
次に、上記構成の作用について参照して説明する。
[1]入力信号Siがロウレベルである期間の動作
入力信号Siがロウレベルになると、トランジスタQ3がオンされるとともにトランジスタQ4がオフされる。これにより、トランジスタQ1がオフ駆動されるとともにトランジスタQ2がオン駆動される。したがって、入力信号Siがロウレベルである期間、出力電圧Voは、電源線L2の電位である0Vとなる。また、この期間では、トランジスタQ5がオフされるため、リーク抑制部5による電流引き抜き動作は実行されない。 Next, the operation of the above configuration will be described with reference to FIG.
[1] Operation during a period when the input signal Si is at low level When the input signal Si is at low level, the transistor Q3 is turned on and the transistor Q4 is turned off. As a result, the transistor Q1 is driven off and the transistor Q2 is driven on. Therefore, during the period when the input signal Si is at the low level, the output voltage Vo is 0 V, which is the potential of the power supply line L2. Further, during this period, the transistor Q5 is turned off, so that the current drawing operation by theleak suppression unit 5 is not executed.
[1]入力信号Siがロウレベルである期間の動作
入力信号Siがロウレベルになると、トランジスタQ3がオンされるとともにトランジスタQ4がオフされる。これにより、トランジスタQ1がオフ駆動されるとともにトランジスタQ2がオン駆動される。したがって、入力信号Siがロウレベルである期間、出力電圧Voは、電源線L2の電位である0Vとなる。また、この期間では、トランジスタQ5がオフされるため、リーク抑制部5による電流引き抜き動作は実行されない。 Next, the operation of the above configuration will be described with reference to FIG.
[1] Operation during a period when the input signal Si is at low level When the input signal Si is at low level, the transistor Q3 is turned on and the transistor Q4 is turned off. As a result, the transistor Q1 is driven off and the transistor Q2 is driven on. Therefore, during the period when the input signal Si is at the low level, the output voltage Vo is 0 V, which is the potential of the power supply line L2. Further, during this period, the transistor Q5 is turned off, so that the current drawing operation by the
[2]入力信号Siがハイレベルである期間の動作
入力信号Siがハイレベルになると、トランジスタQ3がオフされるとともにトランジスタQ4がオンされる。これにより、トランジスタQ1がオン駆動されるとともにトランジスタQ2がオフ駆動される。したがって、入力信号Siがハイレベルである期間、出力電圧Voは、トランジスタQ1のゲート電圧よりしきい値電圧Vtだけ低い電圧となる。なお、このとき、電源電圧VSが定常値または定常値より高い電圧値である場合、出力電圧Voは、狙い値、つまり上記(1)式に示した制限電圧VLとなる。 [2] Operation during a period when the input signal Si is at high level When the input signal Si is at high level, the transistor Q3 is turned off and the transistor Q4 is turned on. As a result, the transistor Q1 is driven on and the transistor Q2 is driven off. Therefore, during the period when the input signal Si is at the high level, the output voltage Vo is a voltage lower than the gate voltage of the transistor Q1 by the threshold voltage Vt. At this time, when the power supply voltage VS is a steady value or a voltage value higher than the steady value, the output voltage Vo becomes a target value, that is, the limit voltage VL shown in the above equation (1).
入力信号Siがハイレベルになると、トランジスタQ3がオフされるとともにトランジスタQ4がオンされる。これにより、トランジスタQ1がオン駆動されるとともにトランジスタQ2がオフ駆動される。したがって、入力信号Siがハイレベルである期間、出力電圧Voは、トランジスタQ1のゲート電圧よりしきい値電圧Vtだけ低い電圧となる。なお、このとき、電源電圧VSが定常値または定常値より高い電圧値である場合、出力電圧Voは、狙い値、つまり上記(1)式に示した制限電圧VLとなる。 [2] Operation during a period when the input signal Si is at high level When the input signal Si is at high level, the transistor Q3 is turned off and the transistor Q4 is turned on. As a result, the transistor Q1 is driven on and the transistor Q2 is driven off. Therefore, during the period when the input signal Si is at the high level, the output voltage Vo is a voltage lower than the gate voltage of the transistor Q1 by the threshold voltage Vt. At this time, when the power supply voltage VS is a steady value or a voltage value higher than the steady value, the output voltage Vo becomes a target value, that is, the limit voltage VL shown in the above equation (1).
また、この期間では、トランジスタQ5がオンされるため、リーク抑制部5による電流引き抜き動作が実行される。そのため、トランジスタQ1のゲートから出力ノードNoへと流れる微小なリーク電流の発生が抑制される。
In this period, since the transistor Q5 is turned on, the current extraction operation by the leak suppression unit 5 is executed. Therefore, the generation of a minute leak current that flows from the gate of transistor Q1 to output node No is suppressed.
以上説明した本実施形態によれば、次のような効果が得られる。
図2に示すドライバ回路21のように、ドライバ回路1からリーク抑制部5を省いた構成(以下、従来構成と呼ぶ)では、次のような問題が生じる。すなわち、従来構成では、トランジスタQ1がオン駆動される期間(以下、オン駆動期間と呼ぶ)、トランジスタQ1のゲートから電位固定用抵抗4を介して出力ノードNoへとリーク電流ILが流れ、そのリーク電流ILに起因して出力電圧Voが狙い値よりも上昇する問題が生じる。 According to this embodiment described above, the following effects can be obtained.
In the configuration in which theleak suppression unit 5 is omitted from the driver circuit 1 as in the driver circuit 21 shown in FIG. 2 (hereinafter referred to as a conventional configuration), the following problem occurs. That is, in the conventional configuration, during the period in which the transistor Q1 is turned on (hereinafter referred to as the on drive period), the leakage current IL flows from the gate of the transistor Q1 to the output node No via the potential fixing resistor 4, Due to the current IL, there arises a problem that the output voltage Vo rises from the target value.
図2に示すドライバ回路21のように、ドライバ回路1からリーク抑制部5を省いた構成(以下、従来構成と呼ぶ)では、次のような問題が生じる。すなわち、従来構成では、トランジスタQ1がオン駆動される期間(以下、オン駆動期間と呼ぶ)、トランジスタQ1のゲートから電位固定用抵抗4を介して出力ノードNoへとリーク電流ILが流れ、そのリーク電流ILに起因して出力電圧Voが狙い値よりも上昇する問題が生じる。 According to this embodiment described above, the following effects can be obtained.
In the configuration in which the
ただし、リーク電流ILは、微小な電流であるため、オン駆動期間が比較的短い期間である場合、図3に点線で示すように、そのオン駆動期間における出力電圧Voの上昇は比較的小さい。特に、負荷となるMOSトランジスタが高速でスイッチングされるような場合、そのオン駆動期間も短くなることから、出力電圧Voの上昇は非常に小さいものとなる。したがって、このようなケースでは、リーク電流ILに起因する出力電圧Voの上昇が大きな問題となることはない。なお、図3および後述する図4における時間Taは、それぞれのオン駆動期間の長さを比較するために記載したものであり、同一の時間を示している。
However, since the leakage current IL is a very small current, when the on-drive period is a relatively short period, as shown by a dotted line in FIG. 3, the increase in the output voltage Vo in the on-drive period is relatively small. In particular, when a MOS transistor serving as a load is switched at a high speed, the ON drive period is also shortened, so that the increase in the output voltage Vo is very small. Therefore, in such a case, the increase of the output voltage Vo caused by the leakage current IL does not become a big problem. Note that the time Ta in FIG. 3 and FIG. 4 to be described later is described for comparing the lengths of the respective ON drive periods, and indicates the same time.
しかし、例えば回路のイニシャルチェック時、故障時など、オン駆動期間が比較的長い期間となる場合、図4に点線で示すように、出力電圧Voは、リーク電流ILにより徐々に上昇し、やがてはトランジスタQ1のゲート電圧Vgと同程度の電圧値まで達してしまう。このように、出力電圧Voが狙い値よりも大きく上昇すると、例えば負荷を構成する素子に対し、その耐圧を超える電圧が印加されてしまい、素子の故障を招くおそれがある。特に、ツェナー電圧Vzが温度変動に伴って高い方向に変動すると、このような問題が一層顕在化するおそれがある。
However, when the ON drive period becomes a relatively long period, for example, at the time of initial check of the circuit or at the time of failure, the output voltage Vo gradually increases due to the leakage current IL as shown by the dotted line in FIG. The voltage value is about the same as the gate voltage Vg of the transistor Q1. As described above, when the output voltage Vo rises higher than the target value, for example, a voltage exceeding the withstand voltage is applied to the element constituting the load, and there is a possibility that the element may be damaged. In particular, when the Zener voltage Vz fluctuates in a higher direction with temperature fluctuation, such a problem may become more apparent.
これに対し、本実施形態のドライバ回路1は、トランジスタQ1のゲートから出力ノードNoへと流れるリーク電流の発生を抑えるリーク抑制部5を備えている。このような構成によれば、トランジスタQ1がオン駆動される期間において、電位固定用抵抗4を介して出力ノードNoへと流れるリーク電流を低く抑えることができる。
On the other hand, the driver circuit 1 of the present embodiment includes a leak suppression unit 5 that suppresses the occurrence of a leak current flowing from the gate of the transistor Q1 to the output node No. According to such a configuration, the leakage current flowing to the output node No via the potential fixing resistor 4 can be kept low during the period in which the transistor Q1 is turned on.
また、ドライバ回路1では、リーク抑制部5は、出力ノードNoから所定の電流を引き抜く電流引き抜き動作を実行することによりリーク電流の発生を抑える。このような構成によれば、トランジスタQ1がオン駆動される期間、電位固定用抵抗4を介して出力ノードNoに向けて電流が流れるものの、その電流は、リーク抑制部5による電流引き抜き動作により引き抜かれるため、出力ノードNoから流れ出すリーク電流が低く抑えられる。
In the driver circuit 1, the leak suppression unit 5 suppresses the generation of leak current by executing a current extraction operation for extracting a predetermined current from the output node No. According to such a configuration, although the current flows toward the output node No through the potential fixing resistor 4 during the period when the transistor Q1 is turned on, the current is extracted by the current extraction operation by the leak suppression unit 5. Therefore, the leakage current flowing out from the output node No can be suppressed low.
このように、本実施形態のドライバ回路1では、電位固定用抵抗4を介して流れるリーク電流の発生を抑制することができるため、それに起因する出力電圧Voの上昇を確実に抑制することができる。その結果、本実施形態のドライバ回路1では、図3および図4に一点鎖線で示すように、出力電圧Voは、オン駆動期間の長さに関係なく、狙い値(=Vg-Vt)に維持される。したがって、本実施形態によれば、出力電圧Voを所望する電圧に制限しつつ、リーク電流に起因する出力電圧Voの上昇を抑制することができるという優れた効果が得られる。
As described above, in the driver circuit 1 according to the present embodiment, the generation of the leakage current flowing through the potential fixing resistor 4 can be suppressed, so that the increase in the output voltage Vo resulting therefrom can be reliably suppressed. . As a result, in the driver circuit 1 according to the present embodiment, the output voltage Vo is maintained at the target value (= Vg−Vt) regardless of the length of the ON drive period, as shown by the one-dot chain line in FIGS. Is done. Therefore, according to the present embodiment, it is possible to obtain an excellent effect that it is possible to suppress an increase in the output voltage Vo due to the leakage current while limiting the output voltage Vo to a desired voltage.
また、本実施形態のリーク抑制部5は、出力ノードNoと電源線L2の間に接続された電流源9を備えている。そして、電流源9の電流値は、リーク電流の電流値以上の電流値に設定されている。このようにすれば、リーク抑制部5は、電流引き抜き動作を行う際、必ずリーク電流以上の電流を引き抜くことができ、その結果、リーク電流に起因する出力電圧Voの上昇(浮き)を確実に抑えることが可能となる。
Further, the leak suppression unit 5 of the present embodiment includes a current source 9 connected between the output node No and the power supply line L2. The current value of the current source 9 is set to a current value equal to or greater than the current value of the leakage current. In this way, when the current suppressing operation is performed, the leakage suppressing unit 5 can always extract a current equal to or higher than the leakage current, and as a result, the output voltage Vo caused by the leakage current can be reliably increased (floated). It becomes possible to suppress.
さらに、本実施形態のリーク抑制部5は、電流源9とともに出力ノードNoと電源線L2の間に直列接続されたトランジスタQ5を備えている。このようにすれば、トランジスタQ5をオフすることにより、出力ノードNoと電源線L2の間から電流源9を切り離すことが可能となり、次のような効果が得られる。
Furthermore, the leakage suppression unit 5 of this embodiment includes a transistor Q5 connected in series between the output node No and the power supply line L2 together with the current source 9. In this way, by turning off the transistor Q5, the current source 9 can be disconnected from between the output node No and the power supply line L2, and the following effects are obtained.
すなわち、入力信号Siがロウレベルである期間、例えばトランジスタQ3のオン抵抗が高いなどの理由から、トランジスタQ1のゲート電圧が0Vよりも若干高い電圧になる可能性がある。このようなことから、出力ノードNoと電源線L2の間に電流源9が常時接続された構成の場合、入力信号Siがロウレベルである期間、出力電圧Voが完全に0Vにならず、トランジスタQ1のゲート電圧を電位固定用抵抗4および電流源9により分圧した電圧が出力されてしまう。
That is, there is a possibility that the gate voltage of the transistor Q1 is slightly higher than 0V because the on-resistance of the transistor Q3 is high, for example, during a period when the input signal Si is at a low level. For this reason, in the configuration in which the current source 9 is always connected between the output node No and the power supply line L2, the output voltage Vo is not completely 0V during the period when the input signal Si is at the low level, and the transistor Q1 A voltage obtained by dividing the gate voltage by the potential fixing resistor 4 and the current source 9 is output.
これに対し、本実施形態では、入力信号Siがロウレベルである期間、トランジスタQ5がオフされることで電流源9が出力ノードNoと電源線L2の間から切り離されるため、仮にトランジスタQ1のゲート電圧が0Vより高い電圧であったとしても、出力電圧Voは0Vとなり、微小な電圧が出力されるおそれはない。
On the other hand, in this embodiment, since the transistor Q5 is turned off while the input signal Si is at a low level, the current source 9 is disconnected from the output node No and the power supply line L2. Even if the voltage is higher than 0V, the output voltage Vo becomes 0V and there is no possibility that a minute voltage is output.
また、ドライバ回路1のスクリーニングにおいて、トランジスタQ2のリーク検査が行われることがある。このリーク検査では、トランジスタQ2のドレイン・ソース間に所定の電圧が印加される。出力ノードNoと電源線L2の間に電流源9が常時接続された構成の場合、トランジスタQ2のドレイン・ソース間に電流源9が並列接続された状態となっていることから、このようなリーク検査を正常に実施できない可能性がある。これに対し、本実施形態では、トランジスタQ5をオフすることにより電流源9を出力ノードNoと電源線L2の間から切り離すことができるため、トランジスタQ2のリーク検査を正常に実施することができる。
In addition, the leakage inspection of the transistor Q2 may be performed in the screening of the driver circuit 1. In this leak test, a predetermined voltage is applied between the drain and source of the transistor Q2. In the case where the current source 9 is always connected between the output node No and the power supply line L2, the current source 9 is connected in parallel between the drain and source of the transistor Q2. The test may not be performed correctly. On the other hand, in this embodiment, since the current source 9 can be disconnected from the output node No and the power supply line L2 by turning off the transistor Q5, the leakage inspection of the transistor Q2 can be normally performed.
本実施形態のドライバ回路1は、上述した効果を奏することができるため、電源電圧VSがバッテリ電圧などの変動幅が大きいものであり、且つ電源電圧VSの低電圧時および高電圧時のいずれにおいても機能を失うことが許容されない用途に好適となる。例えば、ドライバ回路1は、モータ駆動ドライバ、出力バッファドライバ、リレードライバ、チャージポンプドライバなどに用いることができる。ドライバ回路1の具体的な適用例としては、例えば図5~図7に示す構成を挙げることができる。
Since the driver circuit 1 according to the present embodiment can achieve the above-described effects, the power supply voltage VS has a large fluctuation range such as a battery voltage, and the power supply voltage VS is either low or high. However, it is suitable for applications where loss of function is not permitted. For example, the driver circuit 1 can be used for a motor drive driver, an output buffer driver, a relay driver, a charge pump driver, and the like. As specific application examples of the driver circuit 1, for example, configurations shown in FIGS.
すなわち、図5および図6に示すように、ドライバ回路1は、例えば電動パワーステアリングシステムに用いられるモータMを駆動するモータ駆動回路31を構成するスイッチング素子を駆動するモータ駆動ドライバとして用いることができる。なお、モータ駆動回路31は、4つのNチャネル型MOSトランジスタQ31~Q34からなるHブリッジ回路として構成されている。
That is, as shown in FIGS. 5 and 6, the driver circuit 1 can be used as a motor drive driver that drives a switching element that constitutes a motor drive circuit 31 that drives a motor M used in an electric power steering system, for example. . The motor drive circuit 31 is configured as an H bridge circuit including four N channel type MOS transistors Q31 to Q34.
より具体的には、ドライバ回路1は、図5に示すように、モータ駆動回路31を構成するハイサイド側のトランジスタQ31を駆動するハイサイドドライバとして用いることができる。また、ドライバ回路1は、図6に示すように、モータ駆動回路31を構成するロウサイド側のトランジスタQ32を駆動するロウサイドドライバとして用いることができる。
More specifically, the driver circuit 1 can be used as a high-side driver that drives the high-side transistor Q31 that constitutes the motor drive circuit 31, as shown in FIG. Further, as shown in FIG. 6, the driver circuit 1 can be used as a low-side driver that drives the low-side transistor Q <b> 32 that constitutes the motor drive circuit 31.
図7に示すように、ドライバ回路1は、例えば制御回路などの回路41への電源供給を通断電する電源リレーとして機能するNチャネル型MOSトランジスタQ41を駆動するリレードライバとして用いることができる。
As shown in FIG. 7, the driver circuit 1 can be used as a relay driver that drives an N-channel MOS transistor Q41 that functions as a power supply relay that cuts off power supply to a circuit 41 such as a control circuit.
(第2実施形態)
以下、第2実施形態について図8を参照して説明する。
図8に示すように、本実施形態のドライバ回路51は、第1実施形態のドライバ回路1に対し、リーク抑制部5に代えてリーク抑制部52を備えている点が異なる。リーク抑制部52は、リーク抑制部5に対し、電流源9に代えて抵抗53を備えている点が異なる。この場合、抵抗53は、出力ノードNoと電源線L2との間に接続された負荷に相当する。 (Second Embodiment)
The second embodiment will be described below with reference to FIG.
As shown in FIG. 8, the driver circuit 51 of the present embodiment is different from thedriver circuit 1 of the first embodiment in that a leak suppression unit 52 is provided instead of the leak suppression unit 5. The leak suppression unit 52 is different from the leak suppression unit 5 in that a resistor 53 is provided instead of the current source 9. In this case, the resistor 53 corresponds to a load connected between the output node No and the power supply line L2.
以下、第2実施形態について図8を参照して説明する。
図8に示すように、本実施形態のドライバ回路51は、第1実施形態のドライバ回路1に対し、リーク抑制部5に代えてリーク抑制部52を備えている点が異なる。リーク抑制部52は、リーク抑制部5に対し、電流源9に代えて抵抗53を備えている点が異なる。この場合、抵抗53は、出力ノードNoと電源線L2との間に接続された負荷に相当する。 (Second Embodiment)
The second embodiment will be described below with reference to FIG.
As shown in FIG. 8, the driver circuit 51 of the present embodiment is different from the
このような構成によっても、トランジスタQ1がオン駆動される期間、トランジスタQ5がオン駆動され、それにより出力ノードNoおよび電源線L2の間に負荷である抵抗53が接続される。したがって、トランジスタQ1がオン駆動される期間、出力ノードNoから抵抗53の抵抗値に対応した所定の電流が電源線L2へと引き抜かれる。リーク抑制部52によって、このような電流引き抜き動作が実行されることにより、トランジスタQ1のゲートから出力ノードNoへと流れるリーク電流の発生が抑えられる。
Also with such a configuration, the transistor Q5 is turned on during the period when the transistor Q1 is turned on, whereby the resistor 53 as a load is connected between the output node No and the power supply line L2. Therefore, a predetermined current corresponding to the resistance value of the resistor 53 is drawn from the output node No to the power supply line L2 while the transistor Q1 is turned on. By performing such a current extracting operation by the leak suppression unit 52, the occurrence of a leak current flowing from the gate of the transistor Q1 to the output node No can be suppressed.
この場合、電流引き抜き動作により引き抜かれる電流の値は、抵抗53の抵抗値により定まる。したがって、本実施形態では、上記電流の値が、リーク電流の電流値IL以上の電流値となるように、抵抗53の抵抗値の設定が行われている。なお、抵抗53の抵抗値は、電位固定用抵抗4の抵抗値に比べ、高い抵抗値に設定されている。
In this case, the value of the current drawn by the current drawing operation is determined by the resistance value of the resistor 53. Therefore, in the present embodiment, the resistance value of the resistor 53 is set so that the current value is equal to or greater than the current value IL of the leak current. The resistance value of the resistor 53 is set to be higher than the resistance value of the potential fixing resistor 4.
以上説明した本実施形態のドライバ回路51によっても、トランジスタQ1がオン駆動される期間において電位固定用抵抗4を介して出力ノードNoへと流れるリーク電流が低く抑えられるため、第1実施形態と同様の効果が得られる。また、本実施形態によれば、第1実施形態に比べ、電流引き抜き動作により引き抜く電流値の設定に関する精度は低くなるものの、リーク抑制部52の構成を簡単にすることができ、ひいてはドライバ回路51の製造コストを低減することができる。
Since the driver circuit 51 of the present embodiment described above also suppresses the leakage current flowing to the output node No via the potential fixing resistor 4 during the period when the transistor Q1 is turned on, the same as in the first embodiment. The effect is obtained. Also, according to the present embodiment, the accuracy of setting the current value to be extracted by the current extraction operation is lower than that of the first embodiment, but the configuration of the leak suppression unit 52 can be simplified, and consequently the driver circuit 51. The manufacturing cost can be reduced.
(第3実施形態)
以下、第3実施形態について図9を参照して説明する。
図9に示すように、本実施形態のドライバ回路61は、第1実施形態のドライバ回路1に対し、リーク抑制部5に代えてリーク抑制部62を備えている点が異なる。リーク抑制部62は、リーク抑制部5に対し、トランジスタQ5が省かれている点が異なる。この場合、電流源9は、出力ノードNoと電源線L2との間に常時接続されている。 (Third embodiment)
The third embodiment will be described below with reference to FIG.
As shown in FIG. 9, thedriver circuit 61 of the present embodiment is different from the driver circuit 1 of the first embodiment in that a leak suppression unit 62 is provided instead of the leak suppression unit 5. The leak suppression unit 62 is different from the leak suppression unit 5 in that the transistor Q5 is omitted. In this case, the current source 9 is always connected between the output node No and the power supply line L2.
以下、第3実施形態について図9を参照して説明する。
図9に示すように、本実施形態のドライバ回路61は、第1実施形態のドライバ回路1に対し、リーク抑制部5に代えてリーク抑制部62を備えている点が異なる。リーク抑制部62は、リーク抑制部5に対し、トランジスタQ5が省かれている点が異なる。この場合、電流源9は、出力ノードNoと電源線L2との間に常時接続されている。 (Third embodiment)
The third embodiment will be described below with reference to FIG.
As shown in FIG. 9, the
このような構成によっても、トランジスタQ1がオン駆動される期間、出力ノードNoから電流源9の電流値に対応した所定の電流が電源線L2へと引き抜かれる。リーク抑制部62によって、このような電流引き抜き動作が実行されることにより、トランジスタQ1のゲートから出力ノードNoへと流れるリーク電流の発生が抑えられる。
Also with such a configuration, a predetermined current corresponding to the current value of the current source 9 is drawn from the output node No to the power supply line L2 during the period when the transistor Q1 is turned on. By performing such a current extraction operation by the leak suppression unit 62, the occurrence of a leak current flowing from the gate of the transistor Q1 to the output node No can be suppressed.
以上説明した本実施形態のドライバ回路61によっても、トランジスタQ1がオン駆動される期間において電位固定用抵抗4を介して出力ノードNoへと流れるリーク電流が低く抑えられるため、第1実施形態と同様の効果が得られる。また、本実施形態によれば、第1実施形態に比べ、トランジスタQ5が省かれている分だけ、回路規模を小さくすることができ、ひいてはドライバ回路61の製造コストを低減することができる。
Since the driver circuit 61 of the present embodiment described above also suppresses the leakage current flowing to the output node No via the potential fixing resistor 4 during the period when the transistor Q1 is turned on, the same as in the first embodiment. The effect is obtained. Further, according to the present embodiment, compared with the first embodiment, the circuit scale can be reduced by the amount that the transistor Q5 is omitted, and thus the manufacturing cost of the driver circuit 61 can be reduced.
(第4実施形態)
以下、第4実施形態について図10を参照して説明する。
図10に示すように、本実施形態のドライバ回路71は、第2実施形態のドライバ回路51に対し、リーク抑制部52に代えてリーク抑制部72を備えている点が異なる。リーク抑制部72は、リーク抑制部52に対し、トランジスタQ5が省かれている点が異なる。この場合、抵抗53は、出力ノードNoと電源線L2との間に常時接続されている。 (Fourth embodiment)
Hereinafter, a fourth embodiment will be described with reference to FIG.
As shown in FIG. 10, thedriver circuit 71 of this embodiment is different from the driver circuit 51 of the second embodiment in that a leak suppression unit 72 is provided instead of the leak suppression unit 52. The leak suppression unit 72 is different from the leak suppression unit 52 in that the transistor Q5 is omitted. In this case, the resistor 53 is always connected between the output node No and the power supply line L2.
以下、第4実施形態について図10を参照して説明する。
図10に示すように、本実施形態のドライバ回路71は、第2実施形態のドライバ回路51に対し、リーク抑制部52に代えてリーク抑制部72を備えている点が異なる。リーク抑制部72は、リーク抑制部52に対し、トランジスタQ5が省かれている点が異なる。この場合、抵抗53は、出力ノードNoと電源線L2との間に常時接続されている。 (Fourth embodiment)
Hereinafter, a fourth embodiment will be described with reference to FIG.
As shown in FIG. 10, the
このような構成によっても、トランジスタQ1がオン駆動される期間、出力ノードNoから抵抗53の抵抗値に対応した所定の電流が電源線L2へと引き抜かれる。リーク抑制部72によって、このような電流引き抜き動作が実行されることにより、トランジスタQ1のゲートから出力ノードNoへと流れるリーク電流の発生が抑えられる。
Also with such a configuration, a predetermined current corresponding to the resistance value of the resistor 53 is drawn from the output node No to the power supply line L2 during the period when the transistor Q1 is turned on. By performing such a current extracting operation by the leak suppression unit 72, the occurrence of a leak current flowing from the gate of the transistor Q1 to the output node No can be suppressed.
以上説明した本実施形態のドライバ回路71によっても、トランジスタQ1がオン駆動される期間において電位固定用抵抗4を介して出力ノードNoへと流れるリーク電流が低く抑えられるため、第2実施形態と同様の効果が得られる。また、本実施形態によれば、第2実施形態に比べ、トランジスタQ5が省かれている分だけ、回路規模を小さくすることができ、ひいてはドライバ回路71の製造コストを低減することができる。
The driver circuit 71 of the present embodiment described above also suppresses the leakage current flowing to the output node No via the potential fixing resistor 4 during the period in which the transistor Q1 is turned on, so that it is the same as in the second embodiment. The effect is obtained. Further, according to the present embodiment, compared with the second embodiment, the circuit scale can be reduced by the amount that the transistor Q5 is omitted, and thus the manufacturing cost of the driver circuit 71 can be reduced.
(第5実施形態)
以下、第5実施形態について図11を参照して説明する。
図11に示すように、本実施形態のドライバ回路81は、第1実施形態のドライバ回路1に対し、リーク抑制部5に代えてリーク抑制部82を備えている点が異なる。リーク抑制部82は、トランジスタQ81、Q82を備えている。 (Fifth embodiment)
Hereinafter, a fifth embodiment will be described with reference to FIG.
As shown in FIG. 11, thedriver circuit 81 of the present embodiment is different from the driver circuit 1 of the first embodiment in that a leak suppression unit 82 is provided instead of the leak suppression unit 5. The leak suppression unit 82 includes transistors Q81 and Q82.
以下、第5実施形態について図11を参照して説明する。
図11に示すように、本実施形態のドライバ回路81は、第1実施形態のドライバ回路1に対し、リーク抑制部5に代えてリーク抑制部82を備えている点が異なる。リーク抑制部82は、トランジスタQ81、Q82を備えている。 (Fifth embodiment)
Hereinafter, a fifth embodiment will be described with reference to FIG.
As shown in FIG. 11, the
トランジスタQ81、Q82は、いずれもNPN形バイポーラトランジスタである。トランジスタQ81は、コレクタとベースが接続されたダイオード接続の形態となっている。トランジスタQ81のコレクタは、ツェナーダイオード3のアノードに接続され、そのエミッタは電源線L2に接続されている。 トランジスタQ81のベースは、トランジスタQ82のベースに接続されている。トランジスタQ82のコレクタは、出力ノードNoに接続され、そのエミッタは電源線L2に接続されている。なお、この場合、トランジスタQ82は、出力ノードNoと電源線L2の間に接続された負荷に相当する。
Transistors Q81 and Q82 are both NPN bipolar transistors. The transistor Q81 is in the form of a diode connection in which the collector and the base are connected. The collector of the transistor Q81 is connected to the anode of the Zener diode 3, and the emitter thereof is connected to the power supply line L2. The base of the transistor Q81 is connected to the base of the transistor Q82. Transistor Q82 has a collector connected to output node No, and an emitter connected to power supply line L2. In this case, transistor Q82 corresponds to a load connected between output node No and power supply line L2.
このように、トランジスタQ81、Q82は、カレントミラー回路83を構成している。上記構成では、負荷であるトランジスタQ82には、カレントミラー回路83の入力電流、つまりツェナーダイオード3に流れる電流に応じた電流が流れる。また、上記構成では、ツェナーダイオード3は、電源電圧VSがツェナー電圧Vz以上になると電流を流してトランジスタQ1のゲート電圧を制限するようになっている。
Thus, the transistors Q81 and Q82 constitute a current mirror circuit 83. In the above configuration, a current corresponding to the input current of the current mirror circuit 83, that is, the current flowing through the Zener diode 3, flows through the transistor Q82 which is a load. In the above configuration, the Zener diode 3 allows a current to flow and limit the gate voltage of the transistor Q1 when the power supply voltage VS becomes equal to or higher than the Zener voltage Vz.
したがって、上記構成のリーク抑制部82は、トランジスタQ1がオン駆動される期間、且つツェナーダイオード3によるゲート電圧の制限が行われる期間、電流引き抜き動作を実行するようになっている。この場合、電流引き抜き動作により引き抜かれる電流の値は、ゲート電圧の制限が行われる期間にツェナーダイオード3に流れる電流の値と、カレントミラー回路83のミラー比により定まる。したがって、本実施形態では、上記電流の値が、リーク電流の電流値IL以上の電流値となるように、ツェナーダイオード3の仕様の選定や、カレントミラー回路83のミラー比の設定などが行われている。
Therefore, the leak suppression unit 82 configured as described above performs the current extraction operation during the period in which the transistor Q1 is turned on and the gate voltage is limited by the Zener diode 3. In this case, the value of the current drawn by the current drawing operation is determined by the value of the current flowing through the Zener diode 3 during the period when the gate voltage is limited and the mirror ratio of the current mirror circuit 83. Therefore, in the present embodiment, the specification of the Zener diode 3 and the setting of the mirror ratio of the current mirror circuit 83 are performed so that the current value is equal to or greater than the leakage current value IL. ing.
以上説明した本実施形態のドライバ回路81によっても、トランジスタQ1がオン駆動される期間において電位固定用抵抗4を介して出力ノードNoへと流れるリーク電流が低く抑えられるため、第1実施形態と同様の効果が得られる。また、本実施形態のリーク抑制部82による電流引き抜き動作は、トランジスタQ1がオン駆動される期間且つツェナーダイオード3によるゲート電圧の制限が行われる期間に実行される。つまり、本実施形態では、トランジスタQ1がオン駆動される期間であっても、ツェナーダイオード3によるゲート電圧の制限が行われていない期間には、電流引き抜き動作は実行されない。このようにする理由は、次の通りである。
The driver circuit 81 of the present embodiment described above also suppresses the leakage current flowing to the output node No via the potential fixing resistor 4 during the period in which the transistor Q1 is turned on, so that it is the same as in the first embodiment. The effect is obtained. In addition, the current extraction operation by the leak suppression unit 82 of the present embodiment is executed in a period during which the transistor Q1 is turned on and a period in which the gate voltage is limited by the Zener diode 3. That is, in the present embodiment, even when the transistor Q1 is turned on, the current extraction operation is not performed during the period when the gate voltage is not limited by the Zener diode 3. The reason for this is as follows.
すなわち、ツェナーダイオード3によるゲート電圧の制限が行われていない期間、電源電圧VSはツェナー電圧Vzより低い電圧値となっている。そのため、このような期間には、たとえリーク電流に起因する出力電圧Voの上昇が生じたとしても、出力電圧Voが狙い値を超えることはなく、負荷を構成する回路素子に耐圧を超える電圧が印加されるおそれがない。したがって、ツェナーダイオード3によるゲート電圧の制限が行われていない期間には、リーク抑制部82による電流引き抜き動作が実行されなくともよい。
That is, during the period when the gate voltage is not limited by the Zener diode 3, the power supply voltage VS is lower than the Zener voltage Vz. Therefore, even if the output voltage Vo increases due to the leakage current during such a period, the output voltage Vo does not exceed the target value, and a voltage exceeding the withstand voltage is applied to the circuit elements constituting the load. There is no fear of being applied. Therefore, the current extraction operation by the leak suppression unit 82 does not have to be performed during a period in which the gate voltage is not limited by the Zener diode 3.
このようなことから、本実施形態では、ツェナーダイオード3によるゲート電圧の制限が行われている期間にだけ、電流引き抜き動作を実行するような構成としている。このような構成によれば、電源電圧VSがツェナー電圧Vzよりも低い期間には、電流引き抜き動作が行われなくなるため、その分だけ消費電流の低減を図ることができる。
For this reason, in the present embodiment, the current extraction operation is executed only during the period when the gate voltage is limited by the Zener diode 3. According to such a configuration, the current extraction operation is not performed during the period in which the power supply voltage VS is lower than the Zener voltage Vz, and thus the current consumption can be reduced by that amount.
(第6実施形態)
以下、第6実施形態について図12を参照して説明する。
図12に示すように、本実施形態のドライバ回路91は、第1実施形態のドライバ回路1に対し、リーク抑制部5に代えてリーク抑制部92を備えている点が異なる。リーク抑制部92は、トランジスタQ91~Q93および抵抗R91~R93を備えている。 (Sixth embodiment)
Hereinafter, a sixth embodiment will be described with reference to FIG.
As shown in FIG. 12, thedriver circuit 91 of the present embodiment is different from the driver circuit 1 of the first embodiment in that a leak suppression unit 92 is provided instead of the leak suppression unit 5. Leakage suppression unit 92 includes transistors Q91 to Q93 and resistors R91 to R93.
以下、第6実施形態について図12を参照して説明する。
図12に示すように、本実施形態のドライバ回路91は、第1実施形態のドライバ回路1に対し、リーク抑制部5に代えてリーク抑制部92を備えている点が異なる。リーク抑制部92は、トランジスタQ91~Q93および抵抗R91~R93を備えている。 (Sixth embodiment)
Hereinafter, a sixth embodiment will be described with reference to FIG.
As shown in FIG. 12, the
トランジスタQ91は、Nチャネル型のMOSトランジスタであり、そのゲートには入力信号Siが与えられている。トランジスタQ91のソースは電源線L2に接続され、そのドレインは、抵抗R91、R92を介して電源線L91に接続されている。電源線L91には、例えば5Vなどの電源電圧が与えられている。
The transistor Q91 is an N-channel MOS transistor, and an input signal Si is given to the gate thereof. The source of the transistor Q91 is connected to the power supply line L2, and the drain thereof is connected to the power supply line L91 via resistors R91 and R92. A power supply voltage such as 5 V is applied to the power supply line L91.
トランジスタQ92、Q93は、PNP形のバイポーラトランジスタである。トランジスタQ92のエミッタは、電源線L91に接続され、そのベースは抵抗R91、R92の相互接続点に接続されている。トランジスタQ92のコレクタは、抵抗R93を介してトランジスタQ93のコレクタに接続されるとともに、トランジスタQ93のベースに接続されている。
Transistors Q92 and Q93 are PNP type bipolar transistors. The emitter of the transistor Q92 is connected to the power supply line L91, and the base thereof is connected to the interconnection point of the resistors R91 and R92. The collector of the transistor Q92 is connected to the collector of the transistor Q93 via the resistor R93 and is also connected to the base of the transistor Q93.
トランジスタQ93のコレクタはトランジスタQ1のソースに接続され、そのエミッタは電位固定用抵抗4を介してトランジスタQ1のゲートに接続されている。つまり、この場合、電位固定用抵抗4は、トランジスタQ93を介して、トランジスタQ1のゲート・ソース間に接続されている。
The collector of the transistor Q93 is connected to the source of the transistor Q1, and the emitter thereof is connected to the gate of the transistor Q1 through the potential fixing resistor 4. That is, in this case, the potential fixing resistor 4 is connected between the gate and source of the transistor Q1 via the transistor Q93.
上記構成では、入力信号Siがロウレベルである期間、つまりトランジスタQ1がオフ駆動される期間、トランジスタQ93がオンされることにより電位固定用抵抗4がトランジスタQ1のゲート・ソース間に接続される。これにより、トランジスタQ1がオフ駆動される際、そのゲート・ソース間電圧はしきい値電圧Vt未満の電圧に固定され、トランジスタQ1を確実にオフ状態にすることができる。
In the above configuration, the potential fixing resistor 4 is connected between the gate and source of the transistor Q1 by turning on the transistor Q93 during a period when the input signal Si is at a low level, that is, during a period when the transistor Q1 is driven to turn off. Thus, when the transistor Q1 is driven off, the gate-source voltage is fixed to a voltage lower than the threshold voltage Vt, and the transistor Q1 can be reliably turned off.
また、上記構成では、入力信号Siがハイレベルである期間、つまりトランジスタQ1がオン駆動される期間、トランジスタQ93がオフされることにより電位固定用抵抗4がトランジスタQ1のゲート・ソース間から切り離される。これにより、トランジスタQ1がオン駆動される際、トランジスタQ1のゲートから出力ノードNoへとリーク電流が流れる経路自体が存在しなくなり、その結果、リーク電流の発生が抑制される。したがって、本実施形態によっても、第1実施形態と同様の効果、つまり出力電圧Voを所望する電圧に制限しつつ、リーク電流に起因する出力電圧Voの上昇を抑制することができるという優れた効果が得られる。
In the above configuration, the potential fixing resistor 4 is disconnected from the gate and the source of the transistor Q1 by turning off the transistor Q93 during the period when the input signal Si is at a high level, that is, the period when the transistor Q1 is turned on. . As a result, when the transistor Q1 is turned on, there is no path through which the leakage current flows from the gate of the transistor Q1 to the output node No. As a result, the generation of the leakage current is suppressed. Therefore, the present embodiment also has the same effect as that of the first embodiment, that is, the excellent effect that the output voltage Vo caused by the leakage current can be suppressed while limiting the output voltage Vo to a desired voltage. Is obtained.
(その他の実施形態)
なお、本開示は上記し且つ図面に記載した各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で任意に変形、組み合わせ、あるいは拡張することができる。
リーク抑制部5、52、62、72は、少なくともトランジスタQ1がオン駆動される期間、出力ノードNoから所定の電流を引き抜く電流引き抜き動作を実行することができる構成であればよく、その具体的な構成は適宜変更可能である。 (Other embodiments)
The present disclosure is not limited to the embodiments described above and illustrated in the drawings, and can be arbitrarily modified, combined, or expanded without departing from the scope of the present disclosure.
Leakage suppression units 5, 52, 62, and 72 may be configured to perform a current extraction operation for extracting a predetermined current from output node No at least during a period in which transistor Q1 is turned on. The configuration can be changed as appropriate.
なお、本開示は上記し且つ図面に記載した各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で任意に変形、組み合わせ、あるいは拡張することができる。
リーク抑制部5、52、62、72は、少なくともトランジスタQ1がオン駆動される期間、出力ノードNoから所定の電流を引き抜く電流引き抜き動作を実行することができる構成であればよく、その具体的な構成は適宜変更可能である。 (Other embodiments)
The present disclosure is not limited to the embodiments described above and illustrated in the drawings, and can be arbitrarily modified, combined, or expanded without departing from the scope of the present disclosure.
リーク抑制部82は、少なくともトランジスタQ1がオン駆動される期間且つツェナーダイオード3によるゲート電圧の制限が行われる期間、出力ノードNoから所定の電流を引き抜く電流引き抜き動作を実行することができる構成であればよく、その具体的な構成は適宜変更可能である。
The leak suppression unit 82 is configured to perform a current extraction operation for extracting a predetermined current from the output node No at least during a period in which the transistor Q1 is turned on and a period in which the gate voltage is limited by the Zener diode 3. What is necessary is just to change the specific structure suitably.
上記電流引き抜き動作により引き抜かれる電流は、リーク電流の電流値以上の電流値に設定することが好ましいが、リーク電流の電流値未満の電流値に設定してもよい。このように設定した場合でも、リーク電流に起因する出力電圧Voの上昇を低減する効果を得ることができる。
The current drawn by the current drawing operation is preferably set to a current value equal to or greater than the leak current value, but may be set to a current value less than the leak current value. Even in such a setting, it is possible to obtain the effect of reducing the increase in the output voltage Vo due to the leakage current.
リーク抑制部92は、トランジスタQ1がオン駆動される期間、トランジスタQ1のゲート・ソース間から電位固定用抵抗4を切り離すことができる構成であればよく、その具体的な構成は適宜変更可能である。
駆動部2は、トランジスタQ1、Q2を相補的に駆動することができる構成であればよく、その具体的な構成は適宜変更可能である。 Theleak suppression unit 92 may be configured to be able to isolate the potential fixing resistor 4 from between the gate and source of the transistor Q1 during the period when the transistor Q1 is turned on, and the specific configuration can be changed as appropriate. .
Thedrive unit 2 only needs to have a configuration capable of driving the transistors Q1 and Q2 in a complementary manner, and the specific configuration thereof can be changed as appropriate.
駆動部2は、トランジスタQ1、Q2を相補的に駆動することができる構成であればよく、その具体的な構成は適宜変更可能である。 The
The
上記各実施形態では、トランジスタQ1のゲート電圧を所定のクランプ電圧に制限する電圧制限部として、トランジスタQ1のゲートと電源線L2の間に接続されたツェナーダイオード3を用いたが、同様の機能を有する他の回路素子または回路を用いてもよい。
トランジスタQ2としては、Nチャネル型のMOSトランジスタに限らずともよく、種々のスイッチング素子を用いることができる。 In each of the above embodiments, theZener diode 3 connected between the gate of the transistor Q1 and the power supply line L2 is used as a voltage limiting unit that limits the gate voltage of the transistor Q1 to a predetermined clamp voltage. Other circuit elements or circuits may be used.
The transistor Q2 is not limited to an N-channel MOS transistor, and various switching elements can be used.
トランジスタQ2としては、Nチャネル型のMOSトランジスタに限らずともよく、種々のスイッチング素子を用いることができる。 In each of the above embodiments, the
The transistor Q2 is not limited to an N-channel MOS transistor, and various switching elements can be used.
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
Claims (9)
- 電源電圧が供給される一対の電源線(L1、L2)間に直列接続された2つのスイッチング素子(Q1、Q2)と、入力信号に応じて前記2つのスイッチング素子を相補的に駆動する駆動部(2)と、を備え、前記2つのスイッチング素子の相互接続点に接続される出力ノード(No)から出力される出力電圧を駆動対象に供給するドライバ回路(1、51、61、71、81、91)であって、
前記2つのスイッチング素子のうち高電位側の前記スイッチング素子(Q1)は、Nチャネル型のMOSトランジスタであり、
前記高電位側のスイッチング素子のゲート電圧を所定のクランプ電圧に制限する電圧制限部(3)と、
前記高電位側のスイッチング素子のゲート・ソース間に接続された電位固定用抵抗(4)と、
前記高電位側のスイッチング素子のゲートから前記出力ノードへと流れるリーク電流の発生を抑えるリーク抑制部(5、52、62、72、82、92)と、
を備えるドライバ回路。 Two switching elements (Q1, Q2) connected in series between a pair of power supply lines (L1, L2) to which a power supply voltage is supplied, and a drive unit that complementarily drives the two switching elements according to an input signal (2), and a driver circuit (1, 51, 61, 71, 81) that supplies an output voltage output from an output node (No) connected to an interconnection point of the two switching elements to a driving target. 91)
Of the two switching elements, the switching element (Q1) on the high potential side is an N-channel MOS transistor,
A voltage limiting unit (3) for limiting the gate voltage of the switching element on the high potential side to a predetermined clamp voltage;
A potential fixing resistor (4) connected between the gate and source of the switching element on the high potential side;
A leakage suppression unit (5, 52, 62, 72, 82, 92) that suppresses generation of a leakage current flowing from the gate of the switching element on the high potential side to the output node;
A driver circuit comprising: - 前記リーク抑制部(5、52、62、72、82)は、前記出力ノードから所定の電流を引き抜く電流引き抜き動作を実行することにより前記リーク電流の発生を抑える請求項1に記載のドライバ回路。 The driver circuit according to claim 1, wherein the leakage suppression unit (5, 52, 62, 72, 82) suppresses the generation of the leakage current by executing a current extraction operation for extracting a predetermined current from the output node.
- 前記リーク抑制部(5、52、62、72)は、少なくとも前記高電位側スイッチング素子がオン駆動される期間、前記電流引き抜き動作を実行する請求項2に記載のドライバ回路。 3. The driver circuit according to claim 2, wherein the leakage suppression unit (5, 52, 62, 72) performs the current extraction operation at least during a period in which the high-potential side switching element is driven to turn on.
- 前記リーク抑制部(82)は、少なくとも前記高電位側スイッチング素子がオン駆動される期間且つ前記電圧制限部による前記ゲート電圧の制限が行われる期間、前記電流引き抜き動作を実行する請求項2に記載のドライバ回路。 3. The leak suppression unit (82) performs the current extraction operation at least during a period in which the high-potential side switching element is turned on and a period in which the gate voltage is limited by the voltage limiting unit. Driver circuit.
- 前記所定の電流は、前記リーク電流の電流値以上の電流値に設定されている請求項2から4のいずれか一項に記載のドライバ回路。 The driver circuit according to any one of claims 2 to 4, wherein the predetermined current is set to a current value equal to or greater than a current value of the leakage current.
- 前記リーク抑制部は、前記出力ノードと前記一対の電源線のうち低電位側の前記電源線との間に接続された負荷(9、53、Q82)を備える請求項2から5のいずれか一項に記載のドライバ回路。 The said leak suppression part is provided with the load (9, 53, Q82) connected between the said output node and the said power supply line by the side of a low electric potential among a pair of said power supply lines. The driver circuit according to the item.
- 前記リーク抑制部(5、52)は、さらに、前記負荷とともに前記出力ノードと前記低電位側の電源線との間に直列接続されたスイッチ(Q5)を備える請求項6に記載のドライバ回路。 The driver circuit according to claim 6, wherein the leak suppression unit (5, 52) further includes a switch (Q5) connected in series between the output node and the low-potential side power line together with the load.
- 前記負荷(9)は、電流源である請求項6または7に記載のドライバ回路。 The driver circuit according to claim 6 or 7, wherein the load (9) is a current source.
- 前記負荷(53)は、抵抗である請求項6または7に記載のドライバ回路。 The driver circuit according to claim 6 or 7, wherein the load (53) is a resistor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-103604 | 2017-05-25 | ||
JP2017103604A JP6787252B2 (en) | 2017-05-25 | 2017-05-25 | Driver circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018216338A1 true WO2018216338A1 (en) | 2018-11-29 |
Family
ID=64396638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/011739 WO2018216338A1 (en) | 2017-05-25 | 2018-03-23 | Driver circuit |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6787252B2 (en) |
WO (1) | WO2018216338A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021082879A (en) * | 2019-11-15 | 2021-05-27 | 富士電機株式会社 | Logic circuit and circuit chip |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02209011A (en) * | 1989-02-09 | 1990-08-20 | Agency Of Ind Science & Technol | Gaas semiconductor circuit |
JP2000164730A (en) * | 1998-11-26 | 2000-06-16 | Fuji Electric Co Ltd | Mos semiconductor integrated circuit |
-
2017
- 2017-05-25 JP JP2017103604A patent/JP6787252B2/en active Active
-
2018
- 2018-03-23 WO PCT/JP2018/011739 patent/WO2018216338A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02209011A (en) * | 1989-02-09 | 1990-08-20 | Agency Of Ind Science & Technol | Gaas semiconductor circuit |
JP2000164730A (en) * | 1998-11-26 | 2000-06-16 | Fuji Electric Co Ltd | Mos semiconductor integrated circuit |
Also Published As
Publication number | Publication date |
---|---|
JP2018201063A (en) | 2018-12-20 |
JP6787252B2 (en) | 2020-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5315026B2 (en) | Semiconductor device | |
JP6304966B2 (en) | Semiconductor drive device and semiconductor device | |
US8933714B2 (en) | Level shift circuit using parasitic resistor in semiconductor substrate | |
US10756728B2 (en) | Insulated gate device drive apparatus | |
US8129862B2 (en) | Scalable highest available voltage selector circuit | |
KR101149902B1 (en) | Level-shift circuit | |
JP6863033B2 (en) | Parallel drive circuit for voltage-driven semiconductor elements | |
US9742388B2 (en) | Driver circuit | |
US10720922B1 (en) | Semiconductor device | |
US9660651B2 (en) | Level shift circuit | |
US11496125B2 (en) | Switch circuit capable of overcurrent protection with small and simple circuit, and with simple operation, without affecting normal operation | |
WO2018216338A1 (en) | Driver circuit | |
WO2013161201A1 (en) | Driving device | |
JP2009095166A (en) | Gate driving device for voltage control type switching device | |
JP4887111B2 (en) | Schmidt circuit | |
JP2010045522A (en) | Semiconductor device | |
CN109474269B (en) | Floating switch and driving circuit thereof | |
US7733154B2 (en) | Semiconductor device | |
JP3711773B2 (en) | Output circuit and comparator using the same | |
JP2018061115A (en) | Enable signal generation circuit | |
JP3925686B2 (en) | Output limiting circuit | |
JP2002232270A (en) | Clamp circuit and input interface circuit using the same | |
JP2021170754A (en) | Switching circuit | |
JP5067463B2 (en) | Drive circuit | |
JP5598431B2 (en) | Operational amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18806470 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18806470 Country of ref document: EP Kind code of ref document: A1 |