WO2018216133A1 - シール材の施工モニタリング装置、施工モニタリングプログラム、施工モニタリング方法、施工モニタリングシステムおよび施工実習システム - Google Patents

シール材の施工モニタリング装置、施工モニタリングプログラム、施工モニタリング方法、施工モニタリングシステムおよび施工実習システム Download PDF

Info

Publication number
WO2018216133A1
WO2018216133A1 PCT/JP2017/019350 JP2017019350W WO2018216133A1 WO 2018216133 A1 WO2018216133 A1 WO 2018216133A1 JP 2017019350 W JP2017019350 W JP 2017019350W WO 2018216133 A1 WO2018216133 A1 WO 2018216133A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial force
target
distribution
sealing material
tightening
Prior art date
Application number
PCT/JP2017/019350
Other languages
English (en)
French (fr)
Inventor
雅之 山邊
Original Assignee
株式会社バルカー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社バルカー filed Critical 株式会社バルカー
Priority to KR1020197030284A priority Critical patent/KR102431013B1/ko
Priority to CN201780091032.9A priority patent/CN110651150B/zh
Priority to CN202111273513.6A priority patent/CN113977257A/zh
Priority to PCT/JP2017/019350 priority patent/WO2018216133A1/ja
Publication of WO2018216133A1 publication Critical patent/WO2018216133A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • B23P19/08Machines for placing washers, circlips, or the like on bolts or other members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • B23P19/08Machines for placing washers, circlips, or the like on bolts or other members
    • B23P19/084Machines for placing washers, circlips, or the like on bolts or other members for placing resilient or flexible rings, e.g. O-rings, circlips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/02Flanged joints the flanges being connected by members tensioned axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/16Flanged joints characterised by the sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present invention relates to a technique for construction and monitoring of a sealing material such as a gasket used for a flange joint for pipe connection.
  • Patent Document 3 As educational equipment related to this construction, it is known that the tightening force of a bolt to be tightened by a tightening tool such as a torque wrench is detected by a load cell and displayed on a display, and the surface pressure of the flange is confirmed by an operator (for example, Patent Document 3).
  • Patent Document 4 a flange tightening training system for visualizing bolt strain data for practice by tightening flange joint bolts is also known (for example, Patent Document 4).
  • an object of the present invention is to improve the reliability and construction capability of the construction as well as facilitating confirmation of the construction state of the sealing material.
  • Another object of the present invention is that not only the axial force of the bolts that tighten the sealing material is made uniform, but also the parallelism between the flanges, the tightening force for each sealing material, and the bolt tightening procedure affect the sealing performance. Based on the knowledge of the present inventor, the parallelism between the flanges, the tightening force for each sealing material, and the tightening procedure are monitored to contribute to the improvement of construction skills and to further improve the reliability of seal construction.
  • a sealing material construction monitoring apparatus for sealing a flange joint with a sealing material sandwiched between a plurality of bolts, A plurality of coordinates extending radially from a point are generated, the target axial force of the bolt or the detected axial force of the bolt is displayed on each coordinate as a distance from the center point, and the target axis on the adjacent coordinates There is provided graphic information generation means for generating a first distribution graphic by the target axial force or a second distribution graphic by the detection axial force on the coordinates by connecting between forces or the detection axial forces.
  • the graphic information generation means displays the first distribution graphic and the second distribution graphic on a common coordinate.
  • a sealing material construction monitoring device for sealing a flange joint by sandwiching the sealing material with a plurality of bolts Distribution information of the target axial force is generated from a plurality of first sensors for detecting the axial force of the bolt and target axial force and position information with respect to the axial force, and distribution information of the axial force is calculated from the axial force and position information.
  • a monitor that presents a first distribution graphic representing the target axial force on the coordinates and presents a second distribution graphic representing the axial force.
  • the sealing material construction monitoring apparatus further includes a second sensor that detects parallelism between the flanges of the flange joint, and the information generation unit generates parallelism information based on a sensor output of the second sensor.
  • the monitor presents a third distribution graphic representing the parallelism between the flanges.
  • the information generation unit further sets a target tightening force for each sealing material, refers to a tightening torque calculated based on the dimension information of the flange and the bolt of the flange joint, and It is determined for each bolt whether the tightening force on the sealing material has reached the target tightening force, and the determination result is presented on the monitor.
  • the working environment can be simulated by changing the position or angle of the seal construction part including the flange joint or by changing the position or angle of the flange joint. .
  • a sealing material construction monitoring program of the present invention there is provided a sealing material construction monitoring program executed by a computer, which generates a plurality of coordinates extending radially from a central point.
  • the target axial force of the bolt or the detected axial force of the bolt is displayed on each coordinate as a distance from the center point, and the target axial force or the detected axial force on the adjacent coordinates is connected.
  • the computer realizes a function of generating a first distribution graphic based on the target axial force or a second distribution graphic based on the detected axial force on the coordinates.
  • the computer further realizes a function of displaying the first distribution graphic and the second distribution graphic on a common coordinate.
  • a sealing material construction monitoring program to be executed by a computer.
  • Receiving the sensor output from the sensor generating the target axial force distribution information based on the target axial force and the position information with respect to the axial force, generating the axial force distribution information based on the axial force and the position information, A function of presenting a first distribution graphic representing the target axial force and presenting a second distribution graphic representing the axial force is realized by the computer.
  • the sealing material construction monitoring program further receives a sensor output from a second sensor that detects the parallelism between the flanges of the flange joint, generates parallelism information based on the sensor output, and the parallelism between the flanges.
  • a function for presenting a third distribution graphic representing the above is realized by the computer.
  • a target tightening force is further set for each sealing material, it is determined for each bolt whether the tightening force for the sealing material has reached the target tightening force, and the determination result is monitored.
  • the presented function is realized by the computer.
  • the computer further realizes a function of determining a tightening procedure of each bolt and presenting the determination result to the monitor.
  • a sealing material construction monitoring method wherein the sealing material is sandwiched between flange joints and sealed with a plurality of bolts
  • the graphic information generating means generates a plurality of coordinates extending radially from the center point, displays the target axial force of the bolt or the detected axial force of the bolt as a distance from the center point on each coordinate, and is adjacent to the Generating a first distribution graphic based on the target axial force or a second distribution graphic based on the detected axial force on the coordinates by connecting between the target axial forces on the coordinates or between the detected axial forces.
  • a sealing material construction monitoring method in which a sealing material is sandwiched between flange joints and sealed by a plurality of bolts. Detecting the axial force of the bolt, generating the target axial force distribution information based on the target axial force and the position information with respect to the axial force, and generating the axial force distribution information based on the axial force and the position information; And presenting a first distribution graphic representing the target axial force on coordinates and presenting a second distribution graphic representing the axial force.
  • a step of detecting parallelism between the flanges of the flange joint a step of generating parallelism information based on the parallelism, and a third representing the parallelism between the flanges.
  • a sealing material construction monitoring system comprising a flange joint sandwiched between a sealing material and tightened with a plurality of bolts for sealing.
  • a seal construction part comprising a first sensor for detecting the axial force of a plurality of bolts clamped with a sealant sandwiched between the joints, or a second sensor for detecting the parallelism between the flanges of the flange joints, and radial from the center point
  • a plurality of coordinates extending to each of the coordinates, the target axial force of the bolt or the detected axial force of the bolt is displayed as a distance from the center point on each coordinate, and between the target axial forces on the adjacent coordinates or Graphic information for connecting the detected axial forces to generate a first distribution graphic based on the target axial force or a second distribution graphic based on the detected axial force on the coordinates.
  • a sealing material construction monitoring system comprising a flange joint sandwiched between a sealing material and tightened with a plurality of bolts for sealing.
  • the sensor or the second sensor is wired or wirelessly connected to generate the target axial force distribution information based on the target axial force and the position information with respect to the axial force, and the axial force distribution information based on the axial force and the position information.
  • an information generation unit that generates parallelism information according to the parallelism, and is connected to the information generation unit by wire or wirelessly,
  • a monitor that presents a first distribution graphic representing the target axial force, a second distribution graphic representing the axial force, or a third distribution graphic representing the parallelism.
  • a sealing material construction training system for sealing by sandwiching a sealing material between a flange joint and fastening with a plurality of bolts.
  • a seal construction part comprising a first sensor for detecting the axial force of a plurality of bolts clamped with a sealant sandwiched between the joints, or a second sensor for detecting the parallelism between the flanges of the flange joints, and radial from the center point.
  • a plurality of coordinates extending to each of the coordinates, the target axial force of the bolt or the detected axial force of the bolt is displayed as a distance from the center point on each coordinate, and between the target axial forces on the adjacent coordinates or
  • Graphic information generating means for generating a first distribution graphic by the target axial force or a second distribution graphic by the detection axial force on the coordinates by connecting the detection axial forces is provided.
  • a sealing material construction training system for sealing by sandwiching a sealing material between a flange joint and fastening with a plurality of bolts.
  • a first sensor that detects the axial force of a plurality of bolts that are tightened with a sealant sandwiched between the joints, or a seal construction unit that includes a second sensor that detects parallelism between flanges of the flange joint;
  • the sensor or the second sensor is wired or wirelessly connected to generate the target axial force distribution information based on the target axial force and the position information with respect to the axial force, and the axial force distribution information based on the axial force and the position information.
  • an information generation unit that generates parallelism information according to the parallelism, and the information generation unit is wired or wirelessly connected, and the target on coordinates It presents a first profile graphic representing a force, and a monitor for presenting the third distribution graphic representing a second distribution shape presenting or the parallelism, representing the axial force.
  • a distribution graphic representing the tightening state of the seal can be presented in real time on the coordinates, and the tightening state of the sealing material can be easily recognized visually based on the shape state of the distributed graphic and the distance from the center.
  • FIG. 1 shows the construction monitoring apparatus of the sealing material which concerns on 1st Embodiment. It is a flowchart which shows the process sequence of construction monitoring. It is a figure which shows the axial force which changes with elastic interaction while showing the distribution figure of the target axial force on a coordinate. It is a figure which shows the construction monitoring apparatus of the sealing material which concerns on Example 1.
  • FIG. It is a flowchart which shows the process sequence of construction monitoring. It is a figure which shows the distribution figure of the parallelism of a flange. It is a figure which shows the construction monitoring system of the sealing material which concerns on Example 2.
  • FIG. It is a figure which shows the volt
  • FIG. 12 is a flowchart illustrating a processing procedure for determining pass / fail of a tightening force according to a fifth embodiment.
  • FIG. 1 It is a figure which shows the distribution figure and evaluation table of clamping force. It is a flowchart which shows the process sequence which determines the success / failure of the fastening order which concerns on Example 6.
  • FIG. It is a figure which shows the seal construction part which concerns on Example 7.
  • FIG. 1 It is a figure which shows the distribution figure and evaluation table of clamping force. It is a flowchart which shows the process sequence which determines the success / failure of the fastening order which concerns on Example 6.
  • FIG. It is a figure which shows the seal construction part which concerns on Example 7.
  • FIG. 1 shows a construction monitoring apparatus for a sealing material according to an embodiment.
  • the configuration shown in FIG. 1 is an example, and the present invention is not limited to such a configuration.
  • the sealing material construction monitoring device (hereinafter simply referred to as “construction monitoring device”) 2 is installed in the seal construction section 4.
  • the seal construction unit 4 is a monitoring target of the construction monitoring device 2 and is an example of a seal construction device.
  • the seal construction part 4 includes a flange joint 6, and a gasket 8 which is an example of a sealing material is sandwiched between the flange joint 6 and sealed.
  • the flange joint 6 is a connecting means for the pipes 10-1 and 10-2, and includes a pair of flanges 6-1 and 6-2.
  • the flange 6-1 is formed integrally with the end of the pipe 10-1
  • the flange 6-2 is formed integrally with the end of the pipe 10-2.
  • the gasket 8 is installed between the opposing surfaces of the flanges 6-1 and 6-2.
  • the gasket 8 has an annular shape and is smaller in diameter than the flanges 6-1 and 6-2 and larger in diameter than the inner diameters of the pipes 10-1 and 10-2. If the pipes 10-1 and 10-2 are only connected, the flange joint 6 is usually unnecessary. However, the flange joint 6 is used for the maintenance of the pipes 10-1 and 10-2, for example. In preparation for the necessity of periodically attaching and detaching, the connected pipes 10-1 and 10-2 have a function equivalent to that of a seamless pipe by a seal.
  • Each flange 6-1 and 6-2 is provided with a plurality of bolts 12-1, 12-2... 12-8.
  • the bolts 12-1, 12-2,..., 12-8 are arranged at an angular interval of a constant angle ⁇ at equal circumferential positions from the center O of the pipes 10-1, 10-2.
  • the angle ⁇ is an example of axial force position information.
  • the bolts 12-1, 12-2,... 12-8 are fitted with nuts 14 through the flanges 6-1 and 6-2 at equal positions and sandwiching the flanges 6-1 and 6-2. is there. Since the nuts 14 are tightened by the arrangement of the bolts 12-1, 12-2,..., 12-8, it is possible to apply an equal tightening force to the gasket 8.
  • An appropriate tightening tool 16 is required to apply torque T to each nut 14.
  • the tightening tool 16 include a ratchet torque wrench, a digital torque wrench, a bolt tensioner, a ratchet wrench, a spanner, a spectacle wrench, and an impact wrench.
  • a sensor group 18 for detecting each axial force F is provided.
  • the sensor group 18 corresponds to each of the bolts 12-1, 12-2,... 12-8, and includes a plurality of sensors 18-1, 18-2,.
  • Each sensor 18-1, 18-2... 18-8 may be a sensor that outputs an axial force F as an electric signal, and any of a pressure sensor, strain gauge, displacement meter, load meter, etc. may be used.
  • a sensor that directly detects the tightening force of the gasket 8 may be used.
  • Each sensor output of the sensor group 18 is taken in and accumulated in the data accumulation unit 20.
  • Each detection axial force is, for example, an electrical signal and is electrically integrated in the data integration unit 20.
  • the data accumulation unit 20 may be configured by a computer, and an existing data logger may be used.
  • Each detection axial force is taken into the information generation unit 22 from the data accumulation unit 20 at a predetermined timing.
  • the information generation unit 22 is an example of a graphic information generation unit.
  • a computer is used for the information generation unit 22.
  • the information generation unit 22 digitizes and captures each detected axial force and executes information processing for drawing the tightening force.
  • the function of the information generation unit 22 that executes this information processing includes a function of generating a plurality of coordinate axes y extending radially from the center point O, a target axial force Fref of the bolt on each coordinate axis y, or a detected axial force F of the bolt.
  • the target axial force is an axial force necessary for an appropriate tightening force on the gasket 8.
  • the coordinates and drawing information obtained by this information processing are provided to the monitor 24, and an axial force graphic is presented on the screen of the monitor 24 together with the coordinates.
  • the monitor 24 is an example of an information presenting unit that presents a seal status to an operator, an administrator, or the like.
  • the monitor 24 may be connected to the information generation unit 22 by wire or wirelessly, or a personal computer (PC) display may be used.
  • PC personal computer
  • FIG. 2 shows a processing procedure for monitoring the detected axial force.
  • This processing procedure is an example of the construction monitoring program and construction monitoring method of the present invention.
  • This processing procedure is a process after the bolts 12-1, 12-2,.
  • the drawing process of the detected axial force and the target axial force is performed (S103).
  • This processing includes the above-described b) position information of each detected axial force and generation of plotting information representing the distribution of the detected axial force, c) generation of coordinates for developing the axial force distribution, d) target axial force and position information. Generation of plotting information representing the distribution of the target axial force is included.
  • the distribution pattern of the detected axial force and the target axial force is displayed on the monitor 24 on the coordinates (S104).
  • the change in the detected axial force is monitored, and it is determined whether the tightening of the bolts 12-1, 12-2,. If the bolts 12-1, 12-2,..., 12-8 are not completely tightened (NO in S105), the processes in S102 to S105 are continued. Thereby, the change of the detected axial force is reflected in the distribution graphic displayed on the monitor 24, and the detected axial force is dynamically displayed as the change of the distributed graphic.
  • FIG. 3 shows an example of each distribution graphic of the detected axial force and the target axial force in the axial force monitoring.
  • a coordinate having a plurality of coordinate axes y1, y2,. [1], [2]... [8] are bolt numbers, and coordinate axes y1, y2... Y8 correspond to the arrangement of a plurality of bolts 12-1, 12-2. ing.
  • the number of coordinate axes corresponds to the number of bolts 8, but the number of coordinate axes y may be set according to the number of bolts to be arranged.
  • Each coordinate axis y1, y2,..., Y8 includes a scale representing a positive axial force level in a direction away from the zero point, and the x axis is set on the same scale.
  • F1ref, F2ref,..., F8ref represents the target axial force of each bolt 12-1, 12-2,. Normally, F1ref, F2ref... F8ref are set to the same value Fref.
  • a distribution graphic 26-1 of the target axial force Fref is generated as a first distribution graphic.
  • the distribution graphic 26-1 is an octagonal distribution graphic by F1ref, F2ref... F8ref.
  • 45 [°]
  • the distribution graphic 26-1 is a regular octagon, and if the number of bolts is different, the distribution graphic 26-1 has a polygonal shape corresponding thereto.
  • the detected axial forces of the bolts 12-1, 12-2... 12-8 are F1, F2... F8, the axial forces F1, F2. -It is plotted at a scale position on y8, and in this case, it is set as a distribution figure 26-2.
  • the tightening tool 16 increases the axial force F by ⁇ F1, ⁇ F2,... ⁇ F8, and detects the detected axial forces F1, F2,... To the target axial forces F1ref, F2ref,. F8 should be reached.
  • the relative figures are compared by comparing the distribution figures 26-1 and 26-2.
  • the axial force F can be adjusted by grasping the increasing / decreasing direction of the axial force difference, and the target axial force Fref can be reached, and an appropriate sealing state can be realized.
  • the magnitude of the detected axial force F is compared with the distribution graphic 26-1 in terms of the magnitude of the detected axial force F plotted on the scale, that is, the distance away from the zero point, the geometric distortion of the distribution graphic 26-2, etc.
  • the increase / decrease relationship of the tightening state can be easily recognized visually from the detected axial force F.
  • the bolts 12-1, 12-2,... 12-8 have a certain tightening procedure, but if this tightening procedure is not executed, the shape of the distribution figure 26-2 of the detected axial force F Or it can judge from the distortion state.
  • a ratchet torque wrench for example, a ratchet torque wrench, a digital torque wrench, a bolt tensioner, a ratchet wrench, a spanner, a spectacle wrench, a striking wrench, and the like exist in the tightening tool 16.
  • the results of tightening with these tools are compared with the distribution diagram of the detected axial force, and selection information for selecting an appropriate tool for high-quality seal construction can be obtained.
  • the change of the distribution pattern 26-2 can be recognized according to the detected axial force F, the influence of the elastic interaction of the flange joint 6 can be easily recognized, and the tightening force can be applied based on the influence of the elastic interaction. It can be performed and the skill of tightening work can be improved.
  • FIG. 4 shows a construction monitoring apparatus for a sealing material according to the first embodiment.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals.
  • the construction monitoring apparatus 2 in addition to the plurality of first sensors 18-1, 18-2,... 18-8, four sets of second sensors 28 as a plurality of second sensor groups 28 are provided. -1, 28-2, 28-3, and 28-4.
  • a displacement meter may be used to detect a gap between the flanges 6-1, 6-2.
  • the sensors 28-1, 28-2, 28-3, 28-4 are arranged at an angular interval of 90 degrees, for example, the sensor 28-1 on the bolt 12-1 side and the sensor 28 on the bolt 12-3 side.
  • a sensor 28-3 is arranged on the bolt 12-5 side
  • a sensor 28-4 is arranged on the bolt 12-7 side, and the clearance is detected at four rotating positions of the flanges 6-1 and 6-2.
  • Parallelism is obtained from each gap. You may set more than 4 detection positions of parallelism.
  • the sensor outputs of the sensors 28-1, 28-2, 28-3, and 28-4 are taken into the data accumulation unit 20 and provided to the information generation unit 22.
  • the information generation unit 22 generates parallelism information from the sensor output and executes information processing for generating parallelism drawing information.
  • the monitor 24 generates a third distribution graphic 26-3 (FIG. 6) representing the parallelism of the flanges 6-1 and 6-2 based on the drawing information provided from the information generation unit 22.
  • FIG. 5 shows a processing procedure of parallelism monitoring. This processing procedure is an example of the construction monitoring program and construction monitoring method of the present invention.
  • a distribution graphic 26-3 representing parallelism on the coordinates is displayed on the monitor 24 (S204).
  • the change in the detected axial force is monitored, and it is determined whether or not the tightening of the bolts 12-1, 12-2... 12-8 is complete (S205). If the bolts 12-1, 12-2,..., 12-8 are not completely tightened (NO in S205), the processing in S202 to S205 is continued. As a result, the change in parallelism is reflected in the distribution graphic 26-3 displayed on the monitor 24, and the change in parallelism is dynamically displayed.
  • FIG. 6 shows a distribution graphic representing the parallelism state of the flanges 6-1 and 6-2 generated in the flange joint 6.
  • coordinate axes y11, y12, y13, and y14 corresponding to the positions of the sensors 28-1, 28-2, 28-3, and 28-4 are set to display the parallelism distribution graphic. Is done. [1], [2], [3], and [4] are sensor numbers indicating the detection position of the gap. Each coordinate axis y11, y12, y13, y14 has a scale for plotting the gap. The same scale is connected and the coordinate axis x is displayed.
  • the gaps D1, D2, D3, and D4 detected on the coordinate axes y11, y12, y13, and y14 are plotted. Since D1 ⁇ D2 ⁇ D3 ⁇ D4, the distribution pattern 26-3 is almost square. That is, in the state shown in FIG. 6A, an allowable parallelism is obtained.
  • FIG. 7 shows a construction monitoring system according to the second embodiment.
  • This construction monitoring system 30 is configured by configuring the above-described sealing material construction monitoring apparatus as a training system.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals, and description of the sensors 28-1, 28-2, 28-3 is omitted.
  • the construction monitoring system 30 includes first and second mounts 32 and 34.
  • the gantry 32 is a fixed gantry firmly fixed to the floor 36.
  • the gantry 34 is a movable table that can be moved by a caster 38, and can be moved to a desired position on the floor 36 with respect to the gantry 32.
  • the mounting portion 4 described above is mounted on the gantry 32, and the cables 40 of the sensors 18-1, 18-2,... 18-8 (FIG. 1) pass through the gantry 32 and the side surface on the pedestal 42 side. It is pulled out from the section and guided to the gantry 34 side.
  • the above-described pipe 10-2 is provided on the gantry 32 side.
  • a data logger 46 and a personal computer (PC) 48 are installed on the shelf 44 side, and a monitor 24 is installed on the top board 50.
  • the data logger 46 is an example of the data accumulation unit 20 described above
  • the PC 48 is an example of the information generation unit 22 described above.
  • a cable 40 on the sensor group 18 side is connected to the data logger 46, and the sensor outputs of the sensors 18-1, 18-2,.
  • the data logger 46 and the PC 48 are connected by a cable 52, and data can be transmitted and received between them.
  • FIG. 8 shows a bolt equipped with a strain gauge.
  • a strain gauge 60 is provided inside the bolt body 58.
  • This strain gauge 60 is an example of the sensors 18-1, 18-2,... 18-8, and the distortion of the bolt body 58 due to the torque T applied to the bolts 12-1, 12-2,.
  • This strain represents the axial force F.
  • a cable 40 is connected to the strain gauge 60, and the detected axial force F is taken out as a sensor output through the cable 40.
  • FIG. 9 shows a configuration example of the construction monitoring system 30.
  • the PC 48 includes a processor 62, a storage unit 64, an input / output unit (I / O) 66, a communication unit 68, and an operation input unit 70.
  • the processor 62 executes information processing such as various computer programs such as an OS (Operating System) and a construction monitoring program stored in the storage unit 64.
  • information processing includes various calculations possible with a computer such as calculation of tightening force, recording of construction history, control of the monitor 24, monitoring of construction or construction management. Processing is included.
  • the storage unit 64 includes, for example, a ROM (Read-Only Memory) and a RAM (Random-Access Memory) as storage devices, and an OS and a monitoring program are stored in the ROM.
  • a database (DB) 72 for storing detection information, drawing information, and the like is constructed in the storage unit 64, and detection information taken from the data logger 46 is stored in the DB 72.
  • the detection information includes the sensor outputs of the sensor groups 18 and 28.
  • the I / O 66 is used to send and receive image data to and from the monitor 24.
  • the data logger 46 is connected to the communication unit 68 by a cable 52.
  • the operation input unit 70 is composed of input devices such as a keyboard and a mouse, and is used for screen operations and information input.
  • FIG. 10 shows a tightening procedure of the gasket 8.
  • construction conditions Prior to tightening, construction conditions are input (S301). This construction condition is prerequisite information on the selection of the gasket 8 and the magnitude of the tightening force.
  • the gasket 8 that matches this construction condition (S302).
  • the gasket 8 is selected by selecting a gasket 8 that matches the target of the seal between the flanges 6-1 and 6-2. If a mistake is made in the gasket selection, the tightening procedure and alignment are correct. A proper seal state cannot be obtained.
  • the presence or absence of tightening management is selected (S303).
  • the tightening management is to manage the tightening tool 16, the tightening force to be applied, and the tightening procedure. Specifically, at least, h) Selecting an appropriate tightening tool 16 i) Obtaining a tightening force necessary for sealing with an appropriate tightening tool 16 j) It is necessary to perform tightening in the correct procedure. Therefore, when there is tightening management, these are satisfied, and when there is no tightening management, these are not satisfied or left to the contractor's freedom.
  • the tightening force is calculated according to the construction conditions (S304). This tightening force may be calculated using gasket tightening force (full load), tightening torque, bolt diameter, recommended tightening surface pressure, gasket contact area, torque coefficient, number of bolts, and the like.
  • the gasket tightening force W W
  • the recommended tightening surface pressure ⁇ g
  • the gasket contact area Ag
  • the tightening torque T [N ⁇ m]
  • the torque coefficient (0.2) is k
  • the external diameter (m) of the external thread is d
  • the number of bolts is bn
  • the tightening tool 16 and the tightening procedure are designated (S305), and tightening is performed using the designated tightening tool 16 and the tightening procedure (S306).
  • This tightening may be performed in accordance with a predetermined tightening procedure, for example, JIS (Japanese Industrial Standards) or ASME (American Society of Mechanical Engineers) standards. This includes measurement of the rotation direction, the number of rotations, and the caliper between the flanges.
  • the tightening tool 16 is applied to the nut 14 temporarily tightened to each of the bolts 12-1, 12-2,..., And the torque T is applied from the tightening tool 16 to apply an appropriate tightening force. This tightening force is transmitted from the respective bolts 12-1, 12-2... 12-8 to the flanges 6-1, 6-2.
  • the elastic interaction is generated in the flanges 6-1 and 6-2 by the axial force F of each bolt 12-1, 12-2... 12-8.
  • F the axial force of each bolt 12-1, 12-2... 12-8.
  • construction monitoring processing is performed (S307).
  • the detected axial force distribution graphic is dynamically displayed on the coordinates.
  • FIG. 11 shows a processing procedure of the construction monitoring process in S307 of the seal construction shown in FIG.
  • This processing procedure is an example of an execution procedure of a program executed by a computer, and is also an example of a sealing material construction monitoring method according to the present invention.
  • the construction of the sealing material includes the process of temporary fastening and final fastening.
  • Temporary tightening is a process executed before final tightening, and includes attaching nut 14 to bolts 12-1, 12-2,... 12-8, alignment adjustment, tightening nut 14 before final tightening, and the like.
  • the alignment adjustment includes setting the positions of the gasket 8 and the bolts 12-1, 12-2,.
  • the torque T is applied to the bolts 12-1, 12-2,... 12-8 by the tightening tool 16 to reach the target axial force (target tightening force) step by step.
  • the processor 62 takes in each detected axial force from the sensor group 18 by executing the program (S401), and performs a graphic process of the detected axial force F and the target axial force Fref (S402).
  • the distribution graphic 26-2 of the detected axial force F and the distribution graphic 26-2 of the detected axial force Fref are dynamically displayed on the monitor 24 on the coordinates (S403).
  • FIG. 12 shows the axial force table 74.
  • the construction monitoring system 30 includes an axial force table 74 that records the number of tightening turns and the detected axial force. This axial force table 74 is included in the DB 72.
  • the axial force table 74 stores the number of laps and the detected axial force F of each sensor 18-1, 18-2.
  • the number of laps is a single round operation of tightening all of the bolts 12-1, 12-2,... 12-8 in a predetermined procedure, and this is a plurality of laps, for example, 4-6.
  • Each detected axial force is taken in from the sensor group 18 at a predetermined timing for each lap. For example, at the number of laps I, detection axial forces F1101, F1102... Are taken from the sensor 18-1 at a predetermined timing, detection axial forces F2101, F2102. It becomes processing.
  • the detected detection axial force F is stored in the axial force table 74 and used for processing the drawing information.
  • FIG. 13 shows the parallelism table 76.
  • the construction monitoring system 30 includes a parallelism table 76 that stores detected parallelism. This parallelism table 76 is included in the DB 72.
  • the parallelism table 76 stores the number of laps and the dimension of the gap between the flanges detected by the sensors 28-1, 28-2, 28-3, 28-4. Each gap size detected from the sensor group 28 is taken in at a predetermined timing for each turn. For example, at the frequency I, the gap dimensions D1101, D1102, D1103, D1104 are taken in from the sensor 28-1 at a predetermined timing, and the gap dimensions D2101, D2102... Are taken in from the sensor 28-2 at the same timing. The same processing is performed.
  • the captured gap dimension D is stored in the parallelism table 76, and is used to determine and display the parallelism between the flanges.
  • FIG. 14A shows distribution diagrams of the target axial force and the initial detected axial force.
  • a distribution graphic 26-1 of the target axial force Fref is displayed on the coordinates, and for example, a distribution graphic 26-2 of the detected axial force F in the temporarily tightened state is displayed.
  • the detected axial force F is small, in the vicinity of the zero point, and the distribution graphic 26-2 is displayed in an area much narrower than the distribution graphic 26-1 of the target axial force Fref. That is, it can be recognized that the detected axial force F is small.
  • FIG. 14B shows distribution diagrams of the target axial force and the medium-term detected axial force. If the number of tightening turns increases, the detected axial force F increases, and the distribution graphic 26-2 expands accordingly. At this point, the target axial force Fref is distributed closer to the distribution graph 26-1 from the zero point side, but the detected axial force F is smaller than the target axial force Fref of the distribution graphic 26-1, and the distribution graphic 26- has a small area. 2 is displayed. Even at this time, it can be understood that the detected axial force F is insufficient. On the coordinate axis y4, the detected axial force F4 projects from the same scale. From this protruding state, it can be understood that the tightening by the detected axial force F4 is larger than the other axial force F.
  • FIG. 14C shows distribution diagrams of the target axial force and the final detected axial force.
  • the number of times of tightening has reached the final time, and the detected axial force F coincides with or reaches the target axial force Fref.
  • the distribution figure 26-2 of the detected axial force F is a figure that is identical or similar to the distribution figure 26-1 of the target axial force Fref, thereby obtaining a necessary seal state or an ideal seal state. It is done.
  • the 15A shows a state in which the detected axial force F has approached the target axial force Fref.
  • the detected axial force F1 reaches the target axial force Fref.
  • the axial force F2 is insufficient for the bolt 12-2 of the coordinate axis y2.
  • It can be used for training system for bolt tightening of vertical pipe connections, and can be used for construction training of workers.
  • This construction monitoring system 30 can contribute to the improvement of the construction ability of the worker.
  • FIG. 16A shows a processing procedure for setting a target axial force for each gasket 8 according to the third embodiment.
  • the target axial force is calculated based on the selection of the gasket 8 (S501) (S502).
  • a distribution graphic representing the target axial force is displayed on the coordinates (S503).
  • FIG. 16B shows a distribution graphic representing the target axial force according to the gasket 8 displayed on the coordinates.
  • the distribution graphic 26-11 indicates, for example, the target axial force for the gasket 8-1
  • the distribution graphic 26-12 indicates, for example, the target axial force for the gasket 8-2
  • the distribution graphic 26-13 indicates, for example, the gasket 8
  • the target axial force for -3 is shown.
  • the necessary tightening force can be easily realized according to the selection of the gasket 8.
  • the target axial force and the target tightening force vary depending on the gasket 8 and the bolt 12.
  • a known system for calculating the tightening torque using the recommended tightening surface pressure of the gasket and the dimension information of the bolt is used. May be used.
  • FIG. 17 shows a bolt tightening procedure display according to the fourth embodiment.
  • the tightening mark 78 is moved from the bolt 12-8 that has been tightened to the bolt 12-1 that is to be tightened, suggesting the bolt 12-1 that has been tightened. .
  • the bolt 12-1 that has been tightened immediately before is displayed with a tightening mark 78 as, for example, a broken line as a tightening end display, and the bolt 12-2 that is to be tightened next is tightened. 78 may be moved to suggest the procedure.
  • the bolt number to be tightened may be colored or flashing different from other bolt numbers.
  • FIG. 18 shows a processing procedure for determining the detected axial force according to the fifth embodiment.
  • This processing procedure is an example of a computer program executed on the PC 48.
  • a target axial force with respect to the surface pressure necessary for the selected gasket 8 is calculated (S601), and the target axial force and the detected axial force are compared (S602).
  • the detected axial force F is within an allowable range of the target axial force Fref, for example, ⁇ 15 [%] (S603). If the detected axial force F is within the allowable range of the target axial force Fref (YES in S603), the determination is that the axial force is acceptable (S604), and if the detected axial force F is outside the allowable range of the target axial force Fref. (NO in S603), the axial force is rejected as the determination result (S605).
  • 19A shows a distribution diagram 26-2 of the detected axial force F displayed on the coordinates as an evaluation target.
  • the axial forces F3 and F7 are smaller than the target axial forces F3ref and F7ref, and the axial force F6 is larger than the target axial force F6ref.
  • FIG. 19B shows an example of the evaluation table.
  • a target axial force column In the evaluation table 80, a target axial force column, an allowable range column, a detected axial force column, an individual evaluation column, and a comprehensive evaluation column are set.
  • detection axial force column the sensor output of the sensor group 18 and the detection axial force for each bolt are stored.
  • the axial forces F1, F2, F4, F5, and F8 of the bolts 12-1, 12-2, 12-4, 12-5, and 12-8 are within the allowable range, and the bolts 12-3, 12
  • the axial forces F3, F6, F7 of ⁇ 6, 12-7 are outside the allowable range. Therefore, in the individual evaluation, the axial forces F1, F2, F4, F5, and F8 that are within the allowable range are acceptable, and the axial forces F3, F6, and F7 that are outside the allowable range are unacceptable. Therefore, comprehensive evaluation is a failure.
  • FIG. 20 shows a processing procedure for determining pass / fail of the tightening order according to the sixth embodiment.
  • This processing procedure shows an example of a process realized by a computer program executed by the PC 48 or a construction monitoring method.
  • the tightening between the flanges 6-1 and 6-2 is triggered (S701), and the tightening order is detected (S702).
  • This order may be detected or determined from, for example, a change in detected axial force and its transition, and movement information of the tightening position. It is determined whether or not the detected order matches a predetermined procedure that is a tightening standard (S703).
  • a predetermined tightening standard the tightening procedure may be based on, for example, the JIS and ASME standards described above.
  • a pass indication is displayed on the monitor 24 (S704). This acceptance display may be displayed together with the axial force distribution graphic.
  • the tightening order is determined by comparison with a predetermined tightening procedure, the single tightening that occurs when tightening is not performed according to the procedure can be prevented, and the risk of leakage can be reduced.
  • the pass indication and error indication are displayed together with the axial force distribution pattern described above, the risk of leakage due to single tightening increases if the procedure is not appropriate even if the detected axial force matches the target axial force. This makes it possible for an operator to become familiar with this.
  • the flange joint 6 of the seal construction part 4 is fixed at a fixed position.
  • the flange joint 6 may be freely changed to an arbitrary position, and as shown in FIG.
  • the position may be changed in the horizontal direction. If the position of the flange joint 6 can be arbitrarily changed, an actual work environment can be simulated to train proper tightening even when the posture is different. Further, it can be understood that the tightening force varies depending on the working environment and the posture of the worker, and this reduces the sealing performance.
  • the seal construction part 4 is provided with a single flange joint 6, but as shown in FIG. 21B, the first seal construction part 4-1 is provided at the top of the gantry 32 and the middle part is provided with the first seal joint 4-1.
  • Two seal construction sections 4-2 may be provided.
  • the same parts as those in FIGS. 1 and 7 are denoted by the same reference numerals.
  • the seal application part 4-1 includes a flange joint 6A that is tightened with eight bolts
  • the seal application part 4-2 includes, for example, a large-diameter flange joint 6B that is tightened with twelve bolts. If the flange joint is combined in this way, it is possible to perform constructions with different conditions at substantially the same position.
  • the bolt information generation unit 22 may determine the tightening procedure of each bolt based on, for example, increase or decrease of the axial force, and present the determination result to the monitor 24.
  • the tightening procedure is JIS or ASME, but if tightening is not performed according to the procedure, it will cause one-side tightening and the risk of liquid or gas leakage will increase, so an error display or alert display will be displayed on the screen for the operator. Just notify.
  • the first sensors 18-1, 18-2,... 18-8 for detecting axial force, and the second sensors 28-1, 28-2, 28- for detecting parallelism are used.
  • 3 and 28-4 are provided, but only one of them may be provided, and either a distribution graphic representing the detected axial force or a distribution graphic representing the parallelism may be generated.
  • the first distribution graphic and the second distribution graphic are displayed on common coordinates, but each distribution graphic may be displayed on individual coordinates, The areas may be colored differently so that they can be identified by coloring.
  • the present invention it is possible to monitor the construction of the sealing material in real time, display the distribution of the axial force distribution and the parallelism of the flange joint on the monitor so that the target axial force can be compared, and confirm the display contents. Can be constructed, and the construction results can be evaluated to improve the construction skills.
  • Construction monitoring device 4 Seal construction section 4-1 First seal construction section 4-2 Second seal construction section 6 Flange joint 6-1, 6-2 Flange 8 Gasket 10-1, 10-2 Piping 12-1 12-2... 12-8 Bolt 14 Nut 16 Tightening tool 18 First sensor group 28 Second sensor group 18-1, 18-2 ... 18-8 Sensors 28-1, 28-2 ..

Abstract

シール材の施工状態の確認の容易化とともに施工の信頼性や施工能力を高める。 フランジ継手(6)にシール材(ガスケット8)を挟み複数のボルト(12-1、12-2・・・12-8)で締め付けてシールする、シール材の施工モニタリング装置(2)であって、中心点から放射状に延びる複数の座標を生成し、各座標上に前記ボルトの目標軸力、または前記ボルトの検出軸力を前記中心点からの距離で表示し、隣接する前記座標上の前記目標軸力間または前記検出軸力間を結んで、前記座標上に前記目標軸力による第1の分布図形(26-1)、または前記検出軸力による第2の分布図形(26-2)を生成する図形情報生成手段(情報生成部22)を備える。

Description

シール材の施工モニタリング装置、施工モニタリングプログラム、施工モニタリング方法、施工モニタリングシステムおよび施工実習システム
 本発明は、配管連結のフランジ継手に用いられるガスケットなどのシール材の施工および施工モニタリングの技術に関する。
 配管連結や配管にポンプなどの設備を接続する施工では、フランジ継手にガスケットなどのシール材を挟み込み、フランジ継手の複数箇所に配置したボルトでガスケットを締付けている。
 この施工に関し、ガスケットを介在させたフランジ締結部の締結力ないし締結状態を計測し、締結部からの流体のリークを監視することが知られている(たとえば、特許文献1)。このフランジ締結部に介在させたガスケット側の圧力について、この圧力を圧力センサーで測定し、その測定値によりフランジ締結力を判定することが知られている(たとえば、特許文献2)。
 この施工に関する教育用機材として、トルクレンチなどの締付け具により締め付けられるボルトの締付け力をロードセルによって検出してディスプレイに表示し、フランジの面圧を作業者に確認させることが知られている(たとえば、特許文献3)。
 さらには、フランジ継手のボルト締めによる練習のため、ボルトの歪データを視認化するフランジ締付け実習システムも知られている(たとえば、特許文献4)。
特開平9-329281号公報 特開2007-292628号公報 特開2009-191932号公報 特開2015-141345号公報
 ところで、シール材には特性の異なる種々の製品があり、選択の自由度がある。条件に適合した優れたシール材を選定しても、施工状態が不完全であれば、シール材が持つ機能を発揮できないし、シール機能の低下は漏洩などを生じるという課題がある。シール材を締め付けるボルトの軸力を高めれば締付け力が増大するが、締付け力がシール材の許容力の限界を超えれば、シール材を圧壊させる危険性があるし、締付け力が不足すれば、必要なシール性能が得られない。複数のボルトの各軸力が不均一であれば、シール材に歪を生じさせ、期待するシール性能が得られないという課題がある。このため、着脱可能な配管の連結部の安全性や信頼性を確保する上で、シール材の施工は極めて重要であり、慎重な施工が求められる。
 斯かるシール材の施工は、習熟した作業者によることが望ましく、習熟のためには訓練や経験が必要である。しかし、習熟者にあっても技能を確認し、スキルアップを図ることは、施工の信頼性を確保する上で重要である。
 そこで、本発明の目的は上記課題に鑑み、シール材の施工状態の確認の容易化とともに施工の信頼性や施工能力を高めることにある。
 また、本発明の他の目的は、シール材を締付けるボルトの軸力の均一化だけでなく、フランジ間の平行度、シール材毎の締付け力、ボルトの締付け手順によってもシール性能に影響するとの本発明者の知見に基づき、フランジ間の平行度、シール材毎の締付け力、締付け手順を監視し、施工技能の向上に寄与し、シール施工の信頼性をより高めることにある。
 上記目的を達成するため、本発明のシール材の施工モニタリング装置の一側面によれば、フランジ継手にシール材を挟み複数のボルトで締め付けてシールする、シール材の施工モニタリング装置であって、中心点から放射状に延びる複数の座標を生成し、各座標上に前記ボルトの目標軸力、または前記ボルトの検出軸力を前記中心点からの距離で表示し、隣接する前記座標上の前記目標軸力間または前記検出軸力間を結んで、前記座標上に前記目標軸力による第1の分布図形、または前記検出軸力による第2の分布図形を生成する図形情報生成手段を備える。
 上記シール材の施工モニタリング装置において、前記図形情報生成手段は、前記第1の分布図形および前記第2の分布図形を共通の座標上に重ねて表示させる。
 上記目的を達成するため、本発明のシール材の施工モニタリング装置の一側面によれば、フランジ継手にシール材を挟み複数のボルトで締め付けてシールする、シール材の施工モニタリング装置であって、各ボルトの軸力を検出する複数の第1のセンサーと、前記軸力に対する目標軸力および位置情報により前記目標軸力の分布情報を生成し、前記軸力および位置情報により前記軸力の分布情報を生成する情報生成部と、座標上に前記目標軸力を表す第1の分布図形を提示し、前記軸力を表す第2の分布図形を提示するモニターとを備える。
 上記シール材の施工モニタリング装置において、さらに、前記フランジ継手のフランジ間の平行度を検出する第2のセンサーを備え、前記情報生成部が前記第2のセンサーのセンサー出力により平行度情報を生成し、前記モニターがフランジ間の平行度を表す第3の分布図形を提示する。
 上記シール材の施工モニタリング装置において、さらに、前記情報生成部は、シール材毎に目標締付け力が設定され、前記フランジ継手のフランジおよび前記ボルトの寸法情報により算出される締付けトルクを参照し、前記シール材に対する締付け力が前記目標締付け力に到達したかをボルト毎に判定し、前記モニターに判定結果を提示する。
 上記シール材の施工モニタリング装置において、さらに、前記フランジ継手を備えるシール施工部の位置または角度を変更することにより、または前記フランジ継手の位置または角度を変更することにより、作業環境を模擬可能とする。
 上記目的を達成するため、本発明のシール材の施工モニタリングプログラムの一側面によれば、コンピュータに実行させる、シール材の施工モニタリングプログラムであって、中心点から放射状に延びる複数の座標を生成し、各座標上に前記ボルトの目標軸力、または前記ボルトの検出軸力を前記中心点からの距離で表示し、隣接する前記座標上の前記目標軸力間または前記検出軸力間を結んで、前記座標上に前記目標軸力による第1の分布図形、または前記検出軸力による第2の分布図形を生成する機能を前記コンピュータで実現する。
 上記シール材の施工モニタリングプログラムにおいて、さらに、前記第1の分布図形および前記第2の分布図形を共通の座標上に重ねて表示させる機能を前記コンピュータで実現する。
 上記目的を達成するため、本発明のシール材の施工モニタリングプログラムの一側面によれば、コンピュータに実行させる、シール材の施工モニタリングプログラムであって、各ボルトの軸力を検出する複数の第1のセンサーからセンサー出力を受け、前記軸力に対する目標軸力および位置情報により前記目標軸力の分布情報を生成し、前記軸力および位置情報により前記軸力の分布情報を生成し、座標上に前記目標軸力を表す第1の分布図形を提示し、前記軸力を表す第2の分布図形を提示する機能を前記コンピュータで実現する。
 上記シール材の施工モニタリングプログラムにおいて、さらに、フランジ継手のフランジ間の平行度を検出する第2のセンサーからセンサー出力を受け、前記センサー出力により平行度情報を生成し、前記フランジ間の前記平行度を表す第3の分布図形を提示する機能を前記コンピュータで実現する。
 上記シール材の施工モニタリングプログラムにおいて、さらに、シール材毎に目標締付け力を設定し、該目標締付け力に前記シール材に対する締付け力が到達したかをボルト毎に判定し、該判定結果をモニターで提示する機能を前記コンピュータで実現する。
 上記シール材の施工モニタリングプログラムにおいて、さらに、各ボルトの締付け手順を判定し、該判定結果を前記モニターに提示する機能を前記コンピュータで実現する。
 上記目的を達成するため、本発明のシール材の施工モニタリング方法の一側面によれば、フランジ継手にシール材を挟み複数のボルトで締め付けてシールする、シール材の施工モニタリング方法であって、
 図形情報生成手段が中心点から放射状に延びる複数の座標を生成し、各座標上に前記ボルトの目標軸力、または前記ボルトの検出軸力を前記中心点からの距離で表示し、隣接する前記座標上の前記目標軸力間または前記検出軸力間を結んで、前記座標上に前記目標軸力による第1の分布図形、または前記検出軸力による第2の分布図形を生成する工程を含む。
 上記目的を達成するため、本発明のシール材の施工モニタリング方法の一側面によれば、フランジ継手にシール材を挟み複数のボルトで締め付けてシールする、シール材の施工モニタリング方法であって、各ボルトの軸力を検出する工程と、前記軸力に対する目標軸力および位置情報により前記目標軸力の分布情報を生成し、前記軸力および位置情報により前記軸力の分布情報を生成する工程と、座標上に前記目標軸力を表す第1の分布図形を提示し、前記軸力を表す第2の分布図形を提示する工程とを含む。
 上記シール材の施工モニタリング方法において、さらに、前記フランジ継手のフランジ間の平行度を検出する工程と、前記平行度により平行度情報を生成する工程と、前記フランジ間の前記平行度を表す第3の分布図形を提示する工程とを含む。
 上記目的を達成するため、本発明のシール材の施工モニタリングシステムの一側面によれば、フランジ継手にシール材を挟み複数のボルトで締め付けてシールする、シール材の施工モニタリングシステムであって、フランジ継手にシール材を挟んで締め付ける複数のボルトの軸力を検出する第1のセンサー、または前記フランジ継手のフランジ間の平行度を検出する第2のセンサーを備えるシール施工部と、中心点から放射状に延びる複数の座標を生成し、各座標上に前記ボルトの目標軸力、または前記ボルトの検出軸力を前記中心点からの距離で表示し、隣接する前記座標上の前記目標軸力間または前記検出軸力間を結んで、前記座標上に前記目標軸力による第1の分布図形、または前記検出軸力による第2の分布図形を生成する図形情報生成手段を備える。
 上記目的を達成するため、本発明のシール材の施工モニタリングシステムの一側面によれば、フランジ継手にシール材を挟み複数のボルトで締め付けてシールする、シール材の施工モニタリングシステムであって、フランジ継手にシール材を挟んで締め付ける複数のボルトの軸力を検出する第1のセンサー、または前記フランジ継手のフランジ間の平行度を検出する第2のセンサーを備えるシール施工部と、前記第1のセンサーまたは前記第2のセンサーと有線または無線で接続され、前記軸力に対する目標軸力および位置情報により前記目標軸力の分布情報を生成し、前記軸力および位置情報により前記軸力の分布情報を生成し、または前記平行度により平行度情報を生成する情報生成部と、前記情報生成部と有線または無線で接続され、座標上に前記目標軸力を表す第1の分布図形を提示し、前記軸力を表す第2の分布図形を提示し、または前記平行度を表す第3の分布図形を提示するモニターとを備える。
 上記目的を達成するため、本発明のシール材の施工実習システムの一側面によれば、フランジ継手にシール材を挟み複数のボルトで締め付けてシールする、シール材の施工実習システムであって、フランジ継手にシール材を挟んで締め付ける複数のボルトの軸力を検出する第1のセンサー、または前記フランジ継手のフランジ間の平行度を検出する第2のセンサーを備えるシール施工部と、中心点から放射状に延びる複数の座標を生成し、各座標上に前記ボルトの目標軸力、または前記ボルトの検出軸力を前記中心点からの距離で表示し、隣接する前記座標上の前記目標軸力間または前記検出軸力間を結んで、前記座標上に前記目標軸力による第1の分布図形、または前記検出軸力による第2の分布図形を生成する図形情報生成手段を備える。
 上記目的を達成するため、本発明のシール材の施工実習システムの一側面によれば、フランジ継手にシール材を挟み複数のボルトで締め付けてシールする、シール材の施工実習システムであって、フランジ継手にシール材を挟んで締め付ける複数のボルトの軸力を検出する第1のセンサー、または前記フランジ継手のフランジ間の平行度を検出する第2のセンサーを備えるシール施工部と、前記第1のセンサーまたは前記第2のセンサーと有線または無線で接続され、前記軸力に対する目標軸力および位置情報により前記目標軸力の分布情報を生成し、前記軸力および位置情報により前記軸力の分布情報を生成し、または前記平行度により平行度情報を生成する情報生成部と、前記情報生成部と有線または無線で接続され、座標上に前記目標軸力を表す第1の分布図形を提示し、前記軸力を表す第2の分布図形を提示し、または前記平行度を表す第3の分布図形を提示するモニターとを備える。
 本発明によれば、次のいずれかの効果が得られる。
 (1) シールの締付け状態を表す分布図形を座標上にリアルタイムで提示でき、この分布図形の形状状態や中心からの距離により視覚的にシール材の締付け状態を容易に認識することができる。
 (2) 軸力を増減した際に、フランジ締付け特有の弾性相互作用による緩みを軸力の分布図形の形状変化で容易に認識でき、係る認識を踏まえて目標締付け力に合致するボルト締めを行うことができ、最適な締付け力で適正なシールを実現できる。
 (3) ボルトに加えるトルクと軸力分布の関係を容易に把握できるので、熟練した作業者にあっては癖の矯正や、スキルアップを図ることができ、シール施工の信頼性を高めることができる。
 (4) シール材の実習支援ツールとして活用することができるとともに、スキルアップの迅速化に寄与することができる。
 (5) フランジ継手のフランジ間の平行度をリアルタイムでモニタリングすれば、適正な締付け力だけでなく、締付けの手順やボルトの締付け力がフランジの平行度に影響することを容易に確認できる。
第1の実施の形態に係るシール材の施工モニタリング装置を示す図である。 施工モニタリングの処理手順を示すフローチャートである。 座標上に目標軸力の分布図形を示すとともに、弾性相互作用で変化する軸力を示す図である。 実施例1に係るシール材の施工モニタリング装置を示す図である。 施工モニタリングの処理手順を示すフローチャートである。 フランジの平行度の分布図形を示す図である。 実施例2に係るシール材の施工モニタリングシステムを示す図である。 ひずみゲージを備えたボルトを示す図である。 施工モニタリングシステムの構成を示す図である。 シール施工の手順を示すフローチャートである。 施工モニタリングの処理手順を示すフローチャートである。 軸力テーブルの一例を示す図である。 平行度テーブルの一例を示す図である。 軸力の分布図形の変化を示す図である。 軸力の分布図形の変化を示す図である。 実施例3に係るガスケット毎に目標軸力の設定を説明するための図である。 実施例4に係る締付け手順の表示を説明するための図である。 実施例5に係る締付け力の合否を判定する処理手順を示すフローチャートである。 締付け力の分布図形および評価テーブルを示す図である。 実施例6に係る締付け順序の合否を判定する処理手順を示すフローチャートである。 実施例7に係るシール施工部を示す図である。
<施工モニタリング装置>
 図1は、一実施の形態に係るシール材の施工モニタリング装置を示している。図1に示す構成は一例であり、斯かる構成に本発明が限定されない。
 このシール材の施工モニタリング装置(以下、単に「施工モニタリング装置」と称する)2はシール施工部4に設置される。このシール施工部4は施工モニタリング装置2のモニター対象であり、シール施工機器の一例である。このシール施工部4はフランジ継手6を備え、このフランジ継手6にシール材の一例であるガスケット8を挟み込んでシールする。
 フランジ継手6は配管10-1、10-2の連結手段であって、一対のフランジ6-1、6-2を備える。フランジ6-1は配管10-1の端部に一体に形成されており、フランジ6-2は配管10-2の端部に一体に形成されている。
 ガスケット8はフランジ6-1、6-2の対向面間に設置される。このガスケット8の形状は環状であって、フランジ6-1、6-2より径小で、配管10-1、10-2の内径より径大である。配管10-1、10-2を連結するだけであれば、通常、フランジ継手6は不要であるが、このフランジ継手6を用いるのは、配管10-1、10-2をたとえば、メンテナンスなどで定期的に着脱させる必要に備え、連結された配管10-1、10-2でシームレス配管と同等の機能をシールによって実現することにある。
 各フランジ6-1、6-2には複数のボルト12-1、12-2・・・12-8が備えられる。各ボルト12-1、12-2・・・12-8は、配管10-1、10-2の中心Oから等距離の周回位置で一定角度θの角度間隔で配置される。角度θは、軸力の位置情報の一例である。各ボルト12-1、12-2・・・12-8には、各フランジ6-1、6-2を等しい位置で貫通してフランジ6-1、6-2を挟んでナット14を取り付けてある。ボルト12-1、12-2・・・12-8の配置を以てナット14を締め付けるので、ガスケット8に均等な締付け力を付与することが可能である。
 各ナット14にトルクTを付与するには適正な締付け工具16が必要である。この締付け工具16としてたとえば、ラチェットトルクレンチ、ディジタルトルクレンチ、ボルトテンショナー、ラチェットレンチ、スパナ、メガネレンチ、打撃レンチなどがある。この締付け工具16をナット14に当て、トルクTを付与すれば、各ボルト12-1、12-2・・・12-8には図中Z軸方向に軸力Fを生じ、この軸力Fがガスケット8に対する締付け力となる。
 各軸力Fを検出するセンサー群18が備えられる。このセンサー群18は、各ボルト12-1、12-2・・・12-8に対応し、複数のセンサー18-1、18-2・・・18-8が備えられる。各センサー18-1、18-2・・・18-8には軸力Fを電気信号で出力するセンサーを用いればよく、圧力センサー、歪ゲージ、変移計、荷重計などのいずれを用いてもよく、ガスケット8の締付け力を直接検出するセンサーであってもよい。
 センサー群18の各センサー出力はデータ集積部20に取り込まれて集積される。各検出軸力はたとえば、電気信号であり、データ集積部20に電気的に集積される。このデータ集積部20はコンピュータで構成してよく、既存のデータロガーを用いてよい。
 各検出軸力はデータ集積部20から所定のタイミングで情報生成部22に取り込まれる。この情報生成部22は図形情報生成手段の一例である。この情報生成部22にはたとえば、コンピュータが用いられる。この情報生成部22は各検出軸力をディジタル化して取り込み、締付け力の作図化のための情報処理を実行する。この情報処理を実行する情報生成部22の機能には、中心点Oから放射状に延びる複数の座標軸yを生成する機能、各座標軸y上にボルトの目標軸力Fref、またはボルトの検出軸力Fを中心点Oからの距離で表示する機能、隣接する座標軸y上の目標軸力Fref間または検出軸力F間を結んで、座標軸y上に目標軸力による第1の分布図形26-1、または検出軸力による第2の分布図形26-2を生成する機能が含まれる。この機能は、情報処理によって得られる。
 この情報処理には
 a)各検出軸力の取込みおよび記憶
 b)各検出軸力の位置情報と、検出軸力の分布を表す作図情報の生成
 c)軸力分布を展開する座標の生成
 d)目標軸力と位置情報を用いて目標軸力の分布を表す作図情報の生成
などの処理が含まれる。目標軸力は、ガスケット8に対する適正な締付け力に必要な軸力である。
 この情報処理で得られる座標および作図情報はモニター24に提供され、モニター24の画面に座標とともに軸力図形が提示される。モニター24は、作業者や管理者などに対してシール状況を提示する情報提示部の一例である。モニター24は情報生成部22に有線または無線で接続すればよいし、パーソナルコンピュータ(PC)のディスプレイを用いてもよい。
<軸力のモニタリング>
 次に、図2は、検出軸力のモニタリングの処理手順を示している。この処理手順は、本発明の施工モニタリングプログラム、施工モニタリング方法の一例である。
 この処理手順は、予め施工条件に適合するガスケット8の選定が行われ、各ボルト12-1、12-2・・・12-8の仮締めの後の処理である。
 ボルト12-1、12-2・・・12-8の締付けかを判断し(S101)、締付けであれば(S101のYES)、センサー群18からデータ集積部20に各センサー出力を取り込み、検出軸力を集積させる(S102)。この集積には、既述の情報処理のa)各検出軸力の取込みおよび記憶に相当する。
 検出軸力や目標軸力の作図処理を行う(S103)。この処理には既述のb)各検出軸力の位置情報と、検出軸力の分布を表す作図情報の生成、c)軸力分布を展開する座標の生成、d)目標軸力と位置情報を用いて目標軸力の分布を表す作図情報の生成が含まれる。
 この作図処理の後、座標上に検出軸力および目標軸力の分布図形をモニター24に表示する(S104)。
 この表示中、検出軸力の変化を監視し、ボルト12-1、12-2・・・12-8の締付けは完了かの判断を行う(S105)。ボルト12-1、12-2・・・12-8の締付け完了前であれば(S105のNO)、S102~S105の処理を継続する。これにより、検出軸力の変化がモニター24に表示されている分布図形に反映され、検出軸力が分布図形の変化として動的に表示される。
 ボルト12-1、12-2・・・12-8の締付けが完了すれば(S105のYES)、締付け完了時の座標上に目標軸力および検出軸力の分布図形が表示され(S106)、この施工モニタリング処理を完了する。これにより、軸力が目標軸力と一致するか否かを容易に確認できる。
 図3は、軸力のモニタリングにおける検出軸力および目標軸力の各分布図形の一例を示している。
 図3のAに示すように、中心に0点を取って放射状に複数の座標軸y1、y2・・・y8を備える座標が設定される。〔1〕、〔2〕・・・〔8〕はボルト番号であり、座標軸y1、y2・・・y8は、複数のボルト12-1、12-2・・・12-8の配置に対応している。
 この例では、ボルト数8に対応した座標軸数であるが、配置するボルト数に合わせて座標軸yの数を設定すればよい。各座標軸y1、y2・・・y8には0点から離れる方向に正の軸力レベルを表すスケールを備え、同一スケール上にx軸が設定されている。
 ガスケット8に対する適正な締付け力に対して、F1ref、F2ref・・・F8refは、各ボルト12-1、12-2・・・12-8の目標軸力を表す。通常、F1ref、F2ref・・・F8refは、同値Frefに設定される。各目標軸力F1ref、F2ref・・・F8refをたとえば、二点鎖線で結ぶと、第1の分布図形として目標軸力Frefの分布図形26-1が生成される。この場合、分布図形26-1は、F1ref、F2ref・・・F8refにより八角形の分布図形である。この場合、θ=45〔°〕であることから、分布図形26-1は正八角形であり、ボルト数が異なれば、分布図形26-1はそれに応じた多角形状となる。
 各ボルト12-1、12-2・・・12-8の検出軸力をF1、F2・・・F8とすれば、検出時点の各軸力F1、F2・・・F8をy1、y2・・・y8上にスケール位置にプロットされ、この場合、分布図形26-2とする。
 この検出時点での検出軸力F1、F2・・・F8と目標軸力F1ref、F2ref・・・F8refの関係は、
  F1ref>F1, F1ref-F1=ΔF1     ・・・(1) 
  F2ref>F2, F2ref-F2=ΔF2     ・・・(2) 
  F3ref>F3, F3ref-F3=ΔF3     ・・・(3) 
            ・・・・・・
  F8ref>F8, F8ref-F8=ΔF8     ・・・(4) 
である。
 この分布図形26-2を確認しつつ、締付け工具16で軸力FをΔF1、ΔF2・・・ΔF8だけ増加させ、目標軸力F1ref、F2ref・・・F8refに検出軸力F1、F2・・・F8を到達させればよい。
 しかしながら、たとえば軸力F1を図3のBに示すように、矢印aの方向に増加させ、目標軸力F1refに到達させたとする。
 このとき、ボルト12-1側では、
  F1ref=F1, F1-F1ref=0       ・・・(5) 
となる。これに対し、ボルト12-2側では、フランジ6-1、6-2の弾性相互作用の影響を受けて軸力F2がF2´に減少し
  F2´<F2, F2-F2´=ΔF2´>0      ・・・(6)
となる。同様に、ボルト12-8側も、フランジ6-1、6-2の弾性相互作用の影響を受けて軸力F8がF8´に減少し
  F8´<F8, F8-F8´=ΔF8´>0      ・・・(7) 
となる。
 このため、ボルト12-2、12-8側では、式(1)および式(4)は、
  F2ref-F2´=ΔF2+ΔF2´>ΔF2     ・・・(8) 
  F8ref-F8´=ΔF8+ΔF8´>ΔF8     ・・・(9) 
となる。つまり、ボルト12-1側の軸力F1を目標軸力F1refに到達させると、ボルト12-2、12-8側では目標軸力F2ref、F8refに到達させるために必要な軸力を増大させることが必要である。
 つまり、ボルト12-1を挟んで隣り合うボルト12-2、12-8側の軸力F2、F8の減少は、ボルト12-1側で締め付けられたフランジ6-1、6-2間にはフランジ6-1、6-2の持つ弾性相互作用で、ボルト12-2、12-8側で広がりを生じ、ボルト12-2、12-8側に生じる緩みを意味する。
 このような弾性相互作用による影響を分布図形26-2の変化から容易に認識することは極めて有益である。すなわち、弾性相互作用による軸力の低下現象を可視化することで、弾性相互作用による影響を視覚的な認識させ、軸力の増減感を締付け工具16によるトルクTで体感させることができ、フランジ締付けのスキルを作業者に習得させることができる。
<一実施の形態の効果>
 この一実施の形態によれば、次のような効果が得られる。
 (1) 座標上に目標軸力Frefおよび検出軸力Fの分布図形26-1、26-2を作図して画面上に表示するので、分布図形26-1、26-2の対比により相対的な軸力差の増減方向を把握して軸力Fを加減でき、目標軸力Frefに到達させ、適正なシール状態を実現できる。
 (2) 検出軸力Fの大小はスケール上にプロットされた検出軸力Fの大きさ、つまり、0点から離れる距離、分布図形26-2の形状ひずみなどを分布図形26-1との対比で容易に把握でき、検出軸力Fから締付け状態の増減関係を視覚的に容易に認識できる。
 (3) 0点から離れる方向にその距離によって検出軸力Fの大きさを表しているので、締付け力の増減方向を、0点を基準に認識でき、検出軸力Fを締付け工具16の操作方向つまり、トルクTの増減方向を容易に把握することができる。
 (4) ボルト12-1、12-2・・・12-8には一定の締付け手順が存在するが、この締付け手順が実行されない場合には、検出軸力Fの分布図形26-2の形状またはそのひずみ状態から判定できる。
 (5) シール施工の学習者には、シール施工の習熟を迅速化できるとともに、熟練者であっても、その習熟度合いや施工の矯正にも利用することができる。
 (6) 締付け工具16にはたとえば、ラチェットトルクレンチ、ディジタルトルクレンチ、ボルトテンショナー、ラチェットレンチ、スパナ、メガネレンチ、打撃レンチなどが存在している。これらの工具による締付け結果を検出軸力の分布図形で比較し、クオリティの高いシール施工に対して適正な工具を選定する際の選定情報を得ることができる。
 (7) 共通の座標上にある目標軸力Frefおよび検出軸力Fの分布図形26-1、26-2を比較しながら、目標軸力Frefに検出軸力Fを到達させる操作で、理想的なシール状態を実現できる。
 (8) 検出軸力Fに応じて分布図形26-2の変化を認識でき、フランジ継手6が持つ弾性相互作用の影響を容易に認識でき、弾性相互作用の影響を踏まえた締付け力の付与を行うことができ、締付け作業のスキルを向上させることができる。
 図4は、実施例1に係るシール材の施工モニタリング装置を示している。図1と同一部分には同一符号を付してある。
 この実施例1の施工モニタリング装置2では、複数の第1のセンサー18-1、18-2・・・18-8に加え、複数の第2のセンサー群28として4組の第2のセンサー28-1、28-2、28-3、28-4が備えられる。センサー28-1、28-2、28-3、28-4はフランジ6-1、6-2間の隙間を検出するたとえば、変位計を用いればよい。
 この例では、センサー28-1、28-2、28-3、28-4が90〔度〕の角度間隔を以てたとえば、ボルト12-1側にセンサー28-1、ボルト12-3側にセンサー28-2、ボルト12-5側にセンサー28-3、ボルト12-7側にセンサー28-4が配置され、フランジ6-1、6-2の4箇所の周回位置で隙間を検出する。この各隙間から平行度が求められる。平行度の検出位置は4箇所より多く設定してもよい。
 各センサー28-1、28-2、28-3、28-4のセンサー出力はデータ集積部20に取り込まれ、情報生成部22に提供される。情報生成部22は、センサー出力から平行度情報を生成し、平行度の作図情報を生成するための情報処理を実行する。
 この情報処理には
 e)各センサー出力の取込みおよび記憶
 f)各隙間の位置情報と、各センサー出力から平行度情報を生成し、平行度の作図情報の生成
 g)平行度を表す座標の生成
などの処理が含まれる。
 モニター24は、情報生成部22から提供される作図情報により、フランジ6-1、6-2の平行度を表す第3の分布図形26-3(図6)を生成する。
<平行度のモニタリング>
 図5は、平行度のモニタリングの処理手順を示している。この処理手順は、本発明の施工モニタリングプログラム、施工モニタリング方法の一例である。
 この処理手順においても、ボルト12-1、12-2・・・12-8の締付けかを判断し(S201)、締付けであれば(S201のYES)、センサー群28からデータ集積部20に各センサー出力を取り込み、センサー出力を集積させる(S202)。検出された隙間からフランジ6-1、6-2間の平行度の作図処理を行う(S203)。
 この作図処理の後、座標上に平行度を表す分布図形26-3をモニター24に表示する(S204)。
 この表示中、検出軸力の変化を監視し、ボルト12-1、12-2・・・12-8の締付けは完了かの判断を行う(S205)。ボルト12-1、12-2・・・12-8の締付け完了前であれば(S205のNO)、S202~S205の処理を継続する。これにより、平行度の変化がモニター24に表示されている分布図形26-3に反映され、平行度の変化が動的に表示される。
 ボルト12-1、12-2・・・12-8の締付けが完了すれば(S205のYES)、締付け完了時の平行度の分布図形が座標上に表示され(S206)、この施工モニタリング処理を完了する。
 図6は、フランジ継手6に生じるフランジ6-1、6-2の平行度状態を表す分布図形を示している。
 平行度の分布図形の表示には、図6のAに示すように、センサー28-1、28-2、28-3、28-4の位置に対応する座標軸y11、y12、y13、y14が設定される。〔1〕、〔2〕、〔3〕、〔4〕はセンサー番号であり、隙間の検出位置を示している。各座標軸y11、y12、y13、y14には隙間をプロットするスケールが付されている。同一スケールを結び、座標軸xが表示されている。
 図6のAに示すように、座標軸y11、y12、y13、y14に検出された隙間D1、D2、D3、D4がプロットされている。D1≒D2≒D3≒D4であるから、分布図形26-3はほぼ正方形を示している。つまり、図6のAに示す状態では、許容される平行度が得られている。
 これに対し、図6のBに示す状態では、D1<D2≒D3≒D4であり、分布図形26-3はひずみ図形となっている。つまり、図6のBに示す状態では、平行度が得られていない。
 <実施例1の効果>
 この実施例1によれば、次のような効果が得られる。
 (1) 軸力のモニタリングから軸力が目標軸力の適正範囲にあっても、フランジ間の平行度が欠如して片締めが生じてしまうと、ガスケット面圧に偏りが生じるおそれがあるが、斯かる不都合を平行度モニタリングによって回避することができる。
 (2) 軸力のモニタリングから軸力が目標軸力の適正範囲にあっても、フランジ間の平行度が欠如すると片締めを生じることを作業者に平行度モニタリングで容易に認識させることができる。軸力によるフランジ間の各締付け力が適正であっても、フランジ間の締付け手順によってフランジ間の平行度が変化することを認識することができる。
 (3) 軸力モニタリングと平行度モニタリングにより、シール施工のスキルアップを図ることができる。
 図7は、実施例2に係る施工モニタリングシステムを示している。この施工モニタリングシステム30は、既述のシール材の施工モニタリング装置を実習システムとして構成したものである。図7において、図1と同一部分には同一符号を付し、センサー28-1、28-2、28-3の記載を省略している。
 この施工モニタリングシステム30には第1および第2の架台32、34が備えられる。架台32は床36に強固に固定された固定架台である。架台34は、キャスター38により移動可能な可動台であり、架台32に対して床36上を所望の位置に移動させることができる。
 架台32には既述のシール施工部4が搭載され、各センサー18-1、18-2・・・18-8(図1)のケーブル40が架台32内を通過させて台座42側の側面部から引き出され、架台34側に導かれている。この例では、架台32側に既述の配管10-2が備えられる。
 架台34には棚44側にデータロガー46およびパーソナルコンピュータ(PC)48が設置され、天板50にモニター24が設置されている。データロガー46が既述のデータ集積部20の一例であり、PC48は既述の情報生成部22の一例である。データロガー46には、センサー群18側のケーブル40が接続されており、各センサー18-1、18-2・・・18-8のセンサー出力が取り込まれる。データロガー46およびPC48間はケーブル52によって接続され、両者間のデータの送受が可能である。
 締付け工具16を操作する実習者54は、架台32に対して架台34を移動させ、モニター24の画面56を視認可能な配置にすれば、各ボルト12-1、12-2・・・12-8に加えたトルクTによって変化する検出軸力Fの分布図形26-2などを画像から容易に確認でき、その確認とともに施工が可能である。
<センサー18-1、18-2・・・18-8>
 図8は、ひずみゲージを備えるボルトを示している。ボルト本体58の内部にはひずみゲージ60が備えられる。このひずみゲージ60は、センサー18-1、18-2・・・18-8の一例であり、ボルト12-1、12-2・・・12-8に加えられるトルクTによるボルト本体58のひずみを検出し、このひずみが軸力Fを表す。ひずみゲージ60にはケーブル40が接続され、このケーブル40を通して検出軸力Fがセンサー出力として取り出される。
<PC48>
 図9は、この施工モニタリングシステム30の構成例を示している。PC48には、プロセッサ62、記憶部64、入出力部(I/O)66、通信部68、操作入力部70が備えられる。
 プロセッサ62は、記憶部64にあるOS(Operating System)や施工モニタリングプログラムなどの各種のコンピュータプログラムなどの情報処理を実行する。この情報処理には既述の処理a)ないしe)を含む処理の他、締付け力の演算、施工履歴の記録、モニター24の制御、施工のモニタリングないし施工管理など、コンピュータでの可能な各種の処理が含まれる。
 記憶部64には記憶デバイスとしてたとえば、ROM(Read-Only Memory)およびRAM(Random-Access Memory)が備えられ、ROMにはOSやモニタリングプログラムが格納される。この記憶部64には検出情報や作図情報などを格納するデータベース(DB)72が構築され、DB72にはデータロガー46から取り込まれる検出情報が格納される。検出情報には、センサー群18、28の各センサー出力が含まれる。
 I/O66はモニター24との画像データの送受に用いられる。通信部68にはケーブル52によりデータロガー46が接続されている。
 操作入力部70はたとえば、キーボードやマウスなどの入力機器で構成され、画面操作や情報入力に用いられる。
<締付け手順>
 図10は、ガスケット8の締付け手順を示している。締付けに先立ち、施工条件を入力する(S301)。この施工条件はガスケット8の選択や締付け力の大きさの前提情報である。
 この施工条件に合致するガスケット8の選定を行う(S302)。このガスケット8の選定は、フランジ6-1、6-2間のシールの目標に合致するガスケット8を選定することであり、ガスケット選定にミスを生じると、締付け手順やアライメントが適正であっても、適正なシール状態が得られない。
 締付け管理の有無を選択する(S303)。締付け管理は、締付け工具16、付与する締付け力、締付けの手順を管理することである。具体的には、少なくとも、
 h)適正な締付け工具16を選定すること
 i)適正な締付け工具16でシールに必要な締付け力を得ること
 j)正しい手順で締付けを行うこと
が必要である。したがって、締付け管理を有りとする場合にはこれらを充足させ、締付け管理の「無し」ではこれらを充足しないかまたは施工者の自由に任せることである。
 締付け管理有り(S303のYES)では、施工条件に応じた締付け力の計算を行う(S304)。この締付け力は、ガスケット締付け力(全荷重)、締付けトルク、ボルト直径、推奨締付け面圧、ガスケット接触面積、トルク係数、ボルト本数などを用いて計算すればよい。
 ガスケット締付け力をW、推奨締付け面圧をσg、ガスケット接触面積をAgとすれば、ガスケット締付け力Wは、
    W=σg×Ag                ・・・(10)
となる。ガスケット接触面積Agは、ガスケット8の接触外径および接触内径から、
 Ag=(π/4)×{(接触外径)2 -(接触内径)2 }  ・・・(11)
である。ガスケット締付け力W、締付けトルクをT〔N・m〕、トルク係数(0.2)をk、おねじの外径(m)をd、ボルト本数をbnとすれば、締付けトルクTは、
     T=k×W×d/bn             ・・・(12)
で与えられる。
 斯かる計算結果の後、締付け工具16や締付け手順の指定を行い(S305)、指定された締付け工具16および締付け手順により締付けを行う(S306)。この締付けは所定の締付け手順、たとえばJIS(Japanese Industrial Standards:日本工業規格)や、ASME(American Society of Mechanical Engineers:アメリカ機械学会)の規格に準拠したで締付け手順でよく、この手順には締付け順序の周回方向、周回数およびフランジ間のノギスによる計測などが含まれる。
 各ボルト12-1、12-2・・・12-8に仮締めされたナット14に締付け工具16を当て、締付け工具16からトルクTを付与して適正な締付け力を加える。この締付け力は、各ボルト12-1、12-2・・・12-8からフランジ6-1、6-2へ伝達される。
 各ボルト12-1、12-2・・・12-8の軸力Fにより、フランジ6-1、6-2には弾性相互作用を生じる。弾性相互作用は、たとえば、ボルト12-1を締め付けると、このボルト12-1を挟んで隣接する各ボルト12-2、12-8に緩みが生じ、各ボルト12-2、12-8側の締付け力が低下する現象である。
 この締付け中、施工モニタリング処理が行われる(S307)。この施工モニタリング処理では座標上に検出軸力の分布図形が動的に表示される。
 施工モニタリング処理において、締付けが完了したかが判断される(S308)。締付けを継続する場合には(S308のNO)、S306ないしS308のステップが繰り返され、締付け完了であれば(S308のYES)、この処理が終了する。
 S303において、締付け管理が「無し」であれば(S303のNO)、S304~S308に代わる施工となる。つまり、施工を実習者の自由に任し、実習者の勘を頼りに任意の締付け工具16および締付け手順により締付けを行う(S309)。この締付け状態は、S307と同様に施工モニタリングが実行され(S310)、実習者の意思で施工終了となる。
<施工モニタリング>
 図11は、図10に示すシール施工のS307の施工モニタリング処理の処理手順を示している。この処理手順は、コンピュータで実行されるプログラムの実行手順の一例であるとともに、本発明に係るシール材の施工モニタリング方法の一例でもある。
 シール材の施工には仮締めおよび本締めの工程が含まれる。仮締めは本締めの前に実行される処理であり、ボルト12-1、12-2・・・12-8に対するナット14の取付け、アライメント調整、ナット14の本締め前の締付けなどが含まれる。アライメント調整にはガスケット8やボルト12-1、12-2・・・12-8の位置設定が含まれる。本締めは、締付け工具16によりトルクTをボルト12-1、12-2・・・12-8に付与して段階的に目標軸力(目標締付け力)に到達させる。
 この施工モニタリングの処理では、プロセッサ62がプログラムの実行により、センサー群18から各検出軸力を取込み(S401)、検出軸力Fおよび目標軸力Frefの図形化処理を行う(S402)。
 プロセッサ62の制御により、モニター24には座標上に目標軸力Frefの分布図形26-1とともに、検出軸力Fの分布図形26-2を動的に表示する(S403)。
 この検出軸力Fなどの図形化処理および締付け施工中、締付け処理が所定の周回数に到達したかを監視する(S404)。所定の周回数たとえば、周回数4~6に到達していなければ(S404のNO)、S401~S404を継続的に実行する。そして、締付け処理が所定の周回数に到達すれば(S404のYES)、シール施工の完了とし(S405)、この処理を終了する。
<軸力テーブル74>
 図12は、軸力テーブル74を示している。施工モニタリングシステム30には、締付けの周回数および検出軸力を記録する軸力テーブル74が備えられる。この軸力テーブル74はDB72に含まれる。
 この軸力テーブル74には周回数と、各センサー18-1、18-2・・・18-8・・・の検出軸力Fが格納される。周回数とは、所定の手順でボルト12-1、12-2・・・12-8の総てを締付ける一巡操作を1回とし、これを複数の周回数たとえば、4~6である。周回毎に所定のタイミングでセンサー群18から各検出軸力の取込みが行われる。たとえば、周回数Iにおいて、センサー18-1から所定のタイミングで検出軸力F1101、F1102・・・、センサー18-2から同一タイミングで検出軸力F2101、F2102・・・が取り込まれ、以下同様の処理となる。取り込まれた検出軸力Fは軸力テーブル74に格納され、作図情報の処理に用いられる。
<平行度テーブル76>
 図13は、平行度テーブル76を示している。施工モニタリングシステム30では、検出平行度を格納する平行度テーブル76が備えられる。この平行度テーブル76はDB72に含まれる。
 この平行度テーブル76には周回数と、各センサー28-1、28-2、28-3、28-4で検出されたフランジ間の隙間寸法が格納される。周回毎に所定のタイミングでセンサー群28から検出された各隙間寸法の取込みが行われる。たとえば、周回数Iにおいて、センサー28-1から所定のタイミングで隙間寸法D1101、D1102、D1103、D1104が取り込まれ、センサー28-2から同一タイミングで隙間寸法D2101、D2102・・・が取り込まれ、以下同様の処理となる。取り込まれた隙間寸法Dは平行度テーブル76に格納され、フランジ間の平行度の判定およびその表示に用いられる。
<目標軸力および検出軸力の分布図形の生成および締付け力の加減操作>
 図14のAは、目標軸力および初期の検出軸力の各分布図形を示している。施工モニタリング処理の開始時点では、座標上に目標軸力Frefの分布図形26-1が表示され、これに重ねてたとえば、仮締め状態の検出軸力Fの分布図形26-2が表示される。この時点では、検出軸力Fが小さく、0点の近傍にあり、目標軸力Frefの分布図形26-1より遙に狭い面積で分布図形26-2が表示される。つまり、これにより、検出軸力Fが小さいことを認識することができる。
 図14のBは、目標軸力および中期の検出軸力の各分布図形を示している。締付けの周回数が増加すれば、検出軸力Fが大きくなり、それに連れて分布図形26-2が拡大する。この時点では、0点側から目標軸力Frefの分布図形26-1に近づいてはいるが、分布図形26-1の目標軸力Frefより検出軸力Fが小さく、狭い面積で分布図形26-2が表示される。この時点でも検出軸力Fが不足していることを把握できる。そして、座標軸y4では、同一スケール上から検出軸力F4が突出している。この突出状態から他の軸力Fに対して検出軸力F4による締付けが大きいことを把握できる。
 図14のCは、目標軸力および終期の検出軸力の各分布図形を示している。締付けの周回数が最終回に到達し、検出軸力Fが目標軸力Frefに一致またはその近傍範囲に到達している。つまり、検出軸力Fの分布図形26-2は、目標軸力Frefの分布図形26-1と一致図形ないし相似形となっており、これにより、必要なシール状態ないしは理想的なシール状態が得られる。
<軸力の調整>
 図15のAは、検出軸力Fが目標軸力Frefに近づいた状態を示している。座標軸y1のボルト12-1では、検出軸力F1が目標軸力Frefに到達している。これに対し、座標軸y2のボルト12-2では軸力F2が不足している。
 この状態から、ボルト12-2の軸力F2を増加させると、ボルト12-2を挟むボルト12-1、12-3側では弾性相互作用を受けて緩みが生じ、図15のBに示すように、軸力F1、F3が減少する。この状態から、検出軸力F1、F3を目標軸力F1ref、F3refに到達させるには、軸力F1、F3を増加させ、ボルト12-2の軸力F2を減少させるなどの増減処理を行うことが必要である。
<実施例2の効果>
 この実施例2によれば、次のような効果が得られる。
 (1) 締付け工具16にたとえば、トルクレンチを用いた場合、締付け力にある程度のバラツキが生じる。各ボルト12-1、12-2・・・12-8の締付けにはJIS規格などで規定された所定の締付け手順があり、この手順を無視しまたはその手順を誤まれば、ミスアライメントが生じていわゆる片締め状態を生じさせる。このような観点に立ち、適正なシールを達成し、締付け効率を高めるためには、各ボルト12-1、12-2・・・12-8に付与される軸力Fをリアルタイムでモニタリングし、適正な締付けに必要な施工スキルを達成することが必要である。また、熟練者であっても、技能を確認し、くせなどを矯正し、より高いスキルアップを図ることが求められる。適正な軸力Fの付与による締付け、適正な手順を踏むことを条件に、シールが完成する。適正な手順、適正な締付け力、締付け不足や締付け過多を防止し、締付け不良の防止を図ることにより、フランジ6-1、6-2間のガスケット8に適正な締付け力が付与され、フランジ6-1、6-2間の隙間をガスケット8で埋めて適正なシールを達成できる。
 (2) この施工モニタリングシステム30によれば、作業者の締付けと部材に作用する締付け力との関係を視覚的に認識することができる。
 (3) 作業者によって締め付けられるボルトの締付け状態を視認でき、作業者の締付け感覚を補助し、矯正することができる。
 (4) 配管接続部のボルト締付けの実習システムに利用し、作業者の施工訓練に利用できる。
 (5) この施工モニタリングシステム30を用いれば、作業者の施工能力の向上に寄与することができる。
 (6) 施工に影響されることなく、締付けに供されるシールなどの部材の機能を発揮させることができ、施工の信頼性を高めることができる。
 図16のAは、実施例3に係るガスケット8毎の目標軸力の設定の処理手順を示している。この処理手順では、ガスケット8の選定(S501)に基づき、目標軸力を算出する(S502)。この目標軸力を表す分布図形を座標上に表示する(S503)。
 図16のBは、座標上に表示される、ガスケット8に応じた目標軸力を表す分布図形を示している。分布図形26-11は例えば、ガスケット8-1に対する目標軸力を示し、分布図形26-12は例えば、ガスケット8-2に対する目標軸力を示し、また、分布図形26-13は例えば、ガスケット8-3に対する目標軸力を示している。
 このように選択されるガスケット8毎に適正な目標軸力の算出とともに、座標上に分布図形を表示すれば、ガスケット8の選択に応じて必要な締付け力を容易に実現することができる。目標軸力や目標締付け力はガスケット8や、ボルト12によって異なるが、この締付け力の算出にはたとえば、ガスケットの推奨締付け面圧、ボルトの寸法情報を用いて締付けトルクを計算する公知のシステムを用いてよい。
 図17は、実施例4に係るボルトの締付け手順表示を示している。
 フランジ継手6に周回上に配置された複数のボルトには仮締めおよび本締めを一定の手順で行うことが必要である。
 例えば、図17のAに示すように、締付けを終了したボルト12-8から次の締付けを行うボルト12-1に締付けマーク78を移動させ、締付けが到来しているボルト12-1を示唆する。
 この場合、図17のBに示すように、直前に締付けを終了したボルト12-1には締付け終了表示として締付けマーク78をたとえば、破線表示とし、次の締付けを行うボルト12-2に締付けマーク78を移動させ、その手順を示唆してもよい。
 このように、手順表示に従って締付けを行わせることにより、ミスアライメントを防止でき、片締めが生じるのを防止できる。信頼性のある施工やスキルアップを高めることができる。締付けマーク78に代え、締付けが到来するボルト番号を他のボルト番号と異なる着色表示や点滅表示としてもよい。
 図18は、実施例5に係る検出軸力を判定する処理手順を示している。この処理手順は、PC48で実行されるコンピュータプログラムの一例である。
 この処理手順では、選定されたガスケット8に必要な面圧に対する目標軸力を算出し(S601)、この目標軸力と検出軸力とを比較する(S602)。
 検出軸力Fが目標軸力Frefの許容範囲たとえば、±15〔%〕にあるかを判定する(S603)。検出軸力Fが目標軸力Frefの許容範囲にあれば(S603のYES)、その判定結果として軸力は合格とし(S604)、検出軸力Fが目標軸力Frefの許容範囲外であれば(S603のNO)、その判定結果として軸力は不合格とする(S605)。
 この個別の判定結果を用いて総合評価を行う(S606)。この総合評価では個別評価の全部が合格であれば合格とし、そのひとつでも不合格があれば不合格とし、この判定結果をモニター24に表示し、合否判定を告知する(S607)。
 図19のAは、評価対象として座標上に表示された検出軸力Fの分布図形26-2を示している。この例では、軸力F3、F7が目標軸力F3ref、F7refより小さく、軸力F6が目標軸力F6refより大きいことが分かる。
 図19のBは、評価テーブルの一例を示している。この評価テーブル80には目標軸力欄、許容範囲欄、検出軸力欄、個別評価欄および総合評価欄が設定されている。目標軸力=Fref=30〔kN〕、軸力の許容範囲=Fref±15〔%〕=25.5〔kN〕~34.5〔kN〕が格納されている。検出軸力欄にはセンサー群18のセンサー出力、ボルト毎の検出軸力が格納される。
 この例では、ボルト12-1、12-2、12-4、12-5、12-8の各軸力F1、F2、F4、F5、F8が許容範囲内であり、ボルト12-3、12-6、12-7の各軸力F3、F6、F7が許容範囲外である。したがって、個別評価では、許容範囲内にある軸力F1、F2、F4、F5、F8が合格、許容範囲外の軸力F3、F6、F7が不合格である。よって、総合評価は不合格である。
 これらは、評価テーブル80に格納されるとともに、モニター24に表示されて作業者に告知される。「不合格」の軸力に対しては、赤色や赤色点滅などのアラート表示としてもよいし、「合格」の軸力に対しては、緑色などの安全なシールが達成されていることを表示してもよい。
 このように目標軸力に対する検出軸力の相違がシールの信頼性を損なうことを告知でき、適正なシール施工を推進することができる。
 図20は、実施例6に係る締付け順序の合否を判定する処理手順を示している。この処理手順は、PC48で実行されるコンピュータプログラムによって実現される処理、または、施工モニタリング方法の一例を示している。
 この処理手順では、フランジ6-1、6-2間の締付けを契機にし(S701)、締付けの順序を検出する(S702)。この順序はたとえば、検出軸力の変化およびその推移、締付け位置の移動情報から検出または判定すればよい。検出された順序が締付け基準である所定の手順に合致しているか否かを判断する(S703)。所定の締付け基準として締付け手順は既述したたとえば、JISや、ASMEの規格に準拠すればよい。
 検出された手順が所定の締付け手順に合致していれば(S703のYES)モニター24に合格表示を行う(S704)。この合格表示は、軸力の分布図形とともに表示すればよい。
 検出された手順が所定の締付け手順に合致していなければ(S703のNO)モニター24にエラー表示を行う(S705)。このエラー表示は、同様に軸力の分布図形とともに表示すればよい。
 このように締付け順序を所定の締付け手順との比較で判定すれば、手順通りに締付けが行われない場合に生じる片締めを防止し、漏洩リスクを軽減できる。しかも、合格表示やエラー表示を既述の軸力の分布図形と合わせて表示すれば、検出軸力が目標軸力に一致していても手順が適正でなければ片締めによる漏洩リスクが高くなることを作業者に習熟させることができる。
 上記実施例では、シール施工部4のフランジ継手6を定位置に固定しているが、フランジ継手6は任意の位置に自由に変更してよく、図21のAに示すように、フランジ継手6の位置をたとえば、水平方向に変更してもよい。フランジ継手6の位置を任意に変更可能にすれば、実際の作業環境を模擬すれば、体勢が異なる場合にも適切に締付けを行うことを訓練できる。また、作業環境や作業者の体勢によって締付け力にばらつきが生じ、これがシール性能を低下させることを理解させることができる。
 上記実施例では、シール施工部4に単一のフランジ継手6を備えているが、図21のBに示すように、架台32の頂部に第1のシール施工部4-1、中途部に第2のシール施工部4-2を備えてもよい。図21において、図1、図7と同一部分には同一符号を付してある。シール施工部4-1ではたとえば、8本のボルトで締め付けるフランジ継手6Aを備え、シール施工部4-2ではたとえば、12本のボルトで締め付ける径大なフランジ継手6Bを備えている。このようにフランジ継手を複合化すれば、ほぼ同位置で条件の異なる施工を行うことができる。
〔他の実施の形態〕
 (1) 情報生成部22でたとえば、軸力の増減などから、各ボルトの締付け手順を判定し、該判定結果をモニター24に提示してもよい。締付け手順はJISやASMEであるが、手順通りに締付けが行われないと片締めを生じ、液体やガスの漏洩のリスクが高くなるので、画面上にエラー表示やアラート表示をして作業者に告知すればよい。
 (2)  実施例2では、軸力を検出する第1のセンサー18-1、18-2・・・18-8、平行度を検出する第2のセンサー28-1、28-2、28-3、28-4の双方を備えているが、いずれか一方のみを備え、検出軸力を表す分布図形、または平行度を表す分布図形のいずれか一方を生成する構成としてもよい。
 (3) 上記実施例では第1の分布図形および第2の分布図形を共通の座標上に表示しているが、各分布図形を個別の座標に表示してもよいし、各分布図形内のエリアを異なる着色を付し、着色で識別可能にしてもよい。
 (4) 以上説明したように、本発明の最も好ましい実施の形態や実施例について説明した。本発明は上記記載に限定されるものではない。特許請求の範囲に記載され、または発明を実施するための形態または実施例に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能である。斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
 本発明によれば、シール材の施工モニタリングをリアルタイムで行うことができ、目標軸力と対比可能に軸力分布、フランジ継手の平行度を表す分布図形をモニターに表示し、その表示内容を確認して施工でき、その施工結果を評価し、施工のスキルアップを図ることができる。
 2 施工モニタリング装置
 4 シール施工部
 4-1 第1のシール施工部
 4-2 第2のシール施工部
 6 フランジ継手
 6-1、6-2 フランジ
 8 ガスケット
 10-1、10-2 配管
 12-1、12-2・・・12-8 ボルト
 14 ナット
 16 締付け工具
 18 第1のセンサー群
 28 第2のセンサー群
 18-1、18-2・・・18-8 センサー
 28-1、28-2・・・28-4 センサー
 20 データ集積部
 22 情報生成部
 24 モニター
 26-1 第1の分布図形
 26-2 第2の分布図形
 26-3 第3の分布図形
 30 施工モニタリングシステム
 32 架台
 34 架台
 36 床
 38 キャスター
 40 ケーブル
 42 台座
 44 棚
 46 データロガー
 48 PC
 50 天板
 52 ケーブル
 54 実習者
 56 画面
 58 ボルト本体
 60 ひずみゲージ
 62 プロセッサ
 64 記憶部
 66 入出力部(I/O)
 68 通信部
 70 操作入力部
 72 DB
 74 軸力テーブル
 76 平行度テーブル
 78 締付けマーク
 80 評価テーブル
                                                                                

Claims (19)

  1.  フランジ継手にシール材を挟み複数のボルトで締め付けてシールする、シール材の施工モニタリング装置であって、
     中心点から放射状に延びる複数の座標を生成し、各座標上に前記ボルトの目標軸力、または前記ボルトの検出軸力を前記中心点からの距離で表示し、隣接する前記座標上の前記目標軸力間または前記検出軸力間を結んで、前記座標上に前記目標軸力による第1の分布図形、または前記検出軸力による第2の分布図形を生成する図形情報生成手段を備えることを特徴とするシール材の施工モニタリング装置。
  2.  前記図形情報生成手段は、前記第1の分布図形および前記第2の分布図形を共通の座標上に重ねて表示させることを特徴とする、請求項1に記載のシール材の施工モニタリング装置。
  3.  フランジ継手にシール材を挟み複数のボルトで締め付けてシールする、シール材の施工モニタリング装置であって、
     各ボルトの軸力を検出する複数の第1のセンサーと、
     前記軸力に対する目標軸力および位置情報により前記目標軸力の分布情報を生成し、前記軸力および位置情報により前記軸力の分布情報を生成する情報生成部と、
     座標上に前記目標軸力を表す第1の分布図形を提示し、前記軸力を表す第2の分布図形を提示するモニターと、
     を備えることを特徴とするシール材の施工モニタリング装置。
  4.  さらに、前記フランジ継手のフランジ間の平行度を検出する第2のセンサーと、
     を備え、前記情報生成部が前記第2のセンサーのセンサー出力により平行度情報を生成し、
     前記モニターがフランジ間の平行度を表す第3の分布図形を提示することを特徴とする請求項3に記載のシール材の施工モニタリング装置。
  5.  さらに、前記情報生成部は、シール材毎に目標締付け力が設定され、前記フランジ継手のフランジおよび前記ボルトの寸法情報により算出される締付けトルクを参照し、前記シール材に対する締付け力が前記目標締付け力に到達したかをボルト毎に判定し、
     前記モニターに判定結果を提示することを特徴とする請求項3に記載のシール材の施工モニタリング装置。
  6.  さらに、前記フランジ継手を備えるシール施工部の位置または角度を変更することにより、または前記フランジ継手の位置または角度を変更することにより、作業環境を模擬可能としたことを特徴とする請求項3に記載のシール材の施工モニタリング装置。
  7.  コンピュータに実行させる、シール材の施工モニタリングプログラムであって、
     中心点から放射状に延びる複数の座標を生成し、各座標上に前記ボルトの目標軸力、または前記ボルトの検出軸力を前記中心点からの距離で表示し、隣接する前記座標上の前記目標軸力間または前記検出軸力間を結んで、前記座標上に前記目標軸力による第1の分布図形、または前記検出軸力による第2の分布図形を生成する機能を前記コンピュータで実現するためのシール材の施工モニタリングプログラム。
  8.  さらに、前記第1の分布図形および前記第2の分布図形を共通の座標上に重ねて表示させる機能を前記コンピュータで実現することを特徴とする、請求項7に記載のシール材の施工モニタリングプログラム。
  9.  コンピュータに実行させる、シール材の施工モニタリングプログラムであって、
     各ボルトの軸力を検出する複数の第1のセンサーからセンサー出力を受け、
     前記軸力に対する目標軸力および位置情報により前記目標軸力の分布情報を生成し、前記軸力および位置情報により前記軸力の分布情報を生成し、
     座標上に前記目標軸力を表す第1の分布図形を提示し、前記軸力を表す第2の分布図形を提示する
     機能を前記コンピュータで実現するためのシール材の施工モニタリングプログラム。
  10.  さらに、フランジ継手のフランジ間の平行度を検出する第2のセンサーからセンサー出力を受け、
     前記センサー出力により平行度情報を生成し、
     前記フランジ間の前記平行度を表す第3の分布図形を提示する
     機能を前記コンピュータで実現する請求項9に記載のシール材の施工モニタリングプログラム。
  11.  さらに、シール材毎に目標締付け力を設定し、該目標締付け力に前記シール材に対する締付け力が到達したかをボルト毎に判定し、
     該判定結果をモニターで提示する
     機能を前記コンピュータで実現する請求項9に記載のシール材の施工モニタリングプログラム。
  12.  さらに、各ボルトの締付け手順を判定し、該判定結果を前記モニターに提示する機能を前記コンピュータに実現する請求項9に記載のシール材の施工モニタリングプログラム。
  13.  フランジ継手にシール材を挟み複数のボルトで締め付けてシールする、シール材の施工モニタリング方法であって、
     図形情報生成手段が中心点から放射状に延びる複数の座標を生成し、各座標上に前記ボルトの目標軸力、または前記ボルトの検出軸力を前記中心点からの距離で表示し、隣接する前記座標上の前記目標軸力間または前記検出軸力間を結んで、前記座標上に前記目標軸力による第1の分布図形、または前記検出軸力による第2の分布図形を生成する工程を含むことを特徴とする、シール材の施工モニタリング方法。
  14.  フランジ継手にシール材を挟み複数のボルトで締め付けてシールする、シール材の施工モニタリング方法であって、
     各ボルトの軸力を検出する工程と、
     前記軸力に対する目標軸力および位置情報により前記目標軸力の分布情報を生成し、前記軸力および位置情報により前記軸力の分布情報を生成する工程と、
     座標上に前記目標軸力を表す第1の分布図形を提示し、前記軸力を表す第2の分布図形を提示する工程と、
     を含むことを特徴とするシール材の施工モニタリング方法。
  15.  さらに、前記フランジ継手のフランジ間の平行度を検出する工程と、
     前記平行度により平行度情報を生成する工程と、
     前記フランジ間の前記平行度を表す第3の分布図形を提示する工程と、
     を含む請求項14に記載のシール材の施工モニタリング方法。
  16.  フランジ継手にシール材を挟み複数のボルトで締め付けてシールする、シール材の施工モニタリングシステムであって、
     フランジ継手にシール材を挟んで締め付ける複数のボルトの軸力を検出する第1のセンサー、または前記フランジ継手のフランジ間の平行度を検出する第2のセンサーを備えるシール施工部と、
     中心点から放射状に延びる複数の座標を生成し、各座標上に前記ボルトの目標軸力、または前記ボルトの検出軸力を前記中心点からの距離で表示し、隣接する前記座標上の前記目標軸力間または前記検出軸力間を結んで、前記座標上に前記目標軸力による第1の分布図形、または前記検出軸力による第2の分布図形を生成する図形情報生成手段と、
     を備えることを特徴とするシール材の施工モニタリングシステム。
  17.  フランジ継手にシール材を挟み複数のボルトで締め付けてシールする、シール材の施工モニタリングシステムであって、
     フランジ継手にシール材を挟んで締め付ける複数のボルトの軸力を検出する第1のセンサー、または前記フランジ継手のフランジ間の平行度を検出する第2のセンサーを備えるシール施工部と、
     前記第1のセンサーまたは前記第2のセンサーと有線または無線で接続され、前記軸力に対する目標軸力および位置情報により前記目標軸力の分布情報を生成し、前記軸力および位置情報により前記軸力の分布情報を生成し、または前記平行度により平行度情報を生成する情報生成部と、
     前記情報生成部と有線または無線で接続され、座標上に前記目標軸力を表す第1の分布図形を提示し、前記軸力を表す第2の分布図形を提示し、または前記平行度を表す第3の分布図形を提示するモニターと、
     を備えることを特徴とするシール材の施工モニタリングシステム。
  18.  フランジ継手にシール材を挟み複数のボルトで締め付けてシールする、シール材の施工実習システムであって、
     フランジ継手にシール材を挟んで締め付ける複数のボルトの軸力を検出する第1のセンサー、または前記フランジ継手のフランジ間の平行度を検出する第2のセンサーを備えるシール施工部と、
     中心点から放射状に延びる複数の座標を生成し、各座標上に前記ボルトの目標軸力、または前記ボルトの検出軸力を前記中心点からの距離で表示し、隣接する前記座標上の前記目標軸力間または前記検出軸力間を結んで、前記座標上に前記目標軸力による第1の分布図形、または前記検出軸力による第2の分布図形を生成する図形情報生成手段と、
     を備えることを特徴とするシール材の施工実習システム。
  19.  フランジ継手にシール材を挟み複数のボルトで締め付けてシールする、シール材の施工実習システムであって、
     フランジ継手にシール材を挟んで締め付ける複数のボルトの軸力を検出する第1のセンサー、または前記フランジ継手のフランジ間の平行度を検出する第2のセンサーを備えるシール施工部と、
     前記第1のセンサーまたは前記第2のセンサーと有線または無線で接続され、前記軸力に対する目標軸力および位置情報により前記目標軸力の分布情報を生成し、前記軸力および位置情報により前記軸力の分布情報を生成し、または前記平行度により平行度情報を生成する情報生成部と、
     前記情報生成部と有線または無線で接続され、座標上に前記目標軸力を表す第1の分布図形を提示し、前記軸力を表す第2の分布図形を提示し、または前記平行度を表す第3の分布図形を提示するモニターと、
     を備えることを特徴とするシール材の施工実習システム。

                                                                                    
PCT/JP2017/019350 2017-05-24 2017-05-24 シール材の施工モニタリング装置、施工モニタリングプログラム、施工モニタリング方法、施工モニタリングシステムおよび施工実習システム WO2018216133A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197030284A KR102431013B1 (ko) 2017-05-24 2017-05-24 시일재의 시공 모니터링 장치, 시공 모니터링 프로그램, 시공 모니터링 방법, 시공 모니터링 시스템 및 시공 실습 시스템
CN201780091032.9A CN110651150B (zh) 2017-05-24 2017-05-24 密封件的施工监视装置、施工监视程序、施工监视方法、施工监视系统以及施工实习系统
CN202111273513.6A CN113977257A (zh) 2017-05-24 2017-05-24 密封件的施工监视装置、施工监视方法、施工监视系统、施工实习系统和存储介质
PCT/JP2017/019350 WO2018216133A1 (ja) 2017-05-24 2017-05-24 シール材の施工モニタリング装置、施工モニタリングプログラム、施工モニタリング方法、施工モニタリングシステムおよび施工実習システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019350 WO2018216133A1 (ja) 2017-05-24 2017-05-24 シール材の施工モニタリング装置、施工モニタリングプログラム、施工モニタリング方法、施工モニタリングシステムおよび施工実習システム

Publications (1)

Publication Number Publication Date
WO2018216133A1 true WO2018216133A1 (ja) 2018-11-29

Family

ID=64395382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019350 WO2018216133A1 (ja) 2017-05-24 2017-05-24 シール材の施工モニタリング装置、施工モニタリングプログラム、施工モニタリング方法、施工モニタリングシステムおよび施工実習システム

Country Status (3)

Country Link
KR (1) KR102431013B1 (ja)
CN (2) CN110651150B (ja)
WO (1) WO2018216133A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021081578A (ja) * 2019-11-19 2021-05-27 ニチアス株式会社 フランジ継手の締結過程の学習方法及びフランジ継手の締結過程の学習システム
WO2023133612A1 (en) * 2022-01-14 2023-07-20 Integrity Engineering Solutions Pty Ltd System for assembly of flanged joints

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506166A (ja) * 1992-11-10 1996-07-02 インテレクチュアル・プロパティ・ホールディングス・ピーティーイー・リミテッド 管継手
US5717143A (en) * 1996-06-14 1998-02-10 Electric Power Research Institute, Inc. Apparatus for illustrating bolt preloads
JP2009191932A (ja) * 2008-02-14 2009-08-27 Hitachi Plant Technologies Ltd フランジ締め付け教育用機材
WO2015115172A1 (ja) * 2014-01-29 2015-08-06 日本バルカー工業株式会社 フランジ締付け実習システム
JP2015217497A (ja) * 2014-05-20 2015-12-07 株式会社ダイセル フランジ締結スキル判定装置及びフランジ締結スキル判定プログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278775A (en) * 1991-09-30 1994-01-11 The University Of Akron Method of tightening threaded fasteners
JPH09329281A (ja) 1996-06-07 1997-12-22 Toshiba Corp フランジ締結監視装置
US5783751A (en) * 1996-12-31 1998-07-21 Industrial Technology Research Institute Cutting force sensor in the form of a turret locking screw
US6532845B1 (en) * 2000-05-03 2003-03-18 Unex Corporation Method of and an apparatus for tightening threaded connectors
JP4699935B2 (ja) 2006-04-26 2011-06-15 株式会社日立エンジニアリング・アンド・サービス フランジ締結監視装置
CN201050651Y (zh) * 2007-06-01 2008-04-23 庞舜源 薄壁金属管外翻平边连接管件
US20100066082A1 (en) * 2009-10-16 2010-03-18 Geoffrey Johannes Sylvain Aubert Connector system for exhaust extraction system
CN201724779U (zh) * 2010-03-09 2011-01-26 尚俊毅 一种扭矩测量标定仪
CN102297677A (zh) * 2011-09-08 2011-12-28 洛阳轴研科技股份有限公司 轴承轴向端面平行度和粗糙度的检测方法
JP6041307B2 (ja) * 2013-03-05 2016-12-07 株式会社日立プラントコンストラクション 作業管理システム
CN104289890A (zh) * 2014-09-23 2015-01-21 南京航空航天大学 用于关节轴承安装与检测的装置及方法
CN205642700U (zh) * 2016-04-28 2016-10-12 上海凯泉泵业(集团)有限公司 一种轴向力测量系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506166A (ja) * 1992-11-10 1996-07-02 インテレクチュアル・プロパティ・ホールディングス・ピーティーイー・リミテッド 管継手
US5717143A (en) * 1996-06-14 1998-02-10 Electric Power Research Institute, Inc. Apparatus for illustrating bolt preloads
JP2009191932A (ja) * 2008-02-14 2009-08-27 Hitachi Plant Technologies Ltd フランジ締め付け教育用機材
WO2015115172A1 (ja) * 2014-01-29 2015-08-06 日本バルカー工業株式会社 フランジ締付け実習システム
JP2015217497A (ja) * 2014-05-20 2015-12-07 株式会社ダイセル フランジ締結スキル判定装置及びフランジ締結スキル判定プログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021081578A (ja) * 2019-11-19 2021-05-27 ニチアス株式会社 フランジ継手の締結過程の学習方法及びフランジ継手の締結過程の学習システム
JP7113807B2 (ja) 2019-11-19 2022-08-05 ニチアス株式会社 フランジ継手の締結過程の学習方法及びフランジ継手の締結過程の学習システム
WO2023133612A1 (en) * 2022-01-14 2023-07-20 Integrity Engineering Solutions Pty Ltd System for assembly of flanged joints

Also Published As

Publication number Publication date
KR102431013B1 (ko) 2022-08-09
CN110651150B (zh) 2022-01-28
KR20200010192A (ko) 2020-01-30
CN113977257A (zh) 2022-01-28
CN110651150A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
JP6752594B2 (ja) シール材の施工モニタリング装置、施工モニタリングプログラム、施工モニタリング方法、施工モニタリングシステムおよび施工実習システム
KR101747622B1 (ko) 플랜지 체결 스킬 판정 장치 및 매체에 저장된 플랜지 체결 스킬 판정 컴퓨터프로그램
WO2015115172A1 (ja) フランジ締付け実習システム
JP2009191932A (ja) フランジ締め付け教育用機材
WO2015174193A1 (ja) ボルト締め付け実習装置
WO2018216133A1 (ja) シール材の施工モニタリング装置、施工モニタリングプログラム、施工モニタリング方法、施工モニタリングシステムおよび施工実習システム
CN105069208B (zh) 一种高温法兰连接系统紧密性评价方法
JP2017161388A5 (ja)
JP2018087592A (ja) 緩み検出具、緩み検出装置、緩み検出システム
JPH09329281A (ja) フランジ締結監視装置
US9383278B1 (en) Electrode torque measurement device
JP7370337B2 (ja) シール施工の判定システム、プログラム、判定方法および学習システム
TWI652429B (zh) Construction monitoring device for sealing material, construction monitoring program, construction monitoring method, construction monitoring system and construction internship system
CN111102011A (zh) 一种盾构隧道管片沉降监测报警系统及监测报警方法
JP5510187B2 (ja) 鋼構造物の合わせ面の加工方法
WO2018065762A2 (en) Method and apparatus for measuring distance
JP7113807B2 (ja) フランジ継手の締結過程の学習方法及びフランジ継手の締結過程の学習システム
JP2022158023A (ja) 技能評価システム、技能評価プログラム、技能評価方法および技能評価装置
CN113932723A (zh) 一种阀门应力的释放方法
JPS63270990A (ja) 配管支持装置の異常診断装置
Graue et al. Structural condition monitoring system for RLV tanks
JP2006163588A (ja) プラントデータ工学値変換方法およびプラント監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197030284

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP