WO2018216131A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2018216131A1
WO2018216131A1 PCT/JP2017/019345 JP2017019345W WO2018216131A1 WO 2018216131 A1 WO2018216131 A1 WO 2018216131A1 JP 2017019345 W JP2017019345 W JP 2017019345W WO 2018216131 A1 WO2018216131 A1 WO 2018216131A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
compressor
control
threshold
refrigerant
Prior art date
Application number
PCT/JP2017/019345
Other languages
English (en)
French (fr)
Inventor
淳 上重
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to AU2017416002A priority Critical patent/AU2017416002B2/en
Priority to EP17911105.9A priority patent/EP3633278B1/en
Priority to PL17911105.9T priority patent/PL3633278T3/pl
Priority to JP2019519870A priority patent/JP6847210B2/ja
Priority to PCT/JP2017/019345 priority patent/WO2018216131A1/ja
Publication of WO2018216131A1 publication Critical patent/WO2018216131A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • Embodiment of this invention is related with an air conditioning apparatus.
  • discharge temperature control for controlling an expansion valve so that the temperature of refrigerant discharged by a compressor included in an outdoor unit (hereinafter referred to as “discharge temperature”) follows a target value, and overheating SH control for controlling the expansion valve so as to keep the degree (SH: SuperSHeat) constant is known.
  • discharge temperature control is performed when the discharge temperature of the compressor is equal to or higher than a predetermined temperature
  • SH control is performed when the discharge temperature is lower than the predetermined temperature.
  • extreme low temperature environment for example, ⁇ 30 ° C. to ⁇ 15 ° C.
  • the conventional control method may not be able to sufficiently suppress a decrease in the durability of the compressor.
  • the problem to be solved by the present invention is to provide an air conditioner that can suppress a decrease in the durability of the compressor.
  • the air conditioner of the embodiment is an air conditioner including an outdoor unit and an indoor unit, and has a control unit.
  • the controller adjusts the throttle of the expansion valve so that the discharge temperature of the compressor becomes a predetermined target value when the discharge temperature of the refrigerant discharged from the compressor included in the outdoor unit is equal to or higher than a threshold temperature.
  • the control unit changes the threshold temperature according to a saturated vapor temperature of the refrigerant.
  • the flowchart which shows the flow of the process which the air conditioning apparatus 1a of 2nd Embodiment switches the operating frequency of the compressor 33.
  • FIG. These are figures which show the structural example of the air conditioning apparatus 1 of 1st Embodiment.
  • the air conditioner 1 includes an indoor unit 2 and an outdoor unit 3.
  • the indoor unit 2 and the outdoor unit 3 are connected via a transition pipe 101.
  • the indoor unit 2 includes an indoor heat exchanger 21, an indoor pipe 23, and an indoor blower 24.
  • the indoor heat exchanger 21 is a fin tube type heat exchanger.
  • the indoor pipe 23 connects the indoor heat exchanger 21 and the transition pipe 101.
  • the indoor blower 24 has a centrifugal fan, for example.
  • the fan of the indoor blower 24 is disposed so as to face the indoor heat exchanger 21.
  • the outdoor unit 3 includes an outdoor heat exchanger 31, a four-way valve 32, a compressor 33, an outdoor expansion valve 34, an outdoor pipe 35, an outdoor blower 36, a discharge temperature sensor 371, a suction temperature sensor 372, a heat exchanger temperature sensor 373, an outside An air temperature sensor 374 (temperature sensor), a saturated steam temperature sensor 375, and a control unit 40 are provided.
  • the control unit 40 controls the operation of each functional unit provided in the indoor unit 2 and the outdoor unit 3.
  • the outdoor heat exchanger 31 is, for example, a fin tube type heat exchanger.
  • the four-way valve 32 is a valve that switches the direction of the refrigerant flowing in the air conditioner 1 between the direction of the flow for heating operation and the direction of the flow for cooling operation and defrosting operation.
  • the compressor 33 sucks the refrigerant from the suction port SP and compresses the refrigerant in the compressor 33.
  • the compressor 33 discharges the compressed refrigerant to the outside from the discharge port DP.
  • An accumulator AC for separating the refrigerant into a liquid refrigerant and a gas refrigerant is attached to the suction port SP of the compressor 33.
  • the outdoor expansion valve 34 is, for example, an electronic expansion valve (PMV: Pulse Motor Valve). The degree of opening of the outdoor expansion valve 34 can be changed.
  • the outdoor pipe 35 connects the outdoor heat exchanger 31, the four-way valve 32, the compressor 33, the outdoor expansion valve 34, and the accumulator AC.
  • the outdoor blower 36 is configured in the same manner as the indoor blower 24.
  • the discharge temperature sensor 371 detects the temperature of the refrigerant discharged from the compressor 33.
  • the discharge temperature sensor 371 detects the temperature of the refrigerant at the discharge port DP of the compressor 33.
  • coolant which the discharge temperature sensor 371 detected is called discharge temperature.
  • the suction temperature sensor 372 detects the temperature of the refrigerant sucked into the compressor 33.
  • the suction temperature sensor 372 detects the temperature of the refrigerant at the suction port SP of the compressor 33.
  • coolant which the suction temperature sensor 372 detected is called suction temperature.
  • the heat exchanger temperature sensor 373 is attached to the piping of the outdoor heat exchanger 31, for example.
  • the heat exchanger temperature sensor 373 detects the temperature of the outdoor heat exchanger 31.
  • the outside air temperature sensor 374 is arranged in a place that is not easily affected by, for example, the radiant heat of the outdoor heat exchanger 31 in the outdoor unit 3.
  • the outside air temperature sensor 374 detects the temperature of the outside air of the outdoor unit 3.
  • the temperature of the outside air of the outdoor unit 3 detected by the outside air temperature sensor 374 is also simply referred to as the outside air temperature.
  • the saturated vapor temperature sensor 375 detects the saturated vapor temperature of the refrigerant.
  • the saturated steam temperature sensor 375 is disposed between the four-way valve 32 and the accumulator AC.
  • the four-way valve 32, the compressor 33, the outdoor expansion valve 34, the outdoor fan 36, the discharge temperature sensor 371, the suction temperature sensor 372, the heat exchanger temperature sensor 373, the outside air temperature sensor 374, and the saturated steam temperature sensor 375 are provided in the control unit 40. It is connected.
  • the four-way valve 32, the compressor 33, the outdoor expansion valve 34, and the outdoor blower 36 are controlled by the control unit 40.
  • the discharge temperature sensor 371, the suction temperature sensor 372, the heat exchanger temperature sensor 373, the outside air temperature sensor 374, and the saturated steam temperature sensor 375 transmit a signal representing the detected temperature to the control unit 40.
  • the saturated vapor temperature sensor 375 may be a pressure sensor that detects a saturated vapor pressure.
  • the control unit 40 calculates the saturated evaporation temperature based on the saturated vapor pressure detected by the saturated vapor temperature sensor 375.
  • FIG. 2 is a block diagram illustrating a specific example of a functional configuration of the control unit 40 in the first embodiment.
  • the control unit 40 includes a CPU (Central Processing Unit) connected via a bus, a memory, an auxiliary storage device, and the like, and executes a program.
  • the control unit 40 functions as a device including a control information storage unit 41, a temperature information acquisition unit 42, a discharge temperature control unit 43, an SH control unit 44, and a control mode switching unit 45 by executing a program.
  • a control information storage unit 41 including a control information storage unit 41, a temperature information acquisition unit 42, a discharge temperature control unit 43, an SH control unit 44, and a control mode switching unit 45 by executing a program.
  • All or some of the functions of the control unit 40 may be realized by using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • the program may be recorded on a computer-readable recording medium.
  • the computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in the computer system.
  • the program may be transmitted via a telecommunication line.
  • the control information storage unit 41 is configured using a storage device such as a magnetic hard disk device or a semiconductor storage device.
  • the control information storage unit 41 is configured using a non-volatile memory such as an EEPROM (Electrically Erasable Programmable Read-Only Memory).
  • the control information storage unit 41 stores information related to the control of the own device (hereinafter referred to as “control information”).
  • the temperature information acquisition unit 42 acquires measurement information of various temperatures from the discharge temperature sensor 371, the suction temperature sensor 372, the heat exchanger temperature sensor 373, the outside air temperature sensor 374, and the saturated steam temperature sensor 375.
  • the temperature information acquisition unit 42 outputs the acquired temperature information to the discharge temperature control unit 43, the SH control unit 44, and the control mode switching unit 45.
  • the discharge temperature control unit 43 performs discharge temperature control (first control process) for adjusting the throttle of the outdoor expansion valve 34 so that the discharge temperature of the compressor 33 becomes a predetermined target value. Measurement information of the discharge temperature sensor 371 is input to the discharge temperature control unit 43.
  • the SH control unit 44 executes SH control (second control process) for adjusting the throttle of the outdoor expansion valve 34 so that the degree of superheat (SH) of the refrigerant is maintained at a constant value.
  • Measurement information of the suction temperature sensor 372 and the saturated steam temperature sensor 375 is input to the SH control unit 44.
  • the SH control unit 44 calculates the value of the superheat degree of the refrigerant (hereinafter referred to as “SH amount”) based on the suction temperature and the saturated steam temperature indicated by each measurement information.
  • the control mode switching unit 45 changes the control mode during heating operation between a discharge temperature control mode for performing discharge temperature control and an SH control mode for performing SH control. Switch to one.
  • the control information includes information (hereinafter referred to as “threshold information”) indicating a correspondence relationship between the saturated vapor temperature of the refrigerant and a threshold value of the discharge temperature (hereinafter referred to as “threshold temperature”).
  • the control mode switching unit 45 acquires a threshold temperature corresponding to the measured saturated steam temperature, and switches the control mode based on the result of comparing the acquired threshold temperature and the measured value of the discharge temperature.
  • FIG. 3 is a diagram showing a specific example of threshold information in the first embodiment.
  • the threshold information is stored in the control information storage unit 41 in the form of the threshold information table T1 shown in FIG.
  • the threshold information table T1 has a threshold information record for each saturated steam temperature condition.
  • the threshold information record has each value of the saturated steam temperature condition and the threshold temperature.
  • the saturated steam temperature condition represents a saturated steam temperature condition to be satisfied when the corresponding threshold temperature is used.
  • the threshold temperature represents a discharge temperature threshold used when a corresponding saturated vapor temperature condition is satisfied.
  • FIG. 4 is a flowchart illustrating a flow of processing in which the air-conditioning apparatus 1 according to the first embodiment switches the control mode during the heating operation.
  • the temperature information acquisition unit 42 acquires measurement information of various sensors (step S101).
  • the control mode switching unit 45 acquires measurement information of various sensors from the temperature information acquisition unit 42.
  • the control mode switching unit 45 determines a discharge temperature threshold corresponding to the current saturated vapor temperature of the refrigerant based on the acquired measurement information (step S102).
  • the control mode switching unit 45 refers to the threshold information table T1 and the saturated steam that the saturated steam temperature of the current refrigerant temperature satisfies. Select the control information record indicating the temperature condition. The control mode switching unit 45 acquires the threshold temperature value from the selected control information record. The control mode switching unit 45 determines the acquired threshold temperature value as the discharge temperature threshold corresponding to the current saturated vapor temperature of the refrigerant. For example, when the saturated vapor temperature of the current refrigerant is ⁇ 20 ° C., the control mode switching unit 45 sets the discharge temperature threshold of the compressor 33 to 89 ° C.
  • control mode switching unit 45 determines whether or not the current discharge temperature of the compressor 33 is equal to or higher than the threshold temperature based on the acquired measurement information (step S103).
  • the control mode switching unit 45 changes the control mode to the discharge temperature control mode (step S104).
  • control mode switching unit 45 changes the control mode to the SH control mode (step S105).
  • the control mode switching unit 45 may not change the control mode.
  • control mode switching unit 45 When the control mode is switched to either the discharge temperature control mode or the SH control mode, the control mode switching unit 45 returns the process to step S101, and repeats and executes the series of processes of steps S101 to S105.
  • the air conditioner 1 of the first embodiment configured as described above sets the discharge temperature threshold for determining the control mode to either the discharge temperature control mode or the SH control mode during the heating operation. It can be changed according to the saturated steam temperature. By providing such a configuration, the air conditioner 1 can suppress a decrease in durability of the compressor 33. Specifically, it is as follows.
  • heating operation under an environment where the outside air temperature is extremely low is an operation under a condition (high compression ratio condition) where the pressure difference of the refrigerant is large between condensation and evaporation. Become. For this reason, it is known that the durability of the compressor 33 is remarkably lowered when the heating operation in the cryogenic environment is continued for a long time under the same operating condition as the normal heating operation environment. Therefore, the control mode switching unit 45 changes the threshold value of the discharge temperature when switching from the SH control mode to the discharge temperature control mode to a temperature corresponding to the saturated vapor temperature of the refrigerant, so that the heating operation is performed in a cryogenic environment. The target value of the discharge temperature can be lowered, and the increase of the discharge temperature can be suppressed.
  • FIG. 5 is a diagram illustrating an operation example of the air-conditioning apparatus 1 according to the first embodiment.
  • FIG. 5 shows an operation example when the environment where the outside air temperature is ⁇ 15 ° C. or lower is set as an extremely low temperature environment and the threshold information is defined as in the example of FIG.
  • the left diagram in FIG. 5 shows that the control mode can be switched with 96 ° C. being the threshold temperature of the discharge temperature (TD) in a situation where the saturated steam temperature (TU) is higher than ⁇ 15 ° C.
  • the right diagram of FIG. 5 shows that in a situation where the saturated steam temperature is -15 ° C. or lower (that is, in a cryogenic environment), the control mode can be switched using 88 ° C. as the discharge temperature threshold.
  • the refrigerant used in the air conditioner 1 of the present embodiment is not limited to a specific one.
  • a refrigerant such as R32 that tends to have a large pressure difference between condensation and evaporation is used, the above effect is R410A. It is expected to be larger than the case where a general refrigerant such as is used. Therefore, by using R32 as the refrigerant of the air conditioner 1, it is possible to effectively increase the durability of the product while reducing the environmental load.
  • FIG. 6 is a diagram illustrating a specific example of a functional configuration of the control unit 40a according to the second embodiment.
  • the control unit 40a is different from the control unit 40 in the first embodiment in that it includes a control mode switching unit 45a instead of the control mode switching unit 45 and further includes an operation frequency control unit 46. Since the other functional units are the same as those in the first embodiment, the same reference numerals as those in FIG.
  • the operating frequency control unit 46 controls the operating frequency of the compressor 33 based on the discharge temperature of the compressor 33.
  • the operating frequency is the frequency of the AC voltage applied to the motor that drives the compressor 33, and the rotational speed of the motor is determined according to this operating frequency.
  • the operating frequency control unit 46 can change the operating frequency by controlling an inverter provided in the motor.
  • the control mode switching unit 45a sets the discharge temperature of the compressor 33 to a predetermined target value. Thus, the operating frequency of the compressor 33 is lowered.
  • FIG. 7 is a diagram illustrating a specific example of threshold information in the second embodiment.
  • the threshold information in the second embodiment is stored in the control information storage unit 41, for example, in the form of a threshold information table T2 shown in FIG.
  • the threshold information table T2 is similar to the threshold information table T1 in FIG. 3 in that it has a threshold information record for each saturated steam temperature condition, but the threshold information record includes values for the saturated steam temperature condition, the threshold temperature, and the reference temperature. Is different from the threshold information table T2.
  • the reference temperature is a reference temperature for determining a discharge temperature threshold used when determining whether or not the operation frequency needs to be changed. For example, when the operation frequency of the compressor 33 is controlled in six steps of abnormal stop, normal down, slow down, hold, slow up, and normal up in descending order of the operation frequency, One of the discharge temperatures (hereinafter referred to as “control temperature”) is set as the reference temperature.
  • FIG. 7 shows an example in which the control temperature for dividing normal down and slow down is set as the reference temperature.
  • FIG. 8 is a flowchart showing a flow of processing in which the air-conditioning apparatus 1a of the second embodiment switches the operating frequency of the compressor 33.
  • the control mode switching unit 45a determines whether or not the current control mode is the discharge temperature control mode (step S201).
  • control mode switching unit 45a can identify the current control mode based on the discharge temperature of the compressor 33. Specifically, the control mode switching unit 45a identifies the discharge temperature control mode as the current control mode when the discharge temperature of the compressor 33 is equal to or higher than the set value of the threshold temperature at that time, and the discharge temperature is If it is less than the set value, the SH control mode can be identified as the current control mode.
  • the control mode switching unit 45a determines whether or not the discharge temperature of the compressor 33 is higher than the target value (step S202). When the discharge temperature of the compressor 33 is higher than the target value (step S202—YES), the control mode switching unit 45a changes the discharge temperature threshold (control temperature) when changing the operating frequency of the compressor 33 (step S202). S203).
  • the control mode switching unit 45a refers to the threshold information table T2 and selects a control information record corresponding to the current control mode. To do.
  • the control mode switching unit 45a acquires the reference temperature value from the selected control information record.
  • the control mode switching unit 45a determines the other four control temperatures based on the acquired reference temperature value (control temperature that separates slow-down and normal-down).
  • the other four control temperatures may be derived by adding a predetermined offset value determined in advance to the reference temperature, or may be derived by a predetermined calculation formula based on the reference temperature.
  • the control mode switching unit 45a changes the operation frequency of the compressor 33 by changing the set value of the current control temperature to the acquired reference temperature and another control temperature acquired based on the reference temperature. Change the discharge temperature threshold.
  • FIG. 8 shows an example in which the control temperature of the operating frequency is changed when the discharge temperature of the compressor 33 is equal to or higher than the target value even if the throttle of the outdoor expansion valve 34 is adjusted in the discharge temperature control mode.
  • the control temperature may be changed in accordance with the change of the threshold temperature. For example, the control temperature may be changed in step S104 of FIG.
  • FIG. 9 is a diagram illustrating an operation example of the air-conditioning apparatus 1a according to the second embodiment.
  • FIG. 9 shows an operation example when the environment where the outside air temperature is ⁇ 15 ° C. or lower is set as the extremely low temperature environment and the threshold information is defined as in the example of FIG.
  • the left diagram of FIG. 9 shows that in a situation where the saturated steam temperature (TU) is higher than ⁇ 15 ° C., the operation frequency is controlled with 113 ° C. as the normal down control temperature.
  • the control temperature for determining each step of slow down, hold, slow up and normal up is determined with 113 ° C. as the reference temperature.
  • the right diagram in FIG. 9 shows that in a situation where the saturated steam temperature is -15 ° C. or lower (that is, in a cryogenic environment), the operating frequency is controlled with 106 ° C. as the normal down control temperature.
  • a control temperature is determined that divides each step of slow down, hold, slow up, and normal up with 106 ° C. as a reference temperature.
  • FIG. 9 shows an example in which each control temperature is determined by a predetermined offset value with respect to the reference temperature.
  • the air conditioner 1a of the second embodiment configured as described above changes the control temperature of the operating frequency during operation in a cryogenic environment.
  • the air-conditioning apparatus 1a of the second embodiment reduces the load on the compressor 33 in a cryogenic environment and autonomously suppresses a decrease in the durability of the apparatus itself. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

実施形態の空気調和装置は、室外機と室内機とを備える空気調和装置であって、制御部を持つ。制御部は、前記室外機が備える圧縮機が吐出する冷媒の吐出温度が閾値温度以上である場合には前記圧縮機の吐出温度が所定の目標値となるように膨張弁の絞りを調整する第一の制御処理を実行し、前記圧縮機の吐出温度が前記閾値温度未満である場合には前記冷媒の過熱度を一定値に保つように前記膨張弁の絞りを調整する第二の制御処理を実行する。前記制御部は、前記冷媒の飽和蒸気温度に応じて前記閾値温度を変更する。

Description

空気調和装置
 本発明の実施形態は、空気調和装置に関する。
 室内機と室外機とで構成されるセパレート型の空気調和装置がある。この種の空気調和装置の制御方法として、室外機の備える圧縮機が吐出する冷媒の温度(以下「吐出温度」という。)を目標値に追従させるように膨張弁制御する吐出温度制御と、過熱度(SH:Super Heat)を一定に保つように膨張弁を制御するSH制御とが知られている。従来、圧縮機の吐出温度が所定温度以上である場合に吐出温度制御を実行し、所定温度未満である場合にSH制御を実行することが行われている。
 一方で、外気温が極めて低い環境(以下「極低温環境」という。)下(例えば-30℃~-15℃)での暖房運転は、凝縮時と蒸発時とで冷媒の圧力差が大きい高圧縮比条件下での運転となるため、圧縮機を構成する部品の損耗を促進させ、圧縮機の耐久性を低下させることが知られている。しかしながら、従来の制御方法では、圧縮機の耐久性の低下を十分に抑制できない可能性があった。
特開平4-240355号公報 特開2003-156244号公報
 本発明が解決しようとする課題は、圧縮機の耐久性の低下を抑制することができる空気調和装置を提供することである。
 実施形態の空気調和装置は、室外機と室内機とを備える空気調和装置であって、制御部を持つ。制御部は、前記室外機が備える圧縮機が吐出する冷媒の吐出温度が閾値温度以上である場合には前記圧縮機の吐出温度が所定の目標値となるように膨張弁の絞りを調整する第一の制御処理を実行し、前記圧縮機の吐出温度が前記閾値温度未満である場合には前記冷媒の過熱度を一定値に保つように前記膨張弁の絞りを調整する第二の制御処理を実行する。前記制御部は、前記冷媒の飽和蒸気温度に応じて前記閾値温度を変更する。
第1の実施形態の空気調和装置1の構成例を示す図。 第1の実施形態における制御部40の機能構成の具体例を示すブロック図。 第1の実施形態における閾値情報の具体例を示す図。 第1の実施形態の空気調和装置1が、暖房運転時の制御モードを切り替える処理の流れを示すフローチャート。 第1の実施形態の空気調和装置1の動作例を示す図。 第2の実施形態における制御部40aの機能構成の具体例を示す図。 第2の実施形態における閾値情報の具体例を示す図。 第2の実施形態の空気調和装置1aが、圧縮機33の運転周波数を切り替える処理の流れを示すフローチャート。 第2の実施形態の空気調和装置1aの動作例を示す図。
 以下、実施形態の空気調和装置を、図面を参照して説明する。
(第1の実施形態)
 
図1
は、第1の実施形態の空気調和装置1の構成例を示す図である。空気調和装置1は、室内機2及び室外機3を備える。室内機2及び室外機3は、渡り配管101を介して接続される。
 室内機2は、室内熱交換器21、室内配管23及び室内送風機24を備える。例えば、室内熱交換器21はフィンチューブ式の熱交換器である。
 室内配管23は、室内熱交換器21と渡り配管101とを接続する。室内送風機24は、例えば遠心式のファンを有する。室内送風機24のファンは、室内熱交換器21に対向するように配置される。
 室外機3は、室外熱交換器31、四方弁32、圧縮機33、室外膨張弁34、室外配管35、室外送風機36、吐出温度センサ371、サクション温度センサ372、熱交換器温度センサ373、外気温センサ374(温度センサ)、飽和蒸気温度センサ375及び制御部40を備える。制御部40は、室内機2及び室外機3が備える各機能部の動作を制御する。
 室外熱交換器31は、例えばフィンチューブ式の熱交換器である。四方弁32は、空気調和装置1内を流れる冷媒の向きを、暖房運転用の流れの向きと、冷房運転及び除霜運転用の流れの向きと、に切替える弁である。
 圧縮機33は、吸入口SPから冷媒を吸入し、圧縮機33内でこの冷媒を圧縮する。圧縮機33は、圧縮した冷媒を吐出口DPから外部に吐出する。圧縮機33の吸入口SPには、冷媒を液冷媒とガス冷媒とに分離するためのアキュムレータACが取付けられている。
 室外膨張弁34は、例えば、電子膨張弁(PMV:Pulse Motor Valve)である。室外膨張弁34は、開度を変更可能である。室外配管35は、室外熱交換器31、四方弁32、圧縮機33、室外膨張弁34及びアキュムレータACを接続する。室外送風機36は、室内送風機24と同様に構成される。
 吐出温度センサ371は、圧縮機33から吐出される冷媒の温度を検出する。この例では、吐出温度センサ371は、圧縮機33の吐出口DPにおける冷媒の温度を検出する。以下では、吐出温度センサ371が検出した冷媒の温度を、吐出温度と言う。
 サクション温度センサ372は、圧縮機33に吸入される冷媒の温度を検出する。この例では、サクション温度センサ372は、圧縮機33の吸入口SPにおける冷媒の温度を検出する。以下では、サクション温度センサ372が検出した冷媒の温度を、サクション温度と言う。
 熱交換器温度センサ373は、例えば室外熱交換器31の配管等に取付けられる。熱交換器温度センサ373は、室外熱交換器31の温度を検出する。
 外気温センサ374は、例えば室外機3内において室外熱交換器31の輻射熱等の影響を受けにくい場所に配置される。外気温センサ374は、室外機3の外気の温度を検出する。以下、外気温センサ374が検出する室外機3の外気の温度を、単に外気温とも言う。
 飽和蒸気温度センサ375は、冷媒の飽和蒸気温度を検出する。この例では、飽和蒸気温度センサ375は、四方弁32とアキュムレータACとの間に配置される。
 四方弁32、圧縮機33、室外膨張弁34、室外送風機36、吐出温度センサ371、サクション温度センサ372、熱交換器温度センサ373、外気温センサ374及び飽和蒸気温度センサ375は、制御部40に接続されている。四方弁32、圧縮機33、室外膨張弁34、及び室外送風機36は、制御部40に制御される。
 吐出温度センサ371、サクション温度センサ372、熱交換器温度センサ373、外気温センサ374及び飽和蒸気温度センサ375は、検出した温度を表す信号を制御部40に送信する。ここで、飽和蒸気温度センサ375は、飽和蒸気圧を検出する圧力センサであってもよい。この場合、制御部40は、飽和蒸気温度センサ375が検出した飽和蒸気圧に基づいて飽和蒸発温度を算出する。
 図2は、第1の実施形態における制御部40の機能構成の具体例を示すブロック図である。制御部40は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、プログラムを実行する。制御部40は、プログラムの実行によって制御情報記憶部41、温度情報取得部42、吐出温度制御部43、SH制御部44及び制御モード切替部45を備える装置として機能する。
 なお、制御部40の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。プログラムは、電気通信回線を介して送信されてもよい。
 制御情報記憶部41は、磁気ハードディスク装置や半導体記憶装置などの記憶装置を用いて構成される。例えば、制御情報記憶部41は、EEPROM(Electrically Erasable Programmable Read-Only Memory)等の不揮発性のメモリを用いて構成される。制御情報記憶部41は、自装置の制御に関する情報(以下「制御情報」という。)を記憶する。
 温度情報取得部42は、吐出温度センサ371、サクション温度センサ372、熱交換器温度センサ373、外気温センサ374及び飽和蒸気温度センサ375から各種温度の測定情報を取得する。温度情報取得部42は、取得した温度情報を、吐出温度制御部43、SH制御部44及び制御モード切替部45に出力する。
 吐出温度制御部43は、圧縮機33の吐出温度が所定の目標値となるように室外膨張弁34の絞りを調整する吐出温度制御(第一の制御処理)を実行する。吐出温度制御部43には吐出温度センサ371の測定情報が入力される。
 SH制御部44は、冷媒の過熱度(SH:Super Heat)を一定値に保つように室外膨張弁34の絞りを調整するSH制御(第二の制御処理)を実行する。SH制御部44にはサクション温度センサ372及び飽和蒸気温度センサ375の測定情報が入力される。SH制御部44は、各測定情報が示すサクション温度及び飽和蒸気温度に基づいて冷媒の過熱度の値(以下「SH量」という。)を算出する。
 制御モード切替部45は、制御情報記憶部41に記憶された制御情報に基づいて、暖房運転時の制御モードを、吐出温度制御を行う吐出温度制御モードと、SH制御を行うSH制御モードとのいずれかに切り替える。具体的には、制御情報には、冷媒の飽和蒸気温度と吐出温度の閾値(以下「閾値温度」という。)との対応関係を示す情報(以下「閾値情報」という。)が含まれる。制御モード切替部45は、測定された飽和蒸気温度に対応する閾値温度を取得し、取得した閾値温度と吐出温度の測定値とを比較した結果に基づいて制御モードの切り替えを行う。
 図3は、第1の実施形態における閾値情報の具体例を示す図である。例えば、閾値情報は図3に示す閾値情報テーブルT1の態様で制御情報記憶部41に記憶される。閾値情報テーブルT1は、飽和蒸気温度条件ごとに閾値情報レコードを有する。閾値情報レコードは、飽和蒸気温度条件及び閾値温度の各値を有する。飽和蒸気温度条件は、対応する閾値温度を用いる場合に満たされるべき飽和蒸気温度の条件を表している。また、閾値温度は、対応する飽和蒸気温度条件が満たされた場合に用いる吐出温度の閾値を表している。
 図4は、第1の実施形態の空気調和装置1が、暖房運転時の制御モードを切り替える処理の流れを示すフローチャートである。まず、はじめに、温度情報取得部42が、各種センサの測定情報を取得する(ステップS101)。制御モード切替部45は、温度情報取得部42から各種センサの測定情報を取得する。制御モード切替部45は、取得した測定情報に基づいて、現在の冷媒の飽和蒸気温度に対応する吐出温度の閾値を決定する(ステップS102)。
 例えば、制御情報が図3に示した閾値情報テーブルT1のように設定されている場合、制御モード切替部45は、閾値情報テーブルT1を参照し、現在の冷媒温度の飽和蒸気温度が満たす飽和蒸気温度条件を示す制御情報レコードを選択する。制御モード切替部45は、選択した制御情報レコードから閾値温度の値を取得する。制御モード切替部45は、取得した閾値温度の値を現在の冷媒の飽和蒸気温度に対応する吐出温度の閾値として決定する。例えば、現在の冷媒の飽和蒸気温度が-20℃である場合、制御モード切替部45は、圧縮機33の吐出温度の閾値を89℃に設定する。
 続いて、制御モード切替部45は、取得した測定情報に基づいて、現在の圧縮機33の吐出温度が閾値温度以上であるか否かを判定する(ステップS103)。圧縮機33の吐出温度が閾値温度以上である場合(ステップS103-YES)、制御モード切替部45は、制御モードを吐出温度制御モードに変更する(ステップS104)。
 一方、圧縮機33の吐出温度が閾値温度未満である場合(ステップS103-NO)、制御モード切替部45は、制御モードをSH制御モードに変更する(ステップS105)。なお、現在の制御モードと変更先の制御モードが同じである場合、制御モード切替部45は制御モードを変更しなくてもよい。
 制御モード切替部45は、制御モードを吐出温度制御モード又はSH制御モードのいずれかに切り替えると処理をステップS101に戻し、ステップS101~S105の一連の処理を繰り替えし実行する。
 このように構成された第1の実施形態の空気調和装置1は、暖房運転時において、制御モードを吐出温度制御モード又はSH制御モードのいずれかに決定するための吐出温度の閾値を、冷媒の飽和蒸気温度に応じて変更することができる。このような構成を備えることにより、空気調和装置1は、圧縮機33の耐久性の低下を抑制することができる。具体的には、次のとおりである。
 一般に、外気温が極めて低い環境(以下「極低温環境」という。)下での暖房運転は、凝縮時と蒸発時とで冷媒の圧力差が大きい条件(高圧縮比条件)下での運転となる。そのため、極低温環境下での暖房運転が、通常の暖房運転環境と同様の運転条件で長時間続けられることにより、圧縮機33の耐久性が著しく低下することが知られている。そのため、制御モード切替部45が、SH制御モードから吐出温度制御モードに切り替える際の吐出温度の閾値を、冷媒の飽和蒸気温度に応じた温度に変更することで、極低温環境での暖房運転時における吐出温度の目標値を下げ、吐出温度の上昇を抑制することができる。
 図5は、第1の実施形態の空気調和装置1の動作例を示す図である。例えば、図5は、外気温が-15℃以下である環境を極低温環境とし、閾値情報を図3の例のように定義した場合の動作例を示す。図5の左図は、飽和蒸気温度(TU)が-15℃よりも高い状況では、96℃を吐出温度(TD)の閾値温度として制御モードが切り替えられることを表している。一方、図5の右図は、飽和蒸気温度が-15℃以下である状況(すなわち極低温環境下)では、88℃を吐出温度の閾値として制御モードが切り替えられることを表している。
 このような制御モードの切り替えにより、極低温環境下での圧縮機33の負荷を軽減し、厳しい環境下で使用される製品(空気調和装置)をより効果的に保護することが可能となる。
 なお、本実施形態の空気調和装置1において用いられる冷媒は特定のものに限定されないが、凝縮時と蒸発時との圧力差が大きくなりやすいR32等の冷媒を用いた場合、上記の効果はR410A等の一般的な冷媒を用いる場合に比べてより大きなものとなることが期待される。そのため、空気調和装置1の冷媒にR32を用いることで、環境負荷を低減しつつ、製品の耐久性を効果的に高めることが可能となる。
(第2の実施形態)
 第2の実施形態の空気調和装置1a(図示せず)は、制御部40に代えて制御部40aを備える点で第1の実施形態の空気調和装置1と異なる。
 図6は、第2の実施形態における制御部40aの機能構成の具体例を示す図である。制御部40aは、制御モード切替部45に代えて制御モード切替部45aを備える点、運転周波数制御部46をさらに備える点で第1の実施形態における制御部40と異なる。他の機能部は第1の実施形態と同様であるため、図2と同じ符号を付すことにより説明を省略する。
 運転周波数制御部46は、圧縮機33の吐出温度に基づいて圧縮機33の運転周波数を制御する。具体的には、運転周波数は、圧縮機33を駆動させるモータに印加される交流電圧の周波数であり、この運転周波数に応じてモータの回転速度が定まる。例えば、運転周波数制御部46は、モータに備えられたインバータを制御することにより運転周波数を変更可能である。
 制御モード切替部45aは、吐出温度制御部43が室外膨張弁34の絞りを調整しても圧縮機33の吐出温度が目標値以上となる場合、圧縮機33の吐出温度が所定の目標値となるように圧縮機33の運転周波数を低下させる。
 図7は、第2の実施形態における閾値情報の具体例を示す図である。第2の実施形態における閾値情報は、例えば図7に示す閾値情報テーブルT2の態様で制御情報記憶部41に記憶される。閾値情報テーブルT2は、飽和蒸気温度条件ごとに閾値情報レコードを有する点は図3の閾値情報テーブルT1と同様であるが、閾値情報レコードが、飽和蒸気温度条件、閾値温度及び基準温度の各値を有する点で閾値情報テーブルT2と異なる。
 基準温度は、運転周波数の変更要否を判定する際に用いられる吐出温度の閾値を決定するための基準となる温度である。例えば、圧縮機33の運転周波数が、運転周波数の高い順に、異常停止、ノーマルダウン、スローダウン、ホールド、スローアップ、ノーマルアップの6段階で制御される場合、連続する2つの段階を分ける5つの吐出温度(以下「制御温度」という。)のうちの1つが基準温度として設定される。図7は、ノーマルダウンとスローダウンとを分ける制御温度が基準温度として設定された例を示す。
 図8は、第2の実施形態の空気調和装置1aが、圧縮機33の運転周波数を切り替える処理の流れを示すフローチャートである。まず、はじめに、制御モード切替部45aは、現在の制御モードが吐出温度制御モードであるか否かを判定する(ステップS201)。
 例えば、制御モード切替部45aは圧縮機33の吐出温度に基づいて現在の制御モードを識別することができる。具体的には、制御モード切替部45aは、圧縮機33の吐出温度がその時点での閾値温度の設定値以上である場合には吐出温度制御モードを現在の制御モードとして識別し、吐出温度が設定値未満である場合にはSH制御モードを現在の制御モードとして識別することができる。
 現在の制御モードが吐出温度制御モードである場合(ステップS201-YES)、制御モード切替部45aは、圧縮機33の吐出温度が目標値より大きいか否かを判定する(ステップS202)。圧縮機33の吐出温度が目標値より大きい場合(ステップS202-YES)、制御モード切替部45aは、圧縮機33の運転周波数を変更する際の吐出温度の閾値(制御温度)を変更する(ステップS203)。
 例えば、制御情報が図7に示した閾値情報テーブルT2のように設定されている場合、制御モード切替部45aは、閾値情報テーブルT2を参照し、現在の制御モードに対応する制御情報レコードを選択する。制御モード切替部45aは、選択した制御情報レコードから基準温度の値を取得する。制御モード切替部45aは、取得した基準温度の値(スローダウンとノーマルダウンとを分ける制御温度)に基づいて他の4つの制御温度を決定する。例えば、他の4つの制御温度は、予め定められた所定のオフセット値を基準温度に加算することによって導出されてもよいし、基準温度に基づく所定の算出式で導出されてもよい。
 制御モード切替部45aは、現在の制御温度の設定値を、取得した基準温度及び基準温度に基づいて取得された他の制御温度に変更することで、圧縮機33の運転周波数を変更する際の吐出温度の閾値を変更する。
 なお、図8では、吐出温度制御モードで室外膨張弁34の絞りを調整しても圧縮機33の吐出温度が目標値以上となる場合に運転周波数の制御温度を変更する例を示したが、制御温度の変更は閾値温度の変更に合わせて行われてもよい。例えば、図4のステップS104において制御温度が変更されてもよい。
 図9は、第2の実施形態の空気調和装置1aの動作例を示す図である。例えば、図9は、外気温が-15℃以下である環境を極低温環境とし、閾値情報を図7の例のように定義した場合の動作例を示す。図9の左図は、飽和蒸気温度(TU)が-15℃よりも高い状況では、113℃をノーマルダウンの制御温度として運転周波数が制御されることを表している。この場合、113℃を基準温度としてスローダウン、ホールド、スローアップ及びノーマルアップの各段階を分ける制御温度が決定される。
 一方、図9の右図は、飽和蒸気温度が-15℃以下である状況(すなわち極低温環境下)では、106℃をノーマルダウンの制御温度として運転周波数が制御されることを表している。この場合、106℃を基準温度としてスローダウン、ホールド、スローアップ及びノーマルアップの各段階を分ける制御温度が決定される。図9は、各制御温度が基準温度に対する所定のオフセット値によって決定される例を示している。
 このように構成された第2の実施形態の空気調和装置1aは、極低温環境下での運転時に、運転周波数の制御温度を変更する。このような構成を備えることにより、第2の実施形態の空気調和装置1aは、極低温環境下での圧縮機33の負荷を軽減し、自装置の耐久性の低下を自律的に抑制することが可能となる。
 以上説明した少なくともひとつの実施形態によれば、吐出温度制御とSH制御とを切り替える際の圧縮機の吐出温度の閾値温度を、冷媒の飽和蒸気温度に応じて変更する制御部を持つことにより、圧縮機の耐久性の低下を抑制することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (6)

  1.  室外機と室内機とを備える空気調和装置であって、
     前記室外機が備える圧縮機が吐出する冷媒の吐出温度が閾値温度以上である場合には前記圧縮機の吐出温度が所定の目標値となるように膨張弁の絞りを調整する第一の制御処理を実行し、前記圧縮機の吐出温度が前記閾値温度未満である場合には前記冷媒の過熱度を一定値に保つように前記膨張弁の絞りを調整する第二の制御処理を実行する制御部を備え、
     前記制御部は、前記冷媒の飽和蒸気温度に応じて前記閾値温度を変更する、
     空気調和装置。
  2.  前記冷媒はR32である、
     請求項1に記載の空気調和装置。
  3.  前記制御部は、前記第一の制御処理において、前記圧縮機の吐出温度が前記所定の目標値となるように前記圧縮機の運転周波数を低下させる、
     請求項1又は2に記載の空気調和装置。
  4.  前記圧縮機の運転周波数が複数段階で制御される場合、前記制御部は、前記複数段階を分ける吐出温度の閾値である制御温度を変更することで前記圧縮機の運転周波数を低下させる、
     請求項3に記載の空気調和装置。
  5.  前記制御部は、前記膨張弁の絞りを調整しても前記圧縮機の吐出温度が前記目標値以上となる場合に前記制御温度を変更する、
     請求項4に記載の空気調和装置。
  6.  前記制御部は、前記閾値温度の変更に応じて前記制御温度を変更する、
     請求項4に記載の空気調和装置。
PCT/JP2017/019345 2017-05-24 2017-05-24 空気調和装置 WO2018216131A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2017416002A AU2017416002B2 (en) 2017-05-24 2017-05-24 Air conditioner
EP17911105.9A EP3633278B1 (en) 2017-05-24 2017-05-24 Air conditioner
PL17911105.9T PL3633278T3 (pl) 2017-05-24 2017-05-24 Klimatyzator
JP2019519870A JP6847210B2 (ja) 2017-05-24 2017-05-24 空気調和装置
PCT/JP2017/019345 WO2018216131A1 (ja) 2017-05-24 2017-05-24 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019345 WO2018216131A1 (ja) 2017-05-24 2017-05-24 空気調和装置

Publications (1)

Publication Number Publication Date
WO2018216131A1 true WO2018216131A1 (ja) 2018-11-29

Family

ID=64396375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019345 WO2018216131A1 (ja) 2017-05-24 2017-05-24 空気調和装置

Country Status (5)

Country Link
EP (1) EP3633278B1 (ja)
JP (1) JP6847210B2 (ja)
AU (1) AU2017416002B2 (ja)
PL (1) PL3633278T3 (ja)
WO (1) WO2018216131A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111473497A (zh) * 2020-04-29 2020-07-31 广东美的暖通设备有限公司 空调系统及其制冷辅助装置和控制方法
JP7297162B1 (ja) * 2022-02-03 2023-06-23 三菱電機株式会社 冷凍サイクル装置及び制御方法
WO2024037059A1 (zh) * 2022-08-17 2024-02-22 广东美的制冷设备有限公司 多联机空调系统的控制方法、控制器、空调系统及介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375319A (zh) * 2020-02-25 2021-09-10 青岛海尔空调电子有限公司 制冷状态下定频空调的控制方法
CN112161390B (zh) * 2020-09-15 2021-11-02 珠海格力电器股份有限公司 电子膨胀阀控制方法、装置和空调

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954061U (ja) * 1982-10-01 1984-04-09 株式会社東芝 冷凍サイクル装置
JPH04240355A (ja) 1991-01-22 1992-08-27 Toshiba Corp 空気調和装置における電子膨脹弁の制御方法
JPH04356664A (ja) * 1991-06-03 1992-12-10 Toshiba Corp 冷凍サイクル装置
JP2001174075A (ja) * 1999-12-14 2001-06-29 Daikin Ind Ltd 冷凍装置
JP2003156244A (ja) 2001-11-20 2003-05-30 Fujitsu General Ltd 空気調和機の制御方法
JP2005188790A (ja) * 2003-12-24 2005-07-14 Samsung Electronics Co Ltd 空気調和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4854779B2 (ja) * 2009-12-09 2012-01-18 シャープ株式会社 空気調和機、膨張弁の開度制御方法およびプログラム
JP6021945B2 (ja) * 2012-12-26 2016-11-09 三菱電機株式会社 冷凍サイクル装置、及び冷凍サイクル装置の制御方法
US9863680B2 (en) * 2013-06-20 2018-01-09 Mitsubishi Electric Corporation Heat pump apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954061U (ja) * 1982-10-01 1984-04-09 株式会社東芝 冷凍サイクル装置
JPH04240355A (ja) 1991-01-22 1992-08-27 Toshiba Corp 空気調和装置における電子膨脹弁の制御方法
JPH04356664A (ja) * 1991-06-03 1992-12-10 Toshiba Corp 冷凍サイクル装置
JP2001174075A (ja) * 1999-12-14 2001-06-29 Daikin Ind Ltd 冷凍装置
JP2003156244A (ja) 2001-11-20 2003-05-30 Fujitsu General Ltd 空気調和機の制御方法
JP2005188790A (ja) * 2003-12-24 2005-07-14 Samsung Electronics Co Ltd 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633278A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111473497A (zh) * 2020-04-29 2020-07-31 广东美的暖通设备有限公司 空调系统及其制冷辅助装置和控制方法
CN111473497B (zh) * 2020-04-29 2021-12-31 广东美的暖通设备有限公司 空调系统及其制冷辅助装置和控制方法
JP7297162B1 (ja) * 2022-02-03 2023-06-23 三菱電機株式会社 冷凍サイクル装置及び制御方法
WO2023148862A1 (ja) * 2022-02-03 2023-08-10 三菱電機株式会社 冷凍サイクル装置及び制御方法
WO2024037059A1 (zh) * 2022-08-17 2024-02-22 广东美的制冷设备有限公司 多联机空调系统的控制方法、控制器、空调系统及介质

Also Published As

Publication number Publication date
AU2017416002B2 (en) 2021-07-01
JP6847210B2 (ja) 2021-03-24
AU2017416002A1 (en) 2019-12-19
EP3633278A4 (en) 2020-12-16
JPWO2018216131A1 (ja) 2020-02-27
EP3633278B1 (en) 2022-09-07
EP3633278A1 (en) 2020-04-08
PL3633278T3 (pl) 2023-01-02

Similar Documents

Publication Publication Date Title
WO2018216131A1 (ja) 空気調和装置
JP4842855B2 (ja) 空気調和機
CA3029520C (en) Evaporator coil protection for hvac systems
JP6327558B2 (ja) 空気調和装置
JP6932259B2 (ja) 空気調和装置および運転状態判定方法
US11802724B2 (en) Air-conditioning apparatus with simultaneous heating and defrosting modes
WO2020115935A1 (ja) 空気調和システム
JP2011252639A (ja) 空気調和機
JP5634389B2 (ja) 空気調和機
JP7030037B2 (ja) 空気調和機
AU2018444215B2 (en) Outdoor unit, indoor unit, and air conditioner
JPWO2018216130A1 (ja) 空気調和装置
JPWO2020003490A1 (ja) 空気調和装置
KR101911272B1 (ko) 공기조화기 및 그 제어방법
WO2018073904A1 (ja) 空気調和装置の室内機及び空気調和装置
JP2816789B2 (ja) 冷水供給装置
US11802726B2 (en) Refrigeration cycle device
JP2014215008A (ja) 空気調和装置、及び、空気調和装置の運転方法
JPH08226721A (ja) 多室用空気調和機の運転制御装置
JP4468008B2 (ja) コンプレッサの運転制御方式及びこれを有する空気調和装置
JPWO2018167866A1 (ja) 空気調和装置
JP6851842B2 (ja) 空気調和機
JPH07158983A (ja) 空気調和機
JP2002107016A (ja) 冷凍装置
WO2019038804A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019519870

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017416002

Country of ref document: AU

Date of ref document: 20170524

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017911105

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017911105

Country of ref document: EP

Effective date: 20200102