WO2018214722A1 - 一种离子选择性的纳米通道膜及其制备方法 - Google Patents

一种离子选择性的纳米通道膜及其制备方法 Download PDF

Info

Publication number
WO2018214722A1
WO2018214722A1 PCT/CN2018/085928 CN2018085928W WO2018214722A1 WO 2018214722 A1 WO2018214722 A1 WO 2018214722A1 CN 2018085928 W CN2018085928 W CN 2018085928W WO 2018214722 A1 WO2018214722 A1 WO 2018214722A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
block copolymer
selective
ion
poly
Prior art date
Application number
PCT/CN2018/085928
Other languages
English (en)
French (fr)
Inventor
闻利平
张振
江雷
Original Assignee
北京赛特超润界面科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京赛特超润界面科技有限公司 filed Critical 北京赛特超润界面科技有限公司
Publication of WO2018214722A1 publication Critical patent/WO2018214722A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers

Definitions

  • the invention belongs to the field of energy technology, and in particular, the invention relates to an ion-selective nanochannel membrane and a preparation method thereof.
  • Osmotic energy is a chemical potential difference energy that exists in different concentrations of water systems.
  • the traditional osmotic energy collecting device ie, reverse electrodialysis device
  • the traditional osmotic energy collecting device is composed of a series of staggered anion exchange membranes and cation exchange membranes, and the steric hindrance encountered during ion transport is large, which is extremely large. It limits the energy output density of energy conversion equipment; in addition, expensive manufacturing costs and complicated manufacturing processes also restrict its large-scale promotion and popularization.
  • ion channel membranes with better ion selectivity and higher ion flux exhibit better potential for osmotic energy utilization.
  • the ion flux and selectivity of ion channel films prepared today are far from expected due to their own thickness and functional group limitations, and their application development is also restricted. Therefore, there is an urgent need to develop an ultra-thin ion channel film having high ion flux while maintaining high selectivity.
  • the membrane has a submicron thickness and exhibits excellent permeation energy conversion. performance.
  • the present invention utilizes two different types of block copolymer molecules to construct an asymmetric polymer film by hybridization.
  • An ion-selective nanochannel membrane comprising two membranes bonded together, one layer being a block copolymer 1 membrane and the other layer being a block copolymer 2 membrane; the nanochannel membrane
  • the thickness is sub-micron, with a regular nano-scale channel distribution, the number of nano-scale channels is 10 10 /cm 2 , the channel diameter is below 25 nm, and the two films have different surface charge distributions.
  • the block copolymer 1 film is made of poly(ethylene oxide-methacrylate) by a suspension coating method, a dip-drawing method or a doctor blade method.
  • the block copolymer 2 film is composed of poly(styrene-tetravinylpyridine), poly(styrene-acrylic acid), poly(styrene-N,N-dimethylaminoethyl methacrylate).
  • Any of poly(styrene-N-isopropylacrylamide) and poly(styrene-ethylene oxide) is produced by a suspension coating method, a dip-drawing method or a doctor blade method.
  • the present invention also provides a method for preparing an ion-selective nanochannel membrane as described above, the preparation method comprising the steps of:
  • the block copolymer 1 is dissolved in the selective solvent 1, and formed on the solid substrate coated with the sacrificial layer to form a film of the block copolymer 1;
  • the block copolymer 2 is dissolved in the selective solvent 2, and the film is formed on the block copolymer 1 film after the step 3) to form a block copolymer 2 film;
  • step 1) Dissolving the sacrificial layer in step 1) with a selective solvent 3 which only dissolves the sacrificial layer, and peeling off the ultrathin ion selective nanochannel film.
  • the solid substrate is a silicon wafer.
  • the sacrificial layer is prepared using sodium polystyrene sulfonate or cellulose acetate.
  • the block copolymer 1 is poly(ethylene oxide-methacrylate);
  • the selective solvent 1 is one of toluene, chloroform, dichloromethane, and tetrahydrofuran.
  • the heat treatment and the light treatment in the step 3) are specifically:
  • the heat treatment temperature is between 60 and 150 degrees Celsius, and the heat treatment time is ⁇ 2 hours;
  • the light treatment wavelength is between 330 and 400 nanometers, the light intensity is between 100 and 500 milliwatts per square centimeter, and the illumination time is ⁇ 30 minutes.
  • the block copolymer 2 is poly(styrene-tetravinylpyridine), poly(styrene-acrylic acid), poly(styrene-N,N-dimethylaminoethyl methacrylate), Any one of poly(styrene-N-isopropylacrylamide) and poly(styrene-ethylene oxide);
  • the selective solvent 2 is one or more of chloroform, dichloromethane, toluene, tetrahydrofuran, dioxane, and dimethylformamide.
  • the film forming method of the step 2) and the step 4) is one of a suspension coating method, an immersion pulling method, and a doctor blade method.
  • the sacrificial layer in the above step 1) in the present invention is required to be removed after film formation, and may be water-soluble sodium polystyrene sulfonate or cellulose acetate which is soluble in acetone, but dissolves the sacrificial layer.
  • the solvent must not affect the polymer film, such as affecting the morphology of the film.
  • the block copolymer molecule 1 used in the above step 2) in the present invention is a poly(ethylene oxide-methacrylate) containing a photocrosslinkable side chain.
  • the above step 4) in the present invention includes a plurality of solvents for dissolving the block copolymer, and may be chloroform, toluene, tetrahydrofuran, dioxane, dimethylformamide or the like or a mixed solvent such as tetrahydrofuran/dichloro. Methane, etc., different solvents will cause different surface morphology of the block polymer 2 film, which in turn affects device performance.
  • the stripping solution selected in the above step 5) in the present invention depends on the composition of the sacrificial layer, and may be water or acetone, but it must not dissolve the polymer film.
  • the osmotic energy conversion device (shown in Figure 2) of the present invention is a closed system in which a high concentration electrolyte solution is contained in the left container, corresponding to a low concentration electrolyte solution in the right container.
  • An anode or a cathode is disposed in the left container, corresponding to an anode or a cathode disposed in the right container; and an anode or cathode wire disposed in the left container leads to the outside of the left container, corresponding to the setting in the right container
  • the cathode or anode lead leads to the outside of the right container.
  • the circuit is connected through an external ammeter and a load resistor.
  • the electrolyte in the present invention is sodium chloride, potassium chloride, sea water, and river water.
  • the electrode described in the present invention is a silver chloride electrode or a platinum electrode.
  • the ion-selective nanochannel membrane of the invention has an ultra-thin film thickness and a thickness on the submicron scale, which can greatly reduce the ion transmembrane impedance, increase the ion migration rate, and increase the short-circuit current.
  • the nanochannel membrane has ultra-high ion selectivity, which can promote selective ion diffusion and diffusion potential generation, and increase the open circuit voltage.
  • Figure 1 is a process for preparing an ion-selective nanochannel membrane of the present invention.
  • Figure 2 is a diagram of an osmotic energy conversion device of the present invention.
  • a method for preparing an ion-selective nanochannel membrane comprising the steps of:
  • Sodium polystyrene sulfonate having a mass fraction of 5% was suspended on a silicon wafer at a speed of 1600 r/s for 120 s.
  • the block copolymer 1 is dissolved in the selective solvent 1, and formed on the solid substrate coated with the sacrificial layer to form a film of the block copolymer 1;
  • a poly(ethylene oxide-methacrylate) toluene solution having a mass fraction of 4% was suspended on the above-mentioned silicon wafer coated with a sacrificial layer of sodium polystyrene sulfonate at a rotation speed of 1600 r/s for 60 s.
  • Vacuum treatment was carried out for 4 hours at a high temperature of 80 ° C, followed by irradiation with ultraviolet light having a wavelength of 380 nm and a light intensity of 281 mW/cm 2 for 30 minutes.
  • the block copolymer 2 different in properties from the block copolymer 1 is dissolved in the selective solvent 2, and the film is formed on the block copolymer 1 film after the step 3) to form a block copolymer 2 film;
  • the block copolymer poly(styrene-tetravinylpyridine) was dissolved in a selective solvent dichloromethane at a mass fraction of 2%.
  • the prepared solution was suspended on the film of the block copolymer 1 treated in the step 3) at a rotation speed of 2000 rpm for 60 s, and then the film was placed in an aqueous solution of dichloroacetyl chloride for 1 day.
  • step 1) Dissolving the sacrificial layer in step 1) with a selective solvent 3 which only dissolves the sacrificial layer, and peeling off the ultrathin ion selective nanochannel film.
  • the sample obtained in the step 4) was immersed in deionized water for 30 minutes to dissolve the sacrificial layer, and the composite film was peeled off to obtain an ultrathin ion selective nanochannel film.
  • the nanochannel film obtained in this embodiment comprises two films bonded together, one layer is a poly(ethylene oxide-methacrylate) film, and the other layer is a poly(styrene-tetravinylpyridine) film; the nanochannel
  • the thickness of the film is sub-micron, with a regular nano-scale channel distribution, the number of nano-scale channels is 10 10 /cm 2 , the channel diameter is below 25 nm, and the two films have different surface charge distributions.
  • a method for preparing an ion-selective nanochannel membrane comprising the steps of:
  • Sodium polystyrene sulfonate having a mass fraction of 5% was suspended on a silicon wafer at a speed of 1600 r/s for 120 s.
  • the block copolymer 1 is dissolved in the selective solvent 1, and formed on the solid substrate coated with the sacrificial layer to form a film of the block copolymer 1;
  • a poly(ethylene oxide-methacrylate) toluene solution having a mass fraction of 4% was suspended on the above-mentioned silicon wafer coated with a sacrificial layer of sodium polystyrene sulfonate at a rotation speed of 1600 r/s for 60 s.
  • Vacuum treatment was carried out for 4 hours at a high temperature of 80 ° C, followed by irradiation with ultraviolet light having a wavelength of 380 nm and a light intensity of 281 mW/cm 2 for 30 minutes.
  • the block copolymer 2 different in properties from the block copolymer 1 is dissolved in the selective solvent 2, and the film is formed on the block copolymer 1 film after the step 3) to form a block copolymer 2 film;
  • the block copolymer poly(styrene-tetravinylpyridine) was dissolved in a selective solvent dioxane at a mass fraction of 2%.
  • the prepared solution was suspended on the film of the block copolymer 1 treated by the step 3) at a rotation speed of 2000 rpm for 60 s.
  • step 1) Dissolving the sacrificial layer in step 1) with a selective solvent 3 which only dissolves the sacrificial layer, and peeling off the ultrathin ion selective nanochannel film.
  • the sample obtained in the step 4) was immersed in deionized water for 30 minutes to dissolve the sacrificial layer, and the composite film was peeled off to obtain an ultrathin ion selective nanochannel film.
  • the nanochannel film obtained in this embodiment comprises two films bonded together, one layer is a poly(ethylene oxide-methacrylate) film, and the other layer is a poly(styrene-tetravinylpyridine) film; the nanochannel
  • the thickness of the film is sub-micron, with a regular nano-scale channel distribution, the number of nano-scale channels is 10 10 /cm 2 , the channel diameter is below 25 nm, and the two films have different surface charge distributions.
  • a method for preparing an ion-selective nanochannel membrane comprising the steps of:
  • Sodium polystyrene sulfonate having a mass fraction of 5% was suspended on a silicon wafer at a speed of 1600 r/s for 120 s.
  • the block copolymer 1 is dissolved in the selective solvent 1, and formed on the solid substrate coated with the sacrificial layer to form a film of the block copolymer 1;
  • a poly(ethylene oxide-methacrylate) toluene solution having a mass fraction of 4% was suspended on the above-mentioned silicon wafer coated with a sacrificial layer of sodium polystyrene sulfonate at a rotation speed of 1600 r/s for 60 s.
  • Vacuum treatment was carried out for 4 hours at a high temperature of 80 ° C, followed by irradiation with ultraviolet light having a wavelength of 380 nm and a light intensity of 281 mW/cm 2 for 30 minutes.
  • the block copolymer 2 different in properties from the block copolymer 1 is dissolved in the selective solvent 2, and the film is formed on the block copolymer 1 film after the step 3) to form a block copolymer 2 film;
  • the block copolymer poly(styrene-acrylic acid) was dissolved in the selective solvent chloroform at a mass fraction of 2%.
  • the prepared solution was suspended on the film of the block copolymer 1 treated by the step 3) at a rotation speed of 2000 rpm for 60 s.
  • step 1) Dissolving the sacrificial layer in step 1) with a selective solvent 3 which only dissolves the sacrificial layer, and peeling off the ultrathin ion selective nanochannel film.
  • the sample obtained in the step 4) was immersed in deionized water for 30 minutes to dissolve the sacrificial layer, and the composite film was peeled off to obtain an ultrathin ion selective nanochannel film.
  • the nanochannel film obtained in this embodiment comprises two films bonded together, one layer is a poly(ethylene oxide-methacrylate) film, and the other layer is a poly(styrene-acrylic acid) film; the thickness of the nanochannel film
  • the number of nano-scale channels is 10 10 /cm 2
  • the channel diameter is below 25 nm
  • the two films have different surface charge distributions.
  • a method for preparing an ion-selective nanochannel membrane comprising the steps of:
  • Sodium polystyrene sulfonate having a mass fraction of 5% was suspended on a silicon wafer at a speed of 1600 r/s for 120 s.
  • the block copolymer 1 is dissolved in the selective solvent 1, and formed on the solid substrate coated with the sacrificial layer to form a film of the block copolymer 1;
  • a poly(ethylene oxide-methacrylate) toluene solution having a mass fraction of 4% was suspended on the above-mentioned silicon wafer coated with a sacrificial layer of sodium polystyrene sulfonate at a rotation speed of 1600 r/s for 60 s.
  • Vacuum treatment was carried out for 4 hours at a high temperature of 80 ° C, followed by irradiation with ultraviolet light having a wavelength of 380 nm and a light intensity of 281 mW/cm 2 for 30 minutes.
  • the block copolymer 2 different in properties from the block copolymer 1 is dissolved in the selective solvent 2, and the film is formed on the block copolymer 1 film after the step 3) to form a block copolymer 2 film;
  • the block copolymer poly(styrene-N,N-dimethylaminoethyl methacrylate) was dissolved in a selective solvent dioxane at a mass fraction of 2%.
  • the prepared solution was suspended on the film of the block copolymer 1 treated by the step 3) at a rotation speed of 2000 rpm for 60 s.
  • step 1) Dissolving the sacrificial layer in step 1) with a selective solvent 3 which only dissolves the sacrificial layer, and peeling off the ultrathin ion selective nanochannel film.
  • the sample obtained in the step 4) was immersed in deionized water for 30 minutes to dissolve the sacrificial layer, and the composite film was peeled off to obtain an ultrathin ion selective nanochannel film.
  • the nanochannel film obtained in this embodiment comprises two films bonded together, one layer is a poly(ethylene oxide-methacrylate) film, and the other layer is poly(styrene-N,N-dimethylamino methacrylate).
  • Ethyl ester film the nanochannel film has a thickness of submicron, has a regular nano-scale channel distribution, the number of nano-scale channels is 10 10 /cm 2 , the channel diameter is below 25 nm, and the two-layer film Have different surface charge distributions.
  • a method for preparing an ion-selective nanochannel membrane comprising the steps of:
  • Sodium polystyrene sulfonate having a mass fraction of 5% was suspended on a silicon wafer at a speed of 1600 r/s for 120 s.
  • the block copolymer 1 is dissolved in the selective solvent 1, and formed on the solid substrate coated with the sacrificial layer to form a film of the block copolymer 1;
  • a poly(ethylene oxide-methacrylate) dichloromethane solution having a mass fraction of 6% was suspended on the above-mentioned silicon wafer coated with a sacrificial layer of sodium polystyrene sulfonate at a speed of 1000 r/s for 60 s. .
  • Vacuum treatment was carried out for 4 hours at a high temperature of 80 ° C, followed by irradiation with ultraviolet light having a wavelength of 380 nm and a light intensity of 281 mW/cm 2 for 30 minutes.
  • the block copolymer 2 different in properties from the block copolymer 1 is dissolved in the selective solvent 2, and the film is formed on the block copolymer 1 film after the step 3) to form a block copolymer 2 film;
  • the block copolymer poly(styrene-N-isopropylacrylamide) was dissolved in a selective solvent dioxane at a mass fraction of 2%.
  • the prepared solution was suspended on the film of the block copolymer 1 treated by the step 3) at a rotation speed of 2000 rpm for 60 s.
  • step 1) Dissolving the sacrificial layer in step 1) with a selective solvent 3 which only dissolves the sacrificial layer, and peeling off the ultrathin ion selective nanochannel film.
  • the sample obtained in the step 4) was immersed in deionized water for 30 minutes to dissolve the sacrificial layer, and the composite film was peeled off to obtain an ultrathin ion selective nanochannel film.
  • the nanochannel film obtained in this embodiment comprises two films bonded together, one layer is a poly(ethylene oxide-methacrylate) film, and the other layer is a poly(styrene-N-isopropylacrylamide) film;
  • the nanochannel film has a thickness of submicron, has a regular nanometer channel distribution, the number of nanochannels is 10 10 /cm 2 , the channel diameter is below 25 nm, and the two films have different surface charge distributions. .
  • a method for preparing an ion-selective nanochannel membrane comprising the steps of:
  • Sodium polystyrene sulfonate having a mass fraction of 5% was suspended on a silicon wafer at a speed of 1600 r/s for 120 s.
  • the block copolymer 1 is dissolved in the selective solvent 1, and formed on the solid substrate coated with the sacrificial layer to form a film of the block copolymer 1;
  • a poly(ethylene oxide-methacrylate) tetrahydrofuran solution having a mass fraction of 4% was suspended on the above-mentioned silicon wafer coated with a sacrificial layer of sodium polystyrene sulfonate at a rotation speed of 1600 r/s for 60 s.
  • Vacuum treatment was carried out for 2 hours at a high temperature of 150 ° C, followed by irradiation with ultraviolet light having a wavelength of 400 nm and a light intensity of 281 mW/cm 2 for 30 minutes.
  • the block copolymer 2 different in properties from the block copolymer 1 is dissolved in the selective solvent 2, and the film is formed on the block copolymer 1 film after the step 3) to form a block copolymer 2 film;
  • the block copolymer poly(styrene-ethylene oxide) was dissolved in a selective solvent of dimethylformamide at a mass fraction of 2%.
  • the prepared solution was suspended on the film of the block copolymer 1 treated by the step 3) at a rotation speed of 2000 rpm for 60 s.
  • step 1) Dissolving the sacrificial layer in step 1) with a selective solvent 3 which only dissolves the sacrificial layer, and peeling off the ultrathin ion selective nanochannel film.
  • the sample obtained in the step 4) was immersed in deionized water for 30 minutes to dissolve the sacrificial layer, and the composite film was peeled off to obtain an ultrathin ion selective nanochannel film.
  • the nanochannel film obtained in this embodiment comprises two films bonded together, one layer is a poly(ethylene oxide-methacrylate) film, and the other layer is a poly(styrene-ethylene oxide) film; the nanochannel film is The thickness is sub-micron, with a regular nano-scale channel distribution, the number of nano-scale channels is 10 10 /cm 2 , the channel diameter is below 25 nm, and the two films have different surface charge distributions.
  • a method for preparing an ion-selective nanochannel membrane comprising the steps of:
  • Cellulose acetate with a mass fraction of 5% was suspended on a silicon wafer at a speed of 1600 r/s for 120 s.
  • the block copolymer 1 is dissolved in the selective solvent 1, and formed on the solid substrate coated with the sacrificial layer to form a film of the block copolymer 1;
  • a poly(ethylene oxide-methacrylate) chloroform solution having a mass fraction of 4% was suspended on the above-mentioned silicon wafer coated with a sacrificial layer of sodium polystyrene sulfonate at a rotation speed of 1600 r/s for 60 s. .
  • Vacuum treatment was carried out for 5 hours at a high temperature of 60 ° C, followed by irradiation with ultraviolet light having a wavelength of 380 nm and a light intensity of 281 mW/cm 2 for 40 minutes.
  • the block copolymer 2 different in properties from the block copolymer 1 is dissolved in the selective solvent 2, and the film is formed on the block copolymer 1 film after the step 3) to form a block copolymer 2 film;
  • the block copolymer poly(styrene-tetravinylpyridine) was dissolved in a selective solvent tetrahydrofuran to a mass fraction of 2%.
  • the prepared solution was suspended on the film of the block copolymer 1 treated by the step 3) at a rotation speed of 2000 rpm for 60 s.
  • step 1) Dissolving the sacrificial layer in step 1) with a selective solvent 3 which only dissolves the sacrificial layer, and peeling off the ultrathin ion selective nanochannel film.
  • the sample obtained in the step 4) was immersed in acetone for 30 minutes to dissolve the sacrificial layer, and the composite film was peeled off to obtain an ultrathin ion selective nanochannel film.
  • the nanochannel film obtained in this embodiment comprises two films bonded together, one layer is a poly(ethylene oxide-methacrylate) film, and the other layer is a poly(styrene-tetravinylpyridine) film; the nanochannel
  • the thickness of the film is sub-micron, with a regular nano-scale channel distribution, the number of nano-scale channels is 10 10 /cm 2 , the channel diameter is below 25 nm, and the two films have different surface charge distributions.
  • a method for preparing an ion-selective nanochannel membrane comprising the steps of:
  • Sodium polystyrene sulfonate having a mass fraction of 5% was suspended on a silicon wafer at a speed of 1600 r/s for 120 s.
  • the block copolymer 1 is dissolved in the selective solvent 1, and formed on the solid substrate coated with the sacrificial layer to form a film of the block copolymer 1;
  • a poly(ethylene oxide-methacrylate) toluene solution having a mass fraction of 4% was suspended on the above-mentioned silicon wafer coated with a sacrificial layer of sodium polystyrene sulfonate at a rotation speed of 1600 r/s for 60 s.
  • Vacuum treatment was carried out for 4 hours at a high temperature of 80 ° C, followed by irradiation with ultraviolet light having a wavelength of 330 nm and a light intensity of 500 mW/cm 2 for 50 minutes.
  • the block copolymer 2 different in properties from the block copolymer 1 is dissolved in the selective solvent 2, and the film is formed on the block copolymer 1 film after the step 3) to form a block copolymer 2 film;
  • the block copolymer poly(styrene-tetravinylpyridine) was dissolved in a selective solvent toluene at a mass fraction of 2%.
  • the prepared solution was suspended on the film of the block copolymer 1 treated by the step 3) at a rotation speed of 2000 rpm for 60 s.
  • step 1) Dissolving the sacrificial layer in step 1) with a selective solvent 3 which only dissolves the sacrificial layer, and peeling off the ultrathin ion selective nanochannel film.
  • the sample obtained in the step 4) was immersed in deionized water for 30 minutes to dissolve the sacrificial layer, and the composite film was peeled off to obtain an ultrathin ion selective nanochannel film.
  • the nanochannel film obtained in this embodiment comprises two films bonded together, one layer is a poly(ethylene oxide-methacrylate) film, and the other layer is a poly(styrene-tetravinylpyridine) film; the nanochannel
  • the thickness of the film is sub-micron, with a regular nano-scale channel distribution, the number of nano-scale channels is 10 10 /cm 2 , the channel diameter is below 25 nm, and the two films have different surface charge distributions.
  • a method for preparing an ion-selective nanochannel membrane comprising the steps of:
  • Sodium polystyrene sulfonate having a mass fraction of 5% was suspended on a silicon wafer at a speed of 1600 r/s for 120 s.
  • the block copolymer 1 is dissolved in the selective solvent 1, and formed on the solid substrate coated with the sacrificial layer to form a film of the block copolymer 1;
  • a poly(ethylene oxide-methacrylate) toluene solution having a mass fraction of 4% was suspended on the above-mentioned silicon wafer coated with a sacrificial layer of sodium polystyrene sulfonate at a rotation speed of 1600 r/s for 60 s.
  • Vacuum treatment was carried out for 4 hours at a high temperature of 80 ° C, followed by irradiation with ultraviolet light having a wavelength of 380 nm and a light intensity of 281 mW/cm 2 for 30 minutes.
  • the block copolymer 2 different in properties from the block copolymer 1 is dissolved in the selective solvent 2, and the film is formed on the block copolymer 1 film after the step 3) to form a block copolymer 2 film;
  • the block copolymer poly(styrene-tetravinylpyridine) was dissolved in a selective solvent dichloromethane at a mass fraction of 2%.
  • the prepared solution was suspended on the film of the block copolymer 1 treated in the step 3) at a rotation speed of 2000 rpm for 60 s, and then the film was placed in an aqueous solution of dichloroacetyl chloride for 1 day.
  • step 1) Dissolving the sacrificial layer in step 1) with a selective solvent 3 which only dissolves the sacrificial layer, and peeling off the ultrathin ion selective nanochannel film.
  • the sample obtained in the step 4) was immersed in deionized water for 30 minutes to dissolve the sacrificial layer, and the composite film was peeled off to obtain an ultrathin ion selective nanochannel film.
  • the nanochannel film obtained in this embodiment comprises two films bonded together, one layer is a poly(ethylene oxide-methacrylate) film, and the other layer is a poly(styrene-tetravinylpyridine) film; the nanochannel
  • the thickness of the film is sub-micron, with a regular nano-scale channel distribution, the number of nano-scale channels is 10 10 /cm 2 , the channel diameter is below 25 nm, and the two films have different surface charge distributions.
  • the ion-selective nanochannel membrane of the invention has an ultra-thin film thickness and a thickness on the submicron scale, which can greatly reduce the ion transmembrane impedance, increase the ion migration rate, and increase the short-circuit current.
  • the nanochannel membrane has ultra-high ion selectivity, which can promote selective ion diffusion and diffusion potential generation, and increase the open circuit voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Graft Or Block Polymers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

一种离子选择性的纳米通道膜及其制备方法,所述纳米通道膜包括结合在一起两层膜,一层为嵌段共聚物1膜,另一层为嵌段共聚物2膜;所述纳米通道膜的厚度为亚微米级别,其具有规则的纳米级通道分布和高的孔隙率,通道直径在25纳米以下,并且两层膜有着不同的表面电荷分布。该膜具有超高离子通量,超强离子选择性,有着亚微米级别的厚度,表现出了很好的渗透能量转换性能。

Description

一种离子选择性的纳米通道膜及其制备方法 技术领域
本发明属于能源技术领域,具体地,本发明涉及一种离子选择性的纳米通道膜及其制备方法。
背景技术
随着人类社会的高速发展,不可再生的化石能源濒临枯竭,面对世界范围内的能源危机,人们必须要利用新方法、新技术来寻找和利用自然界广泛存在的可再生清洁能源。渗透能量是一种存在于不同浓度水体系中的化学电位差能。
技术问题
目前,传统的渗透能量收集设备(即反向电渗析设备)是由一系列交错排列的阴离子交换膜和阳离子交换膜组成的,离子传输过程中所遇到的空间位阻较大,这极大限制了能量转化设备的能源输出密度;另外昂贵的制造成本以及复杂的制作工艺也制约了其的大规模推广和普及使用。与传统的离子交换膜相比,具有较好离子选择性以及较高离子通量的离子通道薄膜在渗透能利用方面展现了较好的潜力。然而,现在制备的离子通道薄膜的离子通量以及选择性由于其自身厚度以及功能团的限制远远没有达到预期,也制约了其应用发展。因此,急需发展一种超薄的,具有高离子通量同时兼顾高选择性的离子通道薄膜。
技术解决方案
本发明的目的在于,提供一种离子选择性的纳米通道膜,该膜具有超高离子通量,超强离子选择性,该膜有着亚微米级别的厚度,表现出了很好的渗透能量转换性能。
为达到上述目的,本发明采用了如下的技术方案:
本发明利用两种性质不同的嵌段共聚物分子,通过杂化方式来构筑非对称的聚合物薄膜。
一种离子选择性的纳米通道膜,所述纳米通道膜包括结合在一起两层膜,一层为嵌段共聚物1膜,另一层为嵌段共聚物2膜;所述纳米通道膜的厚度为亚微米级别,具有规则的纳米级通道分布,纳米级通道的个数为10 10/cm 2级别,通道直径在25纳米以下,并且两层膜有着不同的表面电荷分布。
优选地,所述嵌段共聚物1膜由聚(氧化乙烯-甲基丙烯酸酯))采用悬涂法、浸渍提拉法或刮刀法制成。
优选地,所述嵌段共聚物2膜由聚(苯乙烯-四乙烯基吡啶)、聚(苯乙烯-丙烯酸)、聚(苯乙烯-甲基丙烯酸N,N-二甲基氨基乙酯)、聚(苯乙烯- N-异丙基丙烯酰胺)、聚(苯乙烯-氧化乙烯)中的任一种采用悬涂法、浸渍提拉法或刮刀法制成。
本发明还提供了上述的一种离子选择性的纳米通道膜的制备方法,所述制备方法包括如下步骤:
1)在固态基底上成膜制备牺牲层,得到涂有牺牲层的固态基底;
2)嵌段共聚物1溶于选择性溶剂1,在涂有牺牲层的固态基底上成膜形成嵌段共聚物1膜;
3)热处理以及光处理嵌段共聚物1膜;
4)嵌段共聚物2溶于选择性溶剂2,在步骤3)处理后的嵌段共聚物1膜上再次成膜形成嵌段共聚物2膜;
5)采用仅溶解牺牲层的选择性溶剂3溶解步骤1)中的牺牲层,剥离出超薄离子选择性的纳米通道膜。
优选地,所述固体基底为硅片。
优选地,所述牺牲层采用聚苯乙烯磺酸钠或醋酸纤维素制备。
优选地,所述嵌段共聚物1为聚(氧化乙烯-甲基丙烯酸酯);
所述选择性溶剂1为甲苯、三氯甲烷、二氯甲烷以及四氢呋喃中的一种。
优选地,所述步骤3)中的热处理以及光处理具体为:
热处理的温度在60到150摄氏度之间,热处理时间≥2个小时;
光处理波长在330到400纳米之间,光强度在100到500毫瓦每平方厘米之间,光照时间≥30分钟。
优选地,所述嵌段共聚物2为聚(苯乙烯-四乙烯基吡啶)、聚(苯乙烯-丙烯酸)、聚(苯乙烯-甲基丙烯酸N,N-二甲基氨基乙酯)、聚(苯乙烯- N-异丙基丙烯酰胺)、聚(苯乙烯-氧化乙烯)中的任一种;
所述选择性溶剂2为三氯甲烷、二氯甲烷、甲苯、四氢呋喃、二氧六环、二甲基甲酰胺中的一种或多种。
优选地,所述步骤2)和步骤4)的成膜方法为悬涂法、浸渍提拉法、刮刀法中的一种。
本发明中的上述步骤1)中的牺牲层是成膜后需要去除的,可以是水溶性的聚苯乙烯磺酸钠,也可以是可溶于丙酮的醋酸纤维素等,但是溶解牺牲层的溶剂一定不能对高分子聚合物膜产生影响,比如会影响薄膜的形貌。
本发明中的上述步骤2)中所用的嵌段共聚物分子1是含有可光交联侧链的聚(氧化乙烯-甲基丙烯酸酯)。
本发明中的上述步骤4)用于溶解嵌段共聚物的溶剂包括很多种,可以是三氯甲烷、甲苯、四氢呋喃、二氧六环、二甲基甲酰胺等或者混合溶剂如四氢呋喃/二氯甲烷等,不同溶剂会造成不同的嵌段聚合物2薄膜表面形貌,进而影响器件性能。
本发明中的上述步骤5)中所选用的剥离溶液取决于牺牲层的成分,可以是水,也可以是丙酮,但是其一定不能对高分子膜有溶解作用。
本发明中的渗透能量转换装置(如图2所示)是一个封闭体系,左侧容器中装有高浓度的电解质溶液,对应于右侧容器中装有低浓度的电解质溶液。在左侧容器中设置有阳极或阴极,对应于在右侧容器中设置有阳极或阴极;并且左侧容器中设置的阳极或阴极的导线通向左侧容器外,对应于右侧容器中设置的阴极或阳极的导线通向右侧容器外。通过外接电流表以及负载电阻将电路连通。
本发明中的所述的电解质为氯化钠,氯化钾,海水,河水。
    本发明中所述的电极为银氯化银电极或者铂电极。
有益效果
本发明的离子选择性的纳米通道膜有超薄的膜厚,厚度在亚微米尺度,可以大大减小离子的跨膜阻抗,提高离子的迁移速率,增大短路电流。同时该纳米通道膜有着超高的离子选择性,可以促进选择性的离子扩散以及扩散电势的产生,增大开路电压。通过优化两种嵌段共聚物分子的组成,在50倍浓度梯度下(模仿海水和河水混合),我们可以将功率密度提高到4.53W/m 2,这是目前世界上报道的最大值。
附图说明
图1是本发明离子选择性的纳米通道膜的制备流程。
图2是本发明的渗透能量转换装置图。
本发明的最佳实施方式
实施例8
如图1所示,一种离子选择性的纳米通道膜的制备方法,所述方法包括如下步骤:
1)在固态基底上成膜制备牺牲层,得到涂有牺牲层的固态基底;
将质量分数为5%的聚苯乙烯磺酸钠悬涂在硅片上,转速1600r/s,时间120 s。
2)嵌段共聚物1溶于选择性溶剂1,在涂有牺牲层的固态基底上成膜形成嵌段共聚物1膜;
将质量分数为4%的聚(氧化乙烯-甲基丙烯酸酯)甲苯溶液悬涂于上述涂有聚苯乙烯磺酸钠牺牲层的硅片上,转速为1600 r/s,时间60 s。
3)热处理以及光处理嵌段共聚物1膜;
在80摄氏度高温下真空处理4小时,接下来用波长为380 nm,光强为281 mW/cm 2的紫外光照射30分钟。
4)与嵌段共聚物1性质不同的嵌段共聚物2溶于选择性溶剂2,在步骤3)处理后的嵌段共聚物1膜上再次成膜形成嵌段共聚物2膜;
将嵌段共聚物聚(苯乙烯-四乙烯基吡啶)溶于选择性溶剂二氯甲烷中,质量分数为2%。将所配置的溶液悬涂于经过步骤3)处理后的嵌段共聚物1膜上,转速为2000r,时间为60s, 然后将膜在置于二氯乙酰水溶液中放置1天。
5)采用仅溶解牺牲层的选择性溶剂3溶解步骤1)中的牺牲层,剥离出超薄离子选择性的纳米通道膜。
将步骤4)所得的样品浸泡在去离子水中30分钟,溶解牺牲层,剥离复合膜即得到超薄离子选择性的纳米通道膜。
本实施例所得纳米通道膜包括结合在一起两层膜,一层为聚(氧化乙烯-甲基丙烯酸酯)膜,另一层为聚(苯乙烯-四乙烯基吡啶)膜;所述纳米通道膜的厚度为亚微米级别,具有规则的纳米级通道分布,纳米级通道的个数为10 10/cm 2级别,通道直径在25纳米以下,并且两层膜有着不同的表面电荷分布。
渗透能量转换性能测试。
测试池子左侧放置0.5 M NaCl(pH 7.1)溶液,右侧放置0.01 M NaCl(pH 7.1)溶液,嵌段共聚物1侧对应低浓度NaCl(pH7.1)溶液,最大的输出功率约为4.53W/m 2
本发明的实施方式
实施例1
如图1所示,一种离子选择性的纳米通道膜的制备方法,所述方法包括如下步骤:
1)在固态基底上成膜制备牺牲层,得到涂有牺牲层的固态基底;
将质量分数为5%的聚苯乙烯磺酸钠悬涂在硅片上,转速1600r/s,时间120 s。
2)嵌段共聚物1溶于选择性溶剂1,在涂有牺牲层的固态基底上成膜形成嵌段共聚物1膜;
将质量分数为4%的聚(氧化乙烯-甲基丙烯酸酯)甲苯溶液悬涂于上述涂有聚苯乙烯磺酸钠牺牲层的硅片上,转速为1600 r/s,时间60 s。
3)热处理以及光处理嵌段共聚物1膜;
在80摄氏度高温下真空处理4小时,接下来用波长为380 nm,光强为281 mW/cm 2的紫外光照射30分钟。
4)与嵌段共聚物1性质不同的嵌段共聚物2溶于选择性溶剂2,在步骤3)处理后的嵌段共聚物1膜上再次成膜形成嵌段共聚物2膜;
将嵌段共聚物聚(苯乙烯-四乙烯基吡啶)溶于选择性溶剂二氧六环中,质量分数为2%。将所配置的溶液悬涂于经过步骤3)处理后的嵌段共聚物1膜上,转速为2000r,时间为60s。
5)采用仅溶解牺牲层的选择性溶剂3溶解步骤1)中的牺牲层,剥离出超薄离子选择性的纳米通道膜。
将步骤4)所得的样品浸泡在去离子水中30分钟,溶解牺牲层,剥离复合膜即得到超薄离子选择性的纳米通道膜。
本实施例所得纳米通道膜包括结合在一起两层膜,一层为聚(氧化乙烯-甲基丙烯酸酯)膜,另一层为聚(苯乙烯-四乙烯基吡啶)膜;所述纳米通道膜的厚度为亚微米级别,具有规则的纳米级通道分布,纳米级通道的个数为10 10/cm 2级别,通道直径在25纳米以下,并且两层膜有着不同的表面电荷分布。
渗透能量转换性能测试。
测试池子左侧放置0.5 M NaCl(pH 4.3)溶液,右侧放置0.01 M NaCl(pH 4.3)溶液,嵌段共聚物1侧对应低浓度NaCl(pH4.3)溶液,最大的输出功率约为3.1 W/m 2
实施例2
如图1所示,一种离子选择性的纳米通道膜的制备方法,所述方法包括如下步骤:
1)在固态基底上成膜制备牺牲层,得到涂有牺牲层的固态基底;
将质量分数为5%的聚苯乙烯磺酸钠悬涂在硅片上,转速1600r/s,时间120 s。
2)嵌段共聚物1溶于选择性溶剂1,在涂有牺牲层的固态基底上成膜形成嵌段共聚物1膜;
将质量分数为4%的聚(氧化乙烯-甲基丙烯酸酯)甲苯溶液悬涂于上述涂有聚苯乙烯磺酸钠牺牲层的硅片上,转速为1600 r/s,时间60 s。
3)热处理以及光处理嵌段共聚物1膜;
在80摄氏度高温下真空处理4小时,接下来用波长为380 nm,光强为281 mW/cm 2的紫外光照射30分钟。
4)与嵌段共聚物1性质不同的嵌段共聚物2溶于选择性溶剂2,在步骤3)处理后的嵌段共聚物1膜上再次成膜形成嵌段共聚物2膜;
将嵌段共聚物聚(苯乙烯-丙烯酸)溶于选择性溶剂三氯甲烷中,质量分数为2%。将所配置的溶液悬涂于经过步骤3)处理后的嵌段共聚物1膜上,转速为2000r,时间为60s。
5)采用仅溶解牺牲层的选择性溶剂3溶解步骤1)中的牺牲层,剥离出超薄离子选择性的纳米通道膜。
将步骤4)所得的样品浸泡在去离子水中30分钟,溶解牺牲层,剥离复合膜即得到超薄离子选择性的纳米通道膜。
本实施例所得纳米通道膜包括结合在一起两层膜,一层为聚(氧化乙烯-甲基丙烯酸酯)膜,另一层为聚(苯乙烯-丙烯酸)膜;所述纳米通道膜的厚度为亚微米级别,具有规则的纳米级通道分布,纳米级通道的个数为10 10/cm 2级别,通道直径在25纳米以下,并且两层膜有着不同的表面电荷分布。
渗透能量转换性能测试。
测试池子左侧放置0.5 M NaCl(pH 4.3)溶液,右侧放置0.001 M NaCl(pH 4.3)溶液,嵌段共聚物1侧对应低浓度NaCl(pH4.3)溶液,最大的输出功率约为4.9 W/m 2
实施例3
如图1所示,一种离子选择性的纳米通道膜的制备方法,所述方法包括如下步骤:
1)在固态基底上成膜制备牺牲层,得到涂有牺牲层的固态基底;
将质量分数为5%的聚苯乙烯磺酸钠悬涂在硅片上,转速1600r/s,时间120 s。
2)嵌段共聚物1溶于选择性溶剂1,在涂有牺牲层的固态基底上成膜形成嵌段共聚物1膜;
将质量分数为4%的聚(氧化乙烯-甲基丙烯酸酯)甲苯溶液悬涂于上述涂有聚苯乙烯磺酸钠牺牲层的硅片上,转速为1600 r/s,时间60 s。
3)热处理以及光处理嵌段共聚物1膜;
在80摄氏度高温下真空处理4小时,接下来用波长为380 nm,光强为281 mW/cm 2的紫外光照射30分钟。
4)与嵌段共聚物1性质不同的嵌段共聚物2溶于选择性溶剂2,在步骤3)处理后的嵌段共聚物1膜上再次成膜形成嵌段共聚物2膜;
将嵌段共聚物聚(苯乙烯-甲基丙烯酸N,N-二甲基氨基乙酯)溶于选择性溶剂二氧六环中,质量分数为2%。将所配置的溶液悬涂于经过步骤3)处理后的嵌段共聚物1膜上,转速为2000r,时间为60s。
5)采用仅溶解牺牲层的选择性溶剂3溶解步骤1)中的牺牲层,剥离出超薄离子选择性的纳米通道膜。
将步骤4)所得的样品浸泡在去离子水中30分钟,溶解牺牲层,剥离复合膜即得到超薄离子选择性的纳米通道膜。
本实施例所得纳米通道膜包括结合在一起两层膜,一层为聚(氧化乙烯-甲基丙烯酸酯)膜,另一层为聚(苯乙烯-甲基丙烯酸N,N-二甲基氨基乙酯)膜;所述纳米通道膜的厚度为亚微米级别,具有规则的纳米级通道分布,纳米级通道的个数为10 10/cm 2级别,通道直径在25纳米以下,并且两层膜有着不同的表面电荷分布。
渗透能量转换性能测试。
测试池子左侧放置0.5 M NaCl(pH 4.3)溶液,右侧放置0.01 M NaCl(pH 4.3)溶液,嵌段共聚物1侧对应低浓度NaCl(pH4.3)溶液,最大的输出功率约为3.38 W/m 2
实施例4
如图1所示,一种离子选择性的纳米通道膜的制备方法,所述方法包括如下步骤:
1)在固态基底上成膜制备牺牲层,得到涂有牺牲层的固态基底;
将质量分数为5%的聚苯乙烯磺酸钠悬涂在硅片上,转速1600r/s,时间120 s。
2)嵌段共聚物1溶于选择性溶剂1,在涂有牺牲层的固态基底上成膜形成嵌段共聚物1膜;
将质量分数为6%的聚(氧化乙烯-甲基丙烯酸酯)二氯甲烷溶液悬涂于上述涂有聚苯乙烯磺酸钠牺牲层的硅片上,转速为1000 r/s,时间60 s。
3)热处理以及光处理嵌段共聚物1膜;
在80摄氏度高温下真空处理4小时,接下来用波长为380 nm,光强为281 mW/cm 2的紫外光照射30分钟。
4)与嵌段共聚物1性质不同的嵌段共聚物2溶于选择性溶剂2,在步骤3)处理后的嵌段共聚物1膜上再次成膜形成嵌段共聚物2膜;
将嵌段共聚物聚(苯乙烯-N-异丙基丙烯酰胺)溶于选择性溶剂二氧六环中,质量分数为2%。将所配置的溶液悬涂于经过步骤3)处理后的嵌段共聚物1膜上,转速为2000r,时间为60s。
5)采用仅溶解牺牲层的选择性溶剂3溶解步骤1)中的牺牲层,剥离出超薄离子选择性的纳米通道膜。
将步骤4)所得的样品浸泡在去离子水中30分钟,溶解牺牲层,剥离复合膜即得到超薄离子选择性的纳米通道膜。
本实施例所得纳米通道膜包括结合在一起两层膜,一层为聚(氧化乙烯-甲基丙烯酸酯)膜,另一层为聚(苯乙烯-N-异丙基丙烯酰胺)膜;所述纳米通道膜的厚度为亚微米级别,具有规则的纳米级通道分布,纳米级通道的个数为10 10/cm 2级别,通道直径在25纳米以下,并且两层膜有着不同的表面电荷分布。
渗透能量转换性能测试。
测试池子左侧放置0.5 M NaCl(pH 4.3)溶液,右侧放置0.01 M NaCl(pH 4.3)溶液,嵌段共聚物1侧对应低浓度NaCl(pH4.3)溶液,最大的输出功率约为3.3 W/m 2
实施例5
如图1所示,一种离子选择性的纳米通道膜的制备方法,所述方法包括如下步骤:
1)在固态基底上成膜制备牺牲层,得到涂有牺牲层的固态基底;
将质量分数为5%的聚苯乙烯磺酸钠悬涂在硅片上,转速1600r/s,时间120 s。
2)嵌段共聚物1溶于选择性溶剂1,在涂有牺牲层的固态基底上成膜形成嵌段共聚物1膜;
将质量分数为4%的聚(氧化乙烯-甲基丙烯酸酯)四氢呋喃溶液悬涂于上述涂有聚苯乙烯磺酸钠牺牲层的硅片上,转速为1600 r/s,时间60 s。
3)热处理以及光处理嵌段共聚物1膜;
在150摄氏度高温下真空处理2小时,接下来用波长为400 nm,光强为281 mW/cm 2的紫外光照射30分钟。
4)与嵌段共聚物1性质不同的嵌段共聚物2溶于选择性溶剂2,在步骤3)处理后的嵌段共聚物1膜上再次成膜形成嵌段共聚物2膜;
将嵌段共聚物聚(苯乙烯-氧化乙烯)溶于选择性溶剂二甲基甲酰胺中,质量分数为2%。将所配置的溶液悬涂于经过步骤3)处理后的嵌段共聚物1膜上,转速为2000r,时间为60s。
5)采用仅溶解牺牲层的选择性溶剂3溶解步骤1)中的牺牲层,剥离出超薄离子选择性的纳米通道膜。
将步骤4)所得的样品浸泡在去离子水中30分钟,溶解牺牲层,剥离复合膜即得到超薄离子选择性的纳米通道膜。
本实施例所得纳米通道膜包括结合在一起两层膜,一层为聚(氧化乙烯-甲基丙烯酸酯)膜,另一层为聚(苯乙烯-氧化乙烯)膜;所述纳米通道膜的厚度为亚微米级别,具有规则的纳米级通道分布,纳米级通道的个数为10 10/cm 2级别,通道直径在25纳米以下,并且两层膜有着不同的表面电荷分布。
渗透能量转换性能测试。
测试池子左侧放置0.5 M NaCl(pH 4.3)溶液,右侧放置0.01 M NaCl(pH 4.3)溶液,嵌段共聚物2侧对应低浓度NaCl(pH4.3)溶液,最大的输出功率约为3.1 W/m 2
实施例6
如图1所示,一种离子选择性的纳米通道膜的制备方法,所述方法包括如下步骤:
1)在固态基底上成膜制备牺牲层,得到涂有牺牲层的固态基底;
将质量分数为5%的醋酸纤维素悬涂在硅片上,转速1600r/s,时间120 s。
2)嵌段共聚物1溶于选择性溶剂1,在涂有牺牲层的固态基底上成膜形成嵌段共聚物1膜;
将质量分数为4%的聚(氧化乙烯-甲基丙烯酸酯)三氯甲烷溶液悬涂于上述涂有聚苯乙烯磺酸钠牺牲层的硅片上,转速为1600 r/s,时间60 s。
3)热处理以及光处理嵌段共聚物1膜;
在60摄氏度高温下真空处理5小时,接下来用波长为380 nm,光强为281 mW/cm 2的紫外光照射40分钟。
4)与嵌段共聚物1性质不同的嵌段共聚物2溶于选择性溶剂2,在步骤3)处理后的嵌段共聚物1膜上再次成膜形成嵌段共聚物2膜;
将嵌段共聚物聚(苯乙烯-四乙烯基吡啶)溶于选择性溶剂四氢呋喃中,质量分数为2%。将所配置的溶液悬涂于经过步骤3)处理后的嵌段共聚物1膜上,转速为2000r,时间为60s。
5)采用仅溶解牺牲层的选择性溶剂3溶解步骤1)中的牺牲层,剥离出超薄离子选择性的纳米通道膜。
将步骤4)所得的样品浸泡在丙酮中30分钟,溶解牺牲层,剥离复合膜即得到超薄离子选择性的纳米通道膜。
本实施例所得纳米通道膜包括结合在一起两层膜,一层为聚(氧化乙烯-甲基丙烯酸酯)膜,另一层为聚(苯乙烯-四乙烯基吡啶)膜;所述纳米通道膜的厚度为亚微米级别,具有规则的纳米级通道分布,纳米级通道的个数为10 10/cm 2级别,通道直径在25纳米以下,并且两层膜有着不同的表面电荷分布。
渗透能量转换性能测试。
测试池子左侧放置0.5 M KCl(pH 4.3)溶液,右侧放置0.01 M KCl(pH 4.3)溶液,嵌段共聚物1侧对应低浓度KCl(pH4.3)溶液,最大的输出功率约为3.7 W/m 2
实施例7
如图1所示,一种离子选择性的纳米通道膜的制备方法,所述方法包括如下步骤:
1)在固态基底上成膜制备牺牲层,得到涂有牺牲层的固态基底;
将质量分数为5%的聚苯乙烯磺酸钠悬涂在硅片上,转速1600r/s,时间120 s。
2)嵌段共聚物1溶于选择性溶剂1,在涂有牺牲层的固态基底上成膜形成嵌段共聚物1膜;
将质量分数为4%的聚(氧化乙烯-甲基丙烯酸酯)甲苯溶液悬涂于上述涂有聚苯乙烯磺酸钠牺牲层的硅片上,转速为1600 r/s,时间60 s。
3)热处理以及光处理嵌段共聚物1膜;
在80摄氏度高温下真空处理4小时,接下来用波长为330 nm,光强为500mW/cm 2的紫外光照射50分钟。
4)与嵌段共聚物1性质不同的嵌段共聚物2溶于选择性溶剂2,在步骤3)处理后的嵌段共聚物1膜上再次成膜形成嵌段共聚物2膜;
将嵌段共聚物聚(苯乙烯-四乙烯基吡啶)溶于选择性溶剂甲苯中,质量分数为2%。将所配置的溶液悬涂于经过步骤3)处理后的嵌段共聚物1膜上,转速为2000r,时间为60s。
5)采用仅溶解牺牲层的选择性溶剂3溶解步骤1)中的牺牲层,剥离出超薄离子选择性的纳米通道膜。
将步骤4)所得的样品浸泡在去离子水中30分钟,溶解牺牲层,剥离复合膜即得到超薄离子选择性的纳米通道膜。
本实施例所得纳米通道膜包括结合在一起两层膜,一层为聚(氧化乙烯-甲基丙烯酸酯)膜,另一层为聚(苯乙烯-四乙烯基吡啶)膜;所述纳米通道膜的厚度为亚微米级别,具有规则的纳米级通道分布,纳米级通道的个数为10 10/cm 2级别,通道直径在25纳米以下,并且两层膜有着不同的表面电荷分布。
渗透能量转换性能测试。
测试池子左侧放置0.5 M NaCl(pH 7.1)溶液,右侧放置0.01 M NaCl(pH 7.1)溶液,嵌段共聚物1侧对应低浓度NaCl(pH7.1)溶液,最大的输出功率约为2.0W/m 2
实施例8
如图1所示,一种离子选择性的纳米通道膜的制备方法,所述方法包括如下步骤:
1)在固态基底上成膜制备牺牲层,得到涂有牺牲层的固态基底;
将质量分数为5%的聚苯乙烯磺酸钠悬涂在硅片上,转速1600r/s,时间120 s。
2)嵌段共聚物1溶于选择性溶剂1,在涂有牺牲层的固态基底上成膜形成嵌段共聚物1膜;
将质量分数为4%的聚(氧化乙烯-甲基丙烯酸酯)甲苯溶液悬涂于上述涂有聚苯乙烯磺酸钠牺牲层的硅片上,转速为1600 r/s,时间60 s。
3)热处理以及光处理嵌段共聚物1膜;
在80摄氏度高温下真空处理4小时,接下来用波长为380 nm,光强为281 mW/cm 2的紫外光照射30分钟。
4)与嵌段共聚物1性质不同的嵌段共聚物2溶于选择性溶剂2,在步骤3)处理后的嵌段共聚物1膜上再次成膜形成嵌段共聚物2膜;
将嵌段共聚物聚(苯乙烯-四乙烯基吡啶)溶于选择性溶剂二氯甲烷中,质量分数为2%。将所配置的溶液悬涂于经过步骤3)处理后的嵌段共聚物1膜上,转速为2000r,时间为60s, 然后将膜在置于二氯乙酰水溶液中放置1天。
5)采用仅溶解牺牲层的选择性溶剂3溶解步骤1)中的牺牲层,剥离出超薄离子选择性的纳米通道膜。
将步骤4)所得的样品浸泡在去离子水中30分钟,溶解牺牲层,剥离复合膜即得到超薄离子选择性的纳米通道膜。
本实施例所得纳米通道膜包括结合在一起两层膜,一层为聚(氧化乙烯-甲基丙烯酸酯)膜,另一层为聚(苯乙烯-四乙烯基吡啶)膜;所述纳米通道膜的厚度为亚微米级别,具有规则的纳米级通道分布,纳米级通道的个数为10 10/cm 2级别,通道直径在25纳米以下,并且两层膜有着不同的表面电荷分布。
渗透能量转换性能测试。
测试池子左侧放置0.5 M NaCl(pH 7.1)溶液,右侧放置0.01 M NaCl(pH 7.1)溶液,嵌段共聚物1侧对应低浓度NaCl(pH7.1)溶液,最大的输出功率约为4.53W/m 2
工业实用性
本发明的离子选择性的纳米通道膜有超薄的膜厚,厚度在亚微米尺度,可以大大减小离子的跨膜阻抗,提高离子的迁移速率,增大短路电流。同时该纳米通道膜有着超高的离子选择性,可以促进选择性的离子扩散以及扩散电势的产生,增大开路电压。

Claims (10)

  1. 一种离子选择性的纳米通道膜,其特征在于,所述纳米通道膜包括结合在一起两层膜,一层为嵌段共聚物1膜,另一层为嵌段共聚物2膜;所述纳米通道膜的厚度为亚微米级别,具有规则的纳米级通道分布,纳米级通道的个数为10 10/cm 2级别,通道直径在25纳米以下,并且两层膜有着不同的表面电荷分布。
  2. 根据权利要求1所述的一种离子选择性的纳米通道膜,其特征在于,所述嵌段共聚物1膜由聚(氧化乙烯-甲基丙烯酸酯)采用悬涂法、浸渍提拉法或刮刀法制成。
  3. 根据权利要求1所述的一种离子选择性的纳米通道膜,其特征在于,所述嵌段共聚物2膜由聚(苯乙烯-四乙烯基吡啶)、聚(苯乙烯-丙烯酸)、聚(苯乙烯-甲基丙烯酸N,N-二甲基氨基乙酯)、聚(苯乙烯- N-异丙基丙烯酰胺)、聚(苯乙烯-氧化乙烯)中的任一种采用悬涂法、浸渍提拉法或刮刀法制成。
  4. 权利要求1所述的一种离子选择性的纳米通道膜的制备方法,所述制备方法包括如下步骤:
    1)在固态基底上成膜制备牺牲层,得到涂有牺牲层的固态基底;
    2)嵌段共聚物1溶于选择性溶剂1,在涂有牺牲层的固态基底上成膜形成嵌段共聚物1膜;
    3)热处理以及光处理嵌段共聚物1膜;
    4)嵌段共聚物2溶于选择性溶剂2,在步骤3)处理后的嵌段共聚物1膜上再次成膜形成嵌段共聚物2膜;
    5)采用仅溶解牺牲层的选择性溶剂3溶解步骤1)中的牺牲层,剥离出超薄离子选择性的纳米通道膜。
  5. 根据权利要求4所述的一种离子选择性的纳米通道膜的制备方法,其特征在于,所述固体基底为硅片。
  6. 根据权利要求4所述的一种离子选择性的纳米通道膜的制备方法,其特征在于,所述牺牲层采用聚苯乙烯磺酸钠或醋酸纤维素制备。
  7. 根据权利要求4所述的一种离子选择性的纳米通道膜的制备方法,其特征在于,所述嵌段共聚物1为聚(氧化乙烯-甲基丙烯酸酯);
    所述选择性溶剂1为甲苯、三氯甲烷、二氯甲烷以及四氢呋喃中的一种。
  8. 根据权利要求4所述的一种离子选择性的纳米通道膜的制备方法,其特征在于,所述步骤3)中的热处理以及光处理具体为:
    热处理的温度在60到150摄氏度之间,热处理时间≥2个小时;
    光处理波长在330到400纳米之间,光强度在100到500毫瓦每平方厘米之间,光照时间≥30分钟。
  9. 根据权利要求4所述的一种离子选择性的纳米通道膜的制备方法,其特征在于,所述嵌段共聚物2为聚(苯乙烯-四乙烯基吡啶)、聚(苯乙烯-丙烯酸)、聚(苯乙烯-甲基丙烯酸N,N-二甲基氨基乙酯)、聚(苯乙烯- N-异丙基丙烯酰胺)、聚(苯乙烯-氧化乙烯)中的任一种;
    所述选择性溶剂2为三氯甲烷、二氯甲烷、甲苯、四氢呋喃、二氧六环、二甲基甲酰胺中的一种或多种。
  10. 根据权利要求4所述的一种离子选择性的纳米通道膜的制备方法,其特征在于,所述步骤2)和步骤4)的成膜方法为悬涂法、浸渍提拉法、刮刀法中的一种。
PCT/CN2018/085928 2017-05-24 2018-05-08 一种离子选择性的纳米通道膜及其制备方法 WO2018214722A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710378197.6A CN108948387B (zh) 2017-05-24 2017-05-24 一种离子选择性的纳米通道膜及其制备方法
CN201710378197.6 2017-05-24

Publications (1)

Publication Number Publication Date
WO2018214722A1 true WO2018214722A1 (zh) 2018-11-29

Family

ID=64395256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085928 WO2018214722A1 (zh) 2017-05-24 2018-05-08 一种离子选择性的纳米通道膜及其制备方法

Country Status (2)

Country Link
CN (1) CN108948387B (zh)
WO (1) WO2018214722A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560179B (zh) * 2019-09-09 2021-01-08 北京航空航天大学 一种用于盐差发电的高密度杂化梯级孔膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110153006A1 (en) * 2009-12-21 2011-06-23 Laura Sager Biocorrodible implants having a functionalized coating
CN102874743A (zh) * 2011-07-12 2013-01-16 中国科学院物理研究所 一种嵌入式微纳通道的制备方法
CN103923342A (zh) * 2014-04-03 2014-07-16 西北工业大学 含有环糊精链节同时具有温度响应性的嵌段共聚物纳米孔膜的制备方法
CN105107393A (zh) * 2015-09-28 2015-12-02 河北工业大学 一种基于模板法的单价离子选择性复合膜的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881444B2 (en) * 2001-07-11 2005-04-19 Jong-Dal Hong Process for fabricating monolayer/multilayer ultrathin films
BR112013006311A2 (pt) * 2010-09-17 2016-06-07 Cambridge Entpr Ltd materiais nanoporosos, fabricação de materiais nanoporosos e aplicações de materiais nanoporosos

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110153006A1 (en) * 2009-12-21 2011-06-23 Laura Sager Biocorrodible implants having a functionalized coating
CN102874743A (zh) * 2011-07-12 2013-01-16 中国科学院物理研究所 一种嵌入式微纳通道的制备方法
CN103923342A (zh) * 2014-04-03 2014-07-16 西北工业大学 含有环糊精链节同时具有温度响应性的嵌段共聚物纳米孔膜的制备方法
CN105107393A (zh) * 2015-09-28 2015-12-02 河北工业大学 一种基于模板法的单价离子选择性复合膜的制备方法

Also Published As

Publication number Publication date
CN108948387A (zh) 2018-12-07
CN108948387B (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
CN108927019B (zh) 一种嵌段共聚物膜与功能性孔膜杂化的盐差发电膜的制备方法
Hong et al. Evaluation of electrochemical properties and reverse electrodialysis performance for porous cation exchange membranes with sulfate-functionalized iron oxide
CN110560179B (zh) 一种用于盐差发电的高密度杂化梯级孔膜的制备方法
US20090297913A1 (en) Nanostructure-Enhanced stereo-electrodes for fuel cells and biosensors
Lang et al. Biomimetic separation of transport and matrix functions in lamellar block copolymer channel-based membranes
CN108905646B (zh) 石墨烯pvdf复合导电超滤膜及制备和污染物去除方法
Hu et al. Bioinspired poly (ionic liquid) membrane for efficient salinity gradient energy harvesting: Electrostatic crosslinking induced hierarchical nanoporous network
CN102000517A (zh) 一种高分子滤膜的亲水性改性方法及所得产品
CN108993165B (zh) 一种层状无机材料有机溶剂纳滤复合膜及其制备方法
CN106268322A (zh) 一种层层自组装氧化石墨烯/季铵化壳聚糖荷正电复合纳滤膜及其制备方法
Koo et al. Selective ion transport through three-dimensionally interconnected nanopores of quaternized block copolymer membranes for energy harvesting application
WO2018214722A1 (zh) 一种离子选择性的纳米通道膜及其制备方法
Park et al. Electrochemical energy-generating desalination system using a pressure-driven ion-selective nanomembrane
WO2019014633A1 (en) MEMBRANES OF NANOTUBES OF BORON NITRIDE
CN114149580B (zh) 一种刚性扭曲微孔聚合物-磺化聚醚砜多孔复合膜及其制备方法和应用
KR102054204B1 (ko) 다공성 지지체 위에 형성된 무결점 분리막 및 이의 제조방법 및 이를 이용한 미소 에너지 추출 소자
CN111118578A (zh) 一种基于电泳驱动的二维金属有机骨架纳米片固态纳米孔制备方法
JP3453200B2 (ja) 表面改質した導電性高分子化合物膜の製造方法
Nie et al. Photosynthetic‐Membrane‐Like Ion Translocation in Visible‐Light‐Harvesting Nanofluidic Channels
WO2011142357A1 (ja) 光電変換素子、光電変換素子の製造方法、及び、高分子電解質型太陽電池
CN115253729B (zh) 磺化纳米纤维素/磺化聚砜复合膜及其制备方法与应用
TWI780440B (zh) 電吸附除鹽裝置
CN116943434A (zh) 一种盐差发电异质膜及其制备方法和应用
CN118022561A (zh) 一种可重复使用的石墨烯基离子选择性膜及其应用
Li et al. Preparation of dense polysulfonamide acid-resistant composite membrane with high rejection based on polyethylene substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805255

Country of ref document: EP

Kind code of ref document: A1