WO2018214244A1 - 一种双塔式垂直轴平面透平洋流发电装置 - Google Patents

一种双塔式垂直轴平面透平洋流发电装置 Download PDF

Info

Publication number
WO2018214244A1
WO2018214244A1 PCT/CN2017/091778 CN2017091778W WO2018214244A1 WO 2018214244 A1 WO2018214244 A1 WO 2018214244A1 CN 2017091778 W CN2017091778 W CN 2017091778W WO 2018214244 A1 WO2018214244 A1 WO 2018214244A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
current power
shaft
power generating
underwater
Prior art date
Application number
PCT/CN2017/091778
Other languages
English (en)
French (fr)
Inventor
洪占勇
翟华
刘正瑞
崔堃
张博文
刘群
雷锐
郭世光
Original Assignee
合肥工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥工业大学 filed Critical 合肥工业大学
Publication of WO2018214244A1 publication Critical patent/WO2018214244A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/008Measuring or testing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/04Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator for diminishing cavitation or vibration, e.g. balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention relates to a power generating device in a deep ocean current, in particular to a double-tower vertical-axis planar turbine current generating device and an underwater self-balancing device and a blade structure thereof.
  • the object of the present invention is to overcome the deficiencies of the prior art mentioned above, and to provide a double-tower vertical-axis planar turbine current power generating device with low equipment investment, high practicability and power generation power, and an underwater self-balancing device and blade structure thereof. .
  • the solution of the present invention is: a two-tower vertical axis planar turbine current power generating device
  • each rotating frame comprises six blade mechanisms and one central rotating shaft, six blade mechanisms are in the shape of a meter, and the center of the m-shaped body is rotatably mounted on the main bracket through the central rotating shaft, so that the six blade mechanisms are opposite to each other
  • the bracket rotates; each blade mechanism includes a plurality of fan plates, and each blade has a plurality of blade assemblies, Each of the blade assemblies includes a leaf frame, a blade, and a blade shaft; the blade is mounted on the blade frame by a blade shaft; the blade includes a blade portion 1 and a blade portion 2 on the same plane, and the blade portion is The blade portions are both fixed on the side walls of the blade shaft and respectively located on opposite sides of the blade shaft; an inner edge of the blade frame is disposed on the inner side of the blade frame, and the inner edge is of a size that the blade portion cannot pass through the blade The frame abuts against the inner edge, but allows the blade portion to pass through the louver frame, and when the blade portion abuts against the inner edge,
  • a plurality of buoys mounted on the main bracket, and/or on the fan panel and adjacent to the area of the corresponding central spindle;
  • Underwater self-balancing mechanism which is used to make the entire double-tower vertical-axis planar current power generating device still horizontally suspended in the deep sea and in the case of ocean current fluctuations, including two underwater pressure detecting sensors, two sealed water tanks, a two-way pump, a plurality of pipes; one of the underwater pressure detecting sensors and one of the water tanks are mounted on one side of the main bracket, wherein the other underwater pressure detecting sensor and the other one of the water tanks are mounted on the opposite side of the main bracket And the two underwater pressure detecting sensors and the two water tanks are installed at the same height on the main bracket; the two-way pump is installed at the top of the main bracket, and communicates through several pipes and two water tanks respectively; two underwater pressure detecting sensors and The controller of the two-way pump is electrically connected. When the two pressure detection values generated by the two underwater pressure detecting sensors are deviated, the controller controls the two-way pump to adjust the relative water storage between the two water tanks according to the deviation.
  • the double-tower vertical-axis planar turbine current power generating device further comprises two sub-frames corresponding to the two rotating frames, the two sub-frames are parallel to each other and vertically fixed on the main frame, the center The rotating shaft is mounted on the corresponding sub-bracket and is vertically fixed to the main bracket.
  • the bearing shaft mechanism is adopted at both ends of the center shaft, and the bearing mechanism includes:
  • a fixed connection portion which is a closed barrel at one end
  • the shaft connector is provided with a support plate surrounding the shaft connector on one end outer side wall and a bearing column on the end surface, and the load bearing column and the support plate are received in the fixed connection portion, and the other end is coaxially connected with the central rotating shaft, and the support plate There is a gap with the inner side wall of the fixed connection portion;
  • each thrust ball and the shaft connector are tangent to the end surface of the load-bearing column, and the bottom of each thrust ball is tangent to the bottom wall of the fixed joint, one side of each thrust ball and the outer side wall of the load-bearing column Tangently, the opposite side of each thrust ball is tangent to the inner side wall of the fixed connection portion, and the load bearing column is suspended on the bottom wall of the fixed connection portion;
  • a pressure plate fixed to the outer side wall of the shaft connector and located on a side of the support plate away from the thrust ball, and received in the fixed connection portion, the pressure plate surrounds the shaft connector and there is a gap between the inner side wall of the fixed connection portion;
  • a plurality of rotating balls which are arranged in a receiving cavity mainly composed of a shaft connector, a pressure plate, a fixed connecting portion and a supporting plate and arranged around the shaft connector, the diameter of the rotating ball is smaller than the diameter of the thrust ball and the upper and lower The four directions of left and right are tangent to the inner wall of the receiving cavity.
  • At least one flow guiding hole is formed in the blade portion 1 and/or the blade portion 2.
  • the blade shaft is fixed at two-thirds of the blade; the blade portion occupies two-thirds of the blade, and the blade portion occupies one-third of the blade.
  • the sum of the amounts of water of the two water tanks is the volume of one water tank.
  • the controller stores therein a lookup table that characterizes the relationship between the deviation of the two pressure detection values and the operating parameters of the bidirectional pump, and the operating parameters of the bidirectional pump include the running direction and the operation. time.
  • the relationship between the deviation of the two pressure detection values and the operating parameters of the bidirectional pump is obtained by fitting experimental data.
  • each of the rotating frames further includes a reinforcing rib that connects the three blade mechanisms together.
  • the plurality of fan plates on the same blade mechanism are parallel to each other, and are fixed perpendicularly to the corresponding central rotating shaft, and are symmetrically arranged with the corresponding central rotating shaft.
  • the invention also provides an underwater self-balancing device for a double-tower vertical-axis planar wave current power generating device, which is used for deep ocean current generation platform of a double-tower vertical-axis planar turbine current generating device in the deep sea and
  • the underwater self-balancing device includes two underwater pressure detecting sensors, two sealed water tanks, a bidirectional pump, and a plurality of pipes;
  • One of the underwater pressure detecting sensors and one of the water tanks are mounted on one side of the deep ocean current power generating platform, and the other underwater pressure detecting sensor and the other one of the water tanks are mounted on the opposite side of the deep ocean current power generating platform.
  • the two underwater pressure detecting sensors and the two water tanks are installed at the same height on the deep ocean current power generating platform;
  • the two-way pump is installed at the top of the deep ocean current power generating platform, and communicates through several pipes and two water tanks respectively;
  • the underwater pressure detecting sensor is electrically connected to the controller of the two-way pump, and the controller controls the two water tanks according to the deviation when the two pressure detecting values generated by the two underwater pressure detecting sensors are different. Relative relative water storage.
  • the sum of the amounts of water of the two water tanks is the volume of one water tank.
  • the controller stores therein a lookup table that characterizes the relationship between the deviation of the two pressure detection values and the operating parameters of the bidirectional pump, and the operating parameters of the bidirectional pump include the running direction and the operation. time.
  • the relationship between the deviation of the two pressure detection values and the operating parameters of the bidirectional pump is obtained by fitting experimental data.
  • the invention also provides a blade structure of a double-tower vertical-axis planar turbine current power generating device, which comprises: a louver frame; a louver; a louver shaft, wherein the top end and the bottom end are respectively rotatably mounted on the opposite sides of the arbor frame On the side, and fixed with the leaf plate, the leaf plate is rotatably mounted on the leaf frame;
  • the blade comprises a blade portion 1 and a blade portion 2 on the same plane, and the blade portion 1 and the blade portion 2 are both fixed on the side wall of the blade shaft and respectively located on opposite sides of the blade axis;
  • the leaf frame The inner side of the inner side is provided with a circle inner edge, and the inner edge is of a size that the blade portion cannot pass through the slat frame and resists the inner edge, but allows the blade portion to pass through the louver frame and is held at the blade portion. When it is up, the entire louver covers the inner circled window.
  • At least one flow guiding hole is defined in both the blade portion 1 and the blade portion 2.
  • the thickness of the louver frame is greater than the thickness of the inner rim.
  • the blade shaft is fixed at two-thirds of the blade.
  • the blade portion occupies two-thirds of the blade, and the blade portion occupies one-third of the blade.
  • the inner edge is integrally formed on the louver frame; the louver and the louver shaft are integrally formed.
  • the invention has the beneficial effects that the balance positioning of the whole device in the ocean current is completed by the main bracket, the auxiliary bracket (preferably used) and the pontoon, and the underwater self-balancing mechanism can realize the floating position balance and maintenance needs, and the rotating frame is arranged more.
  • the fan plate is used to solve the cantilever problem by using the ribs and the connecting rods, so that the whole structure can adapt to the working needs of the ocean current environment, and the adjustment of the position of the blade shaft completely solves the problem of the working plate of the blade plate, and the overall structure design is reasonable, the device
  • the cost of hydraulic and wind power generation that is lower than the equivalent power generation is several times.
  • FIG. 1 is a schematic plan view of a twin-tower vertical axis planar turbine current power generating device of the present invention.
  • Figure 2 is a front elevational view of Figure 1 with the two blade mechanisms intersecting in Figure 1 hidden to better illustrate the structure of the blade mechanism.
  • Figure 3 is a schematic view of the bearing mechanism used in the center shaft of Figure 2.
  • FIG. 4 is a schematic structural view of the blade assembly of FIG. 2.
  • the dual tower vertical axis planar turbine current power generating device of the present invention comprises a main support 2, two rotating frames, a plurality of buoys 5, an underwater self-balancing mechanism, and two sub-brackets 3.
  • the pontoon 5 is used to suspend the entire device in the deep sea.
  • the pontoon 5 can be mounted on the main support 2, or can be mounted on two rotating frames, and can be mounted on both the main support 2 and the two rotating frames.
  • a plurality of buoys 5 are disposed on the frame structure of the main bracket 2 and the sub-bracket 3, wherein the buoys at the ends of the main bracket 2 and the sub-bracket 3 are adjustment buoys, and the deep ocean current power generation platform is controlled by the control buoy adjustment device.
  • 1 can be composed of one main bracket 2, two rotating frames) position and control balance.
  • the pontoon 5 is installed in the deep ocean current power generation platform 1, and is divided into a pontoon with a buoyancy pre-set and an adjustment pontoon having an adjustment capability.
  • the pontoon 5 provides buoyancy for the entire device, and the pontoon is disposed at an end position of the main bracket and the sub-bracket. Conducive to control and adjust the position balance of the entire device frame.
  • the adjustment pontoon can be implemented using the water tank of Figure 2.
  • the underwater self-balancing mechanism is used to make the entire double-tower vertical-axis planar current power generating device still horizontally floating in the deep sea and in the case of ocean current fluctuation, including two underwater pressure detecting sensors 13 and two sealed water tanks 14 , two-way pump 16, a number of pipes 15.
  • the sum of the amounts of water of the two water tanks 14 is the volume of one water tank 14, and the two water tanks 14 can be welded to the main bracket 2.
  • the two water tanks 14 should be kept sealed except for the portion connected by the pipe 15, and the water in the water tank 14 should be kept in the amount of one tank, that is, the amount of water of the two water tanks 14 is a tank of water, and other volume portions can be Filled with air.
  • the ratio of water to air in the closed water tank 14 should be adjusted according to actual needs to achieve the appropriate effect.
  • One of the underwater pressure detecting sensors 13 and one of the water tanks 14 are mounted on one side of the main bracket 2, and the other underwater pressure detecting sensor 13 and the other one of the water tanks 14 are mounted on the opposite side of the main bracket 2 And the two underwater pressure detecting sensors 13 and the two water tanks 14 are mounted at the same height on the main bracket 2.
  • the two-way pump 16 is mounted on the top of the main support 2 and communicates through a plurality of ducts 15 and two water tanks 14, respectively.
  • the two underwater pressure detecting sensors 13 are electrically connected to the controller of the two-way pump 16, and the controller controls the two-way pump according to the deviation when there are deviations between the two pressure detection values generated by the two underwater pressure detecting sensors 13 16 mediates the relative amount of water stored between the two water tanks 14.
  • the control bidirectional pump 16 draws water from the water tank 14 corresponding to the underwater pressure detecting sensor 13 having a large pressure detection value into the water tank 14 corresponding to the underwater pressure detecting sensor 13 having a small pressure detection value, so that the two underwater members
  • the two pressure detection values generated by the pressure detecting sensor 13 are the same, so that the underwater self-leveling
  • the weighing mechanism keeps the main support 2 horizontally suspended in the deep sea and in the case of ocean current fluctuations.
  • the controller stores therein a lookup table that characterizes the relationship between the deviation of the two pressure detection values and the operating parameters of the bidirectional pump 16, and the operating parameters of the bidirectional pump 16 include the running direction and the running time.
  • the relationship between the deviation of the two pressure detection values and the operating parameters of the bidirectional pump 16 can be obtained by fitting experimental data. This way of checking the table can control the two-way pump 16 to quickly adjust the water storage between the two water tanks 14 and quickly balance the main support 2.
  • the number of underwater self-balancing mechanisms may be one of the embodiments, or two or more.
  • the two-tower vertical axis planar piece ocean current power generation device uses two underwater self-balancing mechanisms
  • the two underwater self-balancing mechanisms can be arranged in parallel on the main support 2, or can be distributed on the main support 2 in a crisscross manner.
  • the operating parameters of the two bi-directional pumps 16 are more complex than the single bi-directional pump 16 when fitting the test data, but can also make reasonable operating parameters.
  • the underwater self-balancing mechanism first detects whether the water pressure at both ends is the same by the two underwater pressure detecting sensors 13, thereby judging whether the entire device is horizontal under water, and judging whether the values of the two underwater pressure detecting sensors 13 are the same. Thereby, the opening, closing and direction of the bidirectional pump 16 are controlled. Thereby, the water of the two water tanks 14 is redistributed, so that the entire device is self-balancing under water, so that the entire deep ocean current power generation platform can reach an equilibrium state under water.
  • the bidirectional pump 16 determines the operating state (direction, opening or closing) of the bidirectional pump 16 by determining whether the magnitudes of the values of the two underwater pressure detecting sensors 13 are the same.
  • each of the rotating frames includes six blade mechanisms 4 and a central rotating shaft 11.
  • the six blade mechanisms 4 are equally divided as a circle, and are equally divided by 360 degrees, and can smoothly receive the ocean current energy and reduce the problems of the single blade mechanism 4 to balance the power generation.
  • the six blade mechanisms 4 may be in the shape of a m-shape, and the center of the m-shape is rotatably mounted on the main frame 2 through the center shaft 11, so that the six blade mechanisms 4 are rotated relative to the main frame 2.
  • the entire device can be extended, the main support 2 is in the direction of the ocean current, and the sub-bracket 3 is perpendicular to the direction of the ocean current, and the plurality of sub-frames 3, the buoy 5 and the rotating frame are provided. Controlling the position of the entire device frame does not cause rotation due to the ocean current pushing the rotating frame.
  • a bearing mechanism is employed at both ends of the center shaft 11, and the bearing mechanism includes a fixed connection portion 17, a shaft connector 20, a plurality of thrust balls 19, a pressure plate 24, and a plurality of rotating balls 18.
  • the fixed connection portion 17 is a drum whose one end is closed.
  • the fixed connecting portion 17 is fixed on an outer frame.
  • the outer frame mainly fixes the fixed connecting portion 17. Therefore, the specific structure of the outer frame is not particularly limited, and may be an outer casing or a frame, etc., as long as The fixed connection portion 17 can be stably supported and put into the normal use of the present invention.
  • a support plate 21 surrounding the shaft connector 20 is disposed on one end outer side wall of the shaft connector 20, and a load bearing post 22 is disposed on the end surface, and the load bearing post 22 and the support plate 21 are housed in the fixed connection portion 17.
  • the other end of the shaft connector 20 is coaxially connected to the deep ocean current power generating main shaft, and the support plate 21 and the inner side wall of the fixed connecting portion 17 have a gap 23.
  • the load-bearing column 22 is preferably integrally formed on the shaft connector 20 to increase the structural strength of the load-bearing column 22.
  • the support plate 21 is also preferably integrally formed on the shaft connector 20.
  • the support plate 21 may have an annular shape, and the load-bearing column 22 may be a hollow cylinder.
  • a plurality of thrust balls 19 are received in the fixed connection portion 17 and disposed around the load-bearing column 22, and satisfy:
  • each thrust ball 19 and the shaft connector 20 have a tangent to the end face of the load bearing column 22;
  • each thrust ball 19 is tangent to the bottom wall of the fixed connection portion 17;
  • each thrust ball 19 is tangent to the outer side wall of the load bearing column 22;
  • each thrust ball 19 is tangent to the inner side wall of the fixed connection portion 17;
  • the load-bearing column 22 is suspended on the bottom wall of the fixed connection portion 17.
  • the pressure plate 24 is fixed on the outer side wall of the shaft connector 20 and located on the side of the support plate 21 away from the thrust ball 19, and is received in the fixed connection portion 17, and the pressure plate 24 surrounds the shaft connector 20 and the inner side of the fixed connection portion 2 There is a gap 26 between the walls.
  • the pressure plate 24 can be fixed to the shaft connector 20 by screwing.
  • the plurality of rotating balls 18 are housed in the receiving cavity 25 mainly surrounded by the shaft connector 20, the pressing plate 24, the fixed connecting portion 17, and the supporting plate 21, and are arranged around the shaft connector 20.
  • the diameter of the rotating ball 18 is smaller than that of the thrust ball.
  • the diameter of 19 and the four directions of up, down, left, and right are tangent to the inner wall of the housing chamber 25.
  • the load acts on the shaft connector 20 through the center shaft 11, so that the load can be applied to the thrust ball 19 so that the bearing mechanism can act as a thrust.
  • the bearing mechanism is supported by the thrust ball 19 during load. In selecting the thrust ball 19, it is considered that the selected thrust ball 19 needs to work well when rolling under the load.
  • the rotating ball 18 has a small load and a small volume; the thrust ball 19 carries a large load and has a large volume.
  • the load is connected to the rotating ball 18 so that the load acts as much as possible in the middle of the ring so that the load can be better transmitted to the thrust ball 19.
  • the diameter of the load-bearing column 22 is as small as possible smaller than the diameter of the thrust ball 19 and larger than the diameter of the rotating ball 18. Such a design ratio has been proven to optimize the effect of the bearing mechanism.
  • the bearing mechanism can complete the production of the product by welding, and the size of the ball and the thickness of the steel plate of the connecting portion can be adjusted according to different environments and work requirements, and the fixed connecting portion 17 can be fixedly connected by inexpensive welding or the like as permitted. Therefore, replacement can be achieved when the ball is worn compared to the thrust bearing.
  • the center shaft 11 is preferably fixed to the end portion of the shaft connecting portion, that is, the end portion of the shaft connector 20, instead of being connected to the inside of the shaft connecting portion, because the load can be better transmitted to the thrust balls 19.
  • the working state of the bearing mechanism is that the fixed connection portion 17 is connected to the outer casing or the outer frame.
  • the shaft connector 20 and the fixed connection portion 17 are relatively rotated, and it is necessary to rely on the action of the rotating ball 18 so that the shaft connector 20 and the fixed connection portion 17 can perform a relatively good rotational operation. Therefore, in selecting the rotating ball 18 for the bearing mechanism, it is necessary to be able to perform the rotation well in the case of a load.
  • the bearing mechanism intermediate platen 24 is fixed to the shaft connector 20 after the rotating ball 18 is mounted. In order to enable the bearing mechanism to rotate well, it is necessary to press the pressing plate 24 only against the rotating ball 18 without protruding, avoiding the pressing plate 24 and The fixed joints 17 collide with each other, causing an obstacle to movement.
  • lubricating oils should be added before use. If the lubricating oil is placed in the fixed connection portion 17, the balls can be rolled as much as possible during the work, and the wear of the balls can be reduced.
  • each of the blade mechanisms 4 includes a plurality of fan plates 7, each of which has a plurality of blade assemblies, each of which includes a blade frame 10, a blade 8, and a blade shaft 9.
  • the louver 8 is mounted on the slat frame 10 by a louver shaft 9.
  • the louver 8 includes a blade portion 81 and a blade portion 82 on the same plane. Both the blade portion 81 and the blade portion 82 are fixed to the side walls of the blade shaft 9, and are respectively located on opposite sides of the blade shaft 9.
  • the blade mechanisms 4 are connected by a connecting rod 6.
  • the connecting rod 6 connects the six sides of the three sets of blade mechanisms 4 one by one to form a force-bearing whole, which protects the safety of each set of the fan plates 7 of the rotating frame, and at the same time reduces the excessive length of the arm.
  • the bending force eliminates the possibility of sudden death in motion.
  • An inner edge 83 is provided on the inner side of the slat frame 10, and the inner edge 83 is sized such that the blade portion 81 cannot pass through the slat frame 10 against the inner edge 83, but allows the blade portion 82 to pass through the arbor frame. 10, and when the blade portion 81 is resisted on the inner edge 83, the entire blade 8 covers the window 84 formed by the inner edge 83.
  • top end and the bottom end of the blade shaft 9 are rotatably mounted on opposite sides of the blade frame 10, respectively, and fixed to the blade 8 to rotatably mount the blade 8 on the blade frame 10.
  • the slat frame 10 generally adopts a rectangular structure, as shown in the rectangular shape in FIG.
  • the plurality of slats 10 can be spliced into a grid-like frame, each slat 10 being one of the grids, and one slat 8 is mounted in each grid.
  • the plurality of lobes frame 10 can be spliced into strip-shaped louver assemblies (shown in Figure 2), one of which is a slatted frame 10.
  • the blade 8 differs from the conventional structure in that the blade 8 is no longer a single plate but uses two differently sized blade portions: a blade portion 81 and a blade portion 82.
  • One end of the blade portion 81 is a free end, and the opposite end of the blade portion 81 is fixed to the blade shaft 9, and one end of the blade portion 82 is also a free end, and the opposite end of the blade portion 82 is also fixed to the blade.
  • the blade portion 81 and the blade portion 82 are respectively located on opposite sides of the blade shaft 9.
  • the blade 8 includes a blade portion 81 and a blade portion 82 on the same plane, and the blade portion 81 and the blade portion 82 are both fixed to the side wall of the blade shaft 9, and are respectively located at the leaf The opposite sides of the plate shaft 9.
  • An inner edge 6 is disposed on the inner side of the slat frame 10, and the inner rim 6 is sized such that the blade portion 81 cannot pass the rim frame 10 against the inner rim 6, but allows the blade portion 2 to pass through the arbor frame 10, And when the blade portion 81 is resisted on the inner edge 83, the entire blade 8 covers the window 84 formed by the inner edge 83.
  • the blade assembly can be opened and closed under the action of ocean current in the deep sea, which makes the work of the ocean current power generation device more stable and more efficient.
  • the inner edge 83 may be integrally formed on the slat frame 10. At least one flow guiding hole 85 may be formed in the blade portion 81, or at least one flow guiding hole 85 may be formed in the blade portion 82, or at least one flow guiding hole 85 may be respectively formed in the blade portion 81 and the blade portion 82.
  • the thickness of the slat frame 10 is greater than the thickness of the inner rim 83.
  • the louver shaft 9 is fixed at two-thirds of the louver 8, as the blade portion 81 occupies two-thirds of the louver 8, and the blade portion two 82 occupies one third of the louver 8.
  • the blade 8 and the blade shaft 9 may be integrally formed.
  • the blade portion 81 of the blade 8 is pressed against the inner edge 83 of the blade frame 10 by the action of the water flow, so that the force is transmitted to The slat frame 10 is used to drive the rotation of the entire device.
  • part of the water flows through the flow guiding hole 85 under the action of the water flow, so that the water behind the blade 8 changes from a prohibited state to a flowing state, so that the blade 8 can be opened better. In order to make the entire device run more smoothly.
  • the position of the blade shaft 9 mentioned in the present invention does not have to be one third, and should be adjusted according to the experimental results.
  • the number and size of the flow guiding holes 8 on the same blade 8 should also be adjusted according to the corresponding experimental results to achieve the best results.
  • the center shaft 11 and the fan plate 7 are provided with two ribs 12 which are symmetrical.
  • the rib 12 provided between the center shaft 11 and the fan plate 7 is also for preventing the arm of the rotating frame from being bent due to excessive force.
  • the pontoon 5 is provided in the fan plate frame where the fan plate 7 is connected to the center rotating shaft 11, and no louver is provided.
  • the center plate 8 is discarded and the pontoon 5 is replaced.
  • the reason is mainly that the torque of the center blade 8 is not large. Since the weight of the rotating frame is too heavy, the force and service life of the bearing at the bottom of the frame must be considered. The design reduces the load on the bottom support bearing, making it more flexible to rotate and extending the service life.
  • the power generation in the ocean current is more than 1500kw
  • the equipment investment only needs more than 300,000
  • the wind power generation equipment with the same power generation is invested in more than 10 million
  • the wind power generation is affected by the climate, the wind does not last, this
  • the implementation of the application is of great significance to the benefit of the country and the people.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种双塔式垂直轴平面透平洋流发电装置、水下平衡装置以及叶片结构。发电装置包括主支架(2)、两个旋转框架、多个浮筒(5)和水下自平衡机构。每个旋转框架包括六个叶片机构(4)和一个中心转轴(11),每个叶片机构(4)包括多个扇板(7)。扇板(7)的叶板组件包括叶板框(10)、叶板(8)和叶板轴(9)。叶板(8)通过叶板轴(9)安装在叶板框(10)上,叶板(8)包括位于同一平面上的两个叶片部,水下自平衡机构包括两个水下压力检测传感器(13)、两个密封的水箱(14)、双向泵(16)和若干管道(15)。该发电装置整体结构设计合理,成本低。

Description

一种双塔式垂直轴平面透平洋流发电装置 技术领域
本发明涉及深海洋流中的一种发电装置,特别涉及一种双塔式垂直轴平面透平洋流发电装置及其水下自平衡装置与叶片结构。
背景技术
目前发电装置的种类很多,如火力发电、水力发电、风力发电、核电等发电装置。但存在很多问题,如火力发电,大量燃烧带来的二氧化碳污染、燃煤污染等;再如风力发电,的确属于清洁能源,但是风力发电受到地域限制,风力并不是一致保持一种状态,且现有的风力发电机投资千万,投入资金过大,投入产出比小;又如水力发电,也是一种清洁能源,现有的水力发电方式主要是筑坝蓄水发电,这种方式对环境带来的影响暂时无法衡量,但其投资也是巨大。因此,现有技术中提到的设备均存在一定的问题,如何能更好的减少投资又能更多的获得自然清洁的能源是本领域技术人员必须面对的挑战。
发明内容
本发明的目的在于克服上述现有技术的不足,提供一种设备投入少、实用性强、发电功率满足要求的双塔式垂直轴平面透平洋流发电装置及其水下自平衡装置与叶片结构。
本发明的解决方案是:一种双塔式垂直轴平面透平洋流发电装置;其包括:
主支架;
两个旋转框架,每个旋转框架包括六个叶片机构和一个中心转轴,六个叶片机构呈米字型,且米字型中心通过中心转轴转动安装在主支架上,使六个叶片机构相对主支架旋转;每个叶片机构包括多个扇板,每个扇板多个叶板组件, 每个叶板组件包括叶板框、叶板、叶板轴;叶板通过叶板轴安装在叶板框上;叶板包括位于同一平面上的叶片部一和叶片部二,叶片部一和叶片部二均固定在叶板轴的侧壁上,且分别位于叶板轴的相对两侧;叶板框的内侧上设置一圈内沿,内沿的尺寸满足:叶片部一无法通过叶板框而抵持在内沿上,但允许叶片部二通过叶板框,且在叶片部一抵持在内沿上时,整个叶板遮盖内沿圈成的窗口;
多个浮筒,其安装在主支架上,和/或扇板上且靠近相应中心主轴的区域;
水下自平衡机构,其用于使整个双塔式垂直轴平面片洋流发电装置在深海且在洋流波动的情况下依旧保持水平悬浮,包括两个水下压力检测传感器、两个密封的水箱、双向泵、若干管道;其中一个水下压力检测传感器和其中一个水箱均安装在主支架一侧上,其中另一个水下压力检测传感器和其中另一个水箱均安装在主支架的相对另一侧上,且两个水下压力检测传感器和两个水箱在主支架上安装高度均相同;双向泵安装在主支架的顶部,且通过若干管道和两个水箱分别相通;两个水下压力检测传感器与双向泵的控制器电性连接,所述控制器在两个水下压力检测传感器产生的两个压力检测值存在偏差时,根据所述偏差控制双向泵调解两个水箱之间的相对储水量。
作为上述方案的进一步改进,所述双塔式垂直轴平面透平洋流发电装置还包括与两个旋转框架相对应的两个副支架,两个副支架相互平行且垂直固定在主支架上,中心转轴安装在相应副支架上且与主支架垂直固定的区域。
作为上述方案的进一步改进,中心转轴的两端采用轴承机构,所述轴承机构包括:
固定连接部,其为一端呈封闭的圆桶;
轴连接器,其一端外侧壁上设置有环绕轴连接器的支撑板且端面上设置有承重柱,同时承重柱和支撑板收容在固定连接部内,其另一端与中心转轴共轴连接,支撑板与固定连接部的内侧壁存在间隙一;
多个止推滚珠,其收容在固定连接部内且环绕承重柱而布置,并且满足: 每个止推滚珠的顶部和轴连接器具有承重柱的端面相切,每个止推滚珠的底部和固定连接部的底壁相切,每个止推滚珠的一侧和承重柱的外侧壁相切,每个止推滚珠的相对另一侧和固定连接部的内侧壁相切,承重柱悬空在固定连接部的底壁上;
压板,其固定在轴连接器的外侧壁上且位于支撑板远离止推滚珠的一侧,并收容在固定连接部内,压板环绕轴连接器且与固定连接部的内侧壁之间存在间隙二;
多个旋转滚珠,其收容在主要由轴连接器、压板、固定连接部、支撑板围成的收容腔内且环绕轴连接器而布置,旋转滚珠的直径小于止推滚珠的直径且上、下、左、右四个方位均与收容腔的内壁相切。
作为上述方案的进一步改进,叶片部一和/或叶片部二上开设至少一个导流孔。
作为上述方案的进一步改进,叶板轴固定在叶板的三分之二处;叶片部一占叶板的三分之二,叶片部二占叶板的三分之一。
作为上述方案的进一步改进,两个水箱的水量之和为一个水箱的容积。
作为上述方案的进一步改进,所述控制器内存储有查询表,所述查询表表征两个压力检测值的偏差和双向泵的运行参数之间的关系,双向泵的运行参数包括运行方向、运行时间。
作为上述方案的进一步改进,两个压力检测值的偏差和双向泵的运行参数之间的关系通过实验数据拟合得到。
作为上述方案的进一步改进,每个旋转框架还包括将三个叶片机构连接在一起的加强筋。
作为上述方案的进一步改进,同一个叶片机构上的多个扇板相互平行,且与相应中心转轴垂直固定,并以相应中心转轴对称布局。
本发明还提供一种双塔式垂直轴平面片洋流发电装置的水下自平衡装置,其用于使双塔式垂直轴平面透平洋流发电装置的深海洋流发电平台在深海且在 洋流波动的情况下依旧保持水平浮置;所述水下自平衡装置包括两个水下压力检测传感器、两个密封的水箱、双向泵、若干管道;
其中一个水下压力检测传感器和其中一个水箱均安装在深海洋流发电平台一侧上,其中另一个水下压力检测传感器和其中另一个水箱均安装在深海洋流发电平台的相对另一侧上,且两个水下压力检测传感器和两个水箱在深海洋流发电平台上安装高度均相同;双向泵安装在深海洋流发电平台的顶部,且通过若干管道和两个水箱分别相通;两个水下压力检测传感器与双向泵的控制器电性连接,所述控制器在两个水下压力检测传感器产生的两个压力检测值存在偏差时,根据所述偏差控制双向泵调解两个水箱之间的相对储水量。
作为上述方案的进一步改进,两个水箱的水量之和为一个水箱的容积。
作为上述方案的进一步改进,所述控制器内存储有查询表,所述查询表表征两个压力检测值的偏差和双向泵的运行参数之间的关系,双向泵的运行参数包括运行方向、运行时间。
作为上述方案的进一步改进,两个压力检测值的偏差和双向泵的运行参数之间的关系通过实验数据拟合得到。
本发明还提供一种双塔式垂直轴平面透平洋流发电装置的叶片结构,其包括:叶板框;叶板;叶板轴,其顶端和底端分别转动安装在叶板框的相对两侧上,并与叶板固定而将叶板转动安装在叶板框上;
其中:叶板包括位于同一平面上的叶片部一和叶片部二,叶片部一和叶片部二均固定在叶板轴的侧壁上,且分别位于叶板轴的相对两侧;叶板框的内侧上设置一圈内沿,内沿的尺寸满足:叶片部一无法通过叶板框而抵持在内沿上,但允许叶片部二通过叶板框,且在叶片部一抵持在内沿上时,整个叶板遮盖内沿圈成的窗口。
作为上述方案的进一步改进,叶片部一和叶片部二上均开设至少一个导流孔。
作为上述方案的进一步改进,叶板框的厚度大于内沿的厚度。
作为上述方案的进一步改进,叶板轴固定在叶板的三分之二处。
进一步地,叶片部一占叶板的三分之二,叶片部二占叶板的三分之一。
作为上述方案的进一步改进,内沿一体成型在叶板框上;叶板与叶板轴为一体成型结构。
本发明的有益效果是:以主支架、副支架(最好采用)及浮筒配合完成整个装置在洋流中的平衡定位,水下自平衡机构能实现浮置位置平衡及维护需要,旋转框架设置多个扇板,并利用加强筋和连接杆解决悬臂问题,使整个结构能适应洋流环境的工作需要,而叶板轴位置的调整彻底解决了叶板工作卡壳的问题,整体结构设计合理,本装置投入低于同等发电量的水力及风力发电成本数倍。
附图说明
图1为本发明双塔式垂直轴平面透平洋流发电装置的俯视线条示意图。
图2为图1的主视图,其中为了更好的展示叶片机构的结构,隐藏了图1中交叉的两个叶片机构。
图3为图2中的中心转轴采用的轴承机构示意图。
图4为图2中叶板组件的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,本发明的双塔式垂直轴平面透平洋流发电装置包括一个主支架2、两个旋转框架、多个浮筒5、一个水下自平衡机构、两个副支架3。
浮筒5用于将整个装置悬浮于深海中,浮筒5可安装在主支架2,也可以安装在两个旋转框架上,还可以在主支架2和两个旋转框架上都安装。
在本实施例中,主支架2和副支架3框架结构上设置多个浮筒5,其中位于主支架2和副支架3端部的浮筒为调节浮筒,通过控制调节浮筒调整装置深海洋流发电平台1(可采用一个主支架2、两个旋转框架构成)的位置及控制平衡。浮筒5安装在深海洋流发电平台1内,分为预先设置好浮力的浮筒和具有调节能力的调节浮筒,浮筒5为整个装置提供浮力,调节浮筒设置在主支架和副支架的端部位置,有利于控制和调节整个装置框架的位置平衡。
调节浮筒可以采用图2中的水箱实现。水下自平衡机构用于使整个双塔式垂直轴平面片洋流发电装置在深海且在洋流波动的情况下依旧保持水平浮置,包括两个水下压力检测传感器13、两个密封的水箱14、双向泵16、若干管道15。
两个水箱14的水量之和为一个水箱14的容积,两个水箱14可焊接在主支架2上。两个水箱14除了通过管道15相连的部分,其他部分应该保持密封,水箱14中的水应该保持一箱的量,即两个水箱14的水量加在一起是一箱的水量,其他体积部分可通过空气填充。当然,封闭的水箱14里的水和空气的比例应根据实际需要进行相应的调整,以达到合适的效果。
其中一个水下压力检测传感器13和其中一个水箱14均安装在主支架2一侧上,其中另一个水下压力检测传感器13和其中另一个水箱14均安装在主支架2的相对另一侧上,且两个水下压力检测传感器13和两个水箱14在主支架2上安装高度均相同。
双向泵16安装在主支架2的顶部,且通过若干管道15和两个水箱14分别相通。两个水下压力检测传感器13与双向泵16的控制器电性连接,所述控制器在两个水下压力检测传感器13产生的两个压力检测值存在偏差时,根据所述偏差控制双向泵16调解两个水箱14之间的相对储水量。
控制双向泵16从与压力检测值较大的水下压力检测传感器13相对应的水箱14抽水至与压力检测值较小的水下压力检测传感器13相对应的水箱14内,使两个水下压力检测传感器13再次产生的两个压力检测值相同,从而水下自平 衡机构使主支架2在深海且在洋流波动的情况下依旧保持水平悬浮。
所述控制器内存储有查询表,所述查询表表征两个压力检测值的偏差和双向泵16的运行参数之间的关系,双向泵16的运行参数包括运行方向、运行时间。两个压力检测值的偏差和双向泵16的运行参数之间的关系可通过实验数据拟合得到。这种查表方式,能够控制双向泵16迅速调解两个水箱14之间的储水量,快速平衡主支架2。
本发明双塔式垂直轴平面透平洋流发电装置应用水下自平衡机构时,水下自平衡机构的数量可以为本实施例的一个,也可以为两个甚至更多。双塔式垂直轴平面片洋流发电装置应用两个水下自平衡机构时,两个水下自平衡机构可平行设置在主支架2上,也可呈十字交叉分布式设置在主支架2上,两个双向泵16的运行参数在试验数据拟合时要比单个双向泵16复杂,但是也能做出合理的运行参数。
水下自平衡机构首先通过两个水下压力检测传感器13检测两端的水压是否是相同,以此来判断整个装置在水下是否水平,通过判断两个水下压力检测传感器13的值是否相同从而控制双向泵16的开启、关闭和方向。从而将两个水箱14的水进行重新分配,从而使得整个装置在水下进行自平衡调节,从而使得整个深海洋流发电平台在水下能够达到平衡状态。双向泵16通过判断两个水下压力检测传感器13的值的大小是否相同,从而决定双向泵16的工作状态(方向、开启或者关闭)。
请再次参阅图2,每个旋转框架包括六个叶片机构4和一个中心转轴11。六个叶片机构4尽量圆周均分,360度均分,能平稳地接收洋流能量和减少单个叶片机构4存在的问题,使其发电均衡。六个叶片机构4可呈米字型,且米字型中心通过中心转轴11转动安装在主支架2上,使六个叶片机构4相对主支架2旋转。
由于充分考虑到洋流的力度,可将整个装置延长,主支架2顺洋流方向,而副支架3与洋流方向垂直,设置多个副支架3、浮筒5以及旋转框架有效的 控制了整个装置框架的位置不会因为洋流推动旋转框架而产生旋转。
请结合图3,中心转轴11的两端采用轴承机构,所述轴承机构包括固定连接部17、轴连接器20、多个止推滚珠19、压板24、多个旋转滚珠18。
固定连接部17为一端呈封闭的圆桶。固定连接部17固定在一个外框架上,所述外框架主要其固定这个固定连接部17的作用,因此外框架的具体结构没有特别限制,可以是外壳,也可以是机架等等,只要能把固定连接部17稳固支撑起来投入本发明的正常使用即可。
轴连接器20的一端外侧壁上设置有环绕轴连接器20的支撑板21且端面上设置有承重柱22,同时承重柱22和支撑板21收容在固定连接部17内。轴连接器20的另一端与所述深海洋流发电主轴共轴连接,支撑板21与固定连接部17的内侧壁存在间隙一23。承重柱22最好一体成型在轴连接器20上,以便增加承重柱22的结构强度。同理,支撑板21也最好一体成型在轴连接器20上。支撑板21可呈圆环状,承重柱22可为中空的圆筒。
多个止推滚珠19收容在固定连接部17内且环绕承重柱22而布置,并且满足:
1.每个止推滚珠19的顶部和轴连接器20具有承重柱22的端面相切;
2.每个止推滚珠19的底部和固定连接部17的底壁相切;
3.每个止推滚珠19的一侧和承重柱22的外侧壁相切;
4.每个止推滚珠19的相对另一侧和固定连接部17的内侧壁相切;
5.承重柱22悬空在固定连接部17的底壁上。
压板24固定在轴连接器20的外侧壁上且位于支撑板21远离止推滚珠19的一侧,并收容在固定连接部17内,压板24环绕轴连接器20且与固定连接部2的内侧壁之间存在间隙二26。压板24可通过螺合固定在轴连接器20上。
多个旋转滚珠18收容在主要由轴连接器20、压板24、固定连接部17、支撑板21围成的收容腔25内且环绕轴连接器20而布置,旋转滚珠18的直径小于止推滚珠19的直径且上、下、左、右四个方位均与收容腔25的内壁相切。
在大负载即深海洋流发电主轴的情况下,负载通过中心转轴11作用于轴连接器20上,使得负载能够较好的作用到止推滚珠19上,使得轴承机构能够起到止推的作用。注意到轴承机构在负载时依靠止推滚珠19支撑的,在选择止推滚珠19是要考虑到,选择的止推滚珠19需要在满足负载下,滚动时能够很好的工作。
旋转滚珠18承载较小,体积较小;止推滚珠19承载较大载荷,体积较大。负载在连接在旋转滚珠18的情况下,使得负载尽可能的作用在圆环中部,使得负载可以较好的传递到止推滚珠19上。
承重柱22的直径尽量小于止推滚珠19的直径且大于旋转滚珠18的直径,这样的设计比例通过实践证明可以将轴承机构的效果发挥到最佳状态。
轴承机构可以通过焊接完成产品的制作,可以根据不同的环境和工作需求调整滚珠的大小和连接部分钢板的厚度,同时固定连接部17在许可的情况下可以采用廉价的焊接等固连方式。因此,相比于止推轴承在滚珠磨损时可以实现更换。中心转轴11最好固定到轴连接部分即轴连接器20的端面而不是连接到轴连接部分的内部,这是由于为了使得负载能够较好的传递到止推滚珠19上。
综上所述,轴承机构的工作状态是固定连接部17与外壳或者外框架相连。在工作的过程中,轴连接器20和固定连接部17相对转动,这时需要依靠旋转滚珠18的作用,使得轴连接器20和固定连接部17能够很好的相当旋转工作。因此在选择用于轴承机构的旋转滚珠18,必须能够满足在负载的情况下能够很好的起到旋转的作用。
轴承机构中压板24是在旋转滚珠18安装后固定到轴连接器20的,为了使得轴承机构能够很好的转动,需要使得压板24只压住旋转滚珠18而不伸出的,避免压板24和固定连接部17相互碰撞,造成运动的障碍。
在轴承机构中,在使用前应该添加润滑油类的润滑物品。如在固定连接部17内容置润滑油,尽可能的使得这些滚珠在工作的过程中能够很好的滚动,减少滚珠的磨损。
请结合图4,每个叶片机构4包括多个扇板7,每个扇板7有多个叶板组件,每个叶板组件包括叶板框10、叶板8、叶板轴9。叶板8通过叶板轴9安装在叶板框10上。叶板8包括位于同一平面上的叶片部一81和叶片部二82。叶片部一81和叶片部二82均固定在叶板轴9的侧壁上,且分别位于叶板轴9的相对两侧。
叶片机构4之间以连接杆6连接。连接杆6将3组叶片机构4的6个边一一连接,使其形成一个受力整体,保护了旋转框架每组扇板7的受力安全,同时又消减了力臂过长而带来的弯折力,消除在运动中出现憋死现象的可能。
叶板框10的内侧上设置一圈内沿83,内沿83的尺寸满足:叶片部一81无法通过叶板框10而抵持在内沿83上,但允许叶片部二82通过叶板框10,且在叶片部一81抵持在内沿83上时,整个叶板8遮盖内沿83圈成的窗口84。
也就是说,叶板轴9的顶端和底端分别转动安装在叶板框10的相对两侧上,并与叶板8固定而将叶板8转动安装在叶板框10上。
叶板框10一般采用矩形结构,如图4中的长方形。多个叶板框10可拼接成网格格局的框架,每个叶板框10为该框架的其中一个网格,每个网格内安装一个叶板8。多个叶板框10可拼接成条形的叶板组件(如图2所示),每个叶板组件的一个格为一个叶板框10。
叶板8区别于传统技术的结构,叶板8不再是一个单独的平板,而是采用两个尺寸不同的叶片部:叶片部一81和叶片部二82。叶片部一81的一端为自由端,叶片部一81的相对另一端固定在叶板轴9上,叶片部二82的一端也为自由端,叶片部二82的相对另一端也固定在叶板轴9上,且叶片部一81和叶片部二82分别位于叶板轴9的相对两侧上。
在本实施例中,叶板8包括位于同一平面上的叶片部一81和叶片部二82,叶片部一81和叶片部二82均固定在叶板轴9的侧壁上,且分别位于叶板轴9的相对两侧。叶板框10的内侧上设置一圈内沿6,内沿6的尺寸满足:叶片部一81无法通过叶板框10而抵持在内沿6上,但允许叶片部二5通过叶板框10, 且在叶片部一81抵持在内沿83上时,整个叶板8遮盖内沿83圈成的窗口84。叶板组件能够在深海中在洋流的作用下更好的开合,使得洋流发电装置的工作更稳定,效率更高。
为了提高内沿83的结构强度,内沿83可一体成型在叶板框10上。叶片部一81上可开设至少一个导流孔85,或叶片部二82上可开设至少一个导流孔85,或叶片部一81和叶片部二82上可分别开设至少一个导流孔85。叶板框10的厚度大于内沿83的厚度。叶板轴9固定在叶板8的三分之二处,如叶片部一81占叶板8的三分之二,叶片部二82占叶板8的三分之一。叶板8与叶板轴9可为一体成型结构。
通过安装在叶板框10上,在需要叶板8受力的时候,通过水流的作用,使得叶板8的叶片部一81被压到叶板框10的内沿83上,使得力传递到叶板框10上,以此来带动整个装置的转动。在需要叶板8开启得时候,在水流的作用下,部分水流通过导流孔85使得叶板8后面的水由类似于禁止状态变为流动状态,以此使得叶板8能够更好的打开,以此使得整个装置运行的更为平稳。
值得说明的是本发明中所提到的叶板轴9的位置不一定非要是三分之一处,应当根据实验结果相应的进行调整。同理叶板8上的导流孔8的数量、大小等也应该根据相应的实验结果进行调整,以达到最好的效果。
中心转轴11与扇板7上设置有对称的两根加强筋12。中心转轴11与扇板7之间设置的加强筋12也是为了防止旋转框架的臂由于力量过大造成的弯折。
扇板7与中心转轴11连接处的扇板框内设置浮筒5,不设置叶板。舍弃中心位置叶板8而改为浮筒5,其原因主要是,中心叶板8的力矩不大,由于旋转框架的重量过重,必须考虑框架底部支撑轴承的受力和使用寿命,因此采用此种设计,减轻了底部支撑轴承的负重,使其转动更灵活,同时延长使用寿命。
根据本申请设备样机试验,在洋流中实现发电1500kw以上,设备投入仅需30多万,而同等发电量的风力发电设备投入在1000多万,并且风力发电受气候影响大,风力不持续,本申请的实施,利国利民,意义重大。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种双塔式垂直轴平面透平洋流发电装置;其特征在于:其包括:
    主支架(2);
    两个旋转框架,每个旋转框架包括六个叶片机构(4)和一个中心转轴(11),六个叶片机构(4)呈米字型,且米字型中心通过中心转轴(11)转动安装在主支架(2)上,使六个叶片机构(4)相对主支架(2)旋转;每个叶片机构(4)包括多个扇板(7),每个扇板(7)多个叶板组件,每个叶板组件包括叶板框(10)、叶板(8)、叶板轴(9);叶板(8)通过叶板轴(9)安装在叶板框(10)上;叶板(8)包括位于同一平面上的叶片部一(81)和叶片部二(82),叶片部一(81)和叶片部二(82)均固定在叶板轴(9)的侧壁上,且分别位于叶板轴(9)的相对两侧;叶板框(10)的内侧上设置一圈内沿(83),内沿(83)的尺寸满足:叶片部一(81)无法通过叶板框(10)而抵持在内沿(83)上,但允许叶片部二(82)通过叶板框(10),且在叶片部一(81)抵持在内沿(83)上时,整个叶板(8)遮盖内沿(83)圈成的窗口(84);
    多个浮筒(5),其安装在主支架(2)上,和/或扇板(7)上且靠近相应中心主轴(11)的区域;
    水下自平衡机构,其用于使整个双塔式垂直轴平面透平洋流发电装置在深海且在洋流波动的情况下依旧保持水平悬浮,包括两个水下压力检测传感器(13)、两个密封的水箱(14)、双向泵(16)、若干管道(15);其中一个水下压力检测传感器(13)和其中一个水箱(14)均安装在主支架(2)一侧上,其中另一个水下压力检测传感器(13)和其中另一个水箱(14)均安装在主支架(2)的相对另一侧上,且两个水下压力检测传感器(13)和两个水箱(14)在主支架(2)上安装高度均相同;双向泵(16)安装在主支架(2)的顶部,且通过若干管道(15)和两个水箱(14)分别相通;两个水下压力检测传感器(13)与双向泵(16)的控制器电性连接,所述控制器在两个水下压力检测传 感器(13)产生的两个压力检测值存在偏差时,根据所述偏差控制双向泵(16)调解两个水箱(14)之间的相对储水量。
  2. 如权利要求1所述的双塔式垂直轴平面透平洋流发电装置,其特征在于:所述双塔式垂直轴平面透平洋流发电装置还包括与两个旋转框架相对应的两个副支架(3),两个副支架(3)相互平行且垂直固定在主支架(2)上,中心转轴(11)安装在相应副支架(3)上且与主支架(2)垂直固定的区域。
  3. 如权利要求1所述的双塔式垂直轴平面透平洋流发电装置,其特征在于:中心转轴(11)的两端采用轴承机构,所述轴承机构包括:
    固定连接部(17),其为一端呈封闭的圆桶;
    轴连接器(20),其一端外侧壁上设置有环绕轴连接器(20)的支撑板(21)且端面上设置有承重柱(22),同时承重柱(22)和支撑板(21)收容在固定连接部(17)内,其另一端与中心转轴(11)共轴连接,支撑板(21)与固定连接部(17)的内侧壁存在间隙一(23);
    多个止推滚珠(19),其收容在固定连接部(17)内且环绕承重柱(22)而布置,并且满足:每个止推滚珠(19)的顶部和轴连接器(20)具有承重柱(22)的端面相切,每个止推滚珠(19)的底部和固定连接部(17)的底壁相切,每个止推滚珠(19)的一侧和承重柱(22)的外侧壁相切,每个止推滚珠(19)的相对另一侧和固定连接部(17)的内侧壁相切,承重柱(22)悬空在固定连接部(17)的底壁上;
    压板(24),其固定在轴连接器(20)的外侧壁上且位于支撑板(21)远离止推滚珠(19)的一侧,并收容在固定连接部(17)内,压板(24)环绕轴连接器(20)且与固定连接部(17)的内侧壁之间存在间隙二(26);
    多个旋转滚珠(18),其收容在主要由轴连接器(20)、压板(24)、固定连接部(17)、支撑板(21)围成的收容腔(25)内且环绕轴连接器(20)而布置,旋转滚珠(18)的直径小于止推滚珠(19)的直径且上、下、左、右四个方位均与收容腔(25)的内壁相切。
  4. 如权利要求1所述的双塔式垂直轴平面透平洋流发电装置,其特征在于:叶片部一(81)和/或叶片部二(82)上开设至少一个导流孔(85)。
  5. 如权利要求1所述的双塔式垂直轴平面透平洋流发电装置,其特征在于:叶板轴(9)固定在叶板(8)的三分之二处;叶片部一(81)占叶板(8)的三分之二,叶片部二(82)占叶板(8)的三分之一。
  6. 如权利要求1所述的双塔式垂直轴平面透平洋流发电装置,其特征在于:两个水箱(14)的水量之和为一个水箱(14)的容积。
  7. 如权利要求1所述的双塔式垂直轴平面透平洋流发电装置,其特征在于:所述控制器内存储有查询表,所述查询表表征两个压力检测值的偏差和双向泵(16)的运行参数之间的关系,双向泵(16)的运行参数包括运行方向、运行时间。
  8. 如权利要求1所述的双塔式垂直轴平面透平洋流发电装置,其特征在于:两个压力检测值的偏差和双向泵(16)的运行参数之间的关系通过实验数据拟合得到。
  9. 如权利要求1所述的双塔式垂直轴平面透平洋流发电装置,其特征在于:每个旋转框架还包括将六个叶片机构(4)连接在一起的加强筋(12)。
  10. 如权利要求1所述的双塔式垂直轴平面透平洋流发电装置,其特征在于:同一个叶片机构(4)上的多个扇板(7)相互平行,且与相应中心转轴(11)垂直固定,并以相应中心转轴(11)对称布局。
  11. 一种双塔式垂直轴平面透平洋流发电装置的水下自平衡装置,其用于使双塔式垂直轴平面透平洋流发电装置的深海洋流发电平台(1)在深海且在洋流波动的情况下依旧保持水平浮置;其特征在于:所述水下自平衡装置包括两个水下压力检测传感器(13)、两个密封的水箱(14)、双向泵(16)、若干管道(15);
    其中一个水下压力检测传感器(13)和其中一个水箱(14)均安装在深海洋流发电平台(1)一侧上,其中另一个水下压力检测传感器(13)和其中另一 个水箱(14)均安装在深海洋流发电平台(1)的相对另一侧上,且两个水下压力检测传感器(13)和两个水箱(14)在深海洋流发电平台(1)上安装高度均相同;双向泵(16)安装在深海洋流发电平台(1)的顶部,且通过若干管道(15)和两个水箱(14)分别相通;两个水下压力检测传感器(13)与双向泵(16)的控制器电性连接,所述控制器在两个水下压力检测传感器(13)产生的两个压力检测值存在偏差时,根据所述偏差控制双向泵(16)调解两个水箱(14)之间的相对储水量。
  12. 如权利要求11所述的双塔式垂直轴平面透平洋流发电装置的水下自平衡装置,其特征在于:两个水箱(14)的水量之和为一个水箱(14)的容积。
  13. 如权利要求11所述的双塔式垂直轴平面透平洋流发电装置的水下自平衡装置,其特征在于:所述控制器内存储有查询表,所述查询表表征两个压力检测值的偏差和双向泵(16)的运行参数之间的关系,双向泵(16)的运行参数包括运行方向、运行时间。
  14. 如权利要求11所述的双塔式垂直轴平面透平洋流发电装置的水下自平衡装置,其特征在于:两个压力检测值的偏差和双向泵(16)的运行参数之间的关系通过实验数据拟合得到。
  15. 一种双塔式垂直轴平面透平洋流发电装置的叶片结构,其包括:
    叶板框(10);
    叶板(8);
    叶板轴(9),其顶端和底端分别转动安装在叶板框(10)的相对两侧上,并与叶板(8)固定而将叶板(8)转动安装在叶板框(10)上;
    其特征在于:
    叶板(8)包括位于同一平面上的叶片部一(81)和叶片部二(82),叶片部一(81)和叶片部二(82)均固定在叶板轴(9)的侧壁上,且分别位于叶板轴(9)的相对两侧;叶板框(10)的内侧上设置一圈内沿(83),内沿(83)的尺寸满足:叶片部一(81)无法通过叶板框(10)而抵持在内沿(83)上, 但允许叶片部二(82)通过叶板框(10),且在叶片部一(81)抵持在内沿(83)上时,整个叶板(8)遮盖内沿(83)圈成的窗口(84)。
  16. 如权利要求15所述的双塔式垂直轴平面透平洋流发电装置的叶片结构,其特征在于:叶片部一(81)和叶片部二(82)上均开设至少一个导流孔(85)。
  17. 如权利要求15所述的双塔式垂直轴平面透平洋流发电装置的叶片结构,其特征在于:叶板框(10)的厚度大于内沿(83)的厚度。
  18. 如权利要求15所述的双塔式垂直轴平面透平洋流发电装置的叶片结构,其特征在于:叶板轴(9)固定在叶板(8)的三分之二处。
  19. 如权利要求18所述的双塔式垂直轴平面透平洋流发电装置的叶片结构,其特征在于:叶片部一(81)占叶板(8)的三分之二,叶片部二(82)占叶板(8)的三分之一。
  20. 如权利要求15所述的双塔式垂直轴平面透平洋流发电装置的叶片结构,其特征在于:内沿(83)一体成型在叶板框(10)上;叶板(8)与叶板轴(9)为一体成型结构。
PCT/CN2017/091778 2017-05-23 2017-07-05 一种双塔式垂直轴平面透平洋流发电装置 WO2018214244A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710366406.5 2017-05-23
CN201710366406.5A CN107152370A (zh) 2017-05-23 2017-05-23 一种双塔式垂直轴平面片洋流发电装置

Publications (1)

Publication Number Publication Date
WO2018214244A1 true WO2018214244A1 (zh) 2018-11-29

Family

ID=59793666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091778 WO2018214244A1 (zh) 2017-05-23 2017-07-05 一种双塔式垂直轴平面透平洋流发电装置

Country Status (2)

Country Link
CN (1) CN107152370A (zh)
WO (1) WO2018214244A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111852729A (zh) * 2020-07-29 2020-10-30 马绍胜 一种漂浮式河流发电方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107762736B (zh) * 2017-11-16 2018-08-28 龚羽佳 实现自平衡的海上风力发电基础及风力发电机组
CN107939605B (zh) * 2017-11-16 2018-09-28 龚羽佳 具有自我保护功能的海上风力发电机
CN107882684B (zh) * 2017-11-16 2018-08-24 龚羽佳 具有姿态自矫正功能的海上风力发电机
CN111852738A (zh) * 2020-06-22 2020-10-30 中国海洋大学 悬浮自动对向轮辋式潮流能发电装置及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030019207A1 (en) * 2001-07-30 2003-01-30 Parker David Joseph Wave driven power generation system
CN104229093A (zh) * 2014-10-21 2014-12-24 南通贝斯特船舶与海洋工程设计有限公司 大型货船船体自动平衡方法和系统
CN105587459A (zh) * 2016-02-29 2016-05-18 郭世光 一种水下洋流发电装置
CN106523243A (zh) * 2016-11-22 2017-03-22 合肥工业大学 一种回转支撑装置及其深海洋流发电主轴

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6179563B1 (en) * 1996-02-20 2001-01-30 Mark Eugene Minchey Wind-powered drive shaft
KR200383987Y1 (ko) * 2004-11-15 2005-05-11 함영식 수직축 풍력발전기용 회전날개의 가변장치
SE0850056A1 (sv) * 2008-10-27 2010-04-28 Lennart Nilsson Kraftverk
CN105667725B (zh) * 2016-02-26 2018-03-16 中交第二航务工程局有限公司 半潜式施工平台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030019207A1 (en) * 2001-07-30 2003-01-30 Parker David Joseph Wave driven power generation system
CN104229093A (zh) * 2014-10-21 2014-12-24 南通贝斯特船舶与海洋工程设计有限公司 大型货船船体自动平衡方法和系统
CN105587459A (zh) * 2016-02-29 2016-05-18 郭世光 一种水下洋流发电装置
CN106523243A (zh) * 2016-11-22 2017-03-22 合肥工业大学 一种回转支撑装置及其深海洋流发电主轴

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111852729A (zh) * 2020-07-29 2020-10-30 马绍胜 一种漂浮式河流发电方法
CN111852729B (zh) * 2020-07-29 2021-12-31 马绍胜 一种漂浮式河流发电方法

Also Published As

Publication number Publication date
CN107152370A (zh) 2017-09-12

Similar Documents

Publication Publication Date Title
WO2018214244A1 (zh) 一种双塔式垂直轴平面透平洋流发电装置
CN102095004B (zh) 大型液压变速浮箱拍门
CA2973250C (en) Tidal current energy electric generating device
US4111610A (en) Wave-powered, pivoted float pumping system with increasing opposition to extreme movement of lever arm
US20140050583A1 (en) Vertical-shaft Wind Turbine Double-layer Reverse Rotation and Horizontal Active Wings
JP7028485B2 (ja) 水上太陽光発電装置
CN205561838U (zh) 海底地形地貌近距离探测装置
WO2005057006A1 (en) Water turbine capable of being lifted out of the water
CN103133858B (zh) 高压杠杆浮球式蒸汽疏水阀
CN108488045B (zh) 用于风机塔架减振的阻尼器
CN212709887U (zh) 一种实时动态调节漂浮式风机姿态的智能调载系统
JP2021535977A (ja) 水車回転体管路支持型管路タービンと管路タービンを多段に直列設置した水力発電装置
CN202915036U (zh) 双杠杆浮球式蒸汽疏水阀
CN105587459A (zh) 一种水下洋流发电装置
CN104806209A (zh) 一种锌合金焊接活塞缓冲海上油井辅助机械
CN210484976U (zh) 一种给排水管道抗震支架
CN210566492U (zh) 一种便携式节能减压阀门
CN206639740U (zh) 铸造拐臂箱
KR101868341B1 (ko) 유속변화와 압력에 대응하는 회전 장치
CN214404767U (zh) 一种带有流量调节结构的调节球阀
CN201925535U (zh) 大型液压变速浮箱拍门
CN201584174U (zh) 一种用于池式反应堆堆芯与水池的非能动开关
CN214838488U (zh) 一种硬密封闸阀
CN218208432U (zh) 一种管道加固结构
CN221075317U (zh) 一种轴承导向的吹管用闸阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910814

Country of ref document: EP

Kind code of ref document: A1