WO2018214102A1 - 振动抑制装置及机器人 - Google Patents

振动抑制装置及机器人 Download PDF

Info

Publication number
WO2018214102A1
WO2018214102A1 PCT/CN2017/085939 CN2017085939W WO2018214102A1 WO 2018214102 A1 WO2018214102 A1 WO 2018214102A1 CN 2017085939 W CN2017085939 W CN 2017085939W WO 2018214102 A1 WO2018214102 A1 WO 2018214102A1
Authority
WO
WIPO (PCT)
Prior art keywords
suppression device
vibration suppression
working chamber
industrial robot
piston rod
Prior art date
Application number
PCT/CN2017/085939
Other languages
English (en)
French (fr)
Inventor
张鹏飞
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Priority to PCT/CN2017/085939 priority Critical patent/WO2018214102A1/zh
Priority to CN201780036110.5A priority patent/CN109312805B/zh
Publication of WO2018214102A1 publication Critical patent/WO2018214102A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/19Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with a single cylinder and of single-tube type

Definitions

  • the invention relates to the field of robot vibration suppression technology, and in particular to a vibration suppression device and a robot.
  • the industrial robot is a motion device driven by a motor.
  • the heavy-duty industrial robot (loading more than 90kg) has a relatively large two-axis load, and the two-axis often has vibration problems during low-speed operation.
  • the methods of vibration suppression of existing industrial robots generally have a evasive method and a driver parameter adjustment method.
  • the invention provides a robot and a vibration suppression device, which can convert the vibration generated during the movement of the robot into hydraulic damping and heat dissipation, and stabilize the operation of the robot by passive damping.
  • One technical solution adopted by the present invention is to provide a vibration suppression device installed at a joint of an industrial robot, the vibration suppression device comprising: an outer cylinder, an inner cylinder, a piston, and a piston rod a first passage and a throttle valve; wherein the inner cylinder is located inside the outer cylinder, one end of the inner cylinder is connected to a bottom of the outer cylinder, and the piston is connected to the piston rod and disposed on Between the inner cylinder and the outer cylinder, the outer cylinder, the piston and the piston rod form a first working chamber, and the first working chamber is provided with a first oil port, the piston a rod and the inner cylinder body form a second working chamber, and the second working chamber is provided with a second oil port, and the first oil port and the second oil port communicate through the first channel,
  • the throttle valve is disposed on the first passage for controlling the flow rate of the hydraulic oil on the first passage, and generating at least a force opposite to the movement of the industrial robot to suppress the movement of the industrial robot Vibration.
  • the cross-sectional area of the first working chamber and the second working chamber are equal to achieve symmetry of forward and reverse characteristics of the vibration suppression device.
  • the first oil port is disposed at an outer side wall away from an end of the bottom of the outer cylinder body.
  • the second oil port is disposed at a bottom of the inner cylinder and communicates with the second working chamber.
  • the inner cylinder body is provided with a first protrusion, and the first protrusion engages with the opening and closing portion of the outer cylinder body near the first oil port to engage the piston rod.
  • the bottom of the outer cylinder is integrally or separately formed with the bottom of the inner cylinder.
  • the throttle valve controls the flow rate of the hydraulic oil on the first passage such that the pressures of the first working chamber and the second working chamber are not equal.
  • the vibration suppression device is disposed at a second joint of the industrial robot; wherein the piston rod is connected to a boom of the industrial robot, and the outer cylinder is connected to a base of the industrial robot; The piston rod acts on the boom of the industrial robot and suppresses the vibration generated by the industrial robot when the boom of the industrial robot moves forward.
  • the pressure difference generated acts on the piston rod and drives the piston to move away from the bottom of the outer cylinder.
  • the piston rod acts on the second joint of the industrial robot, and suppresses the vibration generated by the industrial robot when the industrial robot moves in the direction of the first working chamber and the second working chamber.
  • the method further includes a third working cavity formed by the outer cylinder, the piston and the piston rod, the third working cavity is provided with a first through hole, and the first through hole is pierced with the outer hole Cylinder block.
  • the throttle valve is one of a two-way throttle valve and a proportional throttle valve.
  • another technical solution adopted by the present invention is to provide an industrial robot including the vibration suppression device according to any of the above.
  • vibration suppression device is disposed at the second joint of the industrial robot.
  • the invention has the beneficial effects of providing a robot and a vibration suppression device.
  • the throttle valve can be adjusted to control the first passage without requiring a power source.
  • the flow of hydraulic oil produces the opposite force to the movement of the industrial robot, and the robot is operated smoothly by passive damping.
  • FIG. 1 is a cross-sectional structural view showing a cross section of a vibration suppression device of the present invention
  • FIG. 2 is a schematic view showing the structure of an embodiment of the robot of the present invention.
  • FIG. 1 is a cross-sectional structural view showing a cross section of a vibration suppression device of the present invention.
  • the vibration suppression device 10 is mounted at a joint of an industrial robot and includes an outer cylinder 11, an inner cylinder 12, a piston 13, a piston rod 14, a first passage 15, and a throttle valve 16.
  • the inner cylinder block 12 is located inside the outer cylinder block 11, the inner cylinder block 12 is connected to the bottom of the outer cylinder block 11, and the piston 13 is connected to the piston rod 14 and disposed between the inner cylinder block 12 and the outer cylinder block 11 to form a Closed system.
  • the inner cylinder 12 is provided with a first protrusion 121 that engages with the opening and closing portion 111 of the outer cylinder 11 near the first port a, and the piston rod 14
  • the thickness of 14 is the distance between the opening and closing portion 111 of the outer cylinder block 11 and the first projection 121 of the inner cylinder block 12.
  • the bottom of the outer cylinder 11 is formed integrally or separately from the bottom of the inner cylinder block 12.
  • the bottom of the outer cylinder 11 is integrated with the bottom of the inner cylinder block 12, or the inner cylinder block 12 is a separately disposed component and is fixedly coupled to the outer cylinder block 11 by a fixing member.
  • the vibration suppression device 10 adopts a single rod manner, which shortens the axial installation space. That is, in the specific embodiment, the piston rod 14 is disposed at an end away from the bottom of the outer cylinder block 11.
  • first working chamber A the outer cylinder 11, the piston 13, and the piston rod 14 form a first working chamber A.
  • the cross section of the first working chamber A may be annular.
  • the first working chamber A is provided with a first oil port a, and the first oil port a penetrates the outer side wall of the outer cylinder body 11.
  • the first port a is opened at an outer side wall of one end away from the bottom of the outer cylinder 11.
  • the piston rod 14 and the inner cylinder block 12 form a second working chamber B.
  • the cross section of the second working chamber B may be circular.
  • the second working chamber B is provided with a second oil port b, and the second oil port b is disposed at the bottom of the outer cylinder block 11 and the inner cylinder block 12 and communicates with the second working chamber B.
  • first port a and the second port b are connected by the first passage 15 .
  • a throttle valve 16 is disposed on the first passage 15 for controlling the flow rate of the hydraulic oil on the first passage 15.
  • the vibration suppression is achieved by setting the size of the inner and outer diameters of the first working chamber A and the size of the second working chamber B such that the working areas of the first working chamber A and the second working chamber B are equal.
  • the forward and reverse characteristics of the device 10 are symmetrical.
  • a closed hydraulic system can be formed without external oil supply. That is, when the working areas of the first working chamber A and the second working chamber B are equal, the hydraulic oil flows from the first working chamber A or the second working chamber B to the second working chamber B or the first working chamber A via the first passage.
  • the external oil storage system is not needed, the balance of the hydraulic oil in the two working chambers can be achieved.
  • the throttle valve 16 is used to control the flow rate of the hydraulic oil on the first passage 15.
  • the throttle valve 16 may be including but not limited to a two-way throttle valve and a proportional throttle valve.
  • the two-way throttle flow can flow hydraulic fluid from the first working chamber A to the second working chamber B and the hydraulic oil flows from the second working chamber B to the first working chamber A by changing its cross section or the throttle length.
  • the hydraulic oil flow is throttled.
  • the proportional throttle valve is based on a common throttle valve, and the throttle valve port is controlled by an electrical and mechanical proportional converter.
  • the flow control of the hydraulic oil on the first passage 15 by the throttle valve 16 mainly refers to the control of the flow direction, the speed, and the acceleration and deceleration of the hydraulic oil, and generates a force acting on the piston 13 and the piston rod 14. To suppress the vibration generated by the movement of industrial robots.
  • the vibration suppression device further includes a third working chamber C formed by the outer cylinder 11, the piston 13 and the piston rod 14, and the third working chamber C is provided with a first through hole c, and the first through hole c
  • the outer wall is disposed adjacent to one end of the bottom of the outer cylinder block 11, and the first port a and the first through hole c are oppositely disposed to seal the first working chamber A.
  • the third working chamber C is connected to the outside through the first through hole c, that is, the third working chamber C is an air chamber.
  • a purifying device in particular an air filter cartridge, may be placed at the first through hole c to ensure that the air inside the vibration suppressing device 10 is clean.
  • the vibration suppression device 10 is mounted at a second joint of an industrial robot.
  • the piston rod 14 is connected to the boom of the industrial robot
  • the outer cylinder 11 is connected to the base of the industrial robot
  • the vibration suppression device 10 is relatively moved forward or backward with the second joint of the robot.
  • the industrial robot includes, but is not limited to, a six-axis robot, and in other embodiments, the vibration suppression device may also be installed at other joints of the industrial robot, which is not specifically limited herein.
  • the vibration suppression device 10 does not include a power source, that is, during the movement of the robot, the vibration suppression device 10 generates a relative displacement with the movement of the robot.
  • the industrial robot moves backwards toward the boom.
  • the vibration suppression device 10 When the boom of the robot moves backward, it is damped by the vibration suppression device 10, and the vibration of the robot boom and the front end is converted into heat by damping.
  • the throttle valve 16 functions as an energy conversion, converts the vibration into hydraulic damping and then dissipates heat, and the robot is operated stably by passive damping.
  • the specific principle is as follows.
  • the throttle valve 16 controls the flow rate of the hydraulic oil on the first passage 15 such that the pressures of the first working chamber A and the second working chamber B are not equal.
  • a pressure difference is generated which actuates the piston rod 14 and causes the piston 13 to move away from the bottom of the outer cylinder.
  • piston rod 14 acts on the second joint of the industrial robot, and suppresses the vibration generated by the industrial robot when the boom of the industrial robot moves backward. It should be noted that the pressure difference acts on the movement of the piston rod. The direction is opposite to the direction of movement of the industrial robot.
  • the vibration suppression device 10 When the boom of the robot moves forward, it is damped by the vibration suppression device 10, and the vibration of the robot boom and the front end is converted into heat by damping.
  • the throttle valve 16 functions as an energy conversion, converts the vibration into hydraulic damping and then dissipates heat, and the robot is operated stably by passive damping.
  • piston rod 14 acts on the second joint of the industrial robot, and suppresses the vibration generated by the industrial robot when the boom of the industrial robot moves forward. It should be noted that the pressure difference acts on the piston movement. The direction is opposite to the direction of movement of the industrial robot.
  • the throttle valve can be adjusted to control the flow rate of the hydraulic oil on the first passage to be opposite to the movement of the industrial robot without requiring a power source. Force to make the robot run smoothly with passive damping.
  • FIG. 2 is a schematic structural view of an embodiment of a robot according to the present invention.
  • the industrial robot 20 includes the vibration suppression device 10 of any of the above, and the vibration suppression device 10 is mounted at the joint of the industrial robot 20 for suppressing vibration generated by the industrial robot 20 during exercise.
  • the vibration suppression device 10 is installed at the second joint of the industrial robot 20.
  • other joints may be used, which is not specifically limited in the present invention.
  • the industrial robot includes, but is not limited to, a six-axis robot. The specific structure of the vibration suppression device 10 is described above, and details are not described herein again.
  • the present invention provides a robot and a vibration suppression device.
  • the section can be adjusted without requiring a power source.
  • the flow valve controls the flow of hydraulic oil on the first passage to generate a force opposite to that of the industrial robot, and the robot is operated smoothly by passive damping.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

一种振动抑制装置(10)及机器人,振动抑制装置(10)安装于一工业机器人的一关节处,包括:外缸体(11)、内缸体(12)、活塞(13)、活塞杆(14)、第一通道(15)以及节流阀(16);内缸体(12)位于外缸体(11)内部,外缸体(11)、活塞(13)以及活塞杆(14)形成第一工作腔(A),且第一工作腔(A)上设置有第一油口(a),活塞杆(14)与内缸体(12)形成第二工作腔(B),且第二工作腔(B)上设置有第二油口(b),第一油口(a)及第二油口(b)通过第一通道(15)连通,节流阀(16)设置于第一通道(15)上,用于控制第一通道(15)上液压油的流量,并至少产生一与工业机器人运动相反的力,进而能够以被动阻尼方式抑制机器人运动时产生的振动,使机器人运行平稳。

Description

振动抑制装置及机器人
【技术领域】
本发明涉及机器人抑振技术领域,特别是涉及一种振动抑制装置及机器人。
【背景技术】
工业机器人是由电机驱动的运动装置,其中,重型工业机器人(负载90kg以上)的二轴负载相对较大,二轴在低速运行过程中常有振动问题。现有工业机器人的振动抑制的方法一般有规避法及驱动器参数调节法。
对于规避法,在机器人的应用中很难规避某段速度,因而不能从根本上解决振动问题,且限制了机器人的应用场景。
对于驱动器参数调节法,复杂且调试难度大,不一定能得到合适的抑振参数,且对驱动器的性能要求高,中低端的伺服驱动系统难以有效抑制振动。
【发明内容】
本发明提供一种机器人及振动抑制装置,能够将机器人运动过程中产生的振动转化为液压阻尼进而发热耗散,以被动阻尼方式使机器人运行平稳。
本发明采用的一个技术方案是:提供一种振动抑制装置,所述振动抑制装置安装于一工业机器人的一关节处,所述振动抑制装置包括:外缸体、内缸体、活塞、活塞杆、第一通道以及节流阀;其中,所述内缸体位于所述外缸体内部,所述内缸体一端与所述外缸体底部连接,所述活塞连接所述活塞杆并设置于所述内缸体与所述外缸体之间,所述外缸体、活塞以及所述活塞杆形成第一工作腔,且所述第一工作腔上设置有第一油口,所述活塞杆与所述内缸体形成第二工作腔,且所述第二工作腔上设置有第二油口,所述第一油口及所述第二油口通过所述第一通道连通,所述节流阀设置于所述第一通道上,用于控制所述第一通道上液压油的流量,并至少产生一与所述工业机器人运动相反的力,以抑制所述工业机器人运动时产生的振动。
其中,所述第一工作腔与所述第二工作腔的截面积相等,以实现所述振动抑制装置的正反向特性对称。
其中,所述第一油口设置于远离外缸体底部一端的外侧壁。
其中,所述第二油口设置于所述内缸体底部且与所述第二工作腔连通。
其中,所述内缸体上设置有第一凸起,所述第一凸起与所述外缸体的靠近所述第一油口处的开合部卡合所述活塞杆。
其中,所述外缸体的底部与所述内缸体的底部一体或分体形成。
其中,所述节流阀控制所述第一通道上液压油的流量,以使得所述第一工作腔与所述第二工作腔所受压力不相等。
其中,所述第一工作腔所受压力大于所述第二工作腔所受到的压力时,产生的压力差,作用于活塞并带动所述活塞杆朝向靠近所述外缸体底部的方向运动。
其中,所述振动抑制装置设置于所述工业机器人的第二关节处;其中,所述活塞杆连接所述工业机器人的大臂,所述外缸体连接所述工业机器人的机座;所述活塞杆作用于工业机器人大臂,并在所述工业机器人的大臂向前运动时,抑制所述工业机器人产生的振动。
其中,所述第一工作腔所受压力小于所述第二工作腔所受到的压力时,产生的压力差,作用于活塞杆并带动所述活塞向远离所述外缸体底部的方向运动。
其中,所述活塞杆作用于工业机器人的第二关节处,并在所述工业机器人朝向所述第一工作腔、第二工作腔的方向运动时,抑制所述工业机器人产生的振动。
其中,进一步包括由所述外缸体、活塞及所述活塞杆形成的第三工作腔,所述第三工作腔设有第一通孔,且所述第一通孔穿设与所述外缸体。
其中,所述节流阀为双向节流阀和比例节流阀的一种。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种工业机器人,所述工业机器人包括如上述任一所述的振动抑制装置。
其中,所述振动抑制装置设置于所述工业机器人的第二关节处。
本发明的有益效果是:提供一机器人及振动抑制装置,通过将该振动抑制装置安装于一工业机器人的关节处,可以在不需要动力源的情况下,调节节流阀以控制第一通道上液压油的流量产生与工业机器人运动相反的力,以被动阻尼方式使机器人运行平稳。
【附图说明】
图1是本发明振动抑制装置一横截面的剖面结构示意图;
图2是本发明机器人一实施方式的结构示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1是本发明振动抑制装置一横截面的剖面结构示意图。如图所示,该振动抑制装置10安装于一工业机器人的一关节处,包括:外缸体11、内缸体12、活塞13、活塞杆14、第一通道15以及节流阀16。
其中,内缸体12位于外缸体11内部,内缸体12一端与外缸体11底部连接,活塞13连接活塞杆14并设置于内缸体12与外缸体11之间,以形成一封闭系统。
进一步地,内缸体12上设置有第一凸起121,该第一凸起121与外缸体11的靠近第一油口a处的开合部111卡合活塞杆14,且该活塞杆14的厚度即为外缸体11的开合部111与内缸体12第一凸起121间的距离。具体地,该外缸体11的底部与内缸体12的底部一体或分体形成。在具体实施例中,外缸体11的底部与内缸体12的底部成一体化,或内缸体12为独立设置的部件,并通过固定元件与外缸体11进行固定连接。
优选地,该振动抑制装置10选用单出杆的方式,缩短了其轴向安装空间。即在具体实施例中,活塞杆14设置于远离外缸体11底部的一端。
进一步地,外缸体11、活塞13以及活塞杆14形成第一工作腔A。具体地,该第一工作腔A的截面可以为环形。可选地,第一工作腔A上设置有第一油口a,且该第一油口a贯穿于外缸体11的外侧壁。本实施例中,第一油口a开设于远离外缸体11底部的一端的外侧壁。
进一步地,活塞杆14与内缸体12形成第二工作腔B。具体地,该第二工作腔B的截面可以为圆形。优选地,第二工作腔B上设置有第二油口b,且该第二油口b设置于外缸体11与内缸体12底部且与第二工作腔B连通。
可选地,第一油口a及第二油口b通过第一通道15连接。进一步地,节流阀16设置于第一通道15上,用于控制第一通道15上液压油的流量。
在具体实施例中,通过设置第一工作腔A的内外径的尺寸以及第二工作腔B的尺寸,以使得第一工作腔A及第二工作腔B的作用面积相等,以实现该振动抑制装置10的正反向特性对称。可选地,当二者作用面积相等且通过第一通道15连通时,可形成一闭式液压系统,且无需外部供油。也就是说当第一工作腔A及第二工作腔B的作用面积相等,液压油从第一工作腔A或第二工作腔B经由第一通道流向第二工作腔B或第一工作腔A时,不需要外部储油系统便可以实现两工作腔液压油量的平衡。
进一步地,节流阀16用于控制第一通道15上液压油的流量。其中,节流阀16可以为包括但不限于双向节流阀和比例节流阀。其中,双向节流阀流通过改变其截面或节流长度可以对液压回路中液压油从第一工作腔A流向第二工作腔B以及液压油由从第二工作腔B流向第一工作腔A的液压油流量都进行节流控制。可选地,比例节流阀即为在普通节流阀的基础上,利用电、机械比例转换器对节流阀口进行控制。
可选地,节流阀16对第一通道15上液压油的流量控制主要是指对该液压油的流向、速度以及加减速度的控制,并产生作用于活塞13及活塞杆14的作用力,以抑制工业机器人运动时产生的振动。
此外,该振动抑制装置还进一步包括由外缸体11、活塞13及活塞杆14形成的第三工作腔C,且该第三工作腔C设置有第一通孔c,且第一通孔c设置于靠近外缸体11的底部一端的外侧壁,且第一油口a且第一通孔c相对设置,以使得所述第一工作腔A密封。
具体地,该第三工作腔C通过第一通孔c与外界连接,即该第三工作腔C为空气腔。进一步地,可以在第一通孔c处放置净化装置,具体可以是空气滤芯,以保证该振动抑制装置10内部空气洁净。
在本发明一应用场景中,该振动抑制装置10安装于一工业机器人的第二关节处。其中,活塞杆14连接工业机器人的大臂,外缸体11连接工业机器人的机座,且该振动抑制装置10会随着该机器人的第二关节向前或向后相对运动。进一步地,该工业机器人包括但不限于六轴机器人,且在其它实施例中,该振动抑制装置也可以安装于工业机器人的其它关节处,此处本发明不作具体限定。
进一步地,所述振动抑制装置10中不包括动力源,即在该机器人的运动的过程中,振动抑制装置10会随着该机器人的运动而产生相对位移。
具体地,可以分为如下两种情况:
1. 工业机器人朝的大臂向后运动。
机器人的大臂向后运动时,会受到该振动抑制装置10的阻尼作用,将机器人大臂及前端的振动通过阻尼作用转化为热量。其中,节流阀16起能量转化的作用,将振动转化为液压阻尼进而发热耗散,以被动阻尼方式使机器人运行平稳。
具体原理如下,节流阀16控制第一通道15上液压油的流量,以使得第一工作腔A与第二工作腔B所受压力不相等。当第一工作腔A所受压力小于第二工作腔B所受到的压力时,产生一压力差,该压力差作动活塞杆14并带动活塞13向远离外缸体底部的方向运动。
进一步地,该活塞杆14作用于工业机器人的第二关节处,并在工业机器人的大臂向后运动时,抑制工业机器人产生的振动,需要说明的是,该压力差作动活塞杆运动的方向与该工业机器人的运动方向相反。
2. 工业机器人的大臂向前运动。
当机器人的大臂向前运动时,会受到该振动抑制装置10的阻尼作用,将机器人大臂及前端的振动通过阻尼作用转化为热量。其中,节流阀16起能量转化的作用,将振动转化为液压阻尼进而发热耗散,以被动阻尼方式使机器人运行平稳。
当第一工作腔A所受压力大于第二工作腔所B受到的压力时,产生一压力差,该压力差作动活塞13并带动活塞杆14朝向第一工作腔A、第二工作腔B的方向运动。
进一步地,该活塞杆14作用于工业机器人的第二关节处,并在工业机器人的大臂向前运动时,抑制所述工业机器人产生的振动,需要说明的是,该压力差作动活塞运动的方向与该工业机器人的运动方向相反。
上述实施方式,通过将该振动抑制装置安装于一工业机器人的关节处,可以在不需要动力源的情况下,调节节流阀以控制第一通道上液压油的流量产生与工业机器人运动相反的力,以被动阻尼方式使机器人运行平稳。
请参阅图2,图2是本发明机器人一实施方式的结构示意图。如图所示,该工业机器人20包括上述任一所述的振动抑制装置10,且该振动抑制装置10安装于工业机器人20的关节处,用于抑制工业机器人20在运动过程中产生的振动。
可选地,该振动抑制装置10安装于工业机器人20的第二关节处,当然在其它实施例中,也可以是其他关节处,本发明不作具体限定。进一步地,该工业机器人包括但不限于六轴机器人。其中,该振动抑制装置10的具体结构参见上文,此处不再赘述。
综上所述,本领域技术人员容易理解,本发明提供一种机器人及振动抑制装置,通过将该振动抑制装置安装于一工业机器人的关节处,可以在不需要动力源的情况下,调节节流阀以控制第一通道上液压油的流量产生与工业机器人运动相反的力,以被动阻尼方式使机器人运行平稳。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (15)

  1. 一种振动抑制装置,所述振动抑制装置安装于一工业机器人的一关节处,其中,所述振动抑制装置包括:外缸体、内缸体、活塞、活塞杆、第一通道以及节流阀;
    其中,所述内缸体位于所述外缸体内部,所述内缸体一端与所述外缸体底部连接,所述活塞连接所述活塞杆并设置于所述内缸体与所述外缸体之间,所述外缸体、活塞以及所述活塞杆形成第一工作腔,且所述第一工作腔上设置有第一油口,所述活塞杆与所述内缸体形成第二工作腔,且所述第二工作腔上设置有第二油口,所述第一油口及所述第二油口通过所述第一通道连通,所述节流阀设置于所述第一通道上,用于控制所述第一通道上液压油的流量,并至少产生一与所述工业机器人运动相反的力,以抑制所述工业机器人运动时产生的振动。
  2. 根据权利要求1所述的振动抑制装置,其中,所述第一工作腔与所述第二工作腔的作用面积相等,以实现所述振动抑制装置的正反向特性对称。
  3. 根据权利要求1所述的振动抑制装置,其中,所述第一油口设置于远离外缸体底部一端的外侧壁。
  4. 根据权利要求1所述的振动抑制装置,其中,所述第二油口设置于所述内缸体底部且与所述第二工作腔连通。
  5. 根据权利要求1所述的振动抑制装置,其中,所述内缸体上设置有第一凸起,所述第一凸起与所述外缸体的靠近所述第一油口处的开合部卡合所述活塞杆。
  6. 根据权利要求1所述的振动抑制装置,其中,所述外缸体的底部与所述内缸体的底部一体或分体形成。
  7. 根据权利要求1所述的振动抑制装置,其中,所述节流阀控制所述第一通道上液压油的流量,以使得所述第一工作腔与所述第二工作腔所受压力不相等。
  8. 根据权利要求7所述的振动抑制装置,其中,所述第一工作腔所受压力大于所述第二工作腔所受到的压力时,产生的压力差,作用于活塞并带动所述活塞杆朝向靠近所述外缸体底部的方向运动。
  9. 根据权利要求8所述的振动抑制装置,其中,所述振动抑制装置设置于所述工业机器人的第二关节处;
    其中,所述活塞杆连接所述工业机器人的大臂,所述外缸体连接所述工业机器人的机座;
    所述活塞杆作用于工业机器人大臂,并在所述工业机器人的大臂向前运动时,抑制所述工业机器人产生的振动。
  10. 根据权利要求7所述的振动抑制装置,其中,所述第一工作腔所受压力小于所述第二工作腔所受到的压力时,产生的压力差,作用于活塞杆并带动所述活塞向远离所述外缸体底部的方向运动。
  11. 根据权利要求10所述的振动抑制装置,其中,所述活塞杆作用于工业机器人的第二关节处,并在所述工业机器人的大臂向后运动时,抑制所述工业机器人产生的振动。
  12. 根据权利要求1所述的振动抑制装置,其中,进一步包括由所述外缸体、活塞及所述活塞杆形成的第三工作腔,所述第三工作腔设有第一通孔,且所述第一通孔穿设于所述外缸体。
  13. 根据权利要求1所述的振动抑制装置,其中,所述节流阀为双向节流阀和比例节流阀中的一种。
  14. 一种工业机器人,其中,所述工业机器人包括如权利要求1-13任一所述的振动抑制装置。
  15. 根据权利要求14所述的机器人,其中,所述振动抑制装置设置于所述工业机器人的第二关节处。
PCT/CN2017/085939 2017-05-25 2017-05-25 振动抑制装置及机器人 WO2018214102A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/085939 WO2018214102A1 (zh) 2017-05-25 2017-05-25 振动抑制装置及机器人
CN201780036110.5A CN109312805B (zh) 2017-05-25 2017-05-25 振动抑制装置及机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/085939 WO2018214102A1 (zh) 2017-05-25 2017-05-25 振动抑制装置及机器人

Publications (1)

Publication Number Publication Date
WO2018214102A1 true WO2018214102A1 (zh) 2018-11-29

Family

ID=64396025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085939 WO2018214102A1 (zh) 2017-05-25 2017-05-25 振动抑制装置及机器人

Country Status (2)

Country Link
CN (1) CN109312805B (zh)
WO (1) WO2018214102A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268013A (en) * 1978-06-12 1981-05-19 Nl Industries, Inc. Crane motion compensator
CN101016926A (zh) * 2007-02-06 2007-08-15 南京航空航天大学 带内节流阀的飞机起落架缓冲器
CN101798909A (zh) * 2010-04-01 2010-08-11 中国石油大学(华东) 海洋浮式钻井平台钻柱升沉补偿装置
CN102658553A (zh) * 2012-05-14 2012-09-12 重庆绿色智能技术研究院 一种机器人及一种机器人臂振动控制与精确定位装置
CN103587371A (zh) * 2013-11-27 2014-02-19 徐光中 一种车辆悬架单元以及互连悬架系统
WO2016122321A1 (en) * 2015-01-29 2016-08-04 Ihc Holland Ie B.V. Compensator device
CN205766120U (zh) * 2016-05-27 2016-12-07 郴州郴锦智能机器人有限公司 一种机器人底座

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009043405B3 (de) * 2009-09-29 2011-04-07 Kuka Roboter Gmbh Industrieroboter mit einem Gewichtsausgleichssystem
CN102537176B (zh) * 2012-03-13 2014-07-02 株洲南车时代电气股份有限公司 一种阀控式半主动减振器
CN106438824B (zh) * 2016-08-12 2018-12-11 浙江工业大学 一种专用于太阳翼板吊挂装置的刹车气缸

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268013A (en) * 1978-06-12 1981-05-19 Nl Industries, Inc. Crane motion compensator
CN101016926A (zh) * 2007-02-06 2007-08-15 南京航空航天大学 带内节流阀的飞机起落架缓冲器
CN101798909A (zh) * 2010-04-01 2010-08-11 中国石油大学(华东) 海洋浮式钻井平台钻柱升沉补偿装置
CN102658553A (zh) * 2012-05-14 2012-09-12 重庆绿色智能技术研究院 一种机器人及一种机器人臂振动控制与精确定位装置
CN103587371A (zh) * 2013-11-27 2014-02-19 徐光中 一种车辆悬架单元以及互连悬架系统
WO2016122321A1 (en) * 2015-01-29 2016-08-04 Ihc Holland Ie B.V. Compensator device
CN205766120U (zh) * 2016-05-27 2016-12-07 郴州郴锦智能机器人有限公司 一种机器人底座

Also Published As

Publication number Publication date
CN109312805B (zh) 2021-04-02
CN109312805A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2018214102A1 (zh) 振动抑制装置及机器人
JP2014531363A (ja) 車両のブレーキシステムのためのブレーキブースタ装置、および車両のブレーキシステムのためのブレーキブースタ装置の製造方法
CN210176267U (zh) 一种多自由度液压式船用电梯井阻尼减振装置
CN110439951B (zh) 应急救援车辆用集成式半主动悬挂液压作动器
JP2001153170A (ja) 定圧弁及び油圧制振装置
WO2018086019A1 (zh) 电控压缩式气弹簧
CN111578038A (zh) 一种避震管道机器人
CN201501307U (zh) 一种换挡助力传感器总成
CN109027397B (zh) 一种气动放大器
WO2014178599A1 (ko) 유압식 조향장치가 적용된 캐빈형 농작업차
JP2002054674A (ja) 油圧制振装置
CN217633616U (zh) 一种能力值可调的阻尼器
CN203442275U (zh) 气控截止阀和底盘取力器控制系统
CN212657075U (zh) 一种卷扬平衡阀
CN108674116B (zh) 双腔浮动缸及其应用的单摆臂悬挂系统和悬挂调节方法
CN217518988U (zh) 一种液压缸内活塞磁力缓冲结构
Lugo et al. Modeling of a cable-based revolute joint using biphasic media variable stiffness actuation
CN214693014U (zh) 一种起重机伸缩油缸用双向阀
CN202431803U (zh) 一种轮缸总成
CN116292740B (zh) 一种准零刚度三自由度主动防微振平台
CN212360610U (zh) 一种轻启动双管可控簧
CN202923369U (zh) 作动器可更换式发动机主动悬置
CN111677879A (zh) 一种双向节流阀及其构成的受电弓供风控制系统
CN111980985A (zh) 一种挖机液压油缸减震组件
CN110332175A (zh) 一种四轴气缸

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910710

Country of ref document: EP

Kind code of ref document: A1