WO2018213978A1 - 天线及无人机的信号处理设备 - Google Patents

天线及无人机的信号处理设备 Download PDF

Info

Publication number
WO2018213978A1
WO2018213978A1 PCT/CN2017/085325 CN2017085325W WO2018213978A1 WO 2018213978 A1 WO2018213978 A1 WO 2018213978A1 CN 2017085325 W CN2017085325 W CN 2017085325W WO 2018213978 A1 WO2018213978 A1 WO 2018213978A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
substrate
vibrator
antenna according
disposed
Prior art date
Application number
PCT/CN2017/085325
Other languages
English (en)
French (fr)
Inventor
汤一君
邓任钦
杨飞虎
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202010745894.2A priority Critical patent/CN111883922B/zh
Priority to CN201780004594.5A priority patent/CN108513687B/zh
Priority to PCT/CN2017/085325 priority patent/WO2018213978A1/zh
Publication of WO2018213978A1 publication Critical patent/WO2018213978A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength

Definitions

  • the present invention relates to the field of data transmission, and in particular to a signal processing device for an antenna and a drone.
  • drones are widely used in aerial photography, agriculture, power inspection and other fields.
  • problems such as unclear flight areas and invasion of privacy.
  • it is necessary to receive a certain level of monitoring.
  • the omnidirectional antenna is generally a dipole form or a circularly polarized omnidirectional antenna similar to a dipole, which is limited by the gain characteristics of such an antenna, and the signal acquisition and transmission distance of such an antenna is short.
  • the main polarization and cross-polarization radiation patterns of the omnidirectional antenna are too narrow. When the flying height of the drone is too high, it is usually at the antenna radiation dead angle, so that the monitoring device of the drone cannot capture the unmanned The data information sent by the machine reduces the monitoring effect.
  • the invention provides a signal processing device for an antenna and a drone to improve signal acquisition and transmission capability of the antenna.
  • an antenna includes a substrate, a plurality of dipoles printed on the substrate, a feed network, and a ground plate, wherein the antenna further includes a substrate disposed on the substrate And a guiding unit for cooperating with the feeding network, the dipole includes a vibrator unit disposed on one side of the substrate and a vibrator unit disposed on the other side of the substrate, wherein the vibrator unit includes a first vibrator and a second vibrator; the feed network is coupled to each vibrator unit; The substrate is disposed in parallel with the ground plate at a predetermined distance.
  • a signal processing device for a drone comprising:
  • a plurality of antennas for receiving signals transmitted by the drone including the drone supervisory information
  • the plurality of antennas are circumferentially disposed along a fixed device of the antenna.
  • the present invention provides a directionality of signals radiated by the antenna by a ground plate disposed at a predetermined distance on one side of the substrate, and the gain of the antenna is large, and data is captured and transmitted. long distance.
  • the acquisition and transmission of dual-band data is achieved by setting the first vibrator and the second vibrator.
  • the vibrator unit is printed on both sides of the substrate to increase the radiation surface, and the symmetry of the radiation pattern is improved by providing the guiding unit, so that the signal capturing and transmission capability of the antenna in all directions is more uniform.
  • the antenna of the present invention has good matching performance and radiation performance, and the antenna is stable in in-band gain.
  • FIG. 1 is a perspective view of an antenna on one side of a substrate according to an embodiment of the present invention
  • FIG. 2 is a perspective view of the antenna of the embodiment of the present invention on the other side of the substrate;
  • Figure 3 is a cross-sectional view of an antenna according to an embodiment of the present invention.
  • Figure 4 is a perspective view of an antenna according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an antenna according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of return loss of an antenna according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a signal processing device of a drone according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of splitting of a signal processing device of a drone according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of splitting of a signal processing device of a drone according to an embodiment of the present invention in another direction;
  • FIG. 11 is a schematic structural diagram of a signal processing device of a drone according to another embodiment of the present invention.
  • 12A is a radiation pattern of an antenna in a frequency band in a signal processing device of a drone according to an embodiment of the present invention
  • FIG. 13A is a radiation pattern of an antenna in a frequency band in a signal processing device of a drone according to another embodiment of the present invention.
  • Fig. 13B is a radiation pattern of the antenna in another frequency band in the signal processing device of the drone according to another embodiment of the present invention.
  • 100 antenna; 200: receiving path; 300: fixed device of the antenna; 400: combiner;
  • 2 dipole; 20: vibrator unit; 21: first vibrator; 211: first main body; 212: a first bent portion; 22: a second vibrator; 221: a second main body portion; 222: a second bent portion;
  • an embodiment of the present invention provides an antenna 100, wherein the antenna is a directional antenna, and the antenna 100 includes a substrate 1, a dipole 2, a feed network 3, a grounding plate 4, and a guiding antenna.
  • the dipole 2 includes a vibrator disposed on a side of the substrate 1
  • the dipole 2, the feed network 3 and the guiding unit 5 are all printed on the substrate 1 to achieve the fixation of the dipole 2, the feed network 3 and the guiding unit 5.
  • the feed network 3 is connected to each of the transducer units 20 such that the signals received by each of the transducer units are transmitted by the feed network 3.
  • the guiding unit 5 cooperates with the feed network 3 to increase the symmetry of the radiation direction.
  • the substrate 1 is disposed in parallel with the ground plate at a predetermined distance H.
  • the ground plate 4 disposed in parallel with the preset distance H on one side of the substrate 1 makes the signal radiated by the antenna 100 have directivity, the gain of the antenna 100 is large, and the data capture and transmission distance are long.
  • the air layer between the substrate 1 and the grounding plate 4 ensures the antenna 100 has good radiation characteristics.
  • the lengths of the first vibrator 21 and the second vibrator 22 can be set as needed to achieve dual band data capture and transmission.
  • the vibrator unit 20 is printed on both sides of the substrate 1 to increase the radiation surface. Also, the symmetry of the radiation direction is improved by providing the guiding unit 5.
  • the antenna 100 of the present invention has good matching performance and radiation performance, and the antenna 100 is stabilized in-band gain.
  • a part of the feeding network 3 is disposed on one side of the substrate 1, and another portion is disposed on the other side of the substrate 1, wherein the substrate 1 is on the same side.
  • the feed network 3 is connected to each of the transducer units 20 on the same side.
  • the number of vibrator units 20 on both sides of the substrate 1 can be set as needed.
  • the vibrator units 20 on both sides of the substrate 1 are even.
  • the even number of transducer units 20 disposed on each side of the substrate are axially and axially distributed.
  • the number of the vibrator units 20 on both sides of the substrate 1 is four, and the number of dipoles in the embodiment of the present invention is four.
  • the side of the substrate 1 away from the ground plate 4 is referred to as the upper surface of the substrate 1, and the side of the substrate 1 close to the ground plate 4 is referred to as the lower surface of the substrate 1, and the substrate 1 will be hereinafter referred to as The structure of the upper surface is explained.
  • the vibrator unit 20 includes a first vibrator. 21 and two second vibrators 22.
  • the length of the first vibrator 21 is greater than the length of the second vibrator 22, so that the antenna 100 realizes the capture and transmission of the dual-band data, and the signal frequency band radiated by the first vibrator 21 is lower than the signal radiated by the second vibrator.
  • Frequency band the frequency range of the signal captured and transmitted by the first vibrator 21 is floating at 2.4 GHz (for example, 2.4 GHz to 2.5 GHz), and the frequency range of the signal captured and transmitted by the second vibrator 22 is 5G. In the frequency band (for example, 5.1 GHz to 5.85 GHz), the 5G full frequency band includes 5.8 GHz.
  • the two second vibrators 22 are symmetrically disposed on both sides of the first vibrator 21 such that the radiation patterns of the first vibrator 21 and the second vibrator 22 are more symmetrical, and the main polarization of the antenna is cross-isolated.
  • the first vibrator 21 includes a first body portion 211 and a first bent portion 212, and the two second vibrators 22 are symmetrically disposed on both sides of the first body portion 211.
  • the first bending portion 212 is disposed at one end of the first body portion 211, and the two second vibrators 22 are symmetrically disposed at the other end of the first body portion 211.
  • the first bent portion 212 is connected to one end of the first body portion 211, and the two second vibrators 22 are respectively connected to the other end of the first body portion 211.
  • one end of the first body portion 211 is vertically connected to the middle of the first bent portion 212, further making the structure of the first vibrator 21 relatively compact, thereby reducing the overall size of the antenna 100.
  • the structure of the first vibrator 21 is a symmetrical structure, which also makes the radiation pattern of the first vibrator 21 itself more symmetrical, so that the signal capturing and transmission capability of the antenna in all directions is more uniform.
  • the first vibrator 21 can look at a "T" type structure.
  • the second vibrator 22 includes a second body portion 221 and a second bent portion 222, wherein the second body portions 221 of the two second vibrators 22 are symmetrically connected to the first body portion An end of the 211 is away from the first bent portion, and the first body portion 211 is perpendicular to the second body portion 221 .
  • the second bending portion 222 is vertically disposed at an end of the second body portion 221 away from the first body portion 211, wherein the second bending portion 222 extends toward the first bending portion 212, the second vibrator 22 is similar to the structure of the "L" type. It should be noted that, in order to realize the dual frequency characteristic and facilitate adjustment of the performance parameters of the first vibrator 21 and the second vibrator 22, the first bent portion 212 and the second bent portion 222 do not intersect.
  • the substrate 1 is approximately rectangular, and in each of the vibrator units 20, the first bent portion 112 is parallel to a short side of the rectangle, and the second bent portion 222 is from the second body portion. 221 extends toward the same short side. This is because when the antenna 100 is used, the short side direction of the first bent portion 112 and the second body portion 221 of the same vibrator unit 20 is placed toward the pitch direction, so that the vibrator unit 20 can receive signals better or The signal is transmitted, so that the substrate 1 is designed to be approximately rectangular in shape to facilitate the mounting of the antenna 100.
  • the vibrator unit 20 disposed on the lower surface of the substrate 1 is mirror-distributed with the vibrator unit disposed on the upper surface of the substrate, thereby increasing the radiation surface, so that the antenna 100 has better radiation performance, matching, and Stable gain.
  • one vibrator unit 20 on the upper surface of the substrate 1 having a mirror image distribution forms a dipole 2 with one vibrator unit on the lower surface of the substrate 1.
  • the upper surface of the substrate 1 is provided with eight transducer units 20
  • the lower surface of the substrate 1 is provided with eight transducer units 20, and the antenna includes eight dipoles 2.
  • each dipole 2 has a shape similar to a butterfly shape.
  • the feed network includes a feed point 31, a first feeder portion 32, a second feeder portion 33, and a third feeder portion 34.
  • the first feeder portion 32 is for connecting two transducer units
  • the second feeder portion 33 is for connecting two first feeder portions 32
  • the third feeder portion 34 is for connecting the second feeder portion 33 and the feeding point 31.
  • the third feeder portion 34 has one end connected to the second feeder portion 33 and the other end connected to the feed point 31.
  • the line widths of the first feeder portion 32, the second feeder portion 33, and the third feeder portion 34 need to be set to match the width of the vibrator unit 20.
  • the line widths of the second feeder portion 33 and the third feeder portion 34 are larger than the line width of the first feeder portion 32.
  • the line width of both ends of the first feeder portion 32 is larger than the line width of the middle portion.
  • the line width at the end of the third feeder portion 34 to which the feed point 31 is connected is smaller than the line width of the other portion of the third feeder portion 34.
  • the feed network 3 further includes a connection portion 35 that is coupled to the vibrator unit.
  • the connecting portion 35 is connected to an end surface of the joint portion where the first vibrator and the second vibrator are connected.
  • the connecting portion 35 is connected to the joint portion where the first main body portion 211 and the second main body portion 221 are connected. End face.
  • the guiding unit 5 includes two, which are respectively disposed on the upper surface and the lower surface of the substrate 1 to respectively cooperate with the feeding network 3 located on the upper surface of the substrate 1 and the feeding network 3 located on the lower surface of the substrate 1.
  • the third feeder portion 34 on the upper surface of the substrate 1 and the guiding unit 5 on the upper surface of the substrate 1 are respectively located on both sides of the second feeder portion 33 on the upper surface of the substrate 1, and the third feeder on the lower surface of the substrate 1
  • the guiding portion 5 of the lower portion of the portion 34 and the substrate 1 is located on both sides of the second feeder portion 33 on the lower surface of the substrate 1, respectively.
  • the guiding unit 5 on the upper surface of the substrate 1 and the third feeding portion 34 on the upper surface of the substrate 1 are mirror images
  • the guiding unit 5 on the lower surface of the substrate 1 and the third feeding portion 34 on the lower surface of the substrate 1 are mirror images. That is, the guiding unit 5 disposed on each side of the two sides of the substrate 1 is mirror-distributed with the third feeding portion 34 on the same side to improve the symmetry of the radiation pattern of the antenna 100.
  • the feeding network 3 on the upper surface of the substrate 1 and the feeding network 3 on the lower surface of the substrate 1 are coincident, and the guiding unit 5 on the upper surface of the substrate 1 and the guiding unit 5 on the lower surface of the substrate 1 are shown. Approximate coincidence, and the connecting portion 35 provided on the lower surface of the substrate 1 and the connecting portion 35 provided on the upper surface of the substrate are mirror-image-distributed to match the vibrator unit 20.
  • the antenna 100 of the embodiment of the present invention is connected to an external device through a feeder.
  • the inner core of the feeder is connected to the feeding network 3 on the substrate 1 side
  • the outer conductor of the feeder is connected to the feeding network 3 on the other side of the substrate, and the connection mode is simple and convenient.
  • the feed point 31 of the antenna 100 is connected to the feed line.
  • the feeding point 31 of the upper surface of the substrate 1 and the feeding point 31 of the lower surface thereof are communicated by the same via, and the inner core of the feeding line penetrates the feeding of the via on the upper surface of the substrate 1
  • the outer conductor of the feed line is directly soldered to the feed point 31 on the lower surface of the substrate 1, and the external device is connected to the antenna through the feed line, thereby transmitting the signal generated by the external device to each of the vibrators using the feed network 3.
  • the unit 20 is transmitted by each vibrator unit 20 to implement the letter of the antenna 100. No. transmitting function; or transmitting the signal received by each vibrator unit 20 to the external device by using the feeding network 3 to realize the signal receiving function.
  • the feeder is a coaxial cable.
  • the antenna 100 may also be an active antenna.
  • the antenna 100 further includes an amplifying circuit 8 connected to the feeding point 31 through a feeder for receiving the antenna 100.
  • the signal is amplified.
  • the amplifying circuit 8 may transmit the amplified signal to an external device, wherein the external device may be a circuit having signal processing capability, such as a parsing device, a processor, or the like.
  • the antenna 100 is configured to form an active antenna by setting the amplifying circuit 8, which facilitates subsequent signal analysis.
  • the amplifying circuit 8 is a low noise amplifying circuit (ie, an LNA amplifying circuit, a full name of Low Noise Amplifier) or another type of amplifying circuit.
  • the antenna 100 further includes a mounting board 9 for fixing the grounding plate 4 and the amplifying circuit 8.
  • the grounding plate 4 is mounted on one side of the mounting board 9, and the amplifying circuit 8 is mounted on the other side.
  • the substrate 1 is disposed on a side of the grounding plate 4 away from the mounting board 9 to prevent interference of the vibrator unit 20 by the amplifying circuit 8.
  • a side of the mounting board 9 away from the grounding plate 4 is further provided with a fixing portion 10 for fixing the antenna 100 to fix the antenna 100 to the fixing device of the antenna.
  • the positions of the upper surface and the lower surface of the substrate 1 are interchangeable, that is, the upper surface of the substrate 1 is disposed toward the ground plate 4, and the lower surface of the substrate 1 is disposed away from the ground plate 4, and the antenna 100 is disposed.
  • the inner core of the feeder is connected to the feed network 3 on the lower surface of the substrate 1, and the outer conductor of the feeder is connected to the feed network 3 on the upper surface of the substrate 1.
  • the substrate 1 may be a ceramic layer or a plastic layer.
  • the dipole 2, the feed network 3, and the guiding unit 5 may be printed on both sides of the substrate 1 by a double-sided copper coating process, which is easy to process.
  • the design of the directional antenna is generally such that the substrate 1 provided with the dipole 2 and the feed network 3 is disposed perpendicularly or obliquely to the ground plate 4.
  • the grounding plate 4 is flat with the substrate 1.
  • the air layer between the grounding plate 1 and the substrate is an air layer, so that the performance of the antenna 100 is better.
  • the grounding plate 4 serves as a reflecting plate of the antenna 100, and the parallel placement thereof can uniformly reflect the radiation generated by the antenna 100 in various directions, so that the antenna 100 has directivity, increases the gain of the antenna 100, and the signal transmission distance is long.
  • the grounding plate 4 is a metal plate, such as an aluminum plate, a steel plate or an alloy plate.
  • the grounding plate 4 is an aluminum plate.
  • the area of the grounding plate 4 is larger than the area of the substrate 1, and the signal is directed away from the substrate 1 by the reflection of the grounding plate 4. The direction of the signal is transmitted to achieve the orientation of the antenna 100.
  • the area of the grounding plate 4 is equal to the area of the substrate 1, and the antenna 100 is designed to be small in size while ensuring better orientation of the antenna 100.
  • the grounding plate 4 can be maintained at a predetermined distance H from the grounding plate 4, so that the performance of the antenna 100 is maintained optimally while ensuring that the antenna 100 can be normally operated.
  • the signal is captured and transmitted, and the substrate 1 and the ground plate 4 are connected by a connecting member 7.
  • the connector is an insulative connector.
  • the material of the insulating connecting member is plastic or other insulating material.
  • the material of the insulating connecting member is not limited in the embodiment of the present invention, and any insulating material belongs to the protection scope of the present invention.
  • the connecting member 7 can be a metal connecting member, and the present invention does not specifically define the material of the metal connecting.
  • the position of the metal connector on the substrate 1 should be away from the vibrator unit 20, the feeder network 3, and the position of the lead-in unit 5 on the substrate 1 to prevent the metal connector from affecting the performance of the antenna.
  • the substrate 1 is provided with a fixing portion 6
  • the grounding plate 4 is provided with a fixing end that cooperates with the fixing portion 6 .
  • the fixing portion 6 and the fixing end may be a fixing hole, a snap groove or other fixing structure.
  • the fixing portion 6 and the fixed end are fixed holes, and the connection One end of the connector 7 is inserted into the fixing portion 6, and the other end is inserted into the fixed end, thereby stably maintaining the grounding plate 4 at a predetermined distance H on the side of the substrate 1, and further The performance of the antenna 100 is maintained to be optimized.
  • the fixing portion 6 and the fixing end are both engaging slots, one end of the insulating connection is fastened on the fixing portion 6, and the other end is fastened on the fixed end.
  • the ground plate 4 is stably maintained at a predetermined distance H on the side of the substrate 1, thereby maintaining the performance optimization of the antenna 100.
  • At least two of the fixing portions 6 and at least two of the fixed ends cooperate with at least two of the fixed ends to ensure the stability of the connection between the grounding plate 4 and the substrate 1 by increasing the connection position between the grounding plate 4 and the substrate 1.
  • at least two of the fixing portions 6 and at least two of the fixed ends are respectively distributed and distributed on the substrate 1 and the grounding plate 4.
  • at least two of the fixing portions 6 are uniformly distributed on the substrate 1, for example, at least two of the fixing portions 6 are evenly distributed around the center of the substrate 1.
  • at least two fixed ends are also evenly distributed over the ground.
  • the preset distance H is adjustable.
  • the preset distance H may be one or more according to an operating frequency (ie, a frequency of a transmission signal), a radiation pattern, and a return loss. to make sure.
  • the preset distance H is determined according to three factors: a working frequency of the signal, a radiation pattern, and a return loss, thereby balancing the operating frequency, the radiation pattern, and the return loss to ensure the optimization of the performance of the antenna 100.
  • the preset distance H is 12 mm (unit: mm), that is, the distance of the antenna 100 in the signal transmission direction is 12 mm, the thickness is small, and the cross section of the antenna 100 is low.
  • the grounding plate 4 and the substrate 1 are disposed in parallel to ensure that the performance of the entire antenna 100 can be maintained in an optimal state, and the structure is relatively simple, and between the substrate 1 and the grounding plate 4 The connection is more convenient.
  • the return loss of the antenna 100 according to an embodiment of the present invention, wherein the gain of the antenna 100 at four samples of 2.2464 GHz, 2.5649 GHz, 5.3527 GHz, and 6.4317 GHz is sampled in FIG. 6, indicating that the antenna 100 The port matching feature is better.
  • FIG. 7B is an antenna 100 according to an embodiment of the present invention.
  • the antenna 100 of the present embodiment can be applied to a system that needs to transmit or receive signals, for example, a ground control system of a drone, a drone system, a control system of a robot, or a control system of a remote control vehicle. Wait.
  • an embodiment of the present invention further provides a signal processing device for a drone for monitoring a signal transmission link between a drone and its ground control device, thereby obtaining no Man-machine monitoring information to facilitate the timely discovery of Black Flight's drones or to record black fly events.
  • the signal processing device of the drone includes an antenna 100, a receiving path 200, and a fixed device 300 of the antenna.
  • the antenna 100 is configured to receive a signal that is sent by the UAV, including the UAV supervisory information.
  • the antenna 100 is multiple, and the plurality of antennas 100 are circumferentially located along the fixed device 300 of the antenna.
  • the antenna 100 is configured to obtain a signal sent by the drone including the drone supervision information.
  • the receiving path 200 is configured to parse the signal received by the antenna to obtain the supervisory information of the drone, thereby implementing monitoring of the drone flight.
  • the UAV supervision information may include an ID (identification number) of the drone, a flight path, a height, a speed, a position (for example, latitude and longitude information), a heading, and the like.
  • ID identification number
  • the positions of the plurality of antennas 100 fixed on the fixed device 300 of the antenna are laid out, and the omnidirectional coverage is achieved by the surrounding layout of the plurality of antennas 100. Monitor, thus reducing the monitoring dead angle, the monitoring efficiency is high, to meet the monitoring needs.
  • the apparatus further includes a plurality of combiners 400 having a plurality of receiving passages 200, each receiving passage 200 being coupled to one of the plurality of combiners 400.
  • each of the plurality of combiners 400 is configured to receive the signal received by the preset number of antennas 100 of the plurality of antennas 100 (ie, the drone includes the drone supervision information.
  • the signal is synthesized to integrate the lines, making the device simple in structure and low in cost.
  • each of the plurality of receiving paths 200 is configured to parse the synthesized signal to obtain supervisory information of the drone, thereby identifying the drone supervisory information.
  • each of the plurality of combiners 400 is configured to synthesize the signals received by the two antennas 100 disposed away from each other in the plurality of antennas 100. Due to the closer the positions of the two antennas 100 disposed on the fixed device 300 of the antenna, the greater the degree of coupling of the radiation patterns between the two antennas, the receiving of the two antennas 100 by the combiner 400 After the signals are synthesized, the radiation pattern is more likely to be distorted. Therefore, in this embodiment, each combiner 400 is used to connect the two antennas 100 disposed away from each other.
  • the receiving path 200 includes a plurality of communication protocol parsing devices, and the parsing devices of the plurality of communication protocols are configured to parse the signals received by the antenna to obtain an analysis result, where the multiple communication protocol parsing devices are
  • the analysis result of the parsing device of the at least one communication protocol includes drone supervision information.
  • the communication protocol used for communication between the drone and its ground control device may be wifi protocol, SDR protocol (English: Software Defined Radio), or a custom protocol.
  • the receive path 200 can include a plurality of protocol parsing devices that effectively identify signals of drones transmitted using different communication protocols.
  • the antenna 100 in the signal processing device of the drone can be selected as the antenna or other antenna structure of the first embodiment.
  • the antenna 100 in the signal processing device of the drone is selected as the active antenna of the first embodiment, and the signal transmitted by the drone including the drone supervision information is generated in the combiner 400. Loss can be placed by active antenna The large circuit 8 is effectively compensated.
  • the fixing device 300 of the antenna is a fixed rod
  • the antenna 100 is four
  • the combiner 400 is two
  • the receiving path. 200 is also two.
  • the four antennas 100 are evenly distributed in the circumferential direction of the fixed rod, and among the four antennas 100, one of the two antennas 100 facing away from each other is connected to one of the two combiners 400, and the other group is back.
  • the two antennas 100 placed are connected to the other of the two combiners 400, and each combiner 400 is connected to a corresponding receiving path 200, and the plurality of antennas 100 are selected according to the characteristics of the radiation pattern of the antenna 100.
  • the fixed position is laid out, and the omnidirectional coverage monitoring of the unmanned signal in the horizontal direction is realized by the surrounding layout of the four antennas 100, thereby reducing the monitoring dead angle, and the monitoring efficiency is high, and the monitoring requirement is satisfied.
  • the radiation pattern of the dual antenna 100 (ie, two antennas 100 fixed in the circumferential direction of the fixed device 300 of the antenna) in the 2.4 GHz band and the 5.8 GHz band, respectively, adds 3 dB of active power.
  • Gain compensation indicates that the symmetry of the radiation pattern of the antenna 100 is good.
  • the radiation pattern of the four antennas 100 (ie, four antennas 100 fixed in the circumferential direction of the fixed device 300 of the antenna) in the 2.4 GHz band and the 5.8 GHz band, respectively, adding 3 dB of active power.
  • Gain compensation indicates that the symmetry of the radiation pattern of the antenna 100 is good.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明提供一种天线及无人机的信号处理设备,其中,所述天线包括基板(1)、印刷在所述基板上的多个偶极子(2)、馈电网络(3)和接地板(4),所述天线还包括设于所述基板上并用以与所述馈电网络配合的引向单元(5),所述偶极子包括设置在所述基板一侧的振子单元(20)和设置在所述基板另一侧的振子单元,其中所述振子单元包括第一振子(21)和第二振子(22);所述馈电网络与每个振子单元连接;所述基板与所述接地板间隔预设的距离平行设置。本发明实施例的天线具有良好的匹配性能、辐射性能、辐射方向的对称性,提高了天线的增益,数据捕获和传输距离远。

Description

天线及无人机的信号处理设备 技术领域
本发明涉及数据传输领域,尤其涉及一种天线及无人机的信号处理设备。
背景技术
随着无人机功能的不断完善,无人机被广泛地应用在航拍、农业、电力巡检等领域。然而,随着无人机的广泛使用,也存在着飞行区域不明确、侵犯隐私等问题,为了保证公众的人身安全和隐私安全,需要受到一定级别的监听。
目前,在无人机领域,通常利用全向天线来获取无人机发送的数据信息(例如图像信息、位置信息、状态信息等)。其中,全向天线一般为偶极子形式或者与偶极子相近的圆极化全向天线,受限于此类天线的增益特性,此类天线的信号捕获和传输距离较短。另外,全向天线的主极化和交叉极化的辐射方向图太窄,当无人机飞行高度过高时,通常处于天线辐射死角,这样,使得无人机的监听设备无法捕获到无人机发送的数据信息,降低了监听效果。
发明内容
本发明提供一种天线及无人机的信号处理设备,以提高天线的信号捕获和传输能力。
根据本发明的第一方面,提供一种天线,包括基板、印刷在所述基板上的多个偶极子、馈电网络和接地板,其特征在于,所述天线还包括设于所述基板上并用以与所述馈电网络配合的引向单元,所述偶极子包括设 置在所述基板一侧的振子单元和设置在所述基板另一侧的振子单元,其中所述振子单元包括第一振子和第二振子;所述馈电网络与每个振子单元连接;所述基板与所述接地板间隔预设的距离平行设置。
根据本发明的第二方面,提供一种无人机的信号处理设备,包括:
多个天线,用于接收无人机发送的包括无人机监管信息的信号;
接收通路,用于对天线接收到的信号进行解析以获取无人机的监管信息;
其中,所述多个天线是沿天线的固定设备周向设置的。
由以上本发明实施例提供的技术方案可见,本发明通过在基板的一侧间隔预设的距离平行地设置的接地板,使得天线辐射的信号具有定向性,天线的增益大,数据捕获和传输距离远。通过设置第一振子和第二振子,从而实现对双频段数据的捕获和传输。在基板的两侧分别印刷振子单元,增加辐射面,并且,通过设置引向单元来提高辐射方向图的对称性,使得天线在各个方向上的信号捕获和传输能力更加均匀。本发明的天线具有良好的匹配性能和辐射性能,且天线在带内增益稳定。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的天线在基板一侧的立体图;
图2是本发明实施例的天线在基板另一侧的立体图;
图3是本发明实施例的天线剖面图;
图4是本发明实施例的天线的透视图;
图5是本发明另一实施例的天线的结构示意图;
图6是本发明实施例的天线的回波损耗示意图;
图7A是本发明实施例的天线在一频段上的主/交叉极化(phi=0/90度)辐射方向图;
图7B是本发明实施例的天线在另一频段上的主/交叉极化(phi=0/90度)辐射方向图;
图8是本发明实施例的无人机的信号处理设备的结构示意图;
图9是本发明实施例的无人机的信号处理设备的拆分示意图;
图10是本发明实施例的无人机的信号处理设备在另一方向上的拆分示意图;
图11是本发明另一实施例的无人机的信号处理设备的结构示意图;
图12A是本发明实施例的无人机的信号处理设备中的天线在一频段上的辐射方向图;
图12B是本发明实施例的无人机的信号处理设备中的天线在另一频段上的辐射方向图;
图13A是本发明另一实施例的无人机的信号处理设备中的天线在一频段上的辐射方向图;
图13B是另一本发明实施例的无人机的信号处理设备中的天线在另一频段上的辐射方向图。
附图标记:
100:天线;200:接收通路;300:天线的固定设备;400:合路器;
1:基板;
2:偶极子;20:振子单元;21:第一振子;211:第一主体部;212: 第一弯折部;22:第二振子;221:第二主体部;222:第二弯折部;
3:馈电网络;31:馈电点;32:第一馈线部;33:第二馈线部;34:第三馈线部;35:连接部;
4:接地板;
5:引向单元;
6:固定部;
7:连接件;
8:放大电路;
9:安装板;
10:固定部。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图,对本发明的天线及无人机的信号处理设备进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
实施例一
结合图1至图4,本发明实施例提供一种天线100,其中,所述天线为定向天线,所述天线100包括基板1、偶极子2、馈电网络3、接地板4以及引向单元5。其中,所述偶极子2包括设置在所述基板1一侧的振子 单元20和设置在所述基板1另一侧的振子单元20,所述振子单元20包括第一振子21和第二振子22。所述偶极子2、馈电网络3和引向单元5均印刷在所述基板1上,以实现偶极子2、馈电网络3和引向单元5的固定。所述馈电网络3与每个振子单元20连接,从而由馈电网络3传输每个振子单元接收到的信号。所述引向单元5与所述馈电网络3配合,从而提高辐射方向的对称性。所述基板1与接地板间隔预设的距离H平行设置。
本发明实施例中,通过在基板1的一侧间隔预设的距离H平行地设置的接地板4,使得天线100辐射的信号具有定向性,天线100的增益大,数据捕获和传输距离远,其中基板1与接地板4之间为空气层,从而保障天线100的具有良好的辐射特性。可根据需要设置第一振子21和第二振子22的长度,从而实现双频段数据的捕获和传输。在基板1的两侧分别印刷振子单元20,增加辐射面。并且,通过设置引向单元5来提高辐射方向的对称性。本发明的天线100具有良好的匹配性能和辐射性能,且天线100在带内增益稳定。
又结合图1和图2,本实施例中,馈电网络3的一部分设置在所述基板1的一侧,另一部分设置在所述基板1的另一侧,其中,基板1上同侧的馈电网络3与同侧的每个振子单元20连接。
基板1两侧振子单元20的数量可根据需要设定。可选地,基板1两侧的振子单元20均为偶数个。本实施例中,设置在基板每一侧的偶数个振子单元20均呈轴对轴称分布。在某些实施例中,基板1两侧的振子单元20均为4个,则本发明实施例中的偶极子为4个。
本文中,为方便描述,将基板1远离所述接地板4的一侧称作基板1上表面,将基板1靠近所述接地板4的一侧称作基板1下表面,以下将对基板1上表面的结构进行阐述。
结合图1和图2,本实施例中,所述振子单元20包括一个第一振子 21和两个第二振子22。其中,所述第一振子21的长度大于所述第二振子22的长度,使得天线100实现对双频段数据的捕获和传输,且第一振子21辐射的信号频段低于第二振子辐射的信号频段。可选地,所述第一振子21捕获和传输的信号的频段范围在2.4GHz上下浮动(例如:2.4GHz至2.5GHz),所述第二振子22捕获和传输的信号的频段范围在5G全频段(例如:5.1GHz至5.85GHz),所述5G全频段包括5.8GHz。
在某些实施例中,所述两个第二振子22对称地设置在第一振子21的两边,使得第一振子21和第二振子22的辐射方向图更加对称,天线的主极化交叉隔离度高。又结合图1和图2,所述第一振子21包括第一主体部211和第一弯折部212,两个第二振子22对称地设置在第一主体部211的两边。通过设置第一主体部211和第一弯折部212,使得第一振子21的结构排列较为紧凑,减小天线100的整体尺寸。可选地,所述第一弯折部212设置在第一主体部211的一端,两个第二振子22对称地设置在所述第一主体部211的另一端。其中,第一弯折部212和第一主体部211的一端相连,两个第二振子22分别与第一主体部211的另一端相连。
在某些实施例中,所述第一主体部211的一端垂直地连接在第一弯折部212的中部,进一步使得第一振子21的结构排列较为紧凑,从而减小天线100的整体尺寸,并且第一振子21的结构为对称结构,也使得第一振子21自身的辐射方向图更加对称,使得天线在各个方向的信号捕获和传输能力更为均匀。本实施例中,所述第一振子21可看着一个“T”型的结构。
又结合图1和图2,所述第二振子22包括第二主体部221和第二弯折部222,其中,两个第二振子22的第二主体部221对称地连接至第一主体部211上远离第一弯折部的一端,且第一主体部211与第二主体部221垂直。
所述第二弯折部222垂直地设置在第二主体部221上远离第一主体部211的一端,其中,第二弯折部222向第一弯折部212延伸,第二振子 22类似于“L”型的结构。另外需要说明的是,为实现双频特性并方便对第一振子21和第二振子22的性能参数的调节,第一弯折部212与第二弯折部222并不会相交。
本实施例中,所述基板1近似于长方形,每个振子单元20中,所述第一弯折部112与长方形的短边平行,所述第二弯折部222自所述第二主体部221朝向同一短边延伸。这是由于在天线100使用时,需将同一振子单元20的第一弯折部112和第二主体部221朝向的短边方向朝向俯仰方向放置,从而使得振子单元20能够更好地接收信号或者发射信号,故将基板1设计成近似于长方形的形状,方便天线100的安装。
本实施例中,参见图4,设置在基板1下表面的振子单元20与设置在基板上表面的振子单元呈镜像分布,从而增加辐射面,使得天线100具有更好地辐射性能、匹配性和稳定的增益。其中,呈镜像分布的基板1上表面的一个振子单元20与基板1下表面的一个振子单元形成一个偶极子2。例如,基板1的上表面设有8个振子单元20,基板1的下表面对应设有8个振子单元20,天线则包括8个偶极子2。本实施例中,每个偶极子2的形状类似于蝶形。
结合图1和图2,所述馈电网络包括馈电点31、第一馈线部32、第二馈线部33和第三馈线部34。其中,第一馈线部32用于连接两个振子单元,第二馈线部33用于连接两个第一馈线部32,第三馈线部34用于连接第二馈线部33和馈电点31。所述第三馈线部34一端连接所述第二馈线部33,另一端连接所述馈电点31。
为与振子单元20匹配,本实施例中,第一馈线部32、第二馈线部33和第三馈线部34的线宽需要设置成与振子单元20相匹配的宽度。具体地,第二馈线部33和第三馈线部34的线宽大于第一馈线部32的线宽。第一馈线部32的两端的线宽要大于其中部的线宽。第三馈线部34上连接所述馈电点31的端部的线宽小于所述第三馈线部34其他部分的线宽。
又结合图1和图2,所述馈电网络3还包括与振子单元连接的连接部35。可选地,所述连接部35连接在第一振子与第二振子相连接的结合部的端面,具体地,连接部35连接在第一主体部211和第二主体部221相连接的结合部的端面。
本实施例中,引向单元5包括两个,分别设于基板1的上表面和下表面,以分别与位于基板1上表面的馈电网络3和位于基板1下表面的馈电网络3配合,从而提高天线100辐射方向图的对称性。本实施例中,基板1上表面的第三馈线部34与基板1上表面的引向单元5分别位于基板1上表面的第二馈线部33的两侧,基板1的下表面的第三馈线部34与基板1的下表面的引向单元5分别位于基板1的下表面的第二馈线部33的两侧。具体地,基板1上表面的引向单元5与基板1上表面的第三馈线部34呈镜像分布,基板1下表面的引向单元5与基板1下表面的第三馈线部34呈镜像分布,即设置在基板1两侧中每一侧的引向单元5是与同一侧的第三馈线部34呈镜像分布的,以提高天线100辐射方向图的对称性。
参见图4,本实施例中,基板1上表面的馈电网络3和基板1下表面的馈电网络3相重合,基板1上表面的引向单元5和基板1下表面的引向单元5近似重合,而设置在基板1下表面的连接部35与设置在基板上表面的连接部35是呈镜像分布的,从而与振子单元20匹配。
本发明实施例的天线100通过馈线与外部设备相连。具体地,馈线的内芯连接基板1一侧的馈电网络3,馈线的外导体连接基板另一侧的馈电网络3,连接方式简单、方便。本实施例中,天线100的馈电点31与馈线相连。可选地,基板1上表面的馈电点31和其下表面的馈电点31由同一过孔连通,所述馈线的内芯穿设所述过孔焊接在所述基板1上表面的馈电点31上,所述馈线的外导体直接焊接在所述基板1下表面的馈电点31,外部设备通过馈线与天线连接,从而利用馈电网络3将外部设备产生的信号传输到各振子单元20,由各振子单元20发射出去,实现天线100的信 号发射功能;或者利用馈电网络3将各振子单元20接收到的信号传输到外部设备,实现信号接收功能。可选地,所述馈线为同轴线缆。
在一些实施方式中,天线100还可以为有源天线,参见图5,所述天线100还包括放大电路8,所述放大电路8通过馈线与馈电点31连接,用于对天线100接收到的信号进行放大。可选地,放大电路8可将放大后的信号传输至外部设备,其中,外部设备可以是具有信号处理能力的电路,例如解析设备、处理器等。本实施例通过设置放大电路8,使得天线100形成有源天线,便于后续的信号解析。具体地,所述放大电路8为低噪声放大电路(即LNA放大电路,英文全称:Low Noise Amplifier)或者其他类型的放大电路。
本实施例中,所述天线100还包括安装板9,用于固定接地板4和放大电路8。具体地,所述安装板9的一侧安装所述接地板4,另一侧安装所述放大电路8。其中所述基板1设于接地板4远离安装板9的一侧,从而防止放大电路8对振子单元20造成的干扰。
又参见图5,所述安装板9上远离接地板4的一侧还设有固定部10,用于对天线100进行固定,便于将天线100固定到天线的固定设备上。
需要说明的是,本发明实施例中,基板1的上表面和下表面的位置可互换,即将基板1的上表面朝向接地板4设置,基板1的下表面背离接地板4设置,天线100通过馈线与外部设备相连时,馈线的内芯连接基板1下表面的馈电网络3,馈线的外导体连接基板1上表面的馈电网络3。
本实施例中,所述基板1可为陶瓷层或者塑料层。可选地,所述偶极子2、所述馈电网络3和所述引向单元5可采用双面覆铜工艺印刷到所述基板1的两侧的,易于加工。
目前,定向天线的设计一般是将设有偶极子2和馈电网络3的基板1与接地板4垂直设置或者倾斜设置。本实施例中,接地板4与基板1平 时设置且间隔预设的距离,接地板1与基板之间为空气层,使得天线100的性能更佳。具体地,接地板4作为天线100的反射板,其平行放置能够在各个方向上均匀地对天线100产生的辐射进行反射,使得天线100具有定向性,增大天线100的增益,信号传输距离远。可选地,所述接地板4为金属板,例如铝板、钢板或者合金板等。优选地,所述接地板4为铝板。
为使得天线100具有较好地定向性,在一些例子中,参见图3,所述接地板4的面积大于基板1的面积,通过接地板4的反射作用,使得信号朝着背离所述基板1的方向传输信号,从而实现天线100的定向性。在其他一些例子中,所述接地板4的面积等于基板1的面积,在将天线100尺寸设计得较小的同时还能保障天线100具有较好地定向性。
为实现基板1与接地板4之间的固定,从而使得接地板4能保持在距离所述接地板4预设的距离H处,以使得天线100的性能维持最优,同时保证天线100能够正常地捕获和传输信号,所述基板1与所述接地板4通过连接件7连接。
在某些实施例中,所述连接件为绝缘连接件。可选地,所述绝缘连接件的材质为塑料或者其他绝缘材质,本发明实施例不对所述绝缘连接件的材质进行限定,任何绝缘材质均属于本发明的保护范围。
在某些实施例中,所述连接件7可为金属连接件,本发明不对该金属连接的材质具体限定。但需要说明的是,金属连接件在基板1上的位置应当远离振子单元20、馈线网络3和引向单元5在基板1上的设置位置,以防止金属连接件影响天线的性能。
结合图1、图2和图4,所述基板1上设有固定部6,所述接地板4上设有与所述固定部6配合的固定端。可选地,所述固定部6和所述固定端可为固定孔、卡接槽或者其他固定结构。
在某些实施例中,所述固定部6和所述固定端均为固定孔,所述连 接件7的一端插接在所述固定部6中,另一端插接在所述固定端中,从而将接地板4稳定地维持在所述基板1一侧的预设的距离H处,进而维持天线100的性能最优化。
在某些实施例中,所述固定部6和所述固定端均为卡接槽,所述绝缘连接的一端卡接在所述固定部6上,另一端卡接在所述固定端上,从而将接地板4稳定地维持在所述基板1一侧的预设的距离H处,进而维持天线100的性能最优化。
为进一步使得所述接地板4能够稳定地设于所述基板1预设的距离H处,从而维持天线100的性能最优化,所述固定部6至少两个,所述固定端也至少两个,至少两个所述固定部6与至少两个所述固定端对应配合,通过增加接地板4与基板1之间的连接位置,从而保障接地板4和基板1之间连接的稳定性。可选地,至少两个所述固定部6和至少两个所述固定端分别分散分布在所述基板1和接地板4上。优选地,至少两个所述固定部6是均匀分布在所述基板1上的,例如,至少两个所述固定部6均匀分布在所述基板1中心的四周。相应地,至少两个固定端也是均匀分布在所述接地上的。
本实施例中,所述预设的距离H可调,例如,所述预设的距离H可根据工作频率(即传输信号的频率)、辐射方向图、回波损耗中的一种或多个来确定。优选地,所述预设的距离H根据信号的工作频率、辐射方向图、回波损耗这三因素来确定,从而平衡工作频率、辐射方向图、回波损耗,保证天线100性能的最优化,以满足用户的需求。可选地,所述预设的距离H为12mm(单位:毫米),即天线100在其信号传输方向上的距离为12mm,厚度较小,天线100的剖面低。
本实施例中,所述接地板4与所述基板1是平行设置的从而保障整个天线100的性能均能够维持在最优的状态,并且,结构较为简单,基板1与接地板4之间的连接更加方便。
参见图6,为本发明实施例的天线100的回波损耗,其中,图6中的采样了天线100在2.2464GHz、2.5649GHz、5.3527GHz和6.4317GHz四个样本处的增益,表明该天线100的端口匹配特性较好。
参见图7A为本发明实施例的天线100位于2.4GHz的主/交叉极化(phi=0/90°,phi代表参量,单位:度)辐射方向图,图7B为本发明实施例的天线100位于5.8GHz的主/交叉极化(phi=0/90°)辐射方向图,可以看出,该天线100的主瓣指向明确,后瓣小,天线性能优良,同时天线有较高的主交叉极化比,在主瓣方向>30dB(单位:分贝)。
值得一提的是,本实施例的天线100可应用于需要发射信号或收信号的系统中,例如,无人机的地面控制系统、无人机系统、机器人的控制系统或者遥控汽车的控制系统等。
实施例二
结合图8、图9和图10,本发明实施例还提供一种无人机的信号处理设备,用于对无人机与其地面控制设备之间的信号传输链路进行监听,从而实时获得无人机监管信息,以便于及时发现黑飞的无人机或者对黑飞事件进行记录。具体地,所述无人机的信号处理设备包括天线100、接收通路200以及天线的固定设备300。其中,所述天线100用于接收无人机发送的包括无人机监管信息的信号,本实施例中,所述天线100为多个,多个天线100是沿着天线的固定设备300周向设置的,以便于天线100获取到无人机发送的包括无人机监管信息的信号。所述接收通路200用于对天线接收到的信号进行解析以获取无人机的监管信息,从而实现对无人机飞行的监听。其中所述无人机监管信息可以包括无人机的ID(标识号)、飞行航迹、高度、速度、位置(例如经纬度信息)和航向等。本实施例中,根据天线100的辐射方向图的特性,对多个天线100的固定在天线的固定设备300上的位置进行了布局,通过对多个天线100的环绕布局,实现全方向的覆盖监听,从而降低监听死角,监听的效率高,满足监听需求。
参见图11,所述设备还包括多个合路器400,所述接收通路200为多个,每一个接收通路200与所述多个合路器400中的一个连接。本实施例中,多个合路器400中的每一个,用于对多个天线100中预设个数的天线100接收到的所述信号(即无人机发送的包括无人机监管信息的信号)进行合成,从而对线路进行整合,使得设备结构简单且成本低。并且,多个接收通路200中的每一个用于对合成后的信号进行解析以获取无人机的监管信息,从而识别出无人机监管信息。具体地,所述多个合路器400中的每一个用于对多个天线100中背向设置的两个天线100接收到的所述信号进行合成。由于两个天线100设置在天线的固定设备300上的位置越靠近,这两个天线之间的辐射方向图的耦合度越大,利用合路器400对这两个天线100的接收到的所述信号进行合成后,辐射方向图产生畸变的可能性越大,因此,本实施例中每一个合路器400用于连接背向设置的两个天线100的。
本实施例,所述接收通路200包括多种通信协议的解析设备,多种通信协议的解析设备用于对天线接收的信号进行解析以获取解析结果,其中所述多种通信协议的解析设备中至少一种通信协议的解析设备的解析结果中包括无人机监管信息。具体地,由于无人机与其地面控制设备之间进行通信所用的通信协议可能为wifi协议、SDR协议(英文:Software Defined Radio,中文全称:基于软件定义的无线通信协议)或者自定义协议,故为了解析以不同协议发送的包括无人机监管信息的信号,因此接收通路200可包括多种协议的解析设备,这样有效识别使用不同通信协议发送的无人机的信号。
本实施例中,无人机的信号处理设备中的天线100可选择为上述实施例一的天线或者其他天线结构。在一具体地实现方式中,无人机的信号处理设备中的天线100选择为上述实施例一的有源天线,无人机发送的包括无人机监管信息的信号在合路器400中产生的损耗可通过有源天线的放 大电路8进行有效补偿。
结合图9、图10和图11,在一具体实施例中,所述天线的固定设备300为固定杆,所述天线100为四个,所述合路器400为两个,所述接收通路200也为两个。其中,四个天线100均匀分布在固定杆的周向,且四个天线100中,其中一组背向放置的两个天线100均与两个合路器400中的一个相连,另一组背向放置的两个天线100均与两个合路器400中的另一个相连,每个合路器400与对应的接收通路200相连,根据天线100的辐射方向图的特性,对多个天线100的固定位置进行了布局,通过对四个天线100的环绕布局,实现在水平方向上对无人机信号的进行全方向的覆盖监听,从而降低监听死角,监听的效率高,满足监听需求。
参见图12A和图12B,分别为双天线100(即在天线的固定设备300的周向固定两个天线100)在2.4GHz的频段和5.8GHz的频段的辐射方向图,增加了3dB的有源增益补偿,表明天线100的辐射方向图的对称性较好。
见图13A和图13B,分别为四天线100(即在天线的固定设备300的周向固定四个天线100)在2.4GHz的频段和5.8GHz的频段的辐射方向图,增加了3dB的有源增益补偿,表明天线100的辐射方向图的对称性较好。
在本发明的描述中,“上”、“下”、“前”、“后”、“左”、“右”应当理解为从上至下依次基板1和接地板4所形成的天线100的“上”、“下”、“前”、“后”、“左”、“右”方向。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得 包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的天线及无人机的信号处理设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (30)

  1. 一种天线,包括基板、印刷在所述基板上的多个偶极子、馈电网络和接地板,其特征在于,所述天线还包括设于所述基板上并用以与所述馈电网络配合的引向单元,所述偶极子包括设置在所述基板一侧的振子单元和设置在所述基板另一侧的振子单元,其中所述振子单元包括第一振子和第二振子;
    所述馈电网络与每个振子单元连接;
    所述基板与所述接地板间隔预设的距离平行设置。
  2. 根据权利要求1所述的天线,其特征在于,所述振子单元包括一个第一振子和两个第二振子。
  3. 根据权利要求1或2所述的天线,其特征在于,所述第一振子的长度大于所述第二振子的长度。
  4. 根据权利要求2或3所述的天线,其特征在于,所述两个第二振子对称地设置在第一振子的两边。
  5. 根据权利要求4所述的天线,其特征在于,所述第一振子包括第一主体部和第一弯折部,两个第二振子对称地设置在第一主体部的两边。
  6. 根据权利要求5所述的天线,其特征在于,所述第一弯折部设置在第一主体部的一端,两个第二振子对称地设置在所述第一主体部的另一端。
  7. 根据权利要求6所述的天线,其特征在于,所述第一主体部的一端垂直地连接在第一弯折部的中部。
  8. 根据权利要求5-7任一项所述的天线,其特征在于,所述第二振子包括第二主体部和第二弯折部,其中,两个第二振子的第二主体部设置在第一主体部上远离第一弯折部的一端,且第一主体部与第二主体部垂直。
  9. 根据权利要求8所述的天线,其特征在于,所述第二弯折部垂直地设置在第二主体部上远离第一主体部的一端,其中,第二弯折部向的第一弯折部延伸。
  10. 根据权利要求1所述的天线,其特征在于,设置在基板两侧中每一侧的振子单元呈轴对称分布。
  11. 根据权利要求1所述的天线,其特征在于,设置在基板一侧的振子单元与基板另一侧的振子单元呈镜像分布。
  12. 根据权利要求1所述的天线,其特征在于,所述多个偶极子为4个偶极子。
  13. 根据权利要求1所述的天线,其特征在于,所述馈电网络包括馈电点。
  14. 根据权利要求13所述的天线,其特征在于,所述馈电网络包括用于连接两个振子单元的第一馈线部,用于连接两个第一馈线部的第二馈线部,用于连接第二馈线部和馈电点的第三馈线部,其中,第二馈线部、第三馈线部的线宽大于第一馈线部的线宽。
  15. 根据权利要求14所述的天线,其特征在于,第一馈线部两端的线宽小于其中部的线宽。
  16. 根据权利要求14所述的天线,其特征在于,所述第三馈线部一端连接所述第三馈线部,另一端连接所述馈电点;
    其中所述第三馈线部上连接所述馈电点的端部的线宽小于所述第三馈线部其他部分的线宽。
  17. 根据权利要求14所述的天线,其特征在于,
    设置在基板两侧中每一侧的引向单元与同一侧的第三馈线部呈镜像分布。
  18. 根据权利要求13所述的天线,其特征在于,还包括放大电路,所述放大电路通过馈线与所述馈电点连接,用于对天线接收到的信号进行放大。
  19. 根据权利要求18所述的天线,其特征在于,所述馈线的内芯连接基板一侧的馈电网络,馈线的外导体连接基板另一侧的馈电网络。
  20. 根据权利要求18所述的天线,其特征在于,还包括安装板,
    所述安装板的一侧安装所述接地板,另一侧安装所述放大电路;
    所述基板设于所述接地板远离所述安装板的一侧。
  21. 根据权利要求20所述的天线,其特征在于,所述安装板上远离所述接地板的一侧还设有固定部,用于对天线进行固定。
  22. 根据权利要求1所述的天线,其特征在于,所述馈电网络包括与振子单元连接的连接部。
  23. 根据权利要求1所述的天线,其特征在于,所述基板与接地板通过连接件连接。
  24. 根据权利要求1所述的天线,其特征在于,所述接地板的面积大于或等于基板的面积。
  25. 根据权利要求1所述的天线,其特征在于,所述预设的距离根据工作频率、辐射方向图、回波损耗中的一种或多个来确定。
  26. 一种无人机的信号处理设备,其特征在于,包括:
    多个天线,用于接收无人机发送的包括无人机监管信息的信号;
    接收通路,用于对天线接收到的信号进行解析以获取无人机的监管信息;
    其中,所述多个天线是沿天线的固定设备周向设置的。
  27. 根据权利要求26所述的设备,其特征在于,所述设备还包括:多个合路器,其中,所述接收通路为多个,每一个接收通路与所述多个合路器中的一个连接;
    所述多个合路器中的每一个,用于对多个天线中预设个数的天线接收到的所述信号进行合成;
    多个接收通路中的每一个,用于对合成后的信号进行解析以获取无人机的监管信息。
  28. 根据权利要求27所述的设备,其特征在于,
    所述多个合路器中的每一个,具体用于对多个天线中背向设置的两个天线接收到的所述信号进行合成。
  29. 根据权利要求26-28任一项所述的设备,其特征在于,
    所述接收通路包括多种通信协议的解析设备;
    多种通信协议的解析设备,用于对天线接收的信号进行解析以获取解析结果,其中所述多种通信协议的解析设备中至少一种通信协议的解析设备的解析结果中包括无人机监管信息。
  30. 根据权利要求26-29任一项所述的设备,其特征在于,
    所述天线为权利要求1-25任一项所述的天线。
PCT/CN2017/085325 2017-05-22 2017-05-22 天线及无人机的信号处理设备 WO2018213978A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010745894.2A CN111883922B (zh) 2017-05-22 2017-05-22 天线及无人机的信号处理设备
CN201780004594.5A CN108513687B (zh) 2017-05-22 2017-05-22 天线及无人机的信号处理设备
PCT/CN2017/085325 WO2018213978A1 (zh) 2017-05-22 2017-05-22 天线及无人机的信号处理设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/085325 WO2018213978A1 (zh) 2017-05-22 2017-05-22 天线及无人机的信号处理设备

Publications (1)

Publication Number Publication Date
WO2018213978A1 true WO2018213978A1 (zh) 2018-11-29

Family

ID=63375779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085325 WO2018213978A1 (zh) 2017-05-22 2017-05-22 天线及无人机的信号处理设备

Country Status (2)

Country Link
CN (2) CN108513687B (zh)
WO (1) WO2018213978A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952380A (zh) * 2021-02-07 2021-06-11 肇庆市祥嘉盛科技有限公司 一种振子组件及天线

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416701A (zh) * 2019-08-05 2019-11-05 西安多小波信息技术有限责任公司 一种基于飞行姿态感知的航空通信天线系统及通信方法
WO2021104012A1 (zh) * 2019-11-27 2021-06-03 深圳市道通智能航空技术股份有限公司 一种天线及飞行器
CN111029719A (zh) * 2019-11-27 2020-04-17 深圳市道通智能航空技术有限公司 一种天线及飞行器
CN111029791A (zh) * 2019-12-20 2020-04-17 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种紧耦合偶极子反射天线阵列
CN111987424B (zh) * 2020-08-21 2022-03-15 福耀玻璃工业集团股份有限公司 天线结构、天线玻璃组件及交通工具
CN114614255A (zh) * 2020-12-08 2022-06-10 华为技术有限公司 一种天线
CN112886215A (zh) * 2021-03-26 2021-06-01 深圳市道通智能航空技术股份有限公司 天线、无线信号处理设备及无人机
CN113540764A (zh) * 2021-08-09 2021-10-22 深圳市道通智能航空技术股份有限公司 一种天线及无人飞行器
CN114280367B (zh) * 2021-12-26 2022-10-14 湖南华诺星空电子技术有限公司 一种复杂电磁环境下无人机信号频点检测方法
CN114374088B (zh) * 2022-01-21 2023-09-22 西安交通大学 一种平面超宽带探地雷达天线

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8217846B1 (en) * 2009-12-21 2012-07-10 Rockwell Collins, Inc. Low profile dual-polarized radiating element with coincident phase centers
CN102956940A (zh) * 2011-08-31 2013-03-06 深圳光启高等理工研究院 基于超材料的微带线
CN104797076A (zh) * 2014-01-21 2015-07-22 日立金属株式会社 天线装置
CN105490007A (zh) * 2016-01-07 2016-04-13 常熟市泓博通讯技术股份有限公司 一种无人机高增益多振子天线
CN205679761U (zh) * 2016-05-27 2016-11-09 南京博驰光电科技有限公司 一种无人机综合防御系统
CN106371144A (zh) * 2016-10-10 2017-02-01 厦门市美亚柏科信息股份有限公司 一种无人机发现及预警的装置
CN106450782A (zh) * 2016-10-20 2017-02-22 加特兰微电子科技(上海)有限公司 端射天线及雷达组件
CN106504587A (zh) * 2016-10-17 2017-03-15 四川九洲电器集团有限责任公司 一种无人机空管系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533964B (zh) * 2009-01-12 2013-04-10 京信通信系统(中国)有限公司 宽带平面阵列定向天线
CN201438502U (zh) * 2009-07-28 2010-04-14 北京偶极通信设备有限责任公司 双频宽带双偶极子天线
CN102447163B (zh) * 2010-10-08 2013-08-07 中国移动通信集团设计院有限公司 一种宽频带双极化全向天线及馈电方法
CN103187635B (zh) * 2012-09-24 2014-11-26 张伟强 一种多频段偶极子天线
CN203503784U (zh) * 2013-09-28 2014-03-26 广州创锦通信技术有限公司 一种宽频带pcb天线

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8217846B1 (en) * 2009-12-21 2012-07-10 Rockwell Collins, Inc. Low profile dual-polarized radiating element with coincident phase centers
CN102956940A (zh) * 2011-08-31 2013-03-06 深圳光启高等理工研究院 基于超材料的微带线
CN104797076A (zh) * 2014-01-21 2015-07-22 日立金属株式会社 天线装置
CN105490007A (zh) * 2016-01-07 2016-04-13 常熟市泓博通讯技术股份有限公司 一种无人机高增益多振子天线
CN205679761U (zh) * 2016-05-27 2016-11-09 南京博驰光电科技有限公司 一种无人机综合防御系统
CN106371144A (zh) * 2016-10-10 2017-02-01 厦门市美亚柏科信息股份有限公司 一种无人机发现及预警的装置
CN106504587A (zh) * 2016-10-17 2017-03-15 四川九洲电器集团有限责任公司 一种无人机空管系统及方法
CN106450782A (zh) * 2016-10-20 2017-02-22 加特兰微电子科技(上海)有限公司 端射天线及雷达组件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952380A (zh) * 2021-02-07 2021-06-11 肇庆市祥嘉盛科技有限公司 一种振子组件及天线

Also Published As

Publication number Publication date
CN111883922A (zh) 2020-11-03
CN108513687B (zh) 2020-09-01
CN111883922B (zh) 2023-05-30
CN108513687A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
WO2018213978A1 (zh) 天线及无人机的信号处理设备
US8854270B2 (en) Hybrid multi-antenna system and wireless communication apparatus using the same
WO2018133427A1 (zh) 具有双极化性能的孔径耦合馈电的宽带贴片天线
US7256750B1 (en) E-plane omni-directional antenna
CN107636891A (zh) 无线接入点
WO2021104191A1 (zh) 天线单元及电子设备
TWI518992B (zh) 高增益天線及無線裝置
US9263807B2 (en) Waveguide or slot radiator for wide E-plane radiation pattern beamwidth with additional structures for dual polarized operation and beamwidth control
JP2014150526A (ja) アンテナアセンブリ及び該アンテナアセンブリを備える通信装置
CN109830802B (zh) 一种毫米波双极化贴片天线
CN102280696A (zh) 半波传输去耦小间距微带阵列天线
CN107808998A (zh) 多极化辐射振子及天线
CN207353447U (zh) 多极化辐射振子及天线
WO2021244158A1 (zh) 双极化天线及客户前置设备
CN112290193A (zh) 毫米波模组、电子设备及毫米波模组的调节方法
WO2023138324A1 (zh) 一种天线结构、电子设备及无线网络系统
CN111370858B (zh) 定向uhf天线及电子设备
WO2019205063A1 (zh) 一种天线及无人机的信号处理设备
WO2021083220A1 (zh) 天线单元及电子设备
CN210430097U (zh) 一种圆极化微带天线
JP2000114848A (ja) ダイバーシティアンテナ
CN210040526U (zh) 一种光纤分布系统设备全向双极化天线
CN110959226B (zh) 一种馈源装置、双频微波天线及双频天线设备
WO2018191982A1 (zh) 天线、无人机的地面控制系统以及无人机系统
US11923620B1 (en) Compact ceramic chip antenna array based on ultra-wide band three-dimensional direction finding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911369

Country of ref document: EP

Kind code of ref document: A1