WO2018212280A1 - 測定装置、測定方法およびプログラム - Google Patents

測定装置、測定方法およびプログラム Download PDF

Info

Publication number
WO2018212280A1
WO2018212280A1 PCT/JP2018/019134 JP2018019134W WO2018212280A1 WO 2018212280 A1 WO2018212280 A1 WO 2018212280A1 JP 2018019134 W JP2018019134 W JP 2018019134W WO 2018212280 A1 WO2018212280 A1 WO 2018212280A1
Authority
WO
WIPO (PCT)
Prior art keywords
white line
self
predetermined range
accuracy
unit
Prior art date
Application number
PCT/JP2018/019134
Other languages
English (en)
French (fr)
Inventor
多史 藤谷
岩井 智昭
加藤 正浩
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to US16/615,091 priority Critical patent/US11519727B2/en
Priority to JP2019518865A priority patent/JPWO2018212280A1/ja
Priority to EP18801784.2A priority patent/EP3637053A4/en
Publication of WO2018212280A1 publication Critical patent/WO2018212280A1/ja
Priority to US17/983,739 priority patent/US20230105255A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3811Point data, e.g. Point of Interest [POI]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/265Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network constructional aspects of navigation devices, e.g. housings, mountings, displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3605Destination input or retrieval
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3644Landmark guidance, e.g. using POIs or conspicuous other objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3885Transmission of map data to client devices; Reception of map data by client devices
    • G01C21/3896Transmission of map data from central databases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present invention relates to a technique for estimating the position of a moving body based on the position of a feature.
  • Patent Document 1 describes an example of a method for estimating a vehicle position using a feature position detected using LiDAR and a feature position of map information.
  • Patent Document 2 discloses a technique for transmitting an electromagnetic wave to a road surface and detecting a white line based on the reflectance.
  • the number of data that can be measured by LiDAR varies depending on the type of white line (continuous line, broken line, etc.) and paint deterioration. For this reason, when the vehicle position is estimated using the white line, the detection accuracy of the white line changes depending on whether the number of LiDAR data used to detect the white line is small or large, and as a result, the accuracy of the vehicle position estimation changes. Come.
  • An object of the present invention is to appropriately adjust the range in which a white line is detected according to the situation, and to prevent a decrease in accuracy of the vehicle position estimation.
  • the invention according to claim 1 is a measurement device, an acquisition unit that acquires output data from a sensor unit for detecting surrounding features, and a predetermined positional relationship from the self position among the output data
  • An extraction unit that extracts data corresponding to the detection result of the predetermined range, and a processing unit that performs a predetermined process based on the extracted data, and the predetermined range is determined by the accuracy of the self-position. It is characterized by that.
  • the invention according to claim 8 is a measuring method executed by a measuring device, wherein an acquisition step of acquiring output data from a sensor unit for detecting surrounding features, and among the output data, self An extraction unit that extracts data corresponding to a detection result of a predetermined range having a predetermined positional relationship from a position; and a processing step that performs a predetermined process based on the extracted data, wherein the predetermined range includes the self It is determined by the accuracy of the position.
  • the invention according to claim 9 is a program executed by a measuring apparatus including a computer, and includes an acquisition unit that acquires output data from a sensor unit for detecting surrounding features, and among the output data,
  • the computer functions as an extraction unit that extracts data corresponding to a detection result of a predetermined range that is in a predetermined positional relationship from the self position, and a processing unit that performs a predetermined process based on the extracted data. , Determined by the accuracy of the self-position.
  • the measurement device includes an acquisition unit that acquires output data from a sensor unit for detecting surrounding features, and a predetermined positional relationship from the self position among the output data.
  • An extraction unit that extracts data corresponding to the detection result of the predetermined range, and a processing unit that performs a predetermined process based on the extracted data, and the predetermined range is determined by the accuracy of the self-position.
  • the above measuring device acquires output data from a sensor unit for detecting surrounding features, and extracts data corresponding to detection results in a predetermined range having a predetermined positional relationship from the self position among the output data. To do. Then, a predetermined process is performed based on the extracted data.
  • the predetermined range is determined by the accuracy of the self-position. Therefore, the predetermined range is appropriately determined according to the accuracy of the self-position, and the predetermined process is performed based on the data extracted from the predetermined range.
  • the feature is a road line drawn on a road surface
  • the predetermined range is determined by the accuracy of the self-position in a first direction intersecting with a longitudinal direction of the road line.
  • the predetermined range is determined according to the accuracy of the self-position in the first direction intersecting with the longitudinal direction of the road line.
  • the “road line” in the present specification is a marking line such as a white line or a yellow line to be measured, and a linear road marking such as a stop line or a pedestrian crossing.
  • the extraction unit changes the length of the predetermined range in the first direction according to the accuracy of the self-position in the first direction.
  • the extraction unit determines the length of the predetermined range in the first direction based on the length of the road surface line in the first direction and the accuracy of the self-position.
  • the said extraction part enlarges the length in the said 1st direction, so that the precision of the said self-position is low.
  • the measuring apparatus is mounted on a moving body, and the extraction unit has four locations on the right front, right rear, left front, and left rear on the basis of the position of the moving body.
  • the predetermined range is set to.
  • data is extracted at four locations around the moving body, and predetermined processing is performed based on the data.
  • the processing unit detects the position of the feature and performs a process of estimating the position of the measuring device based on the position of the feature.
  • the measurement method executed by the measurement device includes an acquisition step of acquiring output data from a sensor unit for detecting surrounding features, and among the output data, An extraction step of extracting data corresponding to a detection result of a predetermined range having a predetermined positional relationship from a position; and a processing step of performing a predetermined process based on the extracted data, wherein the predetermined range includes the self-range Determined by position accuracy. Also by this method, the predetermined range is appropriately determined according to the accuracy of the self-position, and the predetermined process is performed based on the data extracted from the predetermined range.
  • a program executed by a measuring apparatus including a computer includes an acquisition unit that acquires output data from a sensor unit for detecting surrounding features, and among the output data,
  • the computer functions as an extraction unit that extracts data corresponding to a detection result of a predetermined range that is in a predetermined positional relationship from the self position, and a processing unit that performs a predetermined process based on the extracted data. , Determined by the accuracy of the self-position.
  • the above measurement apparatus can be realized by executing this program on a computer. This program can be stored and handled in a storage medium.
  • FIG. 1 is a diagram illustrating a white line extraction method.
  • White line extraction refers to detecting a white line painted on a road surface and calculating a predetermined position, for example, a center position.
  • the vehicle 5 exists in the map coordinate system (X m , Y m ), and the vehicle coordinate system (X v , Y v ) is defined based on the position of the vehicle 5. Specifically, the traveling direction of the vehicle 5 and X v-axis of the vehicle coordinate system, a direction perpendicular to it and Y v axis of the vehicle coordinate system.
  • white lines that are lane boundary lines on the left and right sides of the vehicle 5.
  • the position of the white line in the map coordinate system that is, the white line map position is included in the advanced map managed by the server or the like, and is acquired from the server or the like.
  • white line data is stored in the advanced map as a coordinate point sequence.
  • the LiDAR mounted on the vehicle 5 measures scan data along the scan line 2.
  • the scan line 2 indicates a trajectory of scanning by LiDAR.
  • the coordinates of the points constituting the white line WL1 on the left side of the vehicle 5, that is, the white line map position WLMP1 is (mx m1 , my m1 ), and the coordinates of the points constituting the white line WL2 on the right side of the vehicle 5, ie, the white line.
  • the map position WLMP2 is (mx m2 , my m2 ).
  • the predicted host vehicle position PVP in the map coordinate system is given by (x ′ m , y ′ m ), and the predicted host vehicle azimuth angle in the map coordinate system is given by ⁇ ′ m .
  • the white line predicted position WLPP (l′ x v , l′ y v ) indicating the predicted position of the white line is the white line map position WLMP (mx m , my m ) and the predicted host vehicle position PVP (x ′ m , y).
  • m the white line map position
  • PVP the predicted host vehicle position
  • the white line predicted position WLPP1 (l′ x v1 , l′ y v1 ) is obtained for the white line WL1 and the white line predicted position WLPP2 (l′ x v2 , l′ y v2 ) is obtained for the white line WL2 by Expression (1). It is done. Thus, for each of the white lines WL1 and WL2, a plurality of white line predicted positions WLPP1 and WLPP2 corresponding to the white lines WL1 and WL2 are obtained.
  • the white line predicted range WLPR is determined based on the white line predicted position WLPP.
  • the white line prediction range WLPR indicates a range in which a white line is considered to exist on the basis of the predicted vehicle position PVP.
  • the white line prediction range WLPR is set at four locations on the vehicle 5 at the right front, right rear, left front, and left rear at the maximum.
  • FIG. 2 shows a method for determining the white line prediction range WLPR.
  • A set forward reference point to any position in front of the vehicle 5 (distance alpha v forward position) to ( ⁇ v, 0 v). Then, based on the front reference point ( ⁇ v , 0 v ) and the white line predicted position WLPP, the white line predicted position WLPP closest to the front reference point ( ⁇ v , 0 v ) is searched.
  • the white line WL1 based on the forward reference point ( ⁇ v , 0 v ) and a plurality of white line predicted positions WLPP1 (l′ x v1 , l′ y v1 ) constituting the white line WL1, the following The distance D1 is calculated by the equation (2), and the white line predicted position WLPP1 at which the distance D1 is the minimum value is set as the prediction range reference point Pref1.
  • the white line WL2 based on the forward reference point ( ⁇ v , 0 v ) and a plurality of white line predicted positions WLPP2 (l′ x v2 , l′ y v2 ) constituting the white line WL2, the following formula
  • the distance D2 is calculated by (3), and the white line predicted position WLPP2 at which the distance D2 is the minimum value is set as the predicted range reference point Pref2.
  • any range based on the expected range reference point Pref for example ⁇ [Delta] X from the expected range reference point Pref in X v-axis direction, a range of ⁇ [Delta] Y to Y v-axis direction
  • the white line prediction range WLPR is set.
  • white line prediction ranges WLPR1 and WLPR2 are set at the left and right positions in front of the vehicle 5.
  • white line prediction ranges WLPR3 and WLPR4 are set at the left and right positions behind the vehicle 5 by setting the rear reference point behind the vehicle 5 and setting the prediction range reference point Pref.
  • four white line prediction ranges WLPR1 to WLPR4 are set for the vehicle 5.
  • FIG. 3 shows a method of calculating the white line center position WLCP.
  • FIG. 3A shows a case where the white line WL1 is a solid line.
  • the white line center position WLCP1 is calculated by the average value of the position coordinates of the scan data constituting the white line.
  • the white line scan data WLSD1 (wx ′ v , wy) existing in the white line prediction range WLPR1 among the scan data output from the LiDAR. ' v ) is extracted.
  • the scan data obtained on the white line is data with high reflection intensity.
  • scan data that exists within the white line prediction range WLPR1 and on the road surface and whose reflection intensity is greater than or equal to a predetermined value is extracted as white line scan data WLSD.
  • the coordinates of the white line center position WLCP1 (sx v1 , sy v1 ) are obtained by the following equation (4).
  • the white line center position WLCP2 is similarly calculated.
  • the white line prediction range WLPR is determined based on the white line prediction position WLPP. However, if the estimation accuracy of the white line prediction position WLPP is low, the accuracy of the white line prediction range WLPR decreases, and the white line WL becomes the white line prediction range. It can happen that it deviates from the WLPR.
  • FIG. 4A shows that when the estimation accuracy of the white line predicted position WLPP is low, specifically, the accuracy of the predicted host vehicle position PVP of the vehicle 5 is 1 m in the lateral direction of the vehicle 5, that is, in the Y v- axis direction. And
  • the predicted vehicle position PVP vehicle 5 since the predicted vehicle position PVP vehicle 5 includes an error of ⁇ 1 m in Y v-axis direction, calculates the white line predicted position WLPP using the predicted vehicle position PVP, setting the white line prediction range WLPR, As shown in FIG. 4A, the white line prediction range WLPR may deviate from the actual position of the white line WL1.
  • the accuracy of white line extraction is reduced, and as a result, the accuracy of vehicle position estimation is also reduced.
  • the width of the white line prediction range WLPR is corrected based on the estimation accuracy of the predicted vehicle position PVP of the vehicle 5. That is, the width of the white line prediction range WLPR is changed by a value corresponding to the accuracy of the predicted vehicle position PVP.
  • the basic method of correction the lower the Y v-axis direction of the estimation accuracy of the predicted vehicle position PVP, Y v-axis direction of the length of the white line estimated range WLPR (width) is increased.
  • the corrected white line prediction range WLPR has a width that takes into account the estimated error of the predicted vehicle position PVP, and the possibility that the white line WL deviates from the white line prediction range WLPR can be reduced.
  • the above example is merely an example, it is also possible to extend the example predictive self by a value obtained by multiplying a coefficient with respect to the estimation accuracy of the vehicle position PVP Y v-axis direction of the width.
  • the accuracy of the current predicted vehicle position PVP is obtained from the value of the covariance matrix sequentially calculated by the extended Kalman filter, and the white line prediction range WLPR is corrected. May be.
  • the prediction range for a general feature (landmark) is given by the following equation.
  • D M ”, “W M ”, and “H M ” are the sizes of the features stored in the advanced map, and “ ⁇ P 11 (t)” and “ ⁇ P 22 (t)”. Is the square root of the elements of the covariance matrix and indicates the estimation accuracy in the x and y directions, respectively.
  • C z is a constant indicating a z-direction (vertical direction) component, and “c” is a coefficient. According to this equation, when the estimation accuracy of the predicted vehicle position PVP is high, the prediction range is small, and when the estimation accuracy of the prediction vehicle position PVP is low, the prediction range is large.
  • FIG. 5 shows a schematic configuration of a host vehicle position estimation apparatus to which the measurement apparatus of the present invention is applied.
  • the own vehicle position estimation device 10 is mounted on a vehicle and configured to be able to communicate with a server 7 such as a cloud server by wireless communication.
  • the server 7 is connected to a database 8, and the database 8 stores an advanced map.
  • the advanced map stored in the database 8 stores landmark map information for each landmark.
  • a white line map position WLMP indicating the coordinates of the point sequence constituting the white line is stored.
  • the own vehicle position estimation device 10 communicates with the server 7 and downloads white line map information related to the white line around the own vehicle position of the vehicle.
  • the own vehicle position estimation device 10 includes an inner world sensor 11, an outer world sensor 12, an own vehicle position prediction unit 13, a communication unit 14, a white line map information acquisition unit 15, a white line position prediction unit 16, and scan data extraction. Unit 17, white line center position calculation unit 18, and own vehicle position estimation unit 19.
  • the vehicle position prediction unit 13, the white line map information acquisition unit 15, the white line position prediction unit 16, the scan data extraction unit 17, the white line center position calculation unit 18, and the vehicle position estimation unit 19 are actually a CPU or the like. This is realized by a computer executing a program prepared in advance.
  • the inner world sensor 11 measures the position of the vehicle as a GNSS (Global Navigation Satellite System) / IMU (Inertia Measurement Unit) combined navigation system, and includes a satellite positioning sensor (GPS), a gyro sensor, a vehicle speed sensor, and the like. Including.
  • the own vehicle position prediction unit 13 predicts the own vehicle position of the vehicle by GNSS / IMU combined navigation based on the output of the internal sensor 11 and supplies the predicted own vehicle position PVP to the white line position prediction unit 16.
  • the external sensor 12 is a sensor that detects an object around the vehicle, and includes a stereo camera, LiDAR, and the like.
  • the external sensor 12 supplies the scan data SD obtained by the measurement to the scan data extraction unit 17.
  • the communication unit 14 is a communication unit for wirelessly communicating with the server 7.
  • the white line map information acquisition unit 15 receives white line map information related to white lines existing around the vehicle from the server 7 via the communication unit 14 and supplies the white line map position WLMP included in the white line map information to the white line position prediction unit 16. To do.
  • the white line position prediction unit 16 calculates the white line predicted position WLPP by the above-described equation (1) based on the white line map position WLMP and the predicted vehicle position PVP acquired from the vehicle position prediction unit 13. Further, the white line position prediction unit 16 determines the white line prediction range WLPR based on the above-described formulas (2) and (3) based on the white line prediction position WLPP, and further increases the estimation accuracy of the predicted vehicle position PVP as described above. Accordingly, the white line prediction range WLPR is corrected. Then, the white line position prediction unit 16 supplies the corrected white line prediction range WLPR to the scan data extraction unit 17.
  • the scan data extraction unit 17 extracts the white line scan data WLSD based on the white line prediction range WLPR supplied from the white line position prediction unit 16 and the scan data SD acquired from the external sensor 12. Specifically, the scan data extraction unit 17 extracts scan data included in the white line prediction range WLPR and having a reflection intensity equal to or higher than a predetermined value, as white line scan data WLSD, from the scan data SD.
  • the white line center position calculation unit 18 is supplied.
  • the white line center position calculation unit 18 calculates the white line center position WLCP from the white line scan data WLSD using the equation (4). Then, the white line center position calculation unit 18 supplies the calculated white line center position WLCP to the vehicle position estimation unit 19.
  • the own vehicle position estimating unit 19 estimates the own vehicle position and the own vehicle azimuth angle based on the white line map position WLMP in the advanced map and the white line center position WLCP that is white line measurement data by the external sensor 12.
  • Japanese Patent Laid-Open No. 2017-72422 discloses an example of a method for estimating the vehicle position by matching the landmark position information of the advanced map and the measured position information of the landmark by the external sensor.
  • the external sensor 12 is an example of a sensor unit of the present invention
  • the scan data extraction unit 17 is an example of an acquisition unit and an extraction unit of the present invention
  • the own vehicle position estimation unit 19 is a processing unit of the present invention. It is an example.
  • FIG. 6 is a flowchart of the vehicle position estimation process. This process is realized by a computer such as a CPU executing a program prepared in advance and functioning as each component shown in FIG.
  • the host vehicle position prediction unit 13 acquires the predicted host vehicle position PVP based on the output from the internal sensor 11 (step S11).
  • the white line map information acquisition part 15 connects to the server 7 through the communication part 14, and acquires white line map information from the advanced map memorize
  • the white line position prediction unit 16 calculates the white line predicted position WLPP based on the white line map position WLMP included in the white line position information obtained in step S12 and the predicted host vehicle position PVP obtained in step S11. (Step S13). Further, the white line position prediction unit 16 determines the white line prediction range WLPR based on the white line prediction position WLPP, and further corrects the white line prediction range WLPR based on the estimated accuracy of the predicted host vehicle position PVP to the scan data extraction unit 17. Supply (step S14).
  • the scan data extraction unit 17 converts the scan data SD obtained from the LiDAR as the external sensor 12 into the white line predicted range WLPR, the scan data on the road surface, and the reflection intensity is a predetermined value or more as a white line Extracted as scan data WLSD and supplied to the white line center position calculator 18 (step S15).
  • the white line center position calculation unit 18 calculates the white line center position WLCP based on the white line prediction range WLPR and the white line scan data WLSD, and supplies the white line center position WLCP to the own vehicle position estimation unit 19 (step S16). And the own vehicle position estimation part 19 estimates the own vehicle position using the white line center position WLCP (step S17), and outputs the own vehicle position and the own vehicle azimuth (step S18). Thus, the own vehicle position estimation process ends.
  • the white line that is the lane boundary indicating the lane is used, but the application of the present invention is not limited to this, and even if a linear road marking such as a pedestrian crossing or a stop line is used. Good. Further, a yellow line or the like may be used instead of the white line. These lane markings such as white lines and yellow lines, road markings, and the like are examples of road lines of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

測定装置は、周囲の地物を検出するためのセンサ部からの出力データを取得し、出力データのうち、自己位置から所定の位置関係にある所定範囲の検出結果に相当するデータを抽出する。所定範囲は、前記自己位置の精度によって決定される。そして、測定装置は、抽出されたデータに基づいて所定の処理を行う。

Description

測定装置、測定方法およびプログラム
 本発明は、地物の位置に基づいて移動体の位置を推定する技術に関する。
 自動運転車両では、LiDAR(Light Detection and Ranging)などのセンサで計測した地物位置と、自動運転用の地図情報の地物位置をマッチングして高精度に自車位置を推定する必要がある。ここで利用する地物としては、白線、標識、看板などが挙げられる。特許文献1は、LiDARを用いて検出した地物位置と、地図情報の地物位置とを用いて自車位置を推定する手法の一例を記載している。また、特許文献2は、道路面に電磁波を送信し、その反射率に基づいて白線を検出する技術を開示している。
特開2017-72422号公報 特開2015-222223号公報
 白線を用いて自車位置を推定する場合、白線の種類(連続線、破線など)や塗装の劣化などによって、LiDARにより計測できるデータ数に差が生じる。このため、白線を用いて自車位置推定を行う際、白線の検出に使用するLiDARのデータ数が少ない場合と多い場合とでは白線の検出精度が変わり、その結果自車位置推定の精度が変わってくる。
 本発明が解決しようとする課題としては、上記のものが例として挙げられる。本発明は、状況に応じて白線を検出する範囲を適切に調整し、自車位置推定の精度低下を防止することを目的とする。
 請求項1に記載の発明は、測定装置であって、周囲の地物を検出するためのセンサ部からの出力データを取得する取得部と、前記出力データのうち、自己位置から所定の位置関係にある所定範囲の検出結果に相当するデータを抽出する抽出部と、抽出されたデータに基づいて所定の処理を行う処理部と、を備え、前記所定範囲は、前記自己位置の精度によって決定されることを特徴とする。
 請求項8に記載の発明は、測定装置により実行される測定方法であって、周囲の地物を検出するためのセンサ部からの出力データを取得する取得工程と、前記出力データのうち、自己位置から所定の位置関係にある所定範囲の検出結果に相当するデータを抽出する抽出部と、抽出されたデータに基づいて所定の処理を行う処理工程と、を備え、前記所定範囲は、前記自己位置の精度によって決定されることを特徴とする。
 請求項9に記載の発明は、コンピュータを備える測定装置により実行されるプログラムであって、周囲の地物を検出するためのセンサ部からの出力データを取得する取得部、前記出力データのうち、自己位置から所定の位置関係にある所定範囲の検出結果に相当するデータを抽出する抽出部、抽出されたデータに基づいて所定の処理を行う処理部、として前記コンピュータを機能させ、前記所定範囲は、前記自己位置の精度によって決定されることを特徴とする。
白線抽出方法を説明する図である。 白線予測範囲の決定方法を説明する図である。 白線中心位置の算出方法を説明する図である。 白線予測範囲の補正方法を説明する図である。 測定装置の構成を示すブロック図である。 白線を利用した自車位置推定処理のフローチャートである。
 本発明の1つの好適な実施形態では、測定装置は、周囲の地物を検出するためのセンサ部からの出力データを取得する取得部と、前記出力データのうち、自己位置から所定の位置関係にある所定範囲の検出結果に相当するデータを抽出する抽出部と、抽出されたデータに基づいて所定の処理を行う処理部と、を備え、前記所定範囲は、前記自己位置の精度によって決定される。
 上記の測定装置は、周囲の地物を検出するためのセンサ部からの出力データを取得し、出力データのうち、自己位置から所定の位置関係にある所定範囲の検出結果に相当するデータを抽出する。そして、抽出されたデータに基づいて所定の処理を行う。ここで、前記所定範囲は、前記自己位置の精度によって決定される。よって、自己位置の精度に応じて所定範囲が適切に決定され、所定範囲から抽出されたデータに基づいて所定の処理が行われる。
 上記の測定装置の一態様では、前記地物は路面に描かれた路面線であり、前記所定範囲は、前記路面線の長手方向と交わる第1方向における前記自己位置の精度によって決定される。この態様では、路面線の長手方向と交わる第1方向における自己位置の精度に応じて所定範囲が決定される。なお、本明細書においての「路面線」とは、測定対象である白線や黄色線などの区画線、および停止線や横断歩道などの線状の道路標示等である。
 上記の測定装置の好適な例では、前記抽出部は、前記第1方向における前記自己位置の精度に応じて、前記所定範囲の前記第1方向における長さを変化させる。他の好適な例では、前記抽出部は、前記路面線の前記第1方向における長さと、前記自己位置の精度とに基づいて、前記所定範囲の第1方向における長さを決定する。他の好適な例では、前記抽出部は、前記自己位置の精度が低いほど、前記第1方向における長さを大きくする。
 上記の測定装置の他の一態様では、前記測定装置は、移動体に搭載され、前記抽出部は、前記移動体の位置を基準として右前方、右後方、左前方、左後方の4か所に前記所定範囲を設定する。この態様では、移動体の周囲の4か所においてデータが抽出され、それに基づいて所定の処理が行われる。好適には、前記処理部は、前記地物の位置を検出し、当該地物の位置に基づいて前記測定装置の位置を推定する処理を行う。
 本発明の他の好適な実施形態では、測定装置により実行される測定方法は、周囲の地物を検出するためのセンサ部からの出力データを取得する取得工程と、前記出力データのうち、自己位置から所定の位置関係にある所定範囲の検出結果に相当するデータを抽出する抽出工程と、抽出されたデータに基づいて所定の処理を行う処理工程と、を備え、前記所定範囲は、前記自己位置の精度によって決定される。この方法によっても、自己位置の精度に応じて所定範囲が適切に決定され、所定範囲から抽出されたデータに基づいて所定の処理が行われる。
 本発明の他の好適な実施形態では、コンピュータを備える測定装置により実行されるプログラムは、周囲の地物を検出するためのセンサ部からの出力データを取得する取得部、前記出力データのうち、自己位置から所定の位置関係にある所定範囲の検出結果に相当するデータを抽出する抽出部、抽出されたデータに基づいて所定の処理を行う処理部、として前記コンピュータを機能させ、前記所定範囲は、前記自己位置の精度によって決定される。このプログラムをコンピュータで実行することにより、上記の測定装置を実現することができる。このプログラムは、記憶媒体に記憶して取り扱うことができる。
 以下、図面を参照して本発明の好適な実施例について説明する。
 [白線抽出方法]
 図1は、白線抽出方法を説明する図である。白線抽出とは、道路面にペイントされた白線を検出し、その所定位置、例えば中心位置を算出することをいう。
 (白線予測位置の算出)
 図示のように、地図座標系(X,Y)に車両5が存在し、車両5の位置を基準として車両座標系(X,Y)が規定される。具体的に、車両5の進行方向を車両座標系のX軸とし、それに垂直な方向を車両座標系のY軸とする。
 車両5の左右の側方には車線境界線である白線が存在する。白線の地図座標系における位置、即ち、白線地図位置は、サーバなどにより管理される高度化地図に含まれており、サーバなどから取得される。本実施例では、白線のデータは座標点列として高度化地図内に記憶されているものとする。また、車両5に搭載されたLiDARはスキャンライン2に沿ってスキャンデータを計測する。なお、スキャンライン2は、LiDARによるスキャンの軌跡を示す。
 図1では、車両5の左側の白線WL1を構成する点の座標、即ち白線地図位置WLMP1は(mxm1,mym1)であり、車両5の右側の白線WL2を構成する点の座標、即ち白線地図位置WLMP2は(mxm2,mym2)であるとする。また、地図座標系における予測自車位置PVPは(x’,y’)で与えられ、地図座標系における予測自車方位角はΨ’で与えられる。
 ここで、白線の予測位置を示す白線予測位置WLPP(l’x,l’y)は、白線地図位置WLMP(mx,my)と、予測自車位置PVP(x’,y’)と、予測自車方位角Ψ’とを用いて、以下の式(1)により与えられる。
Figure JPOXMLDOC01-appb-M000001
 よって、式(1)により、白線WL1について白線予測位置WLPP1(l’xv1,l’yv1)が得られ、白線WL2について白線予測位置WLPP2(l’xv2,l’yv2)が得られる。こうして、白線WL1、WL2のそれぞれについて、白線WL1、WL2に対応する複数の白線予測位置WLPP1、WLPP2が得られる。
 (白線予測範囲の決定)
 次に、白線予測位置WLPPに基づいて、白線予測範囲WLPRが決定される。白線予測範囲WLPRは、予測自車位置PVPを基準として、白線が存在すると考えられる範囲を示す。白線予測範囲WLPRは、最大で車両5の右前方、右後方、左前方及び左後方の4か所に設定される。
 図2は、白線予測範囲WLPRの決定方法を示す。図2(A)において、車両5の前方の任意の位置(距離α前方の位置)に前方基準点(α,0)を設定する。そして、前方基準点(α,0)と、白線予測位置WLPPとに基づいて、前方基準点(α,0)から最も近い白線予測位置WLPPを探索する。具体的には、白線WL1については、前方基準点(α,0)と、白線WL1を構成する複数の白線予測位置WLPP1(l’xv1,l’yv1)とに基づいて、以下の式(2)により距離D1を算出し、距離D1が最小値となる白線予測位置WLPP1を予測範囲基準点Pref1とする。
Figure JPOXMLDOC01-appb-M000002
 同様に、白線WL2については、前方基準点(α,0)と、白線WL2を構成する複数の白線予測位置WLPP2(l’xv2,l’yv2)とに基づいて、以下の式(3)により距離D2を算出し、距離D2が最小値となる白線予測位置WLPP2を予測範囲基準点Pref2とする。
Figure JPOXMLDOC01-appb-M000003
 そして、図2(B)に示すように、予測範囲基準点Prefを基準とした任意の範囲、例えば予測範囲基準点PrefからX軸方向に±ΔX、Y軸方向に±ΔYの範囲を白線予測範囲WLPRと設定する。こうして、図1に示すように、車両5の前方の左右位置に白線予測範囲WLPR1とWLPR2が設定される。同様に、車両5の後方に後方基準点を設定して予測範囲基準点Prefを設定することにより、車両5の後方の左右位置に白線予測範囲WLPR3とWLPR4が設定される。こうして、車両5に対して4つの白線予測範囲WLPR1~4が設定される。
 (白線中心位置の算出)
 次に、白線予測位置WLPPを用いて白線中心位置WLCPを算出する。図3は白線中心位置WLCPの算出方法を示す。図3(A)は、白線WL1が実線である場合を示す。白線中心位置WLCP1は、白線を構成するスキャンデータの位置座標の平均値により算出される。いま、図3(A)に示すように、白線予測範囲WLPR1が設定されると、LiDARから出力されるスキャンデータのうち、白線予測範囲WLPR1内に存在する白線スキャンデータWLSD1(wx’,wy’)が抽出される。白線上は通常の道路上と比較して反射率が高いので、白線上で得られたスキャンデータは、反射強度の高いデータとなる。LiDARから出力されたスキャンデータのうち、白線予測範囲WLPR1内に存在し、路面上、かつ、反射強度が所定以上値であるスキャンデータが白線スキャンデータWLSDとして抽出される。そして、抽出された白線スキャンデータWLSDの数を「n」とすると、以下の式(4)により、白線中心位置WLCP1(sxv1,syv1)の座標が得られる。
Figure JPOXMLDOC01-appb-M000004
また、図3(B)に示すように、白線が破線である場合も同様に白線中心位置WLCP2が算出される。
 (白線予測範囲の補正)
 次に、白線予測範囲WLPRの補正について説明する。前述のように、白線予測範囲WLPRは、白線予測位置WLPPに基づいて決定されるが、白線予測位置WLPPの推定精度が低いと、白線予測範囲WLPRの精度が低下し、白線WLが白線予測範囲WLPRから外れてしまうことが起こりうる。
 図4(A)は、白線予測位置WLPPの推定精度が低い場合、具体的には、車両5の予測自車位置PVPの精度が車両5の横方向、即ち、Y軸方向に1mであるとする。この場合、車両5の予測自車位置PVPはY軸方向に±1mの誤差を含むため、この予測自車位置PVPを用いて白線予測位置WLPPを算出し、白線予測範囲WLPRを設定すると、図4(A)に示すように、白線予測範囲WLPRが実際の白線WL1の位置からずれてしまうことが起こりうる。この場合、白線予測範囲WLPR内で得られる白線スキャンデータWLSDの数は少なくなるため、白線抽出の精度が低下し、その結果、自車位置推定の精度も低下してしまう。
 この不具合を解決するため、本実施例では、図4(B)に示すように、車両5の予測自車位置PVPの推定精度に基づいて白線予測範囲WLPRの幅を補正する。即ち、予測自車位置PVPの精度に応じた値だけ、白線予測範囲WLPRの幅を変更する。基本的な補正の方法としては、予測自車位置PVPのY軸方向の推定精度が低いほど、白線予測範囲WLPRのY軸方向の長さ(幅)を大きくする。
 例えば、予測自車位置PVPのY軸方向の推定精度が1mである場合には、図2を参照して説明した方法により設定した白線予測範囲WLPRの幅をY軸方向に左右に1m広げる補正を行う。これにより、補正後の白線予測範囲WLPRは予測自車位置PVPの推定誤差分を加味した幅となり、白線WLが白線予測範囲WLPRから外れる可能性を低減することができる。なお、上記の例は単なる一例であり、例えば予測自車位置PVPの推定精度に対してある係数を乗算した値だけY軸方向の幅を広げることとしてもよい。
 また、具体例として拡張カルマンフィルタを用いて自車位置推定を行う場合には、拡張カルマンフィルタで逐次計算する共分散行列の値から現在の予測自車位置PVPの精度を求め、白線予測範囲WLPRを補正してもよい。一般的な地物(ランドマーク)についての予測範囲は下記の式により与えられる。
Figure JPOXMLDOC01-appb-M000005
ここで、「D」、「W」、「H」は高度化地図に格納されている地物のサイズであり、「√P11(t)」及び「√P22(t)」は共分散行列の要素の平方根であってそれぞれx方向とy方向の推定精度を示す。「C」はz方向(垂直方向)成分を示す定数であり、「c」は係数である。この式により、予測自車位置PVPの推定精度が高いと予測範囲は小さくなり、予測自車位置PVPの推定精度が低いと予測範囲は大きくなる。本実施例では地物として白線を利用しているので、式(5)で得られた予測範囲のサイズS(t)のY軸方向成分に基づいて白線予測範囲WLPRの幅(補正量)を決定すればよい。
 [装置構成]
 図5は、本発明の測定装置を適用した自車位置推定装置の概略構成を示す。自車位置推定装置10は、車両に搭載され、無線通信によりクラウドサーバなどのサーバ7と通信可能に構成されている。サーバ7はデータベース8に接続されており、データベース8は高度化地図を記憶している。データベース8に記憶された高度化地図は、ランドマーク毎にランドマーク地図情報を記憶している。また、白線については、白線を構成する点列の座標を示す白線地図位置WLMPを記憶している。自車位置推定装置10は、サーバ7と通信し、車両の自車位置周辺の白線に関する白線地図情報をダウンロードする。
 自車位置推定装置10は、内界センサ11と、外界センサ12と、自車位置予測部13と、通信部14と、白線地図情報取得部15と、白線位置予測部16と、スキャンデータ抽出部17と、白線中心位置算出部18と、自車位置推定部19とを備える。なお、自車位置予測部13、白線地図情報取得部15、白線位置予測部16、スキャンデータ抽出部17、白線中心位置算出部18及び自車位置推定部19は、実際には、CPUなどのコンピュータが予め用意されたプログラムを実行することにより実現される。
 内界センサ11は、GNSS(Global Navigation Satellite System)/IMU(Inertia Measurement Unit)複合航法システムとして車両の自車位置を測位するものであり、衛星測位センサ(GPS)、ジャイロセンサ、車速センサなどを含む。自車位置予測部13は、内界センサ11の出力に基づいて、GNSS/IMU複合航法により車両の自車位置を予測し、予測自車位置PVPを白線位置予測部16に供給する。
 外界センサ12は、車両の周辺の物体を検出するセンサであり、ステレオカメラ、LiDARなどを含む。外界センサ12は、計測により得られたスキャンデータSDをスキャンデータ抽出部17へ供給する。
 通信部14は、サーバ7と無線通信するための通信ユニットである。白線地図情報取得部15は、車両の周辺に存在する白線に関する白線地図情報を通信部14を介してサーバ7から受信し、白線地図情報に含まれる白線地図位置WLMPを白線位置予測部16へ供給する。
 白線位置予測部16は、白線地図位置WLMPと自車位置予測部13から取得した予測自車位置PVPとに基づいて、前述の式(1)により白線予測位置WLPPを算出する。また、白線位置予測部16は、白線予測位置WLPPに基づいて、前述の式(2)、(3)により白線予測範囲WLPRを決定し、さらに前述のように予測自車位置PVPの推定精度に応じて白線予測範囲WLPRの補正を行う。そして、白線位置予測部16は、補正後の白線予測範囲WLPRをスキャンデータ抽出部17へ供給する。
 スキャンデータ抽出部17は、白線位置予測部16から供給された白線予測範囲WLPRと、外界センサ12から取得したスキャンデータSDとに基づいて白線スキャンデータWLSDを抽出する。具体的には、スキャンデータ抽出部17は、スキャンデータSDのうち、白線予測範囲WLPRに含まれ、路面上、かつ、反射強度が所定値以上であるスキャンデータを、白線スキャンデータWLSDとして抽出し、白線中心位置算出部18へ供給する。
 白線中心位置算出部18は、図3を参照して説明したように、式(4)により白線スキャンデータWLSDから白線中心位置WLCPを算出する。そして、白線中心位置算出部18は、算出された白線中心位置WLCPを自車位置推定部19へ供給する。
 自車位置推定部19は、高度化地図における白線地図位置WLMPと、外界センサ12による白線の計測データである白線中心位置WLCPとに基づいて、車両の自車位置と自車方位角を推定する。なお、高度化地図のランドマーク位置情報と外界センサによるランドマークの計測位置情報をマッチングすることにより自車位置を推定する方法の一例が特開2017-72422に記載されている。
 上記の構成において、外界センサ12は本発明のセンサ部の一例であり、スキャンデータ抽出部17は本発明の取得部及び抽出部の一例であり、自車位置推定部19は本発明の処理部の一例である。
 [自車位置推定処理]
 次に、自車位置推定装置10による自車位置推定処理について説明する。図6は、自車位置推定処理のフローチャートである。この処理は、CPUなどのコンピュータが予め用意されたプログラムを実行し、図5に示す各構成要素として機能することにより実現される。
 まず、自車位置予測部13は、内界センサ11からの出力に基づいて、予測自車位置PVPを取得する(ステップS11)。次に、白線地図情報取得部15は、通信部14を通じてサーバ7に接続し、データベース8に記憶された高度化地図から白線地図情報を取得する(ステップS12)。なお、ステップS11とS12はいずれが先でもよい。
 次に、白線位置予測部16は、ステップS12で得られた白線位置情報に含まれる白線地図位置WLMPと、ステップS11で得られた予測自車位置PVPに基づいて、白線予測位置WLPPを算出する(ステップS13)。また、白線位置予測部16は、白線予測位置WLPPに基づいて白線予測範囲WLPRを決定し、さらに予測自車位置PVPの推定精度に基づいて白線予測範囲WLPRを補正してスキャンデータ抽出部17へ供給する(ステップS14)。
 次に、スキャンデータ抽出部17は、外界センサ12としてのLiDARから得たスキャンデータSDのうち、白線予測範囲WLPR内に属し、路面上、かつ、反射強度が所定値以上であるスキャンデータを白線スキャンデータWLSDとして抽出し、白線中心位置算出部18へ供給する(ステップS15)。
 次に、白線中心位置算出部18は、白線予測範囲WLPRと白線スキャンデータWLSDに基づいて白線中心位置WLCPを算出し、自車位置推定部19へ供給する(ステップS16)。そして、自車位置推定部19は、白線中心位置WLCPを利用して自車位置推定を行い(ステップS17)、自車位置及び自車方位角を出力する(ステップS18)。こうして自車位置推定処理は終了する。
 [変形例]
 上記の実施例では、車線を示す車線境界線である白線を使用しているが、本発明の適用はこれには限られず、横断歩道、停止線などの線状の道路標示を利用してもよい。また、白線の代わりに、黄色線などを利用しても良い。これら、白線、黄色線などの区画線や、道路標示などは本発明の路面線の一例である。
 5 車両
 7 サーバ
 8 データベース
 10 自車位置推定装置
 11 内界センサ
 12 外界センサ
 13 自車位置予測部
 14 通信部
 15 白線地図情報取得部
 16 白線位置予測部
 17 スキャンデータ抽出部
 18 白線中心位置算出部
 19 自車位置推定部

Claims (10)

  1.  周囲の地物を検出するためのセンサ部からの出力データを取得する取得部と、
     前記出力データのうち、自己位置から所定の位置関係にある所定範囲の検出結果に相当するデータを抽出する抽出部と、
     抽出されたデータに基づいて所定の処理を行う処理部と、
     を備え、
     前記所定範囲は、前記自己位置の精度によって決定されることを特徴とする測定装置。
  2.  前記地物は路面に描かれた路面線であり、
     前記所定範囲は、前記路面線の長手方向と交わる第1方向における前記自己位置の精度によって決定されることを特徴とする請求項1に記載の測定装置。
  3.  前記抽出部は、前記第1方向における前記自己位置の精度に応じて、前記所定範囲の前記第1方向における長さを変化させることを特徴とする請求項2に記載の測定装置。
  4.  前記抽出部は、前記路面線の前記第1方向における長さと、前記自己位置の精度とに基づいて、前記所定範囲の第1方向における長さを決定することを特徴とする請求項3に記載の測定装置。
  5.  前記抽出部は、前記自己位置の精度が低いほど、前記第1方向における長さを大きくすることを特徴とする請求項3又は4に記載の測定装置。
  6.  前記測定装置は、移動体に搭載され、
     前記抽出部は、前記移動体の位置を基準として右前方、右後方、左前方、左後方の4か所に前記所定範囲を設定することを特徴とする請求項1乃至5のいずれか一項に記載の測定装置。
  7.  前記処理部は、前記地物の位置を検出し、当該地物の位置に基づいて前記測定装置の位置を推定する処理を行うことを特徴とする請求項1乃至6のいずれか一項に記載の測定装置。
  8.  測定装置により実行される測定方法であって、
     周囲の地物を検出するためのセンサ部からの出力データを取得する取得工程と、
     前記出力データのうち、自己位置から所定の位置関係にある所定範囲の検出結果に相当するデータを抽出する抽出工程と、
     抽出されたデータに基づいて所定の処理を行う処理工程と、
     を備え、
     前記所定範囲は、前記自己位置の精度によって決定されることを特徴とする測定方法。
  9.  コンピュータを備える測定装置により実行されるプログラムであって、
     周囲の地物を検出するためのセンサ部からの出力データを取得する取得部、
     前記出力データのうち、自己位置から所定の位置関係にある所定範囲の検出結果に相当するデータを抽出する抽出部、
     抽出されたデータに基づいて所定の処理を行う処理部、
     として前記コンピュータを機能させ、
     前記所定範囲は、前記自己位置の精度によって決定されることを特徴とするプログラム。
  10.  請求項9に記載のプログラムを記憶した記憶媒体。
PCT/JP2018/019134 2017-05-19 2018-05-17 測定装置、測定方法およびプログラム WO2018212280A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/615,091 US11519727B2 (en) 2017-05-19 2018-05-17 Measurement device, measurement method and program
JP2019518865A JPWO2018212280A1 (ja) 2017-05-19 2018-05-17 測定装置、測定方法およびプログラム
EP18801784.2A EP3637053A4 (en) 2017-05-19 2018-05-17 MEASURING DEVICE, MEASURING PROCESS AND PROGRAM
US17/983,739 US20230105255A1 (en) 2017-05-19 2022-11-09 Measurement device, measurement method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-100124 2017-05-19
JP2017100124 2017-05-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/615,091 A-371-Of-International US11519727B2 (en) 2017-05-19 2018-05-17 Measurement device, measurement method and program
US17/983,739 Continuation US20230105255A1 (en) 2017-05-19 2022-11-09 Measurement device, measurement method and program

Publications (1)

Publication Number Publication Date
WO2018212280A1 true WO2018212280A1 (ja) 2018-11-22

Family

ID=64274466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019134 WO2018212280A1 (ja) 2017-05-19 2018-05-17 測定装置、測定方法およびプログラム

Country Status (4)

Country Link
US (2) US11519727B2 (ja)
EP (1) EP3637053A4 (ja)
JP (3) JPWO2018212280A1 (ja)
WO (1) WO2018212280A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020201210A (ja) * 2019-06-13 2020-12-17 トヨタ自動車株式会社 位置推定装置及びコンピュータプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023721A (ja) * 2008-07-22 2010-02-04 Hitachi Ltd 走行支援装置
JP2015206733A (ja) * 2014-04-22 2015-11-19 日産自動車株式会社 位置検出装置及び位置検出方法
JP2015222223A (ja) 2014-05-23 2015-12-10 日産自動車株式会社 車両位置推定装置、及び車両位置推定方法
WO2016189732A1 (ja) * 2015-05-28 2016-12-01 日産自動車株式会社 自己位置推定装置及び自己位置推定方法
JP2017072422A (ja) 2015-10-05 2017-04-13 パイオニア株式会社 情報処理装置、制御方法、プログラム及び記憶媒体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314396A (ja) * 1992-05-13 1993-11-26 Omron Corp 連続線追跡装置
JP3599421B2 (ja) * 1995-06-06 2004-12-08 株式会社ザナヴィ・インフォマティクス 現在位置算出装置
JP3352655B2 (ja) * 1999-09-22 2002-12-03 富士重工業株式会社 車線認識装置
JP4724043B2 (ja) * 2006-05-17 2011-07-13 トヨタ自動車株式会社 対象物認識装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023721A (ja) * 2008-07-22 2010-02-04 Hitachi Ltd 走行支援装置
JP2015206733A (ja) * 2014-04-22 2015-11-19 日産自動車株式会社 位置検出装置及び位置検出方法
JP2015222223A (ja) 2014-05-23 2015-12-10 日産自動車株式会社 車両位置推定装置、及び車両位置推定方法
WO2016189732A1 (ja) * 2015-05-28 2016-12-01 日産自動車株式会社 自己位置推定装置及び自己位置推定方法
JP2017072422A (ja) 2015-10-05 2017-04-13 パイオニア株式会社 情報処理装置、制御方法、プログラム及び記憶媒体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020201210A (ja) * 2019-06-13 2020-12-17 トヨタ自動車株式会社 位置推定装置及びコンピュータプログラム
JP7334489B2 (ja) 2019-06-13 2023-08-29 トヨタ自動車株式会社 位置推定装置及びコンピュータプログラム

Also Published As

Publication number Publication date
US11519727B2 (en) 2022-12-06
JP2023126399A (ja) 2023-09-07
JPWO2018212280A1 (ja) 2020-03-19
EP3637053A1 (en) 2020-04-15
JP2022034051A (ja) 2022-03-02
EP3637053A4 (en) 2021-03-03
US20230105255A1 (en) 2023-04-06
US20200208977A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
CN108351216B (zh) 估计装置、控制方法、程序以及存储介质
JP6806891B2 (ja) 情報処理装置、制御方法、プログラム及び記憶媒体
JP7155284B2 (ja) 計測精度算出装置、自己位置推定装置、制御方法、プログラム及び記憶媒体
US11828603B2 (en) Measurement device, measurement method and program
US20220113139A1 (en) Object recognition device, object recognition method and program
JP2023164553A (ja) 位置推定装置、推定装置、制御方法、プログラム及び記憶媒体
JP2017211307A (ja) 測定装置、測定方法およびプログラム
JP2023126399A (ja) 測定装置、測定方法およびプログラム
JP7526858B2 (ja) 測定装置、測定方法およびプログラム
WO2018180247A1 (ja) 出力装置、制御方法、プログラム及び記憶媒体
JP2023099851A (ja) 測定装置、測定方法およびプログラム
WO2018212286A1 (ja) 測定装置、測定方法およびプログラム
WO2018212290A1 (ja) 情報処理装置、制御方法、プログラム及び記憶媒体
JP2022072913A (ja) 情報処理装置、制御方法、プログラム及び記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518865

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018801784

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018801784

Country of ref document: EP

Effective date: 20191219