WO2018212280A1 - 測定装置、測定方法およびプログラム - Google Patents
測定装置、測定方法およびプログラム Download PDFInfo
- Publication number
- WO2018212280A1 WO2018212280A1 PCT/JP2018/019134 JP2018019134W WO2018212280A1 WO 2018212280 A1 WO2018212280 A1 WO 2018212280A1 JP 2018019134 W JP2018019134 W JP 2018019134W WO 2018212280 A1 WO2018212280 A1 WO 2018212280A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- white line
- self
- predetermined range
- accuracy
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/005—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/38—Electronic maps specially adapted for navigation; Updating thereof
- G01C21/3804—Creation or updating of map data
- G01C21/3807—Creation or updating of map data characterised by the type of data
- G01C21/3811—Point data, e.g. Point of Interest [POI]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/265—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network constructional aspects of navigation devices, e.g. housings, mountings, displays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
- G01C21/30—Map- or contour-matching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/36—Input/output arrangements for on-board computers
- G01C21/3605—Destination input or retrieval
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/36—Input/output arrangements for on-board computers
- G01C21/3626—Details of the output of route guidance instructions
- G01C21/3644—Landmark guidance, e.g. using POIs or conspicuous other objects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/38—Electronic maps specially adapted for navigation; Updating thereof
- G01C21/3885—Transmission of map data to client devices; Reception of map data by client devices
- G01C21/3896—Transmission of map data from central databases
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
Definitions
- the present invention relates to a technique for estimating the position of a moving body based on the position of a feature.
- Patent Document 1 describes an example of a method for estimating a vehicle position using a feature position detected using LiDAR and a feature position of map information.
- Patent Document 2 discloses a technique for transmitting an electromagnetic wave to a road surface and detecting a white line based on the reflectance.
- the number of data that can be measured by LiDAR varies depending on the type of white line (continuous line, broken line, etc.) and paint deterioration. For this reason, when the vehicle position is estimated using the white line, the detection accuracy of the white line changes depending on whether the number of LiDAR data used to detect the white line is small or large, and as a result, the accuracy of the vehicle position estimation changes. Come.
- An object of the present invention is to appropriately adjust the range in which a white line is detected according to the situation, and to prevent a decrease in accuracy of the vehicle position estimation.
- the invention according to claim 1 is a measurement device, an acquisition unit that acquires output data from a sensor unit for detecting surrounding features, and a predetermined positional relationship from the self position among the output data
- An extraction unit that extracts data corresponding to the detection result of the predetermined range, and a processing unit that performs a predetermined process based on the extracted data, and the predetermined range is determined by the accuracy of the self-position. It is characterized by that.
- the invention according to claim 8 is a measuring method executed by a measuring device, wherein an acquisition step of acquiring output data from a sensor unit for detecting surrounding features, and among the output data, self An extraction unit that extracts data corresponding to a detection result of a predetermined range having a predetermined positional relationship from a position; and a processing step that performs a predetermined process based on the extracted data, wherein the predetermined range includes the self It is determined by the accuracy of the position.
- the invention according to claim 9 is a program executed by a measuring apparatus including a computer, and includes an acquisition unit that acquires output data from a sensor unit for detecting surrounding features, and among the output data,
- the computer functions as an extraction unit that extracts data corresponding to a detection result of a predetermined range that is in a predetermined positional relationship from the self position, and a processing unit that performs a predetermined process based on the extracted data. , Determined by the accuracy of the self-position.
- the measurement device includes an acquisition unit that acquires output data from a sensor unit for detecting surrounding features, and a predetermined positional relationship from the self position among the output data.
- An extraction unit that extracts data corresponding to the detection result of the predetermined range, and a processing unit that performs a predetermined process based on the extracted data, and the predetermined range is determined by the accuracy of the self-position.
- the above measuring device acquires output data from a sensor unit for detecting surrounding features, and extracts data corresponding to detection results in a predetermined range having a predetermined positional relationship from the self position among the output data. To do. Then, a predetermined process is performed based on the extracted data.
- the predetermined range is determined by the accuracy of the self-position. Therefore, the predetermined range is appropriately determined according to the accuracy of the self-position, and the predetermined process is performed based on the data extracted from the predetermined range.
- the feature is a road line drawn on a road surface
- the predetermined range is determined by the accuracy of the self-position in a first direction intersecting with a longitudinal direction of the road line.
- the predetermined range is determined according to the accuracy of the self-position in the first direction intersecting with the longitudinal direction of the road line.
- the “road line” in the present specification is a marking line such as a white line or a yellow line to be measured, and a linear road marking such as a stop line or a pedestrian crossing.
- the extraction unit changes the length of the predetermined range in the first direction according to the accuracy of the self-position in the first direction.
- the extraction unit determines the length of the predetermined range in the first direction based on the length of the road surface line in the first direction and the accuracy of the self-position.
- the said extraction part enlarges the length in the said 1st direction, so that the precision of the said self-position is low.
- the measuring apparatus is mounted on a moving body, and the extraction unit has four locations on the right front, right rear, left front, and left rear on the basis of the position of the moving body.
- the predetermined range is set to.
- data is extracted at four locations around the moving body, and predetermined processing is performed based on the data.
- the processing unit detects the position of the feature and performs a process of estimating the position of the measuring device based on the position of the feature.
- the measurement method executed by the measurement device includes an acquisition step of acquiring output data from a sensor unit for detecting surrounding features, and among the output data, An extraction step of extracting data corresponding to a detection result of a predetermined range having a predetermined positional relationship from a position; and a processing step of performing a predetermined process based on the extracted data, wherein the predetermined range includes the self-range Determined by position accuracy. Also by this method, the predetermined range is appropriately determined according to the accuracy of the self-position, and the predetermined process is performed based on the data extracted from the predetermined range.
- a program executed by a measuring apparatus including a computer includes an acquisition unit that acquires output data from a sensor unit for detecting surrounding features, and among the output data,
- the computer functions as an extraction unit that extracts data corresponding to a detection result of a predetermined range that is in a predetermined positional relationship from the self position, and a processing unit that performs a predetermined process based on the extracted data. , Determined by the accuracy of the self-position.
- the above measurement apparatus can be realized by executing this program on a computer. This program can be stored and handled in a storage medium.
- FIG. 1 is a diagram illustrating a white line extraction method.
- White line extraction refers to detecting a white line painted on a road surface and calculating a predetermined position, for example, a center position.
- the vehicle 5 exists in the map coordinate system (X m , Y m ), and the vehicle coordinate system (X v , Y v ) is defined based on the position of the vehicle 5. Specifically, the traveling direction of the vehicle 5 and X v-axis of the vehicle coordinate system, a direction perpendicular to it and Y v axis of the vehicle coordinate system.
- white lines that are lane boundary lines on the left and right sides of the vehicle 5.
- the position of the white line in the map coordinate system that is, the white line map position is included in the advanced map managed by the server or the like, and is acquired from the server or the like.
- white line data is stored in the advanced map as a coordinate point sequence.
- the LiDAR mounted on the vehicle 5 measures scan data along the scan line 2.
- the scan line 2 indicates a trajectory of scanning by LiDAR.
- the coordinates of the points constituting the white line WL1 on the left side of the vehicle 5, that is, the white line map position WLMP1 is (mx m1 , my m1 ), and the coordinates of the points constituting the white line WL2 on the right side of the vehicle 5, ie, the white line.
- the map position WLMP2 is (mx m2 , my m2 ).
- the predicted host vehicle position PVP in the map coordinate system is given by (x ′ m , y ′ m ), and the predicted host vehicle azimuth angle in the map coordinate system is given by ⁇ ′ m .
- the white line predicted position WLPP (l′ x v , l′ y v ) indicating the predicted position of the white line is the white line map position WLMP (mx m , my m ) and the predicted host vehicle position PVP (x ′ m , y).
- m the white line map position
- PVP the predicted host vehicle position
- the white line predicted position WLPP1 (l′ x v1 , l′ y v1 ) is obtained for the white line WL1 and the white line predicted position WLPP2 (l′ x v2 , l′ y v2 ) is obtained for the white line WL2 by Expression (1). It is done. Thus, for each of the white lines WL1 and WL2, a plurality of white line predicted positions WLPP1 and WLPP2 corresponding to the white lines WL1 and WL2 are obtained.
- the white line predicted range WLPR is determined based on the white line predicted position WLPP.
- the white line prediction range WLPR indicates a range in which a white line is considered to exist on the basis of the predicted vehicle position PVP.
- the white line prediction range WLPR is set at four locations on the vehicle 5 at the right front, right rear, left front, and left rear at the maximum.
- FIG. 2 shows a method for determining the white line prediction range WLPR.
- A set forward reference point to any position in front of the vehicle 5 (distance alpha v forward position) to ( ⁇ v, 0 v). Then, based on the front reference point ( ⁇ v , 0 v ) and the white line predicted position WLPP, the white line predicted position WLPP closest to the front reference point ( ⁇ v , 0 v ) is searched.
- the white line WL1 based on the forward reference point ( ⁇ v , 0 v ) and a plurality of white line predicted positions WLPP1 (l′ x v1 , l′ y v1 ) constituting the white line WL1, the following The distance D1 is calculated by the equation (2), and the white line predicted position WLPP1 at which the distance D1 is the minimum value is set as the prediction range reference point Pref1.
- the white line WL2 based on the forward reference point ( ⁇ v , 0 v ) and a plurality of white line predicted positions WLPP2 (l′ x v2 , l′ y v2 ) constituting the white line WL2, the following formula
- the distance D2 is calculated by (3), and the white line predicted position WLPP2 at which the distance D2 is the minimum value is set as the predicted range reference point Pref2.
- any range based on the expected range reference point Pref for example ⁇ [Delta] X from the expected range reference point Pref in X v-axis direction, a range of ⁇ [Delta] Y to Y v-axis direction
- the white line prediction range WLPR is set.
- white line prediction ranges WLPR1 and WLPR2 are set at the left and right positions in front of the vehicle 5.
- white line prediction ranges WLPR3 and WLPR4 are set at the left and right positions behind the vehicle 5 by setting the rear reference point behind the vehicle 5 and setting the prediction range reference point Pref.
- four white line prediction ranges WLPR1 to WLPR4 are set for the vehicle 5.
- FIG. 3 shows a method of calculating the white line center position WLCP.
- FIG. 3A shows a case where the white line WL1 is a solid line.
- the white line center position WLCP1 is calculated by the average value of the position coordinates of the scan data constituting the white line.
- the white line scan data WLSD1 (wx ′ v , wy) existing in the white line prediction range WLPR1 among the scan data output from the LiDAR. ' v ) is extracted.
- the scan data obtained on the white line is data with high reflection intensity.
- scan data that exists within the white line prediction range WLPR1 and on the road surface and whose reflection intensity is greater than or equal to a predetermined value is extracted as white line scan data WLSD.
- the coordinates of the white line center position WLCP1 (sx v1 , sy v1 ) are obtained by the following equation (4).
- the white line center position WLCP2 is similarly calculated.
- the white line prediction range WLPR is determined based on the white line prediction position WLPP. However, if the estimation accuracy of the white line prediction position WLPP is low, the accuracy of the white line prediction range WLPR decreases, and the white line WL becomes the white line prediction range. It can happen that it deviates from the WLPR.
- FIG. 4A shows that when the estimation accuracy of the white line predicted position WLPP is low, specifically, the accuracy of the predicted host vehicle position PVP of the vehicle 5 is 1 m in the lateral direction of the vehicle 5, that is, in the Y v- axis direction. And
- the predicted vehicle position PVP vehicle 5 since the predicted vehicle position PVP vehicle 5 includes an error of ⁇ 1 m in Y v-axis direction, calculates the white line predicted position WLPP using the predicted vehicle position PVP, setting the white line prediction range WLPR, As shown in FIG. 4A, the white line prediction range WLPR may deviate from the actual position of the white line WL1.
- the accuracy of white line extraction is reduced, and as a result, the accuracy of vehicle position estimation is also reduced.
- the width of the white line prediction range WLPR is corrected based on the estimation accuracy of the predicted vehicle position PVP of the vehicle 5. That is, the width of the white line prediction range WLPR is changed by a value corresponding to the accuracy of the predicted vehicle position PVP.
- the basic method of correction the lower the Y v-axis direction of the estimation accuracy of the predicted vehicle position PVP, Y v-axis direction of the length of the white line estimated range WLPR (width) is increased.
- the corrected white line prediction range WLPR has a width that takes into account the estimated error of the predicted vehicle position PVP, and the possibility that the white line WL deviates from the white line prediction range WLPR can be reduced.
- the above example is merely an example, it is also possible to extend the example predictive self by a value obtained by multiplying a coefficient with respect to the estimation accuracy of the vehicle position PVP Y v-axis direction of the width.
- the accuracy of the current predicted vehicle position PVP is obtained from the value of the covariance matrix sequentially calculated by the extended Kalman filter, and the white line prediction range WLPR is corrected. May be.
- the prediction range for a general feature (landmark) is given by the following equation.
- D M ”, “W M ”, and “H M ” are the sizes of the features stored in the advanced map, and “ ⁇ P 11 (t)” and “ ⁇ P 22 (t)”. Is the square root of the elements of the covariance matrix and indicates the estimation accuracy in the x and y directions, respectively.
- C z is a constant indicating a z-direction (vertical direction) component, and “c” is a coefficient. According to this equation, when the estimation accuracy of the predicted vehicle position PVP is high, the prediction range is small, and when the estimation accuracy of the prediction vehicle position PVP is low, the prediction range is large.
- FIG. 5 shows a schematic configuration of a host vehicle position estimation apparatus to which the measurement apparatus of the present invention is applied.
- the own vehicle position estimation device 10 is mounted on a vehicle and configured to be able to communicate with a server 7 such as a cloud server by wireless communication.
- the server 7 is connected to a database 8, and the database 8 stores an advanced map.
- the advanced map stored in the database 8 stores landmark map information for each landmark.
- a white line map position WLMP indicating the coordinates of the point sequence constituting the white line is stored.
- the own vehicle position estimation device 10 communicates with the server 7 and downloads white line map information related to the white line around the own vehicle position of the vehicle.
- the own vehicle position estimation device 10 includes an inner world sensor 11, an outer world sensor 12, an own vehicle position prediction unit 13, a communication unit 14, a white line map information acquisition unit 15, a white line position prediction unit 16, and scan data extraction. Unit 17, white line center position calculation unit 18, and own vehicle position estimation unit 19.
- the vehicle position prediction unit 13, the white line map information acquisition unit 15, the white line position prediction unit 16, the scan data extraction unit 17, the white line center position calculation unit 18, and the vehicle position estimation unit 19 are actually a CPU or the like. This is realized by a computer executing a program prepared in advance.
- the inner world sensor 11 measures the position of the vehicle as a GNSS (Global Navigation Satellite System) / IMU (Inertia Measurement Unit) combined navigation system, and includes a satellite positioning sensor (GPS), a gyro sensor, a vehicle speed sensor, and the like. Including.
- the own vehicle position prediction unit 13 predicts the own vehicle position of the vehicle by GNSS / IMU combined navigation based on the output of the internal sensor 11 and supplies the predicted own vehicle position PVP to the white line position prediction unit 16.
- the external sensor 12 is a sensor that detects an object around the vehicle, and includes a stereo camera, LiDAR, and the like.
- the external sensor 12 supplies the scan data SD obtained by the measurement to the scan data extraction unit 17.
- the communication unit 14 is a communication unit for wirelessly communicating with the server 7.
- the white line map information acquisition unit 15 receives white line map information related to white lines existing around the vehicle from the server 7 via the communication unit 14 and supplies the white line map position WLMP included in the white line map information to the white line position prediction unit 16. To do.
- the white line position prediction unit 16 calculates the white line predicted position WLPP by the above-described equation (1) based on the white line map position WLMP and the predicted vehicle position PVP acquired from the vehicle position prediction unit 13. Further, the white line position prediction unit 16 determines the white line prediction range WLPR based on the above-described formulas (2) and (3) based on the white line prediction position WLPP, and further increases the estimation accuracy of the predicted vehicle position PVP as described above. Accordingly, the white line prediction range WLPR is corrected. Then, the white line position prediction unit 16 supplies the corrected white line prediction range WLPR to the scan data extraction unit 17.
- the scan data extraction unit 17 extracts the white line scan data WLSD based on the white line prediction range WLPR supplied from the white line position prediction unit 16 and the scan data SD acquired from the external sensor 12. Specifically, the scan data extraction unit 17 extracts scan data included in the white line prediction range WLPR and having a reflection intensity equal to or higher than a predetermined value, as white line scan data WLSD, from the scan data SD.
- the white line center position calculation unit 18 is supplied.
- the white line center position calculation unit 18 calculates the white line center position WLCP from the white line scan data WLSD using the equation (4). Then, the white line center position calculation unit 18 supplies the calculated white line center position WLCP to the vehicle position estimation unit 19.
- the own vehicle position estimating unit 19 estimates the own vehicle position and the own vehicle azimuth angle based on the white line map position WLMP in the advanced map and the white line center position WLCP that is white line measurement data by the external sensor 12.
- Japanese Patent Laid-Open No. 2017-72422 discloses an example of a method for estimating the vehicle position by matching the landmark position information of the advanced map and the measured position information of the landmark by the external sensor.
- the external sensor 12 is an example of a sensor unit of the present invention
- the scan data extraction unit 17 is an example of an acquisition unit and an extraction unit of the present invention
- the own vehicle position estimation unit 19 is a processing unit of the present invention. It is an example.
- FIG. 6 is a flowchart of the vehicle position estimation process. This process is realized by a computer such as a CPU executing a program prepared in advance and functioning as each component shown in FIG.
- the host vehicle position prediction unit 13 acquires the predicted host vehicle position PVP based on the output from the internal sensor 11 (step S11).
- the white line map information acquisition part 15 connects to the server 7 through the communication part 14, and acquires white line map information from the advanced map memorize
- the white line position prediction unit 16 calculates the white line predicted position WLPP based on the white line map position WLMP included in the white line position information obtained in step S12 and the predicted host vehicle position PVP obtained in step S11. (Step S13). Further, the white line position prediction unit 16 determines the white line prediction range WLPR based on the white line prediction position WLPP, and further corrects the white line prediction range WLPR based on the estimated accuracy of the predicted host vehicle position PVP to the scan data extraction unit 17. Supply (step S14).
- the scan data extraction unit 17 converts the scan data SD obtained from the LiDAR as the external sensor 12 into the white line predicted range WLPR, the scan data on the road surface, and the reflection intensity is a predetermined value or more as a white line Extracted as scan data WLSD and supplied to the white line center position calculator 18 (step S15).
- the white line center position calculation unit 18 calculates the white line center position WLCP based on the white line prediction range WLPR and the white line scan data WLSD, and supplies the white line center position WLCP to the own vehicle position estimation unit 19 (step S16). And the own vehicle position estimation part 19 estimates the own vehicle position using the white line center position WLCP (step S17), and outputs the own vehicle position and the own vehicle azimuth (step S18). Thus, the own vehicle position estimation process ends.
- the white line that is the lane boundary indicating the lane is used, but the application of the present invention is not limited to this, and even if a linear road marking such as a pedestrian crossing or a stop line is used. Good. Further, a yellow line or the like may be used instead of the white line. These lane markings such as white lines and yellow lines, road markings, and the like are examples of road lines of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Traffic Control Systems (AREA)
- Navigation (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
[白線抽出方法]
図1は、白線抽出方法を説明する図である。白線抽出とは、道路面にペイントされた白線を検出し、その所定位置、例えば中心位置を算出することをいう。
図示のように、地図座標系(Xm,Ym)に車両5が存在し、車両5の位置を基準として車両座標系(Xv,Yv)が規定される。具体的に、車両5の進行方向を車両座標系のXv軸とし、それに垂直な方向を車両座標系のYv軸とする。
次に、白線予測位置WLPPに基づいて、白線予測範囲WLPRが決定される。白線予測範囲WLPRは、予測自車位置PVPを基準として、白線が存在すると考えられる範囲を示す。白線予測範囲WLPRは、最大で車両5の右前方、右後方、左前方及び左後方の4か所に設定される。
次に、白線予測位置WLPPを用いて白線中心位置WLCPを算出する。図3は白線中心位置WLCPの算出方法を示す。図3(A)は、白線WL1が実線である場合を示す。白線中心位置WLCP1は、白線を構成するスキャンデータの位置座標の平均値により算出される。いま、図3(A)に示すように、白線予測範囲WLPR1が設定されると、LiDARから出力されるスキャンデータのうち、白線予測範囲WLPR1内に存在する白線スキャンデータWLSD1(wx’v,wy’v)が抽出される。白線上は通常の道路上と比較して反射率が高いので、白線上で得られたスキャンデータは、反射強度の高いデータとなる。LiDARから出力されたスキャンデータのうち、白線予測範囲WLPR1内に存在し、路面上、かつ、反射強度が所定以上値であるスキャンデータが白線スキャンデータWLSDとして抽出される。そして、抽出された白線スキャンデータWLSDの数を「n」とすると、以下の式(4)により、白線中心位置WLCP1(sxv1,syv1)の座標が得られる。
次に、白線予測範囲WLPRの補正について説明する。前述のように、白線予測範囲WLPRは、白線予測位置WLPPに基づいて決定されるが、白線予測位置WLPPの推定精度が低いと、白線予測範囲WLPRの精度が低下し、白線WLが白線予測範囲WLPRから外れてしまうことが起こりうる。
図5は、本発明の測定装置を適用した自車位置推定装置の概略構成を示す。自車位置推定装置10は、車両に搭載され、無線通信によりクラウドサーバなどのサーバ7と通信可能に構成されている。サーバ7はデータベース8に接続されており、データベース8は高度化地図を記憶している。データベース8に記憶された高度化地図は、ランドマーク毎にランドマーク地図情報を記憶している。また、白線については、白線を構成する点列の座標を示す白線地図位置WLMPを記憶している。自車位置推定装置10は、サーバ7と通信し、車両の自車位置周辺の白線に関する白線地図情報をダウンロードする。
次に、自車位置推定装置10による自車位置推定処理について説明する。図6は、自車位置推定処理のフローチャートである。この処理は、CPUなどのコンピュータが予め用意されたプログラムを実行し、図5に示す各構成要素として機能することにより実現される。
上記の実施例では、車線を示す車線境界線である白線を使用しているが、本発明の適用はこれには限られず、横断歩道、停止線などの線状の道路標示を利用してもよい。また、白線の代わりに、黄色線などを利用しても良い。これら、白線、黄色線などの区画線や、道路標示などは本発明の路面線の一例である。
7 サーバ
8 データベース
10 自車位置推定装置
11 内界センサ
12 外界センサ
13 自車位置予測部
14 通信部
15 白線地図情報取得部
16 白線位置予測部
17 スキャンデータ抽出部
18 白線中心位置算出部
19 自車位置推定部
Claims (10)
- 周囲の地物を検出するためのセンサ部からの出力データを取得する取得部と、
前記出力データのうち、自己位置から所定の位置関係にある所定範囲の検出結果に相当するデータを抽出する抽出部と、
抽出されたデータに基づいて所定の処理を行う処理部と、
を備え、
前記所定範囲は、前記自己位置の精度によって決定されることを特徴とする測定装置。 - 前記地物は路面に描かれた路面線であり、
前記所定範囲は、前記路面線の長手方向と交わる第1方向における前記自己位置の精度によって決定されることを特徴とする請求項1に記載の測定装置。 - 前記抽出部は、前記第1方向における前記自己位置の精度に応じて、前記所定範囲の前記第1方向における長さを変化させることを特徴とする請求項2に記載の測定装置。
- 前記抽出部は、前記路面線の前記第1方向における長さと、前記自己位置の精度とに基づいて、前記所定範囲の第1方向における長さを決定することを特徴とする請求項3に記載の測定装置。
- 前記抽出部は、前記自己位置の精度が低いほど、前記第1方向における長さを大きくすることを特徴とする請求項3又は4に記載の測定装置。
- 前記測定装置は、移動体に搭載され、
前記抽出部は、前記移動体の位置を基準として右前方、右後方、左前方、左後方の4か所に前記所定範囲を設定することを特徴とする請求項1乃至5のいずれか一項に記載の測定装置。 - 前記処理部は、前記地物の位置を検出し、当該地物の位置に基づいて前記測定装置の位置を推定する処理を行うことを特徴とする請求項1乃至6のいずれか一項に記載の測定装置。
- 測定装置により実行される測定方法であって、
周囲の地物を検出するためのセンサ部からの出力データを取得する取得工程と、
前記出力データのうち、自己位置から所定の位置関係にある所定範囲の検出結果に相当するデータを抽出する抽出工程と、
抽出されたデータに基づいて所定の処理を行う処理工程と、
を備え、
前記所定範囲は、前記自己位置の精度によって決定されることを特徴とする測定方法。 - コンピュータを備える測定装置により実行されるプログラムであって、
周囲の地物を検出するためのセンサ部からの出力データを取得する取得部、
前記出力データのうち、自己位置から所定の位置関係にある所定範囲の検出結果に相当するデータを抽出する抽出部、
抽出されたデータに基づいて所定の処理を行う処理部、
として前記コンピュータを機能させ、
前記所定範囲は、前記自己位置の精度によって決定されることを特徴とするプログラム。 - 請求項9に記載のプログラムを記憶した記憶媒体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/615,091 US11519727B2 (en) | 2017-05-19 | 2018-05-17 | Measurement device, measurement method and program |
JP2019518865A JPWO2018212280A1 (ja) | 2017-05-19 | 2018-05-17 | 測定装置、測定方法およびプログラム |
EP18801784.2A EP3637053A4 (en) | 2017-05-19 | 2018-05-17 | MEASURING DEVICE, MEASURING PROCESS AND PROGRAM |
US17/983,739 US20230105255A1 (en) | 2017-05-19 | 2022-11-09 | Measurement device, measurement method and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-100124 | 2017-05-19 | ||
JP2017100124 | 2017-05-19 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/615,091 A-371-Of-International US11519727B2 (en) | 2017-05-19 | 2018-05-17 | Measurement device, measurement method and program |
US17/983,739 Continuation US20230105255A1 (en) | 2017-05-19 | 2022-11-09 | Measurement device, measurement method and program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018212280A1 true WO2018212280A1 (ja) | 2018-11-22 |
Family
ID=64274466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/019134 WO2018212280A1 (ja) | 2017-05-19 | 2018-05-17 | 測定装置、測定方法およびプログラム |
Country Status (4)
Country | Link |
---|---|
US (2) | US11519727B2 (ja) |
EP (1) | EP3637053A4 (ja) |
JP (3) | JPWO2018212280A1 (ja) |
WO (1) | WO2018212280A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020201210A (ja) * | 2019-06-13 | 2020-12-17 | トヨタ自動車株式会社 | 位置推定装置及びコンピュータプログラム |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010023721A (ja) * | 2008-07-22 | 2010-02-04 | Hitachi Ltd | 走行支援装置 |
JP2015206733A (ja) * | 2014-04-22 | 2015-11-19 | 日産自動車株式会社 | 位置検出装置及び位置検出方法 |
JP2015222223A (ja) | 2014-05-23 | 2015-12-10 | 日産自動車株式会社 | 車両位置推定装置、及び車両位置推定方法 |
WO2016189732A1 (ja) * | 2015-05-28 | 2016-12-01 | 日産自動車株式会社 | 自己位置推定装置及び自己位置推定方法 |
JP2017072422A (ja) | 2015-10-05 | 2017-04-13 | パイオニア株式会社 | 情報処理装置、制御方法、プログラム及び記憶媒体 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05314396A (ja) * | 1992-05-13 | 1993-11-26 | Omron Corp | 連続線追跡装置 |
JP3599421B2 (ja) * | 1995-06-06 | 2004-12-08 | 株式会社ザナヴィ・インフォマティクス | 現在位置算出装置 |
JP3352655B2 (ja) * | 1999-09-22 | 2002-12-03 | 富士重工業株式会社 | 車線認識装置 |
JP4724043B2 (ja) * | 2006-05-17 | 2011-07-13 | トヨタ自動車株式会社 | 対象物認識装置 |
-
2018
- 2018-05-17 WO PCT/JP2018/019134 patent/WO2018212280A1/ja active Application Filing
- 2018-05-17 EP EP18801784.2A patent/EP3637053A4/en active Pending
- 2018-05-17 JP JP2019518865A patent/JPWO2018212280A1/ja not_active Ceased
- 2018-05-17 US US16/615,091 patent/US11519727B2/en active Active
-
2021
- 2021-12-27 JP JP2021212099A patent/JP2022034051A/ja active Pending
-
2022
- 2022-11-09 US US17/983,739 patent/US20230105255A1/en active Pending
-
2023
- 2023-07-12 JP JP2023114360A patent/JP2023126399A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010023721A (ja) * | 2008-07-22 | 2010-02-04 | Hitachi Ltd | 走行支援装置 |
JP2015206733A (ja) * | 2014-04-22 | 2015-11-19 | 日産自動車株式会社 | 位置検出装置及び位置検出方法 |
JP2015222223A (ja) | 2014-05-23 | 2015-12-10 | 日産自動車株式会社 | 車両位置推定装置、及び車両位置推定方法 |
WO2016189732A1 (ja) * | 2015-05-28 | 2016-12-01 | 日産自動車株式会社 | 自己位置推定装置及び自己位置推定方法 |
JP2017072422A (ja) | 2015-10-05 | 2017-04-13 | パイオニア株式会社 | 情報処理装置、制御方法、プログラム及び記憶媒体 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020201210A (ja) * | 2019-06-13 | 2020-12-17 | トヨタ自動車株式会社 | 位置推定装置及びコンピュータプログラム |
JP7334489B2 (ja) | 2019-06-13 | 2023-08-29 | トヨタ自動車株式会社 | 位置推定装置及びコンピュータプログラム |
Also Published As
Publication number | Publication date |
---|---|
US11519727B2 (en) | 2022-12-06 |
JP2023126399A (ja) | 2023-09-07 |
JPWO2018212280A1 (ja) | 2020-03-19 |
EP3637053A1 (en) | 2020-04-15 |
JP2022034051A (ja) | 2022-03-02 |
EP3637053A4 (en) | 2021-03-03 |
US20230105255A1 (en) | 2023-04-06 |
US20200208977A1 (en) | 2020-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108351216B (zh) | 估计装置、控制方法、程序以及存储介质 | |
JP6806891B2 (ja) | 情報処理装置、制御方法、プログラム及び記憶媒体 | |
JP7155284B2 (ja) | 計測精度算出装置、自己位置推定装置、制御方法、プログラム及び記憶媒体 | |
US11828603B2 (en) | Measurement device, measurement method and program | |
US20220113139A1 (en) | Object recognition device, object recognition method and program | |
JP2023164553A (ja) | 位置推定装置、推定装置、制御方法、プログラム及び記憶媒体 | |
JP2017211307A (ja) | 測定装置、測定方法およびプログラム | |
JP2023126399A (ja) | 測定装置、測定方法およびプログラム | |
JP7526858B2 (ja) | 測定装置、測定方法およびプログラム | |
WO2018180247A1 (ja) | 出力装置、制御方法、プログラム及び記憶媒体 | |
JP2023099851A (ja) | 測定装置、測定方法およびプログラム | |
WO2018212286A1 (ja) | 測定装置、測定方法およびプログラム | |
WO2018212290A1 (ja) | 情報処理装置、制御方法、プログラム及び記憶媒体 | |
JP2022072913A (ja) | 情報処理装置、制御方法、プログラム及び記憶媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18801784 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019518865 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018801784 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018801784 Country of ref document: EP Effective date: 20191219 |