WO2018212255A1 - 燃料噴射制御装置 - Google Patents

燃料噴射制御装置 Download PDF

Info

Publication number
WO2018212255A1
WO2018212255A1 PCT/JP2018/018996 JP2018018996W WO2018212255A1 WO 2018212255 A1 WO2018212255 A1 WO 2018212255A1 JP 2018018996 W JP2018018996 W JP 2018018996W WO 2018212255 A1 WO2018212255 A1 WO 2018212255A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
drive current
power supply
lift position
injection valve
Prior art date
Application number
PCT/JP2018/018996
Other languages
English (en)
French (fr)
Inventor
和也 向後
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880029465.6A priority Critical patent/CN110612388B/zh
Priority to DE112018002588.8T priority patent/DE112018002588B4/de
Publication of WO2018212255A1 publication Critical patent/WO2018212255A1/ja
Priority to US16/681,999 priority patent/US10876486B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2082Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements the circuit being adapted to distribute current between different actuators or recuperate energy from actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/063Lift of the valve needle

Definitions

  • the present disclosure relates to a fuel injection control device for an internal combustion engine.
  • a fuel injection valve for supplying fuel to each cylinder of an internal combustion engine mounted on a vehicle or the like, for example, an electromagnetic solenoid type operated by electric power supplied from a vehicle battery is known.
  • the fuel injection control device controls the energization timing and energization time to the coil built in the fuel injection valve body to drive the valve body (needle) in the valve opening direction, The fuel injection timing and the fuel injection amount are controlled.
  • the fuel injection control device identifies that the valve body has reached the full lift position from the drive current in the fuel injection valve, and takes measures such as correcting the energization time of the fuel injection valve according to the identification result. (See, for example, Patent Document 1).
  • the fuel injection control device when the fuel injection valve is driven, the fuel injection control device applies a high voltage first to the fuel injection valve and then applies a low voltage. Then, the fuel injection control device determines that the full lift position has been reached based on the detected change in drive current after application of the low voltage. For this reason, the greater the change in the drive current, the easier it is to determine that the full lift position has been reached. However, depending on conditions at the time of determination, the change in the drive current is not always large, and the determination accuracy may be poor.
  • the present disclosure has been made in view of the above problems, and a main object thereof is to provide a fuel injection control device capable of improving the determination accuracy when the valve body reaches a predetermined lift position.
  • a fuel injection control device includes a first power supply unit, a second power supply unit having a power supply voltage lower than that of the first power supply unit, and fuel driven by power supply from each of these power supply units.
  • the first power source is applied to a fuel injection system that includes an injection valve and a current detection unit that detects a drive current of the fuel injection valve. Voltage is applied by the second power supply unit, and then the fuel is applied based on a change in the drive current detected by the current detection unit after voltage application by the first power supply unit.
  • a fuel injection control device that performs lift position determination processing for determining that a valve body of an injection valve has reached a predetermined lift position, and performs drive control of the fuel injection valve without performing the lift position determination processing Do And a second control unit that performs the lift position determination process and performs drive control of the fuel injection valve.
  • the second control unit performs drive control by the first control unit.
  • the drive current of the fuel injection valve is controlled so that the drive current when the valve body reaches a predetermined lift position is smaller than that at times.
  • the fuel injection valve is driven by first applying a voltage from the first power supply unit to the fuel injection valve and then applying a voltage from the second power supply unit. Thereby, in the initial stage of valve opening, a high voltage is applied to ensure the valve opening responsiveness of the fuel injection valve, and subsequently, the low voltage is applied to maintain the fuel injection valve open state. .
  • the fuel injection valve is configured such that the drive current when the valve body reaches the predetermined lift position is smaller than when the drive control is performed by the first control unit.
  • the fuel injection valve is configured such that the drive current when the valve body reaches the predetermined lift position is smaller than when the drive control is performed by the first control unit.
  • the drive current when the valve body reaches the predetermined lift position is reduced, the direction of the inclination of the drive current before and after reaching the predetermined lift position is reversed, and the change in the inclination tends to be steep. Therefore, by reducing the drive current when performing the lift position determination process, it becomes easier to determine the change point of the drive current when reaching the predetermined lift position, and the determination accuracy when the valve body reaches the predetermined lift position Can be improved.
  • FIG. 1 is a diagram showing a schematic configuration of an engine control system
  • FIG. 2 is a block diagram showing the configuration of the ECU.
  • FIG. 3 is a diagram showing the configuration and state of the fuel injection valve
  • FIG. 4 is a timing chart for explaining the driving operation of the fuel injection valve.
  • FIG. 5 is a timing chart showing changes in drive current.
  • FIG. 6 is a timing chart showing changes in drive current.
  • FIG. 7 is a circuit diagram of the fuel injection valve.
  • FIG. 8 is a diagram showing the relationship between the slope of the drive current and the drive current
  • FIG. 9 is a flowchart showing the fuel injection process.
  • FIG. 1 is a diagram showing a schematic configuration of an engine control system
  • FIG. 2 is a block diagram showing the configuration of the ECU.
  • FIG. 3 is a diagram showing the configuration and state of the fuel injection valve
  • FIG. 4 is a timing chart for explaining the driving operation of the fuel injection valve.
  • FIG. 5 is a timing chart showing changes in drive
  • FIG. 10 is a timing chart showing changes in the drive current according to the first embodiment.
  • FIG. 11 is a timing chart showing changes in drive current according to the second embodiment.
  • FIG. 12 is a timing chart showing changes in drive current according to the third embodiment.
  • FIG. 13 is a timing chart showing changes in drive current according to the fourth embodiment.
  • An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 which is a cylinder injection type multi-cylinder internal combustion engine, and an air flow meter 14 for detecting the intake air amount is provided downstream of the air cleaner 13. ing.
  • a throttle valve 16 whose opening is adjusted by a motor 15 and a throttle opening sensor 17 for detecting the opening (throttle opening) of the throttle valve 16 are provided on the downstream side of the air flow meter 14.
  • a surge tank 18 is provided downstream of the throttle valve 16, and an intake pipe pressure sensor 19 for detecting the intake pipe pressure is provided in the surge tank 18.
  • An intake manifold 20 that introduces air into each cylinder 21 of the engine 11 is connected to the surge tank 18, and each cylinder 21 of the engine 11 has an electromagnetic fuel injection valve 30 that directly injects fuel into the cylinder. It is attached.
  • a spark plug 22 is attached to the cylinder head of the engine 11 for each cylinder 21, and the air-fuel mixture in the cylinder is ignited by spark discharge of the spark plug 22 of each cylinder 21.
  • the exhaust pipe 23 of the engine 11 is provided with an exhaust gas sensor 24 (air-fuel ratio sensor, oxygen sensor, etc.) that detects the air-fuel ratio or rich / lean of the air-fuel mixture based on the exhaust gas, and the downstream side of the exhaust gas sensor 24 Further, a catalyst 25 such as a three-way catalyst for purifying exhaust gas is provided.
  • an exhaust gas sensor 24 air-fuel ratio sensor, oxygen sensor, etc.
  • a catalyst 25 such as a three-way catalyst for purifying exhaust gas is provided.
  • the cylinder block of the engine 11 is provided with a cooling water temperature sensor 26 that detects the cooling water temperature and a knock sensor 27 that detects knocking.
  • a crank angle sensor 29 that outputs a pulse signal every time the crankshaft 28 rotates by a predetermined crank angle is attached to the outer peripheral side of the crankshaft 28. Based on the crank angle signal of the crank angle sensor 29, the crank angle and engine rotation Speed is detected.
  • the outputs of these various sensors are input to the ECU 40.
  • the ECU 40 is an electronic control unit mainly composed of a microcomputer, and performs various controls of the engine 11 using detection signals of various sensors.
  • the ECU 40 calculates the fuel injection amount according to the engine operating state to control the fuel injection of the fuel injection valve 30 and also controls the ignition timing of the spark plug 22.
  • Electric power is supplied to the ignition plug 22 and the fuel injection valve 30 from an in-vehicle battery 51.
  • the alternator 52 connected to the output shaft of the engine 11 is rotated to supply electric power to the battery 51, whereby the battery 51 has a predetermined voltage (in this embodiment). 12V).
  • the ECU 40 includes a microcomputer 41 for engine control (a microcomputer for controlling the engine 11), a drive IC 42 for driving an injector (a drive IC for the fuel injection valve 30), a voltage switching circuit 43, A current detection circuit 44 is provided.
  • the ECU 40 corresponds to a “fuel injection control device”.
  • the microcomputer 41 calculates a required injection amount according to the engine operating state (for example, engine speed, engine load, etc.), generates an injection pulse from the injection time calculated based on the required injection amount, and outputs it to the drive IC 42. To do.
  • the drive IC 42 opens the fuel injection valve 30 based on the injection pulse and injects fuel for the required injection amount.
  • the voltage switching circuit 43 is a circuit for switching the driving voltage applied to the fuel injection valve 30 of each cylinder 21 between the high voltage V2 and the low voltage V1. Specifically, the voltage switching circuit 43 supplies driving current to the coil 31 of the fuel injection valve 30 from either the low voltage power supply unit 45 or the high voltage power supply unit 46 by turning on and off a switching element (not shown). It has become.
  • the low-voltage power supply unit 45 corresponds to a “second power supply unit” and has a low-voltage output circuit that applies the battery voltage (low voltage V1) of the battery 51 to the fuel injection valve 30.
  • the high voltage power supply unit 46 corresponds to a “first power supply unit”, and applies a high voltage V2 (boosted voltage) obtained by boosting the battery voltage to 40 V to 70 V to the fuel injection valve 30 (a boost circuit). )have.
  • the low voltage V1 and the high voltage V2 are switched and applied to the fuel injection valve 30 in time series.
  • the valve opening responsiveness of the fuel injection valve 30 is ensured by applying the high voltage V2 at the initial stage of the valve opening, and the fuel injection valve 30 is opened by subsequently applying the low voltage V1. Is retained.
  • the current detection circuit 44 corresponds to a “current detection unit” and detects an energization current (drive current) when the fuel injection valve 30 is driven to open, and the detection result is sequentially output to the drive IC 42.
  • the current detection circuit 44 may have a well-known configuration, and includes, for example, a shunt resistor and a comparator.
  • a system including the above corresponds to a fuel injection system.
  • the voltage switching circuit 43 and the current detection circuit 44 of the drive group 1 are configured to perform voltage switching and current detection for the fuel injection valves 30 of the # 1 and # 4 cylinders.
  • the voltage switching circuit 43 and the current detection circuit 44 of the drive group 2 are configured to perform voltage switching and current detection for the fuel injection valves 30 of the # 2 and # 3 cylinders.
  • the fuel injection valve 30 includes a coil 31 that generates an electromagnetic force when energized, a needle 33 (valve element) that is driven integrally with the plunger 32 (movable core) by the electromagnetic force, and a valve closing direction of the plunger 32.
  • a spring member 34 biasing in the opposite direction, and the needle 33 moves to the valve opening position against the biasing force of the spring member 34, whereby the fuel injection valve 30 is opened, and fuel injection is performed. Done.
  • the plunger 32 and the needle 33 return to the valve closing position, whereby the fuel injection valve 30 is closed, and fuel injection is stopped.
  • the full lift position corresponds to a “predetermined lift position”.
  • a high voltage V2 obtained by boosting the battery voltage with the rising of the injection pulse is applied to the fuel injection valve 30.
  • the drive current reaches a predetermined peak value Ip at time ta2
  • the application of the high voltage V2 is stopped.
  • the needle lift is started at the timing when the drive current reaches the peak value Ip or at the timing just before that, and the fuel injection is started along with the needle lift.
  • the determination as to whether or not the drive current has reached the peak value Ip is performed based on the drive current detected by the current detection circuit 44.
  • the drive IC 42 determines whether or not the drive current has reached or exceeded the peak value Ip, and when the drive current ⁇ the peak value Ip, the voltage switching circuit 43 determines the applied voltage. Switching (V2 application stop) is performed.
  • the low voltage V1 that is the battery voltage is applied to the fuel injection valve 30.
  • the determination as to whether or not the drive current has fallen below the current threshold value Ih is performed based on the drive current detected by the current detection circuit 44. That is, in the application stop period (ta2 to ta3), it is determined whether or not the drive current has become equal to or less than the current threshold value Ih by the drive IC 42, and when the drive current ⁇ current threshold value Ih, the voltage switching circuit 43 applies the applied voltage. Is switched (V1 application start). Thereby, after the needle 33 reaches the full lift position, the full lift state is maintained, and fuel injection is continued.
  • the fuel injection amount is optimized (learning of valve opening characteristics) in consideration of the above-described variation and the like. Specifically, at time ta4 between time ta3 and time ta5, the needle 33 reaches the full lift position, and the current starts to increase from decrease. Therefore, the timing of valve opening completion, that is, the arrival timing to the full lift position is specified by monitoring the current waveform. By grasping the actual movement of the needle 33 and correcting the pulse width (output period of the injection pulse) according to the time from the start of injection pulse output to the arrival of the full lift position, the fuel injection amount is optimized. .
  • the process for determining the full lift position of the needle 33 in this way is the lift position determination process.
  • Supplementary information on injection pulse width correction For example, when the timing at which the needle 33 reaches the full lift position is earlier than the reference timing, the needle lift is performed earlier than expected or at a higher lift speed due to machine differences or aging in the fuel injection valve 30. It is thought that For example, such a phenomenon may occur when the spring force of the spring member 34 is weakened.
  • a correction coefficient as a learning value is calculated based on the arrival timing of the full lift position.
  • the correction coefficient is a coefficient that is multiplied by the injection time that is the injection pulse width.
  • a correction coefficient is calculated as a value smaller than “1”, that is, a coefficient for shortening the injection time.
  • a correction coefficient is calculated as a value larger than “1”, that is, a coefficient for extending the injection time.
  • the slope of the drive current may not reverse before and after reaching the full lift position. Specifically, as shown by a broken line in FIG. 5, the slope of the drive current may be negative before and after reaching the full lift position. In addition, as indicated by the one-dot chain line in FIG. 5, the slope of the drive current may both be positive before and after reaching the full lift position.
  • the slope of the drive current is reversed from the negative direction to the positive direction, it may be determined that the slope of the drive current is reversed once it is near zero. However, if it is not reversed, there is no clear reference (a value near zero or a value near zero), so that the determination accuracy is deteriorated and the time for determination is increased.
  • the drive current is controlled so that the change point of the drive current before and after reaching the full lift position can be easily determined. This will be described in detail below.
  • Equation (2) the slope of the drive current after reaching the full lift position
  • FIG. 8 shows the relationship between the drive current slope “dI / dt” specified based on the mathematical expressions (1) and (2) and the drive current “I”.
  • the broken line in FIG. 8 is the relationship between the slope of the drive current and the drive current before the full lift position is reached, and is specified by Equation (1).
  • the solid line in FIG. 8 represents the relationship between the drive current gradient “dI / dt” and the drive current “I” after the full lift position is reached, and is specified by Equation (2).
  • FIG. 8 shows that when the drive current when the full lift position is reached is within a predetermined current range X, the slope of the drive current is reversed before and after the full lift position is reached.
  • the smaller the drive current in the predetermined current range X the greater the slope of the drive current after reaching the full lift position in the positive direction.
  • the lower limit X1 in the current range X is (V ⁇ ) / R from Equation (1)
  • the upper limit X2 is V / R from Equation (2).
  • the slope of the drive current changes from the negative direction to the positive direction before and after reaching the full lift position.
  • the slope of the drive current after reaching the full lift position can be increased.
  • the drive current is controlled to be larger than the current range X or to be close to the upper limit X2 in the current range X. It is common to do. This is because, in the intermediate lift region before reaching the full lift position, the lift amount differs depending on the individual difference of the fuel injection valve 30 and the individual variation of the injection amount becomes large. Therefore, in normal times, the time until the full lift position is reached. This is because it is desirable to shorten the length and suppress individual variation.
  • the applied voltage V is usually determined by the battery voltage, and the resistance R and the inductance L are designed so that the valve opening operation of the fuel injection valve 30 satisfies the required performance from the engine 11.
  • the fuel injection process is executed by the ECU 40 (microcomputer 41).
  • the fuel injection process is a process that is executed each time fuel injection is performed, for example. Further, the fuel injection process is a process that is also executed when the execution of the lift position determination process is requested.
  • the ECU 40 determines whether or not to execute a lift position determination process (step S11). Specifically, the ECU 40 determines whether or not the determination of the full lift position is requested and the determination of the full lift position is permitted. For example, when the state of the engine 11 is a steady state (such as an idling state), determination of the full lift position is required.
  • a steady state such as an idling state
  • the predetermined voltage range refers to a voltage range that satisfies the following formulas (3) and (4). Equation (3) shows the relationship between the slope of the drive current before reaching the full lift position and the low voltage V1. Formula (4) shows the relationship between the slope of the drive current after reaching the full lift position and the low voltage V1. Formulas (3) and (4) are developed from Formulas (1) and (2), respectively.
  • the drive current “I” may be an arbitrary value within the current range X, for example, the lower limit X1. Within this voltage range, the slope of the drive current is negative before reaching the full lift position, and the slope of the drive current is positive after reaching the full lift position.
  • step S12 the ECU 40 sets a drive parameter (normal drive parameter) when the lift position determination process (step S16) is not performed (hereinafter simply referred to as normal time) (step S12).
  • the drive parameters of this embodiment include, for example, a peak value Ip and a current threshold value Ih. Then, the ECU 40 starts fuel injection control based on the normal drive parameters set in step S12 (step S13), drives the fuel injection valve 30, and ends the fuel injection process.
  • step S13 the microcomputer 41 of the ECU 40 sets the pulse width of the injection pulse using the correction coefficient and the reference pulse width calculated in step S17 described later, and outputs the injection pulse to the drive IC. .
  • the drive IC applies the high voltage V2 with the rise of the ejection pulse.
  • the driving IC stops applying the high voltage V2.
  • the drive IC starts applying the low voltage V1.
  • the driving IC stops applying the low voltage V1 as the ejection pulse falls.
  • the ECU 40 has a function as a first control unit that performs drive control of the fuel injection valve 30 without performing lift position determination processing.
  • step S11 If the determination result in step S11 is affirmative, lift position determination processing will be performed. For this reason, the ECU 40 sets drive parameters for determination so that the drive current when the needle 33 reaches the full lift position is smaller than when the lift position determination process is not performed (step S14).
  • the determination current threshold value Ih1 included in the determination drive parameter is smaller than the normal current threshold value Ih (current threshold value Ih set in step S12).
  • Other drive parameters such as the peak value Ip are the same.
  • the determination current threshold value Ih1 may be arbitrarily changed as long as the drive current at the time of reaching the full lift position is within the above-described current range X.
  • the determination current threshold value Ih1 is desirably smaller if the drive current when the full lift position is reached falls within the current range X described above. That is, it is desirable to make the determination current threshold Ih1 as small as possible so that the drive current when the full lift position is reached has a value close to the lower limit X1 in the current range X.
  • the timing for starting the application of the low voltage V1 is delayed by making the current threshold Ih1 for determination smaller than the normal current threshold Ih, but if the application stop period becomes longer, How to set the driving parameter may be arbitrarily changed.
  • the ECU 40 may be configured to apply the low voltage V1 after a predetermined application stop time has elapsed since the application stop of the high voltage V2, and the drive parameter may include the application stop time. At this time, when the lift position determination process is performed, the application stop time included in the determination drive parameter is set so that the application start timing of the low voltage V1 is delayed as compared with the case where the lift position determination process is not performed. Should be lengthened.
  • step S14 the ECU 40 starts the fuel injection control based on the determination drive parameter set in step S14 (step S15).
  • step S15 the microcomputer 41 of the ECU 40 sets the pulse width of the injection pulse using the correction coefficient and the reference pulse width calculated in step S17 described later, and outputs the injection pulse to the drive IC.
  • the driving IC applies the high voltage V2 with the rise of the ejection pulse.
  • the driving IC stops applying the high voltage V2.
  • the drive IC starts applying the low voltage V1.
  • the driving IC stops applying the low voltage V1 as the ejection pulse falls.
  • step S16 the ECU 40 determines the full lift position based on the change in the drive current detected by the current detection circuit 44 and identifies when the full lift position is reached.
  • the ECU 40 acquires (samples) the detected drive current at predetermined time intervals during the drive operation. At that time, it is desirable to remove noise by performing filter processing or the like on the acquired drive current. Then, the ECU 40 identifies the current waveform of the drive current based on the acquired drive current, and determines the change point of the drive current (that is, when the full lift position is reached). For example, when the slope of the drive current changes from the negative direction to the positive direction and the slope in the positive direction becomes equal to or greater than a predetermined value, the ECU 40 determines that the drive current is changed.
  • the ECU 40 Based on the determination result of step S16, the ECU 40 specifies a required period required from the start of injection pulse output until the needle 33 reaches the full lift position, and calculates a correction coefficient according to the specified required period (step S17). . Then, the fuel injection process ends.
  • the ECU 40 has a function as a second control unit that performs the lift position determination process and performs the drive control of the fuel injection valve 30.
  • the drive current becomes equal to or less than the determination current threshold Ih1, and the low voltage V1 that is the battery voltage is applied to the fuel injection valve 30. That is, since the judgment current threshold value Ih1 is smaller than the normal current threshold value Ih, the application stop period (ta2 to tb3) from the stop of the application of the high voltage V2 to the start of the application of the low voltage V1 is compared with the normal time. become longer. Meanwhile, the drive current continues to decrease.
  • the negative slope of the drive current becomes gradual as in the normal case.
  • the drive current at the start of application of the low voltage V1 is small, the drive current at the change point of the slope of the drive current (drive current at time tb4) is also small. For this reason, after reaching the full lift position, the slope of the drive current increases in the positive direction.
  • the direction in which the drive current tilts is preferably reversed before and after reaching the full lift position.
  • the full lift state is maintained, and fuel injection is continued.
  • the injection pulse is turned off at time ta5
  • the voltage application to the fuel injection valve 30 is stopped and the drive current becomes zero.
  • the needle lift is terminated as the coil energization of the fuel injection valve 30 is stopped, and the fuel injection is stopped accordingly.
  • the change point of the drive current before and after reaching the full lift position can be easily specified.
  • the drive current at the time of reaching the full lift position is increased, the inclination direction of the drive current is not preferably reversed before and after the full lift position is reached, and the inclination of the drive current is not reached after reaching the full lift position. It does not necessarily increase in the positive direction. For this reason, the determination accuracy of the change point of the drive current before and after reaching the full lift position may be poor.
  • the ECU 40 performs the lift position determination process (full lift position determination) so that the drive current when the needle 33 reaches the full lift position is smaller than that when the lift position determination process (full lift position determination) is not performed.
  • the drive current was controlled.
  • the direction of inclination of the drive current before and after reaching the full lift position is preferably reversed, and the change is also steep.
  • the drive current at the time of reaching the full lift position is reduced compared to the case where the lift position determination process is not performed, thereby making it easy to determine the change point of the drive current when reaching the full lift position.
  • the determination accuracy (determination accuracy) when reaching the position can be improved.
  • the ECU 40 reduces the current threshold value Ih1 for determination when the lift position determination process is performed as compared with the case where the lift position determination process is not performed. Thereby, the application start timing of the low voltage V1 can be delayed, and control can be performed so that the drive current when the needle 33 reaches the full lift position is reduced. That is, it is possible to reduce the drive current when reaching the full lift position without changing the voltage V1 of the battery 51, the resistance R, and the inductance L of the coil 31.
  • control when starting to apply the low voltage V1, drive parameters, and the like are different from those in the first embodiment.
  • drive parameters, and the like are different from those in the first embodiment.
  • a detailed description will be given focusing on differences from the first embodiment.
  • the drive parameter does not include the current threshold value Ih, but instead includes an application start time indicating a time from the start of application of the high voltage V2 to the start of application of the low voltage V1.
  • the application start time is the same for both the normal time and the determination time.
  • step S13 or step S15 the driving IC applies the high voltage V2 with the rising of the injection pulse.
  • the driving IC stops applying the high voltage V2.
  • the application start time set by the microcomputer 41 has elapsed from the start of application of the high voltage V2
  • the drive IC starts application of the low voltage V1.
  • the driving IC stops applying the low voltage V1 as the ejection pulse falls.
  • the determination peak value Ip1 is smaller than the normal peak value Ip (the peak value Ip set in step S12). That is, when the lift position determination process is performed, the application stop timing of the high voltage V2 is earlier than when the lift position determination process is not performed. On the other hand, the time from the start of application of the high voltage V2 to the start of application of the low voltage V1 (application start time) is constant. For this reason, when the lift position determination process is performed, the application stop period becomes longer than when the lift position determination process is not performed. As a result, the drive current when the full lift position is reached is reduced.
  • the determination peak value Ip1 may be arbitrarily changed as long as the drive current at the time of reaching the full lift position is within the above-described current range X.
  • the determination peak value Ip1 is desirably smaller if the drive current when the full lift position is reached falls within the current range X described above. That is, it is desirable to make the determination peak value Ip1 as small as possible so that the drive current when reaching the full lift position becomes a value close to the lower limit X1 in the current range X.
  • a high voltage V2 obtained by boosting the battery voltage with the rising of the injection pulse is applied to the fuel injection valve 30.
  • the drive current reaches the determination peak value Ip1 at time tc2
  • the application of the high voltage V2 is stopped.
  • the needle lift is started at the timing when the drive current reaches the determination peak value Ip1, or just before that, and the fuel injection is started along with the needle lift.
  • the low voltage V1 which is the battery voltage
  • the low voltage V1 is applied to the fuel injection valve 30 at time ta3 when the application start time has elapsed since the start of application of the high voltage V2. While the application stop timing of the high voltage V2 is advanced, the time from the start of applying the high voltage V2 to the start of applying the low voltage V1 (time ta1 to ta3) is constant. Therefore, the application stop period (tc2 to ta3) at the time of determination is longer than the normal application stop period (ta2 to ta3). Note that the drive current continues to decrease during the application stop period.
  • the negative slope of the drive current becomes gradual as in the normal case.
  • the drive current at the start of application of the low voltage V1 is smaller than normal.
  • the drive current at the change point of the slope of the drive current (drive current at time tc4) is also smaller than during normal operation. For this reason, after reaching the full lift position, the slope of the drive current increases in the positive direction.
  • the direction in which the drive current tilts is preferably reversed before and after reaching the full lift position.
  • the determination peak value Ip1 is set to be smaller than the peak value Ip when the full lift position determination process is not performed. For this reason, when the full lift position determination process is performed, the application stop of the high voltage V2 ends earlier than when the full lift position determination process is not performed.
  • the time from the start of application of the high voltage V2 to the start of application of the low voltage V1 is constant regardless of the presence or absence of the lift position determination process. For this reason, when the full lift position determination process is performed, the application stop period is longer than when the full lift position determination process is not performed, and the determination peak value Ip1 is also small, so that the drive current at the start of application of the low voltage V1 is also small. Become. Along with this, the drive current at the change point of the slope of the drive current (drive current at time tc4) also becomes smaller than that at the normal time. For this reason, after reaching the full lift position, the slope of the drive current increases in the positive direction. In addition, the direction in which the drive current tilts is preferably reversed before and after reaching the full lift position. Therefore, the accuracy of determining the full lift position can be improved.
  • control and drive parameters when starting to apply the low voltage V1 are different from those in the second embodiment.
  • control and drive parameters when starting to apply the low voltage V1 are different from those in the second embodiment.
  • it demonstrates in detail focusing on a different point from 2nd Embodiment.
  • the drive parameter does not include the current threshold value Ih, and includes a stop time indicating the time from the stop of applying the high voltage V2 to the start of applying the low voltage V1.
  • the stop time is the same for both the normal time and the determination time.
  • step S13 or step S15 the driving IC applies the high voltage V2 with the rising of the injection pulse.
  • the driving IC stops applying the high voltage V2.
  • the drive IC starts application of the low voltage V1.
  • the driving IC stops applying the low voltage V1 as the ejection pulse falls.
  • a high voltage V2 obtained by boosting the battery voltage with the rising of the injection pulse is applied to the fuel injection valve 30.
  • the drive current reaches the determination peak value Ip1 at time td2
  • the application of the high voltage V2 is stopped. Since the determination peak value Ip1 is smaller than the normal peak value Ip, the application stop timing of the high voltage V2 is advanced.
  • the needle lift is started at the timing when the drive current reaches the determination peak value Ip1, or just before that, and the fuel injection is started along with the needle lift.
  • the low voltage V1 which is a battery voltage, is applied to the fuel injection valve 30 at time td3 when the stop time has elapsed since the application of the high voltage V2 was stopped. Note that the drive current continues to decrease during the stop time.
  • the negative slope of the drive current becomes gradual as in the normal case.
  • the stop time time td2 to td3 is the same as the normal time (time ta2 to ta3) and the determination peak value Ip1 is smaller than the normal time
  • the drive current at the start of applying the low voltage V1 Is smaller than normal.
  • the drive current drive current at time td4 at the change point of the drive current slope (when the full lift position is reached) is also reduced. For this reason, after reaching the full lift position, the slope of the drive current increases in the positive direction.
  • the direction in which the drive current tilts is preferably reversed before and after reaching the full lift position.
  • the determination peak value Ip1 is set to be smaller than the peak value Ip when the full lift position determination process is not performed. For this reason, when the full lift position determination process is performed, the application stop of the high voltage V2 ends earlier than when the full lift position determination process is not performed.
  • the stop time is constant from the stop of the application of the high voltage V2 to the start of the application of the low voltage V1 regardless of the presence or absence of the lift position determination process. For this reason, when the full lift position determination process is performed, the application stop period is constant and the determination peak value Ip1 is also smaller than when the full lift position determination process is not performed. , Smaller than normal.
  • the drive current at the change point of the slope of the drive current (drive current at time td4) also becomes smaller than normal. For this reason, after reaching the full lift position, the slope of the drive current increases in the positive direction.
  • the direction in which the drive current tilts is preferably reversed before and after reaching the full lift position. Therefore, the accuracy of determining the full lift position can be improved.
  • the fourth embodiment is mainly different from the first embodiment in that a reverse polarity voltage is applied after the application of the high voltage V2 is stopped, and then the low voltage V1 is applied.
  • a reverse polarity voltage is applied after the application of the high voltage V2 is stopped, and then the low voltage V1 is applied.
  • the voltage switching circuit 43 is configured to be able to apply a high voltage V2 to the coil 31 with a reverse polarity as a driving voltage applied to the fuel injection valve 30 of each cylinder 21.
  • applying the high voltage V2 with the reverse polarity indicates that the flyback voltage V3 is applied for convenience.
  • the drive parameter does not have the current threshold value Ih, and instead, the application time of the flyback voltage V3 is set.
  • the normal driving parameter zero is set as the application time of the flyback voltage V3.
  • the drive parameter at the time of determination a value larger than zero is set as the application time of the flyback voltage V3.
  • the application time of the flyback voltage V3 may be arbitrarily changed, but the application time of the flyback voltage V3 at the time of determination is preferably longer than the application time of the flyback voltage V3 at the normal time.
  • step S15 the driving IC applies the high voltage V2 with the rising of the ejection pulse.
  • the driving IC stops applying the high voltage V2 and applies the flyback voltage V3.
  • the drive IC stops applying the flyback voltage V3. Then, the driving IC starts applying the low voltage V1 after a predetermined time has elapsed since the application of the high voltage V2 was stopped. In addition, the time from the application stop of the high voltage V2 to the start of the application of the low voltage V1 is set longer than at least the application time of the flyback voltage V3. Then, the driving IC stops applying the low voltage V1 as the ejection pulse falls.
  • step S13 differs from step S15 in that the application time of the flyback voltage V3 is short (not applied in the present embodiment).
  • a high voltage V2 obtained by boosting the battery voltage with the rising of the injection pulse is applied to the fuel injection valve 30.
  • the drive current reaches the peak value Ip at time ta2
  • the application of the high voltage V2 is stopped.
  • the needle lift is started at the timing when the drive current reaches the peak value Ip or at the timing just before that, and the fuel injection is started along with the needle lift.
  • the flyback voltage V3 is applied from the time ta2 when the application of the high voltage V2 is stopped. Since the flyback voltage V3 is opposite in polarity to the high voltage V2 and the low voltage V1, when the lift position determination process is performed, the drive current in the negative direction of the drive current is smaller than when the lift position determination process is not performed. The inclination increases.
  • flyback voltage V3 is stopped at time te3 when the application time of flyback voltage V3 has elapsed.
  • a counter electromotive force is generated, and the drive current temporarily rises.
  • a low voltage V1 which is a battery voltage, is applied to the fuel injection valve 30 at a time ta4 when a predetermined time has elapsed since the application of the high voltage V2 was stopped. After the application of the low voltage V1, the drive current gradually decreases.
  • the driving current at the start of applying the low voltage V1 is smaller than that at the normal time.
  • the drive current at the change point of the slope of the drive current (drive current at time te4) also becomes smaller than that at normal time. For this reason, after reaching the full lift position, the slope of the drive current increases in the positive direction.
  • the direction in which the drive current tilts is preferably reversed before and after reaching the full lift position.
  • the ECU 40 makes the application time (application period) of the flyback voltage V3 longer when the lift position determination process is performed than when it is not performed. For this reason, the drive current at the start of application of the low voltage V1 can be reduced, and accordingly, the drive current at the change point of the slope of the drive current (when the full lift position is reached) can be reduced. For this reason, after reaching the full lift position, the slope of the drive current increases in the positive direction. In addition, the direction in which the drive current tilts is preferably reversed before and after reaching the full lift position. Therefore, the accuracy of determining the full lift position can be improved.
  • the ECU 40 improves the determination accuracy by determining the full lift position after a predetermined period has elapsed after the application of the flyback voltage V3 is completed.
  • the ECU 40 (the microcomputer 41) functions as a first control unit that performs drive control of the fuel injection valve 30 without performing the lift position determination process, and performs the lift position determination process to perform the fuel position determination process. It also has a function as a second control unit that performs drive control of the injection valve 30. As another example, an ECU (microcomputer) may be provided for each of the first control unit and the second control unit.
  • a power supply unit (third power supply unit) that applies the flyback voltage V3 may be provided separately from the low-voltage power supply unit 45 and the high-voltage power supply unit 46.
  • the magnitude of the flyback voltage V3 may be changeable.
  • the flyback voltage V3 at the time of determination may be set larger than the normal flyback voltage V3. If the flyback voltage V3 is increased at the time of determination, the application time of the flyback voltage V3 may be the same.
  • duty control when the low voltage V1 is applied, duty control may be performed to periodically repeat on / off. In this case, after reaching the full lift position, it is desirable to perform control so that the on / off is periodically repeated so that the drive current falls within a predetermined range.
  • the ECU 40 may continuously apply the low voltage V1 (the duty ratio may be 100%) when the lift position determination process is performed.
  • the ECU 40 may make the determination peak value Ip smaller than the normal peak value Ip. As a result, the drive current can be reduced more quickly at the time of determination.
  • the first to third embodiments may be combined with the fourth embodiment. That is, the ECU 40 may apply the flyback voltage V3 after stopping the application of the high voltage V2. As a result, the drive current can be reduced more quickly at the time of determination.
  • the ECU 40 may stop applying the flyback voltage V3 and start applying the low voltage V1. Even in this case, it is desirable to reach the full lift position after a predetermined time has elapsed since the application of the flyback voltage V3 was stopped. By doing in this way, the influence of back electromotive force can be suppressed.
  • the ECU 40 of the above embodiment determines the full lift position based on the slope of the drive current (one-time differentiation of the drive current), but other determination methods may be employed. For example, a determination method based on a change in the slope of the drive current (double differentiation of the drive current), a determination method based on a difference from the reference waveform, or a determination method based on a variation index of a sample value of the drive current in a predetermined period Etc. may be adopted.
  • step S11 of the above embodiment it is not necessary to determine whether or not the determination of the full lift position is permitted. That is, when the determination of the full lift position is requested, the ECU 40 may proceed to step S14.
  • the correction method for multiplying the injection time (injection pulse width) is calculated, and the correction method for correcting the injection time based on the correction coefficient is employed.
  • other correction methods may be employed.
  • a correction method may be employed in which a correction value for adding or subtracting the injection time (injection pulse width) is calculated and the injection time is added or subtracted based on the correction value.
  • amends drive parameters other than injection time may be sufficient. For example, correction for changing the peak value Ip and the current threshold value Ih, correction for changing the high voltage V2, the low voltage V1, correction for changing the application stop timing of the high voltage V2 or the application start timing of the low voltage V1, etc. Good.
  • the arrival timing to the full lift position may be corrected in consideration of the deviation from the reference timing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

燃料噴射制御装置(40)は、燃料噴射弁(30)が駆動する場合、燃料噴射弁に対して先に第1電源部(46)による電圧印加を行い、その後に第2電源部(45)による電圧印加を行う一方で、第1電源部による電圧印加後に、電流検出部(44)により検出された駆動電流の変化に基づいて、燃料噴射弁の弁体が所定リフト位置に達したことを判定するリフト位置判定処理(S16)を実施する。燃料噴射制御装置は、リフト位置判定処理を実施せずに燃料噴射弁の駆動制御を実施する第1制御部(40)と、リフト位置判定処理を実施して燃料噴射弁の駆動制御を実施する第2制御部(40)と、を備え、第2制御部は、第1制御部による駆動制御の実施時に比べて、弁体が所定リフト位置に達する時の駆動電流が小さくなるように、前記燃料噴射弁の駆動電流を制御する。

Description

燃料噴射制御装置 関連出願の相互参照
 本出願は、2017年5月19日に出願された日本出願番号2017-099752号に基づくもので、ここにその記載内容を援用する。
 本開示は、内燃機関の燃料噴射制御装置に関するものである。
 車両等に搭載される内燃機関の各気筒に燃料を噴射供給する燃料噴射弁として、例えば車載のバッテリから供給される電力によって動作する電磁ソレノイド式のものが知られている。この種の燃料噴射弁においては、燃料噴射制御装置が、燃料噴射弁本体に内蔵されるコイルへの通電時期及び通電時間を制御して弁体(ニードル)を開弁方向に駆動させることで、燃料噴射時期及び燃料噴射量を制御している。
 近年では、燃料噴射量等の適正化を図る上で、燃料噴射弁の機差ばらつきへの配慮がなされている。具体的には、燃料噴射制御装置は、燃料噴射弁における駆動電流から弁体がフルリフト位置に到達したことを特定し、その特定結果に応じて燃料噴射弁の通電時間を補正するといった対策が講じられている(例えば特許文献1参照)。
特開2014-152697号公報
 ところで、燃料噴射制御装置は、燃料噴射弁が駆動させる場合、燃料噴射弁に対して先に高電圧を印加し、その後に低電圧の印加を行っている。そして、燃料噴射制御装置は、低電圧の印加後に、検出された駆動電流の変化に基づいて、フルリフト位置に到達したことを判定している。このため、駆動電流の変化が大きいほど、フルリフト位置に到達したことを判定しやすくなる。しかしながら、判定する際の条件によっては、駆動電流の変化が大きいとは限らず、判定精度が悪い場合があった。
 本開示は、上記課題に鑑みてなされたものであり、その主たる目的は、弁体が所定リフト位置に達する時の判定精度を向上することができる燃料噴射制御装置を提供することにある。
 上記課題を解決するために、燃料噴射制御装置は、第1電源部と、前記第1電源部よりも電源電圧の小さい第2電源部と、これら各電源部からの電力供給により駆動される燃料噴射弁と、前記燃料噴射弁の駆動電流を検出する電流検出部と、を備える燃料噴射システムに適用され、前記燃料噴射弁が駆動する場合、前記燃料噴射弁に対して先に前記第1電源部による電圧印加を行い、その後に前記第2電源部による電圧印加を行う一方で、前記第1電源部による電圧印加後に、前記電流検出部により検出された駆動電流の変化に基づいて、前記燃料噴射弁の弁体が所定リフト位置に達したことを判定するリフト位置判定処理を実施する燃料噴射制御装置であって、前記リフト位置判定処理を実施せずに前記燃料噴射弁の駆動制御を実施する第1制御部と、前記リフト位置判定処理を実施して前記燃料噴射弁の駆動制御を実施する第2制御部と、を備え、前記第2制御部は、前記第1制御部による駆動制御の実施時に比べて、前記弁体が所定リフト位置に達する時の駆動電流が小さくなるように、前記燃料噴射弁の駆動電流を制御する。
 燃料噴射弁に対して先に第1電源部による電圧印加を行い、その後に第2電源部による電圧印加を行うことにより、燃料噴射弁を駆動させる。これにより、開弁初期には高電圧が印加されることで燃料噴射弁の開弁応答性が確保され、それに引き続いて低電圧が印加されることで燃料噴射弁の開弁状態が保持される。
 そして、リフト位置判定処理を実施する場合、第1電源部による電圧印加後に、電流検出部により検出された駆動電流の変化に基づいて、燃料噴射弁の弁体が所定リフト位置に達したことを判定する。第2制御部は、このリフト位置判定処理を実施する場合、第1制御部による駆動制御の実施時に比べて、弁体が所定リフト位置に達する時の駆動電流が小さくなるように、燃料噴射弁の駆動電流を制御する。弁体が所定リフト位置に達する時の駆動電流を小さくすると、所定リフト位置の到達前後における駆動電流の傾きの方向が反転し、また、その傾きの変化も急峻となりやすくなる。このため、リフト位置判定処理を実施する際に駆動電流を小さくすることにより、所定リフト位置に達する時の駆動電流の変化点が判定しやすくなり、弁体が所定リフト位置に達する時の判定精度を向上させることができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、エンジン制御システムの概略構成を示す図であり、 図2は、ECUの構成を示すブロック図であり、 図3は、燃料噴射弁の構成及び状態を示す図であり、 図4は、燃料噴射弁の駆動動作を説明するためのタイミングチャートであり、 図5は、駆動電流の変化を示すタイミングチャートであり、 図6は、駆動電流の変化を示すタイミングチャートであり、 図7は、燃料噴射弁の回路図であり、 図8は、駆動電流の傾きと、駆動電流との関係を示す図であり、 図9は、燃料噴射処理を示すフローチャートであり、 図10は、第1実施形態の駆動電流の変化を示すタイミングチャートであり、 図11は、第2実施形態の駆動電流の変化を示すタイミングチャートであり、 図12は、第3実施形態の駆動電流の変化を示すタイミングチャートであり、 図13は、第4実施形態の駆動電流の変化を示すタイミングチャートである。
 以下、実施形態について説明を行う。なお、以下の実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。本実施形態では、車両用のガソリンエンジンを制御するエンジン制御システムとして具体化している。
 (第1実施形態)
 図1に基づいてエンジン制御システムの概略構成を説明する。筒内噴射式の多気筒内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。
 スロットルバルブ16の下流側にはサージタンク18が設けられ、このサージタンク18に、吸気管圧力を検出する吸気管圧力センサ19が設けられている。サージタンク18には、エンジン11の各気筒21に空気を導入する吸気マニホールド20が接続され、エンジン11の各気筒21には、それぞれ筒内に燃料を直接噴射する電磁式の燃料噴射弁30が取り付けられている。エンジン11のシリンダヘッドには、気筒21ごとに点火プラグ22が取り付けられており、各気筒21の点火プラグ22の火花放電によって筒内の混合気に着火される。
 エンジン11の排気管23には、排出ガスに基づいて混合気の空燃比又はリッチ/リーン等を検出する排出ガスセンサ24(空燃比センサ、酸素センサ等)が設けられ、この排出ガスセンサ24の下流側に、排出ガスを浄化する三元触媒等の触媒25が設けられている。
 エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ26や、ノッキングを検出するノックセンサ27が取り付けられている。クランク軸28の外周側には、クランク軸28が所定クランク角回転するごとにパルス信号を出力するクランク角センサ29が取り付けられ、このクランク角センサ29のクランク角信号に基づいてクランク角やエンジン回転速度が検出される。
 これら各種センサの出力はECU40に入力される。ECU40は、マイクロコンピュータを主体として構成された電子制御ユニットであり、各種センサの検出信号を用いてエンジン11の各種制御を実施する。ECU40は、エンジン運転状態に応じた燃料噴射量を算出して燃料噴射弁30の燃料噴射を制御するとともに、点火プラグ22の点火時期を制御する。
 これら点火プラグ22や燃料噴射弁30には車載のバッテリ51から電力が供給される。バッテリ51の電圧が低下している場合には、エンジン11の出力軸に接続されたオルタネータ52を回転させてバッテリ51に電力を供給することにより、バッテリ51が所定電圧(本実施の形態においては12V)となるように充電される。
 図2に示すように、ECU40は、エンジン制御用のマイコン41(エンジン11の制御用のマイクロコンピュータ)や、インジェクタ駆動用の駆動IC42(燃料噴射弁30の駆動用IC)、電圧切替回路43、電流検出回路44を備えている。ECU40が「燃料噴射制御装置」に相当する。マイコン41は、エンジン運転状態(例えばエンジン回転速度やエンジン負荷等)に応じて要求噴射量を算出するとともに、この要求噴射量に基づき算出される噴射時間から噴射パルスを生成し、駆動IC42に出力する。駆動IC42は、噴射パルスに基づき燃料噴射弁30を開弁駆動して、要求噴射量分の燃料を噴射させる。
 電圧切替回路43は、各気筒21の燃料噴射弁30に印加される駆動用電圧を高電圧V2と低電圧V1とで切り替える回路である。具体的には、電圧切替回路43は、図示しないスイッチング素子のオンオフにより、低圧電源部45と高圧電源部46とのいずれかから燃料噴射弁30のコイル31に対して駆動電流を供給させるものとなっている。
 低圧電源部45は、「第2電源部」に相当し、バッテリ51のバッテリ電圧(低電圧V1)を燃料噴射弁30に印加する低電圧出力回路を有している。高圧電源部46は、「第1電源部」に相当し、バッテリ電圧を40V~70Vとなるように昇圧した高電圧V2(昇圧電圧)を燃料噴射弁30に印加する高電圧出力回路(昇圧回路)を有している。
 噴射パルスにより燃料噴射弁30が開弁駆動される際には、燃料噴射弁30に対して低電圧V1と高電圧V2とが時系列で切り替えられて印加されるようになっている。この場合、開弁初期には高電圧V2が印加されることで燃料噴射弁30の開弁応答性が確保され、それに引き続いて低電圧V1が印加されることで燃料噴射弁30の開弁状態が保持される。
 電流検出回路44は、「電流検出部」に相当し、燃料噴射弁30の開弁駆動時における通電電流(駆動電流)を検出するものであり、その検出結果は駆動IC42に逐次出力される。電流検出回路44は周知構成であればよく、例えばシャント抵抗と比較器とを有するものとなっている。
 本実施形態において、高圧電源部46と、低圧電源部45と、これら各電源部からの電力供給により駆動される燃料噴射弁30と、燃料噴射弁の駆動電流を検出する電流検出回路44と、を備えるシステムが、燃料噴射システムに相当する。
 なお、図2の構成においては、4気筒エンジンであるエンジン11において、燃焼順序が一つ置きとなる2つの気筒を1まとめにして駆動グループ1,2としており、駆動グループごとに各々電圧切替回路43及び電流検出回路44が設けられている。すなわち、駆動グループ1の電圧切替回路43及び電流検出回路44では、#1,#4気筒の燃料噴射弁30について電圧切り替えと電流検出とが行われる構成となっている。また、駆動グループ2の電圧切替回路43及び電流検出回路44では、#2,#3気筒の燃料噴射弁30について電圧切り替えと電流検出とが行われる構成となっている。これにより、各気筒において吸気行程と圧縮行程とで各々燃料噴射が実施されることに起因して、燃焼順序が前後に連続する2つの気筒で燃料噴射の期間が重複しても、各気筒の燃料噴射が適正に実施されるようになっている。
 ここで、図3を参照して燃料噴射弁30について説明する。燃料噴射弁30は、通電により電磁力を生じさせるコイル31と、その電磁力によってプランジャ32(可動コア)と一体的に駆動されるニードル33(弁体)と、プランジャ32を閉弁方向とは反対方向へ付勢するバネ部材34とを有しており、ニードル33がバネ部材34の付勢力に抗して開弁位置に移動することで燃料噴射弁30が開弁状態となり、燃料噴射が行われる。そして、噴射パルスの立ち下がりに伴いコイル31の通電が停止されると、プランジャ32とニードル33とが閉弁位置に戻ることで燃料噴射弁30が閉弁状態となり、燃料噴射が停止される。以下の説明では、プランジャ32がストッパ35に当たってそれ以上の開弁方向への移動が制限される位置を、ニードル33の「フルリフト位置」と称する。なお、フルリフト位置は、「所定リフト位置」に相当する。
 次に、駆動IC42及び電圧切替回路43により実施される燃料噴射弁30の駆動動作を図4に基づき説明する。
 時刻ta1では、噴射パルスの立ち上がりに伴いバッテリ電圧を昇圧した高電圧V2が燃料噴射弁30に印加される。時刻ta2において、駆動電流が、あらかじめ定めたピーク値Ipに到達すると、高電圧V2の印加が停止される。このとき、駆動電流がピーク値Ipに到達するタイミング又はその直前のタイミングにおいてニードルリフトが開始され、そのニードルリフトに伴い燃料噴射が開始される。駆動電流がピーク値Ipに到達したか否かの判定は、電流検出回路44により検出された駆動電流に基づいて実施される。つまり、昇圧期間(ta1~ta2)では、駆動IC42により駆動電流がピーク値Ip以上になったか否かが判定され、駆動電流≧ピーク値Ipになった時点で、電圧切替回路43により印加電圧の切替(V2印加停止)が実施される。
 駆動電流が時刻ta3において、駆動電流があらかじめ定めた電流閾値Ihを下回ると、バッテリ電圧である低電圧V1が燃料噴射弁30に印加される。駆動電流が電流閾値Ihを下回ったか否かの判定は、電流検出回路44により検出された駆動電流に基づいて実施される。つまり、印加停止期間(ta2~ta3)では、駆動IC42により駆動電流が電流閾値Ih以下になったか否かが判定され、駆動電流≦電流閾値Ihになった時点で、電圧切替回路43により印加電圧の切替(V1印加開始)が実施される。これにより、ニードル33がフルリフト位置に到達した後においてそのフルリフト状態が維持され、燃料噴射が継続されることとなる。その後、時刻ta5で噴射パルスがオフになると、燃料噴射弁30への電圧印加が停止され、駆動電流がゼロになる。そして、燃料噴射弁30のコイル通電の停止に伴いニードルリフトが終了され、それに合わせて燃料噴射が停止される。
 燃料噴射弁30については、機差や経年変化等に起因した動作特性のばらつきや変化が発生し得る。本実施の形態に示す制御システムにおいては、そのように事情に配慮して、上記ばらつき等を加味して燃料噴射量の適正化(開弁特性学習)が行われている。具体的には、時刻ta3と時刻ta5との間の時刻ta4にて、ニードル33がフルリフト位置に到達し、電流が減少から増加に転じる。そこで、電流波形を監視することにより、開弁完了のタイミング、すなわちフルリフト位置への到達タイミングを特定している。実際のニードル33の動きを把握し、噴射パルスの出力開始からフルリフト位置到達までの時間に応じてパルス幅(噴射パルスの出力期間)を補正することにより、燃料噴射量の適正化を図っている。こうしてニードル33のフルリフト位置を判定する処理を、リフト位置判定処理としている。
 噴射パルス幅の補正について補足する。例えば、ニードル33のフルリフト位置への到達タイミングが基準のタイミングよりも早い場合には、燃料噴射弁30における機差や経年変化により、想定よりも早期に又はリフト速度が速い状態でニードルリフトが行われていると考えられる。例えばバネ部材34のバネ力が弱まっているとこうした事象が生じ得る。かかる場合に、フルリフト位置の到達タイミングに基づいて、学習値としての補正係数を算出する。補正係数は、噴射パルス幅である噴射時間に乗算される係数である。そして、フルリフト位置の到達タイミングが早い場合には「1」よりも小さい値、すなわち噴射時間を短くする係数として補正係数が算出される。一方、フルリフト位置の到達タイミングが遅い場合には「1」よりも大きい値、すなわち噴射時間を長くする係数として補正係数が算出される。
 ところで、フルリフト位置の到達前後における駆動電流の変化点が判別しにくい場合がある。例えば、駆動電流の傾きが、フルリフト位置の到達前後で反転しない場合がある。具体的には、図5において破線で示すように、フルリフト位置の到達前後において、駆動電流の傾きが共に負方向となる場合がある。また、図5において一点鎖線で示すように、フルリフト位置の到達前後において、駆動電流の傾きが共に正方向となる場合がある。
 実線で示すように、駆動電流の傾きが負方向から正方向に反転するのであれば、駆動電流の傾きが一旦ゼロ近傍になったことに基づき、反転したことを判定すればよい。しかしながら、反転しない場合、明確な基準(ゼロ又はゼロ近傍の値)が存在しないため、判定精度が悪くなり、また、判定する際の手間も増える。
 また、例えば、図6に示すように、フルリフト位置の到達後における駆動電流の傾き(正方向の傾き)が小さい場合も判別しにくい。この場合、例えば、駆動電流の電流波形に重畳するノイズと、駆動電流の傾きの変化とが区別しにくくなり、判定精度が悪くなりやすい。
 そこで、本実施形態では、フルリフト位置を判定する処理(リフト位置判定処理)を実行する際、フルリフト位置の到達前後における駆動電流の変化点が判定しやすくなるように、駆動電流を制御している。以下、詳しく説明する。
 まず、駆動電流の傾きが、フルリフト位置の到達前後で変化する原理について説明する。燃料噴射弁30の回路図は、印加電圧V(低電圧V1)と、コイル31の抵抗Rと、コイル31のインダクタンスL(=I/Φ)を利用して、模式的に図7のように示すことができる。このため、フルリフト位置の到達前における駆動電流の傾きは、数式(1)により示される。ただし、「I」は駆動電流であり、「dI/dt」は駆動電流の傾きであり、「V」はコイル31への印加電圧であり、「R」はコイル31の抵抗であり、「Φ」は磁束の抵抗であり、「α」は磁束の変化(=dΦ/dt)である。
Figure JPOXMLDOC01-appb-M000001
 また、フルリフト位置の到達後において、磁束の変化は、到達前と比較して無視できるほど小さい(α≒0)ため、フルリフト位置の到達後における駆動電流の傾きは、数式(2)により示される。
Figure JPOXMLDOC01-appb-M000002
 図8において、数式(1)、(2)に基づき特定される駆動電流の傾き「dI/dt」と、駆動電流「I」との関係を示す。図8における破線は、フルリフト位置の到達前における駆動電流の傾きと駆動電流との関係であり、数式(1)により特定される。図8における実線は、フルリフト位置の到達後における駆動電流の傾き「dI/dt」と駆動電流「I」との関係であり、数式(2)により特定される。
 図8では、フルリフト位置の到達時における駆動電流が、所定の電流範囲X内である場合、駆動電流の傾きが、フルリフト位置の到達前後において反転することを示している。また、所定の電流範囲Xのうち、駆動電流が小さいほど、フルリフト位置の到達後の駆動電流の傾きが正方向に大きくなることを示している。電流範囲Xにおける下限X1は、数式(1)より、(V-α)/Rであり、上限X2は、数式(2)より、V/Rである。
 したがって、フルリフト位置の到達時における駆動電流が、所定の電流範囲Xとなるように駆動電流を制御することにより、フルリフト位置の到達前後において駆動電流の傾きが負方向から正方向に変化することとなる。また、フルリフト位置の到達時における駆動電流が、所定の電流範囲Xのうち下限X1に近くなるように駆動電流を制御することにより、フルリフト位置の到達後における駆動電流の傾きを大きくすることができる。
 なお、リフト位置判定処理(フルリフト位置の判定)を実施しない通常時においては、電流範囲Xよりも駆動電流を大きくする、又は電流範囲Xのうち上限X2に近い値となるように駆動電流を制御することが一般的である。なぜならば、フルリフト位置の到達前における中間リフトの領域では、燃料噴射弁30の個体差によりリフト量が異なり、噴射量の個体ばらつきが大きくなるため、通常時においては、フルリフト位置の到達までの時間を短くし、個体ばらつきを抑えることが望ましいからである。
 また、印加電圧Vは、通常、バッテリ電圧によって決まり、抵抗RやインダクタンスLは、燃料噴射弁30の開弁動作がエンジン11からの要求性能を満足するように設計されている。
 次に、図9に基づき燃料噴射処理について説明する。燃料噴射処理は、ECU40(マイコン41)により、実行される。また、燃料噴射処理は、例えば燃料噴射の実施の都度実行される処理である。また、燃料噴射処理は、リフト位置判定処理の実行が要求された場合にも実行される処理である。
 まず、ECU40は、リフト位置判定処理を実行するか否かを判定する(ステップS11)。具体的には、ECU40は、フルリフト位置の判定が要求されており、且つ、フルリフト位置の判定が許可されているか否かを判定する。例えば、エンジン11の状態が定常状態(アイドリング状態など)である場合、フルリフト位置の判定が要求される。
 また、バッテリ51の電圧(低電圧V1)が所定の電圧範囲内である場合、フルリフト位置の判定が許可される。所定の電圧範囲は、以下の数式(3)、(4)を満たす電圧の範囲を指す。数式(3)は、フルリフト位置の到達前における駆動電流の傾きと、低電圧V1との関係を示す。数式(4)は、フルリフト位置の到達後における駆動電流の傾きと、低電圧V1との関係を示す。数式(3)、(4)は、それぞれ数式(1)、(2)を展開したものである。なお、駆動電流「I」は、電流範囲X内の任意の値、例えば、下限X1とすればよい。この電圧範囲内であれば、フルリフト位置の到達前においては駆動電流の傾きが負方向となり、到達後においては駆動電流の傾きが正方向となる。
Figure JPOXMLDOC01-appb-M000003
 ステップS11の判定結果が否定の場合、ECU40は、リフト位置判定処理(ステップS16)を実施しない場合(以下、単に通常時と示す)における駆動パラメータ(通常の駆動パラメータ)を設定する(ステップS12)。本実施形態の駆動パラメータには、例えば、ピーク値Ip、電流閾値Ihが含まれる。そして、ECU40は、ステップS12において設定した通常の駆動パラメータに基づき、燃料噴射制御を開始し(ステップS13)、燃料噴射弁30を駆動動作させ、燃料噴射処理を終了する。
 なお、ステップS13において、ECU40のマイコン41は、後述するステップS17において算出された補正係数及び基準パルス幅を利用して、噴射パルスのパルス幅を設定し、駆動ICに対して噴射パルスを出力する。駆動ICは、噴射パルスの立ち上がりに伴い、高電圧V2を印加する。そして、駆動ICは、検出された駆動電流が、マイコン41により設定されたピーク値Ip以上となった場合、高電圧V2の印加を停止する。その後、駆動ICは、検出された駆動電流が、マイコン41により設定された電流閾値Ih以下となった場合、低電圧V1の印加を開始する。そして、駆動ICは、噴射パルスの立ち下りに伴い、低電圧V1の印加を停止する。
 ステップS12,S13の処理を行うことにより、ECU40は、リフト位置判定処理を実施せずに燃料噴射弁30の駆動制御を実施する第1制御部としての機能を有する。
 ステップS11の判定結果が肯定の場合、リフト位置判定処理を実施することとなる。このため、ECU40は、リフト位置判定処理を実施しない場合と比較してニードル33がフルリフト位置に達する時の駆動電流が小さくなるように、判定用の駆動パラメータを設定する(ステップS14)。本実施形態では、判定用の駆動パラメータに含まれる判定用の電流閾値Ih1は、通常の電流閾値Ih(ステップS12において設定される電流閾値Ih)と比較して小さくされている。なお、ピーク値Ip等、他の駆動パラメータは同じである。
 これにより、リフト位置判定処理を実施する際、リフト位置判定処理を実施しない場合と比較して、低電圧V1の印加開始のタイミングが遅くなり、結果としてフルリフト位置の到達時における駆動電流が小さくなる。なお、判定用の電流閾値Ih1は、フルリフト位置の到達時における駆動電流が前述した電流範囲X内に収まるのであれば、任意に変更してもよい。また、判定用の電流閾値Ih1は、フルリフト位置の到達時における駆動電流が前述した電流範囲X内に収まるのであれば、小さい方が望ましい。すなわち、フルリフト位置の到達時における駆動電流が電流範囲Xのうち下限X1に近い値となるように、判定用の電流閾値Ih1をなるべく小さくすることが望ましい。
 また、本実施形態では、判定用の電流閾値Ih1を、通常の電流閾値Ihよりも小さくすることにより、低電圧V1の印加開始のタイミングを遅くしたが、印加停止期間が長くなるのであれば、駆動パラメータをどのように設定するのかは、任意に変更してもよい。例えば、ECU40を、高電圧V2の印加停止から所定の印加停止時間経過後、低電圧V1を印加させるように構成し、駆動パラメータに当該印加停止時間を含ませてもよい。この際、リフト位置判定処理を実施する場合、リフト位置判定処理を実施しない場合と比較して、低電圧V1の印加開始のタイミングが遅くなるように、判定用の駆動パラメータに含まれる印加停止時間を長くすればよい。
 フローチャートの説明に戻る。ECU40は、ステップS14の処理後、ステップS14において設定した判定用の駆動パラメータに基づき、燃料噴射制御を開始する(ステップS15)。
 なお、ステップS15において、ECU40のマイコン41は、後述するステップS17において算出された補正係数及び基準パルス幅を利用して、噴射パルスのパルス幅を設定し、駆動ICに対して噴射パルスを出力する。一方、駆動ICは、噴射パルスの立ち上がりに伴い、高電圧V2を印加する。そして、駆動ICは、検出された駆動電流が、マイコン41により設定されたピーク値Ip以上となった場合、高電圧V2の印加を停止する。その後、駆動ICは、検出された駆動電流が、マイコン41により設定された判定用の電流閾値Ih1以下となった場合、低電圧V1の印加を開始する。そして、駆動ICは、噴射パルスの立ち下がりに伴い、低電圧V1の印加を停止する。
 そして、燃料噴射弁30の駆動動作中、ECU40は、リフト位置判定処理を実施する(ステップS16)。すなわち、ECU40は、電流検出回路44により検出された駆動電流の変化に基づき、フルリフト位置の判定を行い、フルリフト位置の到達時を特定する。
 具体的には、ECU40は、駆動動作中、所定時間ごとに、検出された駆動電流を取得する(サンプリング)する。その際、取得された駆動電流に対してフィルタ処理などを実行して、ノイズを除去することが望ましい。そして、ECU40は、取得した駆動電流に基づき、駆動電流の電流波形を特定し、駆動電流の変化点(すなわち、フルリフト位置の到達時)を判定する。例えば、駆動電流の傾きが負方向から正方向に変化し、且つ、正方向への傾きが所定以上となった場合、ECU40は、駆動電流の変化点であるとして判定する。
 ECU40は、ステップS16の判定結果に基づき、噴射パルスの出力開始からニードル33がフルリフト位置に到達するまでに要する所要期間を特定し、特定した所要期間に応じて補正係数を算出する(ステップS17)。そして、燃料噴射処理を終了する。ステップS14~S16の処理を行うことにより、ECU40は、リフト位置判定処理を実施して燃料噴射弁30の駆動制御を実施する第2制御部としての機能を有する。
 次に、リフト位置判定処理が実施されない場合(通常時)における駆動電流の変化と、リフト位置判定処理(フルリフト位置の判定)が実施される場合(以下、判定時と示す)における駆動電流の変化の違いについて図10に基づき説明する。図10において、判定時における駆動電流の変化を実線で示し、通常時における駆動電流の変化を破線で示す。なお、通常時における駆動電流の変化は、図4と同じであるため、説明を省略する。また、時刻ta1~ta3までは、通常時における駆動電流の変化と、判定時における駆動電流の変化は同じである。
 時刻ta3の経過後、時刻tb3では、駆動電流が判定用の電流閾値Ih1以下となり、バッテリ電圧である低電圧V1が燃料噴射弁30に印加される。すなわち、判定用の電流閾値Ih1は、通常の電流閾値Ihよりも小さいため、高電圧V2の印加停止から低電圧V1の印加開始までの印加停止期間(ta2~tb3)が通常時と比較して長くなる。その間、駆動電流は、低下し続ける。
 低電圧V1の印加後、通常時の場合と同様に、駆動電流の負方向の傾きが緩やかとなる。しかしながら、低電圧V1の印加開始時における駆動電流が小さいため、駆動電流の傾きの変化点における駆動電流(時刻tb4における駆動電流)も小さくなる。このため、フルリフト位置の到達後、駆動電流の傾きが正方向に大きくなる。また、フルリフト位置の到達前後において、駆動電流の傾く方向が好適に反転する。
 このように、フルリフト位置の到達前後において、駆動電流の傾く方向が反転し、且つ、フルリフト位置の到達後、駆動電流の傾きが正方向に大きくなるため、駆動電流の変化点を判定しやすくなる。
 なお、ニードル33がフルリフト位置に到達した後においてそのフルリフト状態が維持され、燃料噴射が継続されることとなる。また、時刻ta5で噴射パルスがオフになると、燃料噴射弁30への電圧印加が停止され、駆動電流がゼロになる。そして、燃料噴射弁30のコイル通電の停止に伴いニードルリフトが終了され、それに合わせて燃料噴射が停止される。
 このように、フルリフト位置を判定する際、フルリフト位置の到達時における駆動電流を小さくすることにより、フルリフト位置の到達前後の駆動電流の変化点を特定しやすくなる。
 なお、リフト位置判定処理を実施しない通常時においては、駆動電流を大きくして、到達時までの時間を短くすることが望ましい。なぜならば、フルリフト位置の到達前における中間リフトの領域では、燃料噴射弁30の個体差によりリフト量が異なり、噴射量の個体ばらつきが大きくなるからである。
 上記によれば以下の優れた効果を奏することができる。
 リフト位置判定処理を実施しない通常時においては、フルリフト位置の到達までの時間を短くして個体ばらつきを抑えるため、フルリフト位置の到達時における駆動電流を大きくすることが望ましい。しかしながら、フルリフト位置の到達時における駆動電流を大きくした場合、フルリフト位置の到達前後において駆動電流の傾きの方向が好適に反転するとは限らず、また、フルリフト位置の到達後におけて駆動電流の傾きが正方向に大きくなるとは限らない。このため、フルリフト位置の到達前後における駆動電流の変化点の判定精度が悪い場合がある。
 そこで、ECU40は、リフト位置判定処理(フルリフト位置の判定)を実施する場合、実施しない場合と比較して、ニードル33がフルリフト位置に達する時の駆動電流が小さくなるように、燃料噴射弁30の駆動電流を制御した。これにより、フルリフト位置到達前後における駆動電流の傾きの方向が好適に反転し、また、その変化も急峻となる。
 すなわち、数式(1)、(2)や図8に示すように、フルリフト位置の到達時における駆動電流が所定の電流範囲Xに存在する場合、フルリフト位置の到達前後において、駆動電流の傾きが負方向から正方向に反転する。このため、駆動電流の変化点を特定するための基準(ゼロ又はゼロ近傍の値)を容易に定めることができる。また、フルリフト位置の到達時における駆動電流が所定の電流範囲X内において下限X1に近いほど、フルリフト位置の到達後における駆動電流の傾きを正方向に大きくすることができ、ノイズと駆動電流の変化とを区別しやすくなる。
 このため、リフト位置判定処理を実施する場合、実施しない場合と比較してフルリフト位置の到達時における駆動電流を小さくすることにより、フルリフト位置に達する時の駆動電流の変化点が判定容易となり、フルリフト位置到達時の判定精度(判定精度)を向上させることができる。
 ECU40は、リフト位置判定処理を実施する場合、実施しない場合と比較して判定用の電流閾値Ih1を小さくする。これにより、低電圧V1の印加開始タイミングを遅くなり、ニードル33がフルリフト位置に達する時の駆動電流が小さくなるように、制御することができる。つまり、バッテリ51の電圧V1や、コイル31の抵抗R、インダクタンスLを変更することなく、フルリフト位置に達する時の駆動電流を小さくすることが可能である。
 (第2実施形態)
 第2実施形態では、低電圧V1を印加開始する際の制御、及び駆動パラメータなどが第1実施形態と異なる。以下、第1実施形態とは異なる点を中心に、詳しく説明する。
 第2実施形態において、駆動パラメータには、電流閾値Ihは存在せず、代わりに高電圧V2の印加開始から低電圧V1の印加開始までの時間を示す印加開始時間が含まれる。印加開始時間は、通常時と判定時のいずれであっても同じである。
 第2実施形態における低電圧V1を印加開始する際の制御について説明する。ステップS13又はステップS15において、駆動ICは、噴射パルスの立ち上がりに伴い、高電圧V2を印加する。そして、駆動ICは、検出された駆動電流が、マイコン41により設定されたピーク値Ip以上となった場合、高電圧V2の印加を停止する。その後、駆動ICは、高電圧V2の印加開始から、マイコン41により設定された印加開始時間が経過した場合、低電圧V1の印加を開始する。そして、駆動ICは、噴射パルスの立ち下がりに伴い、低電圧V1の印加を停止する。
 そして、ステップS14において設定される判定用の駆動パラメータのうち、判定用のピーク値Ip1は、通常のピーク値Ip(ステップS12において設定されるピーク値Ip)と比較して小さくされている。すなわち、リフト位置判定処理を実施する際、リフト位置判定処理を実施しない場合と比較して、高電圧V2の印加停止タイミングが早くなる。その一方、高電圧V2の印加開始から低電圧V1の印加開始までの時間(印加開始時間)は一定である。このため、リフト位置判定処理を実施する際、リフト位置判定処理を実施しない場合と比較して、印加停止期間が長くなる。これらの結果としてフルリフト位置の到達時における駆動電流が小さくなる。
 なお、判定用のピーク値Ip1は、フルリフト位置の到達時における駆動電流が前述した電流範囲X内に収まるのであれば、任意に変更してもよい。また、判定用のピーク値Ip1は、フルリフト位置の到達時における駆動電流が前述した電流範囲X内に収まるのであれば、小さい方が望ましい。すなわち、フルリフト位置の到達時における駆動電流が電流範囲Xのうち下限X1に近い値となるように、判定用のピーク値Ip1をなるべく小さくすることが望ましい。
 次に、通常時における駆動電流の変化と、判定時における駆動電流の変化の違いについて、図11に基づき説明する。図11において、判定時における駆動電流の変化を実線で示し、通常時における駆動電流の変化を破線で示す。なお、通常時における駆動電流の変化は、前述と同様であるため、説明を省略する。
 時刻ta1では、噴射パルスの立ち上がりに伴いバッテリ電圧を昇圧した高電圧V2が燃料噴射弁30に印加される。時刻tc2において、駆動電流が、判定用のピーク値Ip1に到達すると、高電圧V2の印加が停止される。このとき、駆動電流が判定用のピーク値Ip1に到達するタイミング、又はその直前のタイミングにおいてニードルリフトが開始され、そのニードルリフトに伴い燃料噴射が開始される。
 高電圧V2が印加開始されてから、印加開始時間が経過した時刻ta3において、バッテリ電圧である低電圧V1が燃料噴射弁30に印加される。高電圧V2の印加停止タイミングが早くなる一方、高電圧V2が印加開始されてから低電圧V1が印加開始されるまでの時間(時刻ta1~ta3)は一定である。このため、判定時の印加停止期間(tc2~ta3)が通常時の印加停止期間(ta2~ta3)と比較して長くなる。なお、印加停止期間中、駆動電流は、低下し続ける。
 低電圧V1の印加後、通常時の場合と同様に、駆動電流の負方向の傾きが緩やかとなる。しかしながら、ピーク値Ip1が低く、且つ、印加停止期間が通常時よりも長いことに伴って、低電圧V1の印加開始時における駆動電流は通常時と比較して小さい。その結果、判定時において、通常時と比較して、駆動電流の傾きの変化点における駆動電流(時刻tc4における駆動電流)も小さくなる。このため、フルリフト位置の到達後、駆動電流の傾きが正方向に大きくなる。また、フルリフト位置の到達前後において、駆動電流の傾く方向が好適に反転する。
 上記第2実施形態によれば以下の優れた効果を奏することができる。
 フルリフト位置判定処理を実施する場合、実施しない場合のピーク値Ipと比較して判定用のピーク値Ip1は、小さく設定される。このため、フルリフト位置判定処理を実施する場合、実施しない場合と比較して高電圧V2の印加停止が早く終了する。
 一方、リフト位置判定処理の有無にかかわらず、高電圧V2の印加開始から低電圧V1の印加開始までの時間(印加開始時間)は一定である。このため、フルリフト位置判定処理を実施する場合、実施しない場合と比較して印加停止期間が長くなり、且つ、判定用のピーク値Ip1も小さいため、低電圧V1の印加開始時における駆動電流も小さくなる。これに伴い、駆動電流の傾きの変化点の駆動電流(時刻tc4における駆動電流)も通常時と比較して小さくなる。このため、フルリフト位置の到達後、駆動電流の傾きが正方向に大きくなる。また、フルリフト位置の到達前後において、駆動電流の傾く方向が好適に反転する。したがって、フルリフト位置の判定精度を向上させることができる。
 (第3実施形態)
 第3実施形態では、低電圧V1を印加開始する際の制御及び駆動パラメータが第2実施形態と異なる。以下、第2実施形態とは異なる点を中心に、詳しく説明する。
 第2実施形態において、駆動パラメータには、電流閾値Ihは存在せず、高電圧V2の印加停止から低電圧V1の印加開始までの時間を示す停止時間が含まれる。停止時間は、通常時と判定時のいずれであっても同じである。
 低電圧V1を印加開始する際の制御について説明する。ステップS13又はステップS15において、駆動ICは、噴射パルスの立ち上がりに伴い、高電圧V2を印加する。そして、駆動ICは、検出された駆動電流が、マイコン41により設定されたピーク値Ip以上となった場合、高電圧V2の印加を停止する。その後、駆動ICは、高電圧V2の印加停止から、マイコン41により設定された停止時間が経過した場合、低電圧V1の印加を開始する。そして、駆動ICは、噴射パルスの立ち下がりに伴い、低電圧V1の印加を停止する。
 次に、通常時における駆動電流の変化と、判定時における駆動電流の変化の違いについて図12に基づき説明する。図12において、判定時における駆動電流の変化を実線で示し、通常時における駆動電流の変化を破線で示す。なお、通常時における駆動電流の変化は、前述と同様であるため、説明を省略する。
 時刻ta1では、噴射パルスの立ち上がりに伴いバッテリ電圧を昇圧した高電圧V2が燃料噴射弁30に印加される。時刻td2において、駆動電流が、判定用のピーク値Ip1に到達すると、高電圧V2の印加が停止される。判定用のピーク値Ip1は、通常のピーク値Ipと比較して小さいため、高電圧V2の印加停止タイミングが早くなる。このとき、駆動電流が判定用のピーク値Ip1に到達するタイミング、又はその直前のタイミングにおいてニードルリフトが開始され、そのニードルリフトに伴い燃料噴射が開始される。
 高電圧V2が印加停止されてから、停止時間が経過した時刻td3において、バッテリ電圧である低電圧V1が燃料噴射弁30に印加される。なお、停止時間中、駆動電流は、低下し続ける。
 低電圧V1の印加後、通常時の場合と同様に、駆動電流の負方向の傾きが緩やかとなる。しかしながら、停止時間(時刻td2~td3)が通常時(時刻ta2~ta3)と同じであり、かつ、判定用のピーク値Ip1が通常時よりも小さいため、低電圧V1の印加開始時における駆動電流は通常時と比較して小さい。その結果、駆動電流の傾きの変化点(フルリフト位置の到達時)の駆動電流(時刻td4における駆動電流)も小さくなる。このため、フルリフト位置の到達後、駆動電流の傾きが正方向に大きくなる。また、フルリフト位置の到達前後において、駆動電流の傾く方向が好適に反転する。
 上記第3実施形態によれば以下の優れた効果を奏することができる。
 フルリフト位置判定処理を実施する場合、実施しない場合のピーク値Ipと比較して判定用のピーク値Ip1は、小さく設定される。このため、フルリフト位置判定処理を実施する場合、実施しない場合と比較して高電圧V2の印加停止が早く終了する。
 一方、リフト位置判定処理の有無にかかわらず、高電圧V2の印加停止から低電圧V1の印加開始まで停止時間は一定である。このため、フルリフト位置判定処理を実施する場合、実施しない場合と比較して印加停止期間が一定であり、且つ、判定用のピーク値Ip1も小さいため、低電圧V1の印加開始時における駆動電流は、通常時よりも小さくなる。これに伴い、駆動電流の傾きの変化点の駆動電流(時刻td4における駆動電流)も通常時よりも小さくなる。このため、フルリフト位置の到達後、駆動電流の傾きが正方向に大きくなる。また、フルリフト位置の到達前後において、駆動電流の傾く方向が好適に反転する。したがって、フルリフト位置の判定精度を向上させることができる。
 (第4実施形態)
 第4実施形態では、高電圧V2の印加停止後、逆極性の電圧が印加され、その後に、低電圧V1が印加される点が第1実施形態と主に異なる。以下、第1実施形態とは異なる点を中心に、詳しく説明する。
 第4実施形態において、電圧切替回路43は、各気筒21の燃料噴射弁30に印加される駆動用電圧として、高電圧V2を逆極性でコイル31に対して印加可能に構成されている。なお、第4実施形態では、逆極性で高電圧V2を印加することを、便宜上、フライバック電圧V3を印加すると示す。
 本実施形態において、駆動パラメータには、電流閾値Ihは存在せず、代わりにフライバック電圧V3の印加時間が設定されている。そして、通常時の駆動パラメータには、フライバック電圧V3の印加時間としてゼロが設定されている。一方、判定時の駆動パラメータには、フライバック電圧V3の印加時間としてゼロよりも大きい値が設定されている。なお、フライバック電圧V3の印加時間は、任意に変更してもよいが、判定時のフライバック電圧V3の印加時間は、通常時のフライバック電圧V3の印加時間よりも長いことが望ましい。
 次に、ステップS15の処理内容について説明する。ステップS15において、駆動ICは、噴射パルスの立ち上がりに伴い、高電圧V2を印加する。そして、駆動ICは、検出された駆動電流が、マイコン41により設定されたピーク値Ip以上となった場合、高電圧V2の印加を停止するとともに、フライバック電圧V3を印加する。
 その後、駆動ICは、フライバック電圧V3の印加開始から、マイコン41により設定された印加時間が経過した場合、フライバック電圧V3の印加を停止する。そして、駆動ICは、高電圧V2の印加停止から一定時間経過後、低電圧V1の印加を開始する。なお、高電圧V2の印加停止から低電圧V1の印加開始までの時間は、少なくともフライバック電圧V3の印加時間よりも長く設定されている。そして、駆動ICは、噴射パルスの立ち下がりに伴い、低電圧V1の印加を停止する。
 なお、ステップS13も同様であるが、フライバック電圧V3の印加時間が短い(本実施形態では印加されない)点でステップS15と異なる。
 次に、通常時における駆動電流の変化と、判定時における駆動電流の変化の違いについて図13に基づき説明する。図13において、判定時における駆動電流の変化を実線で示し、通常時における駆動電流の変化を破線で示す。なお、通常時における駆動電流の変化は、前述と同様であるため、説明を省略する。
 時刻ta1では、噴射パルスの立ち上がりに伴いバッテリ電圧を昇圧した高電圧V2が燃料噴射弁30に印加される。時刻ta2において、駆動電流が、ピーク値Ipに到達すると、高電圧V2の印加が停止される。このとき、駆動電流がピーク値Ipに到達するタイミング又はその直前のタイミングにおいてニードルリフトが開始され、そのニードルリフトに伴い燃料噴射が開始される。
 高電圧V2が印加停止された時刻ta2から、フライバック電圧V3が印加される。フライバック電圧V3は、高電圧V2及び低電圧V1と逆極性であることから、リフト位置判定処理が行わる場合、リフト位置判定処理が行われない場合と比較して、駆動電流の負方向の傾きが大きくなる。
 フライバック電圧V3の印加時間が経過した時刻te3において、フライバック電圧V3の印加が停止される。フライバック電圧V3の印加が停止されることにより、逆起電力が生じ、一時的に駆動電流が上昇する。
 高電圧V2の印加停止から一定時間が経過した時刻ta4において、バッテリ電圧である低電圧V1が燃料噴射弁30に印加される。低電圧V1の印加後、駆動電流が緩やか低下する。
 しかしながら、フライバック電圧V3を印加したことにより、低電圧V1の印加開始時における駆動電流は通常時と比較して小さい。その結果、駆動電流の傾きの変化点の駆動電流(時刻te4における駆動電流)も通常時と比較して小さくなる。このため、フルリフト位置の到達後、駆動電流の傾きが正方向に大きくなる。また、フルリフト位置の到達前後において、駆動電流の傾く方向が好適に反転する。
 上記第4実施形態によれば以下の優れた効果を奏することができる。
 高電圧V2の印加停止後、高電圧V2及び低電圧V1と逆極性であるフライバック電圧V3が印加され、その後に、低電圧V1が印加される。そして、ECU40は、リフト位置判定処理が実施される場合、実施されない場合と比較して、フライバック電圧V3の印加時間(印加期間)を長くしている。このため、低電圧V1の印加開始時における駆動電流を小さくし、それに伴い、駆動電流の傾きの変化点(フルリフト位置の到達時)の駆動電流を小さくすることができる。このため、フルリフト位置の到達後、駆動電流の傾きが正方向に大きくなる。また、フルリフト位置の到達前後において、駆動電流の傾く方向が好適に反転する。したがって、フルリフト位置の判定精度を向上させることができる。
 フライバック電圧V3の印加の終了時において、逆起電力が発生して電流波形が一時的に乱れる。そこで、ECU40は、フライバック電圧V3の印加が終了してから所定期間経過後に、フルリフト位置の判定を実施することにより、判定精度を向上させることとした。
 (他の実施形態)
 本開示は、上記実施形態に限定されず、例えば以下のように実施してもよい。なお、以下では、各実施形態で互いに同一又は均等である部分には同一符号を付しており、同一符号の部分についてはその説明を援用する。
 上記実施形態では、ECU40(マイコン41)が、リフト位置判定処理を実施せずに燃料噴射弁30の駆動制御を実施する第1制御部としての機能と、リフト位置判定処理を実施して前記燃料噴射弁30の駆動制御を実施する第2制御部としての機能を兼ね備えた。この別例として、ECU(マイコン)を、第1制御部と第2制御部とについてそれぞれ設けてもよい。
 上記第4実施形態において、低圧電源部45及び高圧電源部46とは別に、フライバック電圧V3を印加する電源部(第3電源部)を設けてもよい。
 上記第4実施形態において、フライバック電圧V3の大きさを変更可能に構成してもよい。この場合、判定時におけるフライバック電圧V3を、通常時のフライバック電圧V3と比較して大きく設定することができるようにしてもよい。判定時においてフライバック電圧V3を大きくするのであれば、フライバック電圧V3の印加時間が同じであってもよい。
 上記実施形態において、低電圧V1を印加する際、デューティ制御を行い、オンオフを周期的に繰り返すようにしてもよい。この場合、フルリフト位置の到達後において、駆動電流が所定範囲に収まるようにオンオフを周期的に繰り返すように制御することが望ましい。
 なお、リフト位置判定処理を実施する場合には、安定して電圧が印加されることが望ましい。このため、ディーティ制御を可能に構成しても、リフト位置判定処理を実施する場合には、ECU40は、継続して低電圧V1を印加させてもよい(デューティ比100%としてもよい)。
 上記第1実施形態又は上記第4実施形態において、ECU40は、判定時のピーク値Ipを通常時のピーク値Ipと比較して小さくしてもよい。これにより、判定時においてより素早く、駆動電流を低下させることができる。
 上記第1実施形態~第3実施形態と、第4実施形態を組み合わせてもよい。すなわち、ECU40は、高電圧V2の印加停止後、フライバック電圧V3を印加してもよい。これにより、判定時においてより素早く、駆動電流を低下させることができる。
 上記第4実施形態において、ECU40は、フライバック電圧V3を印加停止するとともに、低電圧V1の印加を開始してもよい。この場合であっても、フライバック電圧V3が印加停止されてから所定時間経過後に、フルリフト位置の到達することが望ましい。このようにすることにより、逆起電力の影響を抑えることができる。
 上記実施形態のECU40は、リフト位置判定処理において、駆動電流の傾き(駆動電流の1回微分)に基づき、フルリフト位置を判定したが、他の判定方法を採用してもよい。例えば、駆動電流の傾きの変化(駆動電流の2回微分)に基づき判定する方法、基準波形との差分に基づき判定する方法、又は所定期間における駆動電流のサンプル値のばらつき指標に基づき判定する方法などを採用してもよい。
 上記実施形態のステップS11において、フルリフト位置の判定が許可されているか否かを判定しなくてもよい。すなわち、ECU40は、フルリフト位置の判定が要求されている場合には、ステップS14に移行してもよい。
 上記実施形態において、噴射時間(噴射パルス幅)に乗算する補正係数を算出し、補正係数に基づき噴射時間を補正する補正方法が採用されていたが、これ以外の補正方法を採用してもよい。例えば、噴射時間(噴射パルス幅)を加算又は減算する補正値を算出し、噴射時間を補正値に基づき加算又は減算する補正方法を採用してもよい。また、噴射時間以外の駆動パラメータを補正する補正方法であってもよい。例えば、ピーク値Ipや電流閾値Ihを変更する補正、高電圧V2,低電圧V1を変更する補正、高電圧V2の印加停止タイミング又は低電圧V1の印加開始タイミングを変更する補正等であってもよい。要するにフルリフト位置への到達タイミングが基準タイミングからのずれを考慮して補正されればよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (8)

  1.  第1電源部(46)と、前記第1電源部よりも電源電圧の小さい第2電源部(45)と、これら各電源部からの電力供給により駆動される燃料噴射弁(30)と、前記燃料噴射弁の駆動電流を検出する電流検出部(44)と、を備える燃料噴射システムに適用され、
     前記燃料噴射弁が駆動する場合、前記燃料噴射弁に対して先に前記第1電源部による電圧印加を行い、その後に前記第2電源部による電圧印加を行う一方で、前記第1電源部による電圧印加後に、前記電流検出部により検出された駆動電流の変化に基づいて、前記燃料噴射弁の弁体が所定リフト位置に達したことを判定するリフト位置判定処理(S16)を実施する燃料噴射制御装置(40)であって、
     前記リフト位置判定処理を実施せずに前記燃料噴射弁の駆動制御を実施する第1制御部(40)と、
     前記リフト位置判定処理を実施して前記燃料噴射弁の駆動制御を実施する第2制御部(40)と、を備え、
     前記第2制御部は、前記第1制御部による駆動制御の実施時に比べて、前記弁体が所定リフト位置に達する時の駆動電流が小さくなるように、前記燃料噴射弁の駆動電流を制御する燃料噴射制御装置。
  2.  前記第2制御部は、前記弁体が所定リフト位置に達する時の駆動電流が、所定の電流範囲内で小さくなるように、前記燃料噴射弁の駆動電流を制御する請求項1に記載の燃料噴射制御装置。
  3.  前記燃料噴射弁が駆動する場合において、前記第2電源部による電圧印加は、前記第1電源部による電圧印加が行われた後に、前記燃料噴射弁の駆動電流が所定の閾値まで低下したことに基づいて行われるものであり、
     前記第2制御部は、前記第1制御部による駆動制御が行われる場合と比較して前記閾値を小さくする請求項1又は2に記載の燃料噴射制御装置。
  4.  前記燃料噴射弁が駆動する場合において、前記第2電源部による電圧印加は、前記第1電源部による電圧印加が行われた後、所定時間が経過したことに基づいて行われるものであり、
     前記第2制御部は、前記第1制御部による駆動制御が行われる場合と比較して前記所定時間を長くする請求項1~3のうちいずれか1項に記載の燃料噴射制御装置。
  5.  前記燃料噴射弁が駆動する場合において、前記第1電源部による電圧印加は、前記燃料噴射弁の駆動電流が所定のピーク値に上昇するまで行われ、前記第2電源部による電圧印加は、前記第1電源部による電圧印加の開始後、所定時間が経過したことに基づいて行われるものであり、
     前記第2制御部は、前記第1制御部による駆動制御が行われる場合と比較して前記ピーク値を小さくする請求項1又は2に記載の燃料噴射制御装置。
  6.  前記燃料噴射弁が駆動する場合において、前記第1電源部による電圧印加は、前記燃料噴射弁の駆動電流が所定のピーク値に上昇するまで行われ、前記第2電源部による電圧印加は、前記第1電源部による電圧印加の終了後、所定時間が経過したことに基づいて行われるものであり、
     前記第2制御部は、前記第1制御部による駆動制御が行われる場合と比較して前記ピーク値を小さくする請求項1又は2に記載の燃料噴射制御装置。
  7.  前記燃料噴射弁が駆動する場合において、前記第1電源部による電圧印加が行われた後、前記第2電源部による電圧印加が行われる前に、前記第1電源部及び前記第2電源部とは逆極性の電圧が第3電源部により印加されるものであり、
     前記第2制御部は、前記第1制御部による駆動制御が行われる場合と比較して、前記第3電源部による電圧印加を行う期間を長くする、又は前記第3電源部が印加する電圧を大きくする請求項1又は2に記載の燃料噴射制御装置。
  8.  前記第2制御部は、前記第3電源部による電圧印加が終了してから所定期間経過後に、前記所定リフト位置の判定を実施する請求項7に記載の燃料噴射制御装置。
PCT/JP2018/018996 2017-05-19 2018-05-16 燃料噴射制御装置 WO2018212255A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880029465.6A CN110612388B (zh) 2017-05-19 2018-05-16 燃料喷射控制装置
DE112018002588.8T DE112018002588B4 (de) 2017-05-19 2018-05-16 Kraftstoffeinspritzsteuervorrichtung
US16/681,999 US10876486B2 (en) 2017-05-19 2019-11-13 Fuel injection control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-099752 2017-05-19
JP2017099752A JP6614201B2 (ja) 2017-05-19 2017-05-19 燃料噴射制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/681,999 Continuation US10876486B2 (en) 2017-05-19 2019-11-13 Fuel injection control device

Publications (1)

Publication Number Publication Date
WO2018212255A1 true WO2018212255A1 (ja) 2018-11-22

Family

ID=64273838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018996 WO2018212255A1 (ja) 2017-05-19 2018-05-16 燃料噴射制御装置

Country Status (5)

Country Link
US (1) US10876486B2 (ja)
JP (1) JP6614201B2 (ja)
CN (1) CN110612388B (ja)
DE (1) DE112018002588B4 (ja)
WO (1) WO2018212255A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6614201B2 (ja) 2017-05-19 2019-12-04 株式会社デンソー 燃料噴射制御装置
JP7507052B2 (ja) * 2020-09-30 2024-06-27 日立Astemo株式会社 電磁弁駆動装置
US11415070B2 (en) * 2020-11-24 2022-08-16 Caterpillar Inc. Method and system for identification of fuel injector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000008894A (ja) * 1998-06-22 2000-01-11 Fuji Heavy Ind Ltd 電磁駆動バルブの制御装置
JP2001012267A (ja) * 1999-06-30 2001-01-16 Fuji Heavy Ind Ltd 電磁駆動バルブを有する動弁装置
JP2014152697A (ja) * 2013-02-08 2014-08-25 Hitachi Automotive Systems Ltd 燃料噴射装置の駆動装置
JP2014163278A (ja) * 2013-02-25 2014-09-08 Denso Corp 燃料噴射制御装置および燃料噴射システム
JP2017020478A (ja) * 2015-07-15 2017-01-26 株式会社デンソー 内燃機関の燃料噴射制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4322199C2 (de) * 1993-07-03 2003-06-18 Bosch Gmbh Robert Verfahren und Einrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
JP4917556B2 (ja) * 2008-01-07 2012-04-18 日立オートモティブシステムズ株式会社 内燃機関の燃料噴射制御装置
JP4911197B2 (ja) * 2009-06-01 2012-04-04 株式会社デンソー 直動式燃料噴射弁の制御装置
JP5754357B2 (ja) * 2011-11-18 2015-07-29 株式会社デンソー 内燃機関の燃料噴射制御装置
JP5727395B2 (ja) * 2012-01-16 2015-06-03 日立オートモティブシステムズ株式会社 内燃機関の制御装置
EP2662555A1 (en) * 2012-05-10 2013-11-13 Continental Automotive GmbH Method for monitoring an injection valve
JP2014055571A (ja) * 2012-09-13 2014-03-27 Denso Corp 燃料噴射制御装置
DE102013207842B4 (de) * 2013-04-29 2015-04-09 Continental Automotive Gmbh Verfahren und Vorrichtung zur Ermittlung eines Referenz-Stromverlaufs für einen Kraftstoffinjektor zur Ermittlung des Zeitpunkts eines vorbestimmten Öffnungszustandes des Kraftstoffinjektors
CN106255815B (zh) * 2014-04-25 2020-05-22 日立汽车系统株式会社 电磁式燃料喷射阀的控制装置
JP6629583B2 (ja) 2015-12-03 2020-01-15 愛知株式会社 椅子
CN109642533B (zh) * 2016-08-26 2021-03-02 日立汽车系统株式会社 燃料喷射装置的控制装置
JP6856387B2 (ja) * 2017-01-20 2021-04-07 日立Astemo株式会社 燃料噴射装置の駆動装置
JP6614201B2 (ja) 2017-05-19 2019-12-04 株式会社デンソー 燃料噴射制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000008894A (ja) * 1998-06-22 2000-01-11 Fuji Heavy Ind Ltd 電磁駆動バルブの制御装置
JP2001012267A (ja) * 1999-06-30 2001-01-16 Fuji Heavy Ind Ltd 電磁駆動バルブを有する動弁装置
JP2014152697A (ja) * 2013-02-08 2014-08-25 Hitachi Automotive Systems Ltd 燃料噴射装置の駆動装置
JP2014163278A (ja) * 2013-02-25 2014-09-08 Denso Corp 燃料噴射制御装置および燃料噴射システム
JP2017020478A (ja) * 2015-07-15 2017-01-26 株式会社デンソー 内燃機関の燃料噴射制御装置

Also Published As

Publication number Publication date
CN110612388B (zh) 2021-12-28
US20200080507A1 (en) 2020-03-12
CN110612388A (zh) 2019-12-24
DE112018002588T5 (de) 2020-02-27
JP2018193950A (ja) 2018-12-06
JP6614201B2 (ja) 2019-12-04
US10876486B2 (en) 2020-12-29
DE112018002588B4 (de) 2022-06-09

Similar Documents

Publication Publication Date Title
US9835105B2 (en) Fuel injection control device for internal combustion engine
JP6314733B2 (ja) 内燃機関の燃料噴射制御装置
US10718290B2 (en) Device for controlling fuel injection in internal combustion engine
JP2010255444A (ja) 内燃機関の燃料噴射制御装置及び方法
US10428755B2 (en) Control device for internal combustion engine
JP2009074373A (ja) 内燃機関の燃料噴射制御装置
WO2018212255A1 (ja) 燃料噴射制御装置
US11060474B2 (en) Fuel injection control device
US11053882B2 (en) Fuel injection valve control device and fuel injection valve control method
JP6493334B2 (ja) 内燃機関の燃料噴射制御装置
WO2016170739A1 (ja) 燃料噴射制御装置
JP2013137028A (ja) 内燃機関の燃料噴射制御装置及び方法
JP6953862B2 (ja) 燃料噴射制御装置
US11486328B2 (en) Injection control device
WO2017094430A1 (ja) 内燃機関の燃料噴射制御装置
WO2018096940A1 (ja) 燃料噴射制御装置
JP2018189068A (ja) 内燃機関の燃料噴射制御装置
JP7006155B2 (ja) 燃料噴射制御装置
JP7035466B2 (ja) 燃料噴射制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18803138

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18803138

Country of ref document: EP

Kind code of ref document: A1