WO2018211887A1 - 導電性接着剤 - Google Patents
導電性接着剤 Download PDFInfo
- Publication number
- WO2018211887A1 WO2018211887A1 PCT/JP2018/015733 JP2018015733W WO2018211887A1 WO 2018211887 A1 WO2018211887 A1 WO 2018211887A1 JP 2018015733 W JP2018015733 W JP 2018015733W WO 2018211887 A1 WO2018211887 A1 WO 2018211887A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive adhesive
- mass
- resin
- acrylic resin
- less
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/04—Non-macromolecular additives inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
- C09J133/04—Homopolymers or copolymers of esters
- C09J133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09J133/062—Copolymers with monomers not covered by C09J133/06
- C09J133/068—Copolymers with monomers not covered by C09J133/06 containing glycidyl groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J175/00—Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
- C09J175/04—Polyurethanes
- C09J175/06—Polyurethanes from polyesters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J201/00—Adhesives based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J9/00—Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
- C09J9/02—Electrically-conducting adhesives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2203/00—Applications of adhesives in processes or use of adhesives in the form of films or foils
- C09J2203/326—Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/30—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
- C09J2301/312—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
Definitions
- This disclosure relates to conductive adhesives.
- Conductive adhesive is often used in flexible printed circuit boards.
- a reinforcing metal plate made of stainless steel is affixed to a flexible printed circuit board, but by using a conductive adhesive to attach the metal reinforcing plate, the reinforcing metal plate can function as a shield against electromagnetic waves. Can do.
- the conductive adhesive firmly adheres the insulating film (coverlay) provided on the surface of the flexible printed wiring board and the metal reinforcing plate, and is exposed from the opening provided in the insulating film. It is required to ensure good continuity with the existing ground circuit.
- the conductive adhesive is required to have not only embedding property but also adhesion. Specifically, the adhesiveness between the polyimide used for the flexible printed circuit board and the conductive adhesive and the adhesiveness between the gold plating layer provided on the surface of the ground circuit and the conductive adhesive are required.
- the problem of the present disclosure is to realize a conductive adhesive that achieves both embeddability and adhesion.
- One embodiment of the conductive adhesive of the present disclosure has a weight average molecular weight of 500,000 to 1,000,000, an epoxy resin having an epoxy group, a glass transition temperature of 5 ° C. to 100 ° C., and a number average molecular weight. Is 10,000 to 50,000 and contains a thermosetting resin having a functional group that reacts with an epoxy group and a conductive filler, and the ratio of the acrylic resin to the total of the acrylic resin and the thermosetting resin However, it is 15 mass% or more and 95 mass% or less.
- the acrylic resin may have a glass transition temperature of 0 ° C. or higher and 50 ° C. or lower.
- thermosetting resin can be a urethane-modified polyester resin.
- the acrylic resin can have an epoxy equivalent of 1000 g / eq or more and 10,000 g / eq or less.
- the thermosetting resin may have an acid value of 5 mgKOH / g or more and 50 mgKOH / g or less.
- the conductive adhesive of the present disclosure it is possible to achieve both embedding and adhesion.
- FIG. 1 is a cross-sectional view showing a step of bonding a reinforcing metal plate.
- FIG. 2 is a cross-sectional view showing a step of bonding the reinforcing metal plates.
- FIG. 3 is a cross-sectional view showing a step of bonding the reinforcing metal plates.
- FIG. 4 is a diagram showing a method for measuring peel strength.
- FIG. 5 is a diagram illustrating a method for measuring connection resistance.
- the conductive adhesive which concerns on one Embodiment contains the acrylic resin (A) which has an epoxy group, the thermosetting resin (B) which has a functional group which reacts with an epoxy group, and a conductive filler (C). is doing.
- the acrylic resin (A) has a weight average molecular weight (Mw) of 500,000 or more and 1,000,000 or less.
- the thermosetting resin (B) has a glass transition temperature of 5 ° C. or more and 100 ° C. or less, and a number average molecular weight (Mn) of 10,000 or more and 50,000 or less.
- the ratio of the acrylic resin (A) to the total of the acrylic resin (A) and the thermosetting resin (B) is 15% by mass or more and 95% by mass or less.
- Acrylic resin (A) The acrylic resin in the present disclosure is a polymer mainly composed of alkyl acrylate or alkyl methacrylate.
- acrylate and methacrylate are collectively referred to as (meth) acrylate.
- the alkyl (meth) acrylate is not particularly limited.
- it can be a (meth) acrylate having a linear or branched alkyl group having about 1 to 18 carbon atoms.
- alkyl (meth) acrylates can be used alone or in combination of two or more.
- the acrylic resin in the present disclosure has an epoxy group.
- the epoxy group is obtained by adding a polymerizable monomer having an epoxy group to alkyl (meth) acrylate and polymerizing an acrylic resin.
- the polymerizable monomer having an epoxy group can be, for example, a (meth) acrylate having an epoxy group such as glycidyl (meth) acrylate. It can also be obtained by adding a polymerizable (meth) acrylate oligomer having an epoxy group and polymerizing an acrylic resin. It can also be obtained by adding a polymerizable monomer or oligomer having an epoxy group and polymerizing an acrylic resin.
- the acrylic resin in the present disclosure may contain other monomer components.
- Other monomer components include, for example, aromatic vinyl compounds, (meth) acrylic acid, ⁇ -carboxyethyl acrylate, itaconic acid, crotonic acid, maleic acid, fumaric acid, maleic anhydride and other carboxyl group-containing monomers; cyclohexyl (meta ) Aliphatic ester group-containing monomers other than alkyl groups such as acrylate and isobornyl (meth) acrylate; Aromatic ester group-containing monomers such as phenyl (meth) acrylate and benzyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, Hydroxyl group-containing monomers such as 4-hydroxybutyl (meth) acrylate, chloro-2-hydroxypropyl acrylate, diethylene glycol mono (meth) acrylate, and allyl alcohol; aminomethyl (meth) acrylate, di Amino group-containing
- the epoxy equivalent of the acrylic resin particularly affects the heat resistance. For this reason, Preferably it is 10,000 g / eq or less, More preferably, it is 9000 g / eq or less, More preferably, it is 8000 g / eq or less. Moreover, Preferably it is 1000 g / eq or more, More preferably, it is 2000 g / eq or more, More preferably, it is 3000 g / eq or more.
- the epoxy equivalent can be measured according to JIS K7236: 2001.
- the acrylic resin (A) in the present disclosure has an Mw of 500,000 or more and 1,000,000 or less. From the viewpoint of embeddability, the Mw of the acrylic resin (A) is 500,000 or more, preferably 700,000 or more, more preferably 750,000 or more. On the other hand, Mw is 1 million or less, preferably 950,000 or less, more preferably 900,000 or less from the viewpoint of ensuring fluidity. In addition, Mw can be made into the value of styrene conversion measured by gel permeation chromatography (GPC).
- the glass transition temperature of the acrylic resin is preferably 0 ° C. or higher, more preferably 5 ° C. or higher, and further preferably 10 ° C. or higher, from the viewpoint of embedding. Moreover, Preferably it is 50 degrees C or less, More preferably, it is 30 degrees C or less, More preferably, it is 20 degrees C or less.
- the glass transition temperature can be measured using a differential scanning calorimeter (DSC).
- the polymerization method of the acrylic resin is not particularly limited, and a known polymerization method can be used. For example, if suspension polymerization is used, an acrylic resin having an epoxy group with an Mw of 500,000 or more and 1,000,000 or less can be easily obtained.
- acrylic resins examples include the Tethan Resin series (SG-70L, SG-708-6, SG-P3) manufactured by Nagase ChemteX.
- Thermosetting resin (B) Thermosetting resin of the present embodiment has a glass transition temperature of 5 ° C. or higher, preferably 10 ° C. or higher, more preferably 30 ° C. or higher from the viewpoint of embedding. Moreover, it is 100 degrees C or less, Preferably it is 90 degrees C or less, More preferably, it is 80 degrees C or less.
- the glass transition temperature can be measured using a differential scanning calorimeter (DSC).
- the thermosetting resin of this embodiment preferably has a Mn of 10,000 or more from the viewpoint of embedding. Moreover, Preferably it is 50,000 or less, More preferably, it is 30,000 or less. In addition, Mn can be made into the value of styrene conversion measured by gel permeation chromatography (GPC).
- the thermosetting resin of this embodiment has a functional group that reacts with an epoxy group.
- the functional group that reacts with the epoxy group is not particularly limited, and examples thereof include a hydroxyl group, a carboxyl group, an epoxy group, and an amino group. Of these, a hydroxyl group and a carboxyl group are preferred.
- the acid value is preferably 5 mgKOH / g or more, more preferably 10 mgKOH / g or more, and further preferably 15 mgKOH / g or more from the viewpoint of heat resistance. Moreover, Preferably it is 50 mgKOH / g or less, More preferably, it is 45 mgKOH / g or less, More preferably, it is 40 mgKOH / g or less.
- the acid value can be measured according to JIS K0070: 1992.
- the thermosetting resin of the present embodiment is not particularly limited, but is preferably a urethane-modified polyester resin.
- the urethane-modified polyester resin is a polyester resin containing a urethane resin as a copolymer component.
- the urethane-modified polyester resin is obtained by, for example, condensing polymerization of an acid component such as a polyvalent carboxylic acid or its anhydride and a glycol component to obtain a polyester resin, and then reacting the terminal hydroxyl group of the polyester resin with an isocyanate component. be able to.
- a urethane-modified polyester resin can also be obtained by simultaneously reacting an acid component, a glycol component, and an isocyanate component.
- the acid component is not particularly limited.
- terephthalic acid isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 2,2′-diphenyl Dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, adipic acid, azelaic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-methyl-1 , 2-cyclohexanedicarboxylic acid, dimer acid, trimellitic anhydride, pyromellitic anhydride, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid An anhydride or
- the glycol component is not particularly limited.
- the isocyanate component is not particularly limited.
- thermosetting resin is not limited to urethane-modified polyester resin, and acid anhydride-modified polyester resin, epoxy resin, and the like can also be used.
- the ratio (A / (A + B)) of the mass of the acrylic resin (A) to the total mass of the acrylic resin (A) and the thermosetting resin (B) is 15 masses. % Or more, preferably 20% by mass or more, more preferably 30% by mass or more and 95% by mass or less, preferably 90% by mass or less, more preferably 80% by mass or less.
- the conductive filler is not particularly limited, and for example, a metal filler, a metal-coated resin filler, a carbon filler, and a mixture thereof can be used.
- the metal filler include copper powder, silver powder, nickel powder, silver-coated copper powder, gold-coated copper powder, silver-coated nickel powder, and gold-coated nickel powder. These metal powders can be produced by an electrolytic method, an atomizing method, a reduction method, or the like. Among these, any of silver powder, silver-coated copper powder and copper powder is preferable.
- the conductive filler is not particularly limited, but from the viewpoint of contact between the fillers, the average particle diameter is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less.
- the shape of the conductive filler is not particularly limited, and may be spherical, flaky, dendritic, or fibrous, but is preferably dendritic from the viewpoint of obtaining a good connection resistance value.
- the content of the conductive filler can be appropriately selected according to the use, but is preferably 5% by mass or more, more preferably 10% by mass or more in the total solid content, Preferably it is 95 mass% or less, More preferably, it is 90 mass% or less. From the viewpoint of embedding properties, it is preferably 70% by mass or less, more preferably 60% by mass or less. Moreover, when realizing anisotropic conductivity, it is preferably 40% by mass or less, more preferably 35% by mass or less.
- a curable resin component other than the above-described acrylic resin having an epoxy group and a thermosetting resin having a functional group that reacts with the epoxy group may be added to the conductive adhesive of the present embodiment.
- a curable resin component an epoxy resin that is solid at room temperature or an epoxy resin that is liquid at room temperature can be used.
- solid at normal temperature means a state that does not have fluidity in a solvent-free state at 25 ° C.
- liquid at normal temperature has fluidity under the same conditions. It means to be in a state.
- Examples of the solid or liquid epoxy resin at room temperature include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy resin; spiro ring type epoxy resin, naphthalene type epoxy resin, biphenyl type Epoxy resin, terpene type epoxy resin, glycidyl ether type epoxy resin such as tris (glycidyloxyphenyl) methane, tetrakis (glycidyloxyphenyl) ethane; glycidylamine type epoxy resin such as tetraglycidyldiaminodiphenylmethane, tetrabromobisphenol A type epoxy resin , Cresol novolak type epoxy resin, phenol novolak type epoxy resin, ⁇ -naphthol novolak type epoxy resin, brominated phenol novolak Novolak epoxy resins such as epoxy resins; rubber-modified epoxy resins.
- bisphenol type epoxy resins such as bisphenol A
- the conductive adhesive of the present embodiment promotes the reaction between an acrylic resin having an epoxy group, a thermosetting resin having a functional group that reacts with the epoxy group, and other curable resin components as necessary.
- a curable compound may be blended.
- an imidazole curing agent, a phenol curing agent, a cationic curing agent, or the like can be used. These can be used alone or in combination of two or more.
- imidazole curing agents examples include 2-phenyl-4,5-dihydroxymethylimidazole, 2-heptadecylimidazole, 2,4-diamino-6- (2′-undecylimidazolyl) ethyl-S-triazine, 1 -Cyanoethyl-2-phenylimidazole, 2-phenylimidazole, 5-cyano-2-phenylimidazole, 2,4-diamino-6- [2'methylimidazolyl- (1 ')]-ethyl-S-triazine isocyanuric acid addition Alkyl groups on the imidazole ring such as 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 1-cyanoethyl-2-phenyl-4,5-di (2-cyanoethoxy) methylimidazole, etc. , Ethyl cyan
- phenolic curing agents examples include novolak phenol and naphtholic compounds.
- Examples of the cationic curing agent include an amine salt of boron trifluoride, an antimony pentachloride-acetyl chloride complex, and a sulfonium salt having a phenethyl group or an allyl group.
- An antifoaming agent, an antioxidant, a viscosity modifier, a diluent, an antisettling agent, a leveling agent, a coupling agent, a colorant, a flame retardant, and the like can be added to the conductive adhesive of the present embodiment.
- a flame retardant it is preferable to add a flame retardant in order to impart flame retardancy to the conductive adhesive.
- flame retardants examples include nitrogen-based flame retardants such as melamine cyanurate and melamine polyphosphate; metal hydrates such as magnesium hydroxide and aluminum hydroxide; and phosphate esters, red phosphorus, and phosphates. Examples thereof include phosphorus flame retardants such as compounds. Among these, phosphate compounds are preferable.
- an acrylic resin having an epoxy group and a thermosetting resin having a functional group that reacts with the epoxy group (and other curable resins as necessary) It is preferable to blend 10 parts by mass to 60 parts by mass with respect to 100 parts by mass in total of the components.
- a method for attaching a metal reinforcing plate to a flexible printed wiring board As an example of a method for using the conductive adhesive of the present embodiment, a method for attaching a metal reinforcing plate to a flexible printed wiring board will be described. First, as shown in FIG. 1, a flexible printed wiring board 110 and a metal reinforcing plate 135 provided with a conductive adhesive layer 130 made of the conductive adhesive of the present embodiment on one surface are prepared.
- the conductive adhesive layer 130 is provided on the surface of the metal reinforcing plate 135 by first coating a conductive adhesive on a peeling substrate (separate film) 142 and conducting conductive adhesion.
- a conductive adhesive film 141 having the agent layer 130 is formed.
- the conductive adhesive film 141 and the metal reinforcing plate 135 are pressed and brought into close contact with each other, so that a conductive reinforcing material having the conductive adhesive layer 130 can be obtained.
- the peeling substrate 142 may be peeled before use.
- the release substrate 142 is a base film made of polyethylene terephthalate, polyethylene naphthalate or the like, and a silicon-based or non-silicon-based release agent applied to the surface on which the conductive adhesive layer 130 is formed. Can be used. Note that the thickness of the peeling substrate 142 is not particularly limited, and can be appropriately determined in consideration of ease of use.
- the thickness of the conductive adhesive layer 130 is preferably 15 ⁇ m to 100 ⁇ m. By setting the thickness to 15 ⁇ m or more, sufficient embedding is realized and sufficient connection with the ground circuit can be obtained. Further, by setting the thickness to 100 ⁇ m or less, it is possible to meet the demand for thin film, which is advantageous in terms of cost.
- the flexible printed wiring board 110 includes, for example, a base member 112 and an insulating film 111 bonded on the base member 112 with an adhesive layer 113.
- the insulating film 111 is provided with an opening 160 that exposes the ground circuit 115.
- An exposed portion of the ground circuit 115 is provided with a surface layer 116 that is a gold plating layer.
- a rigid board may be used instead of the flexible printed wiring board 110.
- the metal reinforcing plate 135 is disposed on the flexible printed wiring board 110 so that the conductive adhesive layer 130 is positioned on the opening 160. Then, the metal reinforcing plate 135 and the flexible printed wiring board 110 are sandwiched from above and below by two heating plates (not shown) heated to a predetermined temperature (for example, 120 ° C.). 5 MPa) for a short time (for example, 5 seconds). As a result, the metal reinforcing plate 135 is temporarily fixed to the flexible printed wiring board 110.
- a predetermined temperature for example, 120 ° C.
- 5 MPa for a short time
- the temperature of the two heating plates is set to a predetermined temperature (for example, 170 ° C.) higher than that at the time of the temporary fixing, and is pressurized at a predetermined pressure (for example, 3 MPa) for a predetermined time (for example, 30 minutes).
- a predetermined temperature for example, 170 ° C.
- a predetermined pressure for example, 3 MPa
- a predetermined time for example, 30 minutes
- the component to be mounted is not particularly limited, and examples thereof include a chip component such as a resistor and a capacitor in addition to a connector and an integrated circuit.
- the conductive adhesive of this embodiment has a high embedding property, even when the diameter of the opening 160 is small, such as 1 mm or less, the opening 160 is sufficiently embedded, and the metal reinforcing plate 135 and the ground Good connection with the circuit 115 can be ensured. If the embeddability is insufficient, fine bubbles will enter between the surface layer 116 and the insulating film 111 and the conductive adhesive layer 130. As a result, when exposed to a high temperature in the reflow process, bubbles may grow and the conductive adhesive layer 130 may peel off. However, the conductive adhesive layer 130 of this embodiment has excellent adhesion with the surface layer 116 and the insulating film 111, and can maintain good adhesion even after the reflow process.
- the peel strength between the conductive adhesive layer 130 and the metal reinforcing plate 135 is preferably higher, specifically 4N / 10 mm or more, more preferably 5N / 10 mm or more. Further, the peel strength between the conductive adhesive layer 130 and the surface layer 116 is preferably higher, specifically, preferably 2N / 10 mm or more, more preferably 3N / 10 mm or more. The peel strength between the conductive adhesive layer 130 and the metal reinforcing plate 135 or the surface layer 116 can be measured by the method shown in the examples.
- the metal reinforcing plate 135 can be formed of a conductive material having an appropriate strength.
- a conductive material containing nickel, copper, silver, tin, gold, palladium, aluminum, chromium, titanium, zinc, or the like can be used.
- stainless steel is preferable in terms of corrosion resistance and strength.
- the thickness of the metal reinforcing plate 135 is not particularly limited, but is preferably 0.05 mm or more, more preferably 0.1 mm or more, preferably 1.0 mm or less, more preferably 0.3 mm or less from the viewpoint of reinforcement.
- a nickel layer is formed on the surface of the metal reinforcing plate 135.
- the method for forming the nickel layer is not particularly limited, it can be formed by electroless plating, electrolytic plating, or the like. When the nickel layer is formed, the adhesion between the metal reinforcing plate and the conductive adhesive can be improved.
- the base member 112 can be, for example, a resin film.
- the base member 112 is a film made of a resin such as polypropylene, cross-linked polyethylene, polyester, polybenzimidazole, polyimide, polyimide amide, polyether imide, or polyphenylene sulfide. be able to.
- the insulating film 111 is not particularly limited, but may be formed of a resin such as polyethylene terephthalate, polypropylene, cross-linked polyethylene, polyester, polybenzimidazole, polyimide, polyimide amide, polyether imide, polyphenylene sulfide, and the like.
- the thickness of the insulating film is not particularly limited, but can be about 10 ⁇ m to 30 ⁇ m.
- the surface layer 116 is not limited to a gold plating layer, and may be a layer made of copper, nickel, silver, tin, or the like. Note that the surface layer 116 may be provided as necessary, and the surface layer 116 may be omitted.
- the conductive adhesive of the present embodiment is excellent in embedding property and adhesion with a surface layer made of a gold plating layer or the like and an insulating film, and particularly excellent in sticking a metal reinforcing plate to a flexible printed wiring board. Show the effect. However, it is also useful in other applications where conductive adhesives are used. For example, it can be used for an adhesive layer in an electromagnetic wave shielding film.
- the electromagnetic wave shielding film can be configured to have, for example, a conductive adhesive layer made of the conductive adhesive of the present embodiment and an insulating protective layer. Further, a shield layer may be provided between the conductive adhesive layer and the insulating protective layer.
- a predetermined material was mixed and stirred using a planetary stirring and defoaming device to prepare a paste-like conductive adhesive composition.
- the produced conductive adhesive composition is hand-coated on a release-treated polyethylene terephthalate film (separate film) using a plate-like spatula (doctor blade), and dried at 100 ° C. for 3 minutes.
- each electroconductive adhesive film was produced so that it might become the predetermined thickness of Table 1. The thickness of the conductive adhesive film was measured with a micrometer.
- a gold plating layer 224 was formed on the surface of the copper foil 222 of the copper foil laminated film 203 in which the copper foil 222 was formed on the surface of the polyimide film 221.
- the gold plating layer 224 of the copper foil laminated film 203 and the conductive reinforcing material 201 with the metal reinforcing plate are pasted using a press machine under the conditions of temperature: 120 ° C., time: 5 seconds, pressure: 0.5 MPa. Combined.
- a press machine a copper foil laminated film with a metal reinforcing plate was prepared by adhering at a temperature of 170 ° C., a time of 3 minutes, and a pressure of 2 to 3 MPa. After 150 hours at 150 ° C.
- the copper foil laminated film 203 was formed at a normal temperature using a tensile tester (trade name AGS-X50S, manufactured by Shimadzu Corporation) at a tensile speed of 50 mm / min and a peeling angle of 90 °.
- the maximum value at the time of rupture was defined as the peel strength for the gold plating layer.
- a 90 ° peel test was performed under the same conditions on a sample formed by bonding the polyimide film 221 surface of the copper foil laminated film 203 and the conductive reinforcing material 201 under the same conditions as in the case of the gold plating layer 224 to obtain polyimide.
- the peel strength was obtained.
- the conductive adhesive films (with separate films) and metal reinforcing plates (thickness of the SUS plate Ni-plated, thickness: 200 ⁇ m) prepared in the Examples and Comparative Examples were used at a temperature of 120 using a press.
- a conductive adhesive film with a metal reinforcing plate was produced by heating and pressing under the conditions of ° C., time: 5 seconds, and pressure: 0.5 MPa.
- the separate film on the conductive adhesive film is peeled off, and the conductive adhesive film with a metal reinforcing plate is bonded to the flexible substrate under the same conditions as in the above thermocompression bonding, and further, temperature: 170 ° C., time: 3 with a press machine.
- a circuit board with a metal reinforcing plate was prepared by bonding under conditions of minute and pressure: 2 to 3 MPa.
- a copper foil pattern 115 simulating a ground circuit is formed on a base member 112 made of a polyimide film, and an insulating adhesive layer 113 and polyimide are formed thereon.
- a cover lay (insulating film) 111 formed of a film was used.
- a gold plating layer was provided as a surface layer 116 on the surface of the copper foil pattern 115.
- the cover lay 111 was formed with an opening 160 simulating a ground connection portion having a diameter of 0.8 mm.
- connection resistance As shown in FIG. 5, using the circuit board with a metal reinforcing plate produced in Examples and Comparative Examples, the electrical resistance between two copper foil patterns 115 provided with a surface layer 116 as a gold plating layer on the surface. The value was measured with a resistance meter 205, the connectivity between the copper foil pattern 115 and the metal reinforcing plate 135 was evaluated, and the initial connection resistance value (connection resistance value before reflow) was used.
- each of the fabricated circuit boards with metal reinforcing plates of Examples and Comparative Examples was passed through hot air reflow five times, and then the connection resistance value after reflow was measured by the method described above.
- the reflow conditions were assumed to be lead-free solder, and a temperature profile was set such that the polyimide film on the circuit board with metal reinforcing plate was exposed to 265 ° C. for 5 seconds.
- connection resistance value after reflow was 0.1 ⁇ / 1 hole or less was evaluated as having excellent conductivity after reflow.
- Example 1 As the acrylic resin (A), a resin (SG-P3, manufactured by Nagase ChemteX Corporation) having an Mw of 850,000, an epoxy equivalent of 4700 g / eq, and a glass transition temperature of 12 ° C. was used.
- a dendrite-like silver-coated copper powder (D-1) having an average particle diameter of 6 ⁇ m and a silver coverage of 9% by mass was used as the conductive filler.
- the conductive filler was 150 parts by mass with respect to 100 parts by mass of the resin component.
- the peel strength of the obtained conductive adhesive with respect to polyimide was 8 N / 10 mm, and the peel strength with respect to the gold plating layer was 3 N / 10 mm.
- the initial connection resistance in the case of a hole diameter of 0.8 mm ⁇ was 40 m ⁇ / 1 hole, and the connection resistance after reflow was 28 m ⁇ / 1 hole.
- the peel strength of the obtained conductive adhesive with respect to polyimide was 9 N / 10 mm, and the peel strength with respect to the gold plating layer was 4 N / 10 mm.
- the initial connection resistance was 39 m ⁇ / 1 hole, and the connection resistance after reflow was 30 m ⁇ / 1 hole.
- the peel strength of the obtained conductive adhesive with respect to polyimide was 19 N / 10 mm, and the peel strength with respect to the gold plating layer was 5 N / 10 mm.
- the initial connection resistance was 32 m ⁇ / 1 hole, and the connection resistance after reflow was 26 m ⁇ / 1 hole.
- thermosetting resin was a polyurethane-modified polyester resin (BX-39SS, manufactured by Toyobo Co., Ltd.) having an Mn of 16000, an acid value of 17 mgKOH / g, and a glass transition temperature of 15 ° C., it was the same as Example 1. .
- the peel strength of the obtained conductive adhesive with respect to polyimide was 5 N / 10 mm, and the peel strength with respect to the gold plating layer was 7 N / 10 mm.
- the initial connection resistance was 133 m ⁇ / 1 hole, and the connection resistance after reflow was 100 m ⁇ / 1 hole.
- the peel strength of the obtained conductive adhesive with respect to polyimide was 10 N / 10 mm, and the peel strength with respect to the gold plating layer was 7 N / 10 mm.
- the initial connection resistance was 91 m ⁇ / 1 hole, and the connection resistance after reflow was 58 m ⁇ / 1 hole.
- the peel strength of the obtained conductive adhesive with respect to polyimide was 12 N / 10 mm, and the peel strength with respect to the gold plating layer was 6 N / 10 mm.
- the initial connection resistance was 83 m ⁇ / 1 hole, and the connection resistance after reflowing was 62 m ⁇ / 1 hole.
- the peel strength of the obtained conductive adhesive with respect to polyimide was 10 N / 10 mm, and the peel strength with respect to the gold plating layer was 6 N / 10 mm.
- the initial connection resistance was 71 m ⁇ / 1 hole, and the connection resistance after reflow was 67 m ⁇ / 1 hole.
- the peel strength of the obtained conductive adhesive with respect to polyimide was 7 N / 10 mm, and the peel strength with respect to the gold plating layer was 6/10 mm.
- the initial connection resistance was 72 m ⁇ / 1 hole, and the connection resistance after reflow was 54 m ⁇ / 1 hole.
- the conductive filler was a dendrite-like silver-coated copper powder (D-2) having an average particle size of 12 ⁇ m and a silver coverage of 8% by mass.
- the peel strength of the obtained conductive adhesive with respect to polyimide was 10 N / 10 mm, and the peel strength with respect to the gold plating layer was 7 N / 10 mm.
- the initial connection resistance was 99 m ⁇ / 1 hole, and the connection resistance after reflow was 42 m ⁇ / 1 hole.
- D-3 dendritic silver-coated copper powder
- the peel strength of the obtained conductive adhesive with respect to polyimide was 9 N / 10 mm, and the peel strength with respect to the plating layer on gold was 7 N / 10 mm.
- the initial connection resistance was 179 m ⁇ / 1 hole, and the connection resistance after reflowing was 93 m ⁇ / 1 hole.
- the peel strength of the obtained conductive adhesive with respect to polyimide was 14 N / 10 mm, and the peel strength with respect to the gold plating layer was 7 N / 10 mm.
- the initial connection resistance was 20 m ⁇ / 1 hole, and the connection resistance after reflow was 12 m ⁇ / 1 hole.
- OP935 trisdiethylphosphinic acid aluminum salt
- the peel strength of the obtained conductive adhesive with respect to polyimide was 14 N / 10 mm, and the peel strength with respect to the gold plating layer was 8 N / 10 mm.
- the initial connection resistance was 32 m ⁇ / 1 hole, and the connection resistance after reflow was 23 m ⁇ / 1 hole.
- UR3500 polyurethane-modified polyester resin
- the peel strength of the obtained conductive adhesive with respect to polyimide was 8 N / 10 mm, and the peel strength with respect to the gold plating layer was 6 N / 10 mm.
- the initial connection resistance was 38 m ⁇ / 1 hole, and the connection resistance after reflowing was 38 m ⁇ / 1 hole.
- the obtained conductive adhesive was not in close contact with either the polyimide or the gold plating layer.
- the initial connection resistance was 27 m ⁇ / 1 hole, and the connection resistance after reflow was 64 m ⁇ / 1 hole.
- the peel strength of the obtained conductive adhesive with respect to polyimide was 3N / 10 mm, and the peel strength with respect to the gold plating layer was 3N / 10 mm.
- the initial connection resistance was 34 m ⁇ / 1 hole, and the connection resistance after reflow was equal to or greater than the measurement limit (OL).
- the peel strength of the obtained conductive adhesive with respect to polyimide was 2N / 10 mm, and the peel strength with respect to the gold plating layer was 3N / 10 mm.
- the initial connection resistance was 30 m ⁇ / 1 hole, and the connection resistance after reflow was equal to or greater than the measurement limit value.
- the obtained conductive adhesive was not in close contact with either the polyimide or the gold plating layer. Moreover, the initial connection resistance was 50 m ⁇ / 1 hole, and the connection resistance after reflow was equal to or greater than the measurement limit value.
- the obtained conductive adhesive was not in close contact with either the polyimide or the gold plating layer.
- the initial connection resistance was 43 m ⁇ / 1 hole, and the connection resistance after reflow was 88 m ⁇ / 1 hole.
- D-4 flaky silver-coated copper powder
- the peel strength of the obtained conductive adhesive with respect to polyimide was 12 N / 10 mm, and the peel strength with respect to the gold plating layer was 8 N / 10 mm. Moreover, both the initial connection resistance and the connection resistance after reflow were equal to or greater than the measurement limit values.
- the peel strength of the obtained conductive adhesive with respect to the metal reinforcing plate was 10 N / 10 mm, and the peel strength with respect to the gold plating layer was 8 N / 10 mm. Moreover, both the initial connection resistance and the connection resistance after reflow were equal to or greater than the measurement limit values.
- Tables 1 to 5 summarize the compositions and measurement results of the examples and comparative examples.
- the conductive adhesive of the present disclosure can achieve both embeddability and adhesion, and is useful as a conductive adhesive used for flexible printed wiring boards and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Conductive Materials (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本開示におけるアクリル系樹脂とは、アルキルアクリレート又はアルキルメタアクリレートを主成分とする重合体である。以下において、アクリレートとメタアクリレートとを合わせて(メタ)アクリレートと表記する。アルキル(メタ)アクリレートは、特に限定されないが、例えば、炭素数が1~18程度の直鎖状又は分岐のアルキル基を有する(メタ)アクリレートとすることができる。具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、及びステアリル(メタ)アクリレート等とすることができる。これらのアルキル(メタ)アクリレートは、単独で用いることも、2種類以上を混合して用いることもできる。
本実施形態の熱硬化性樹脂は、埋め込み性の観点からガラス転移温度が5℃以上、好ましくは10℃以上、より好ましくは30℃以上である。また、100℃以下、好ましくは 90℃以下、より好ましくは80℃以下である。なお、ガラス転移温度は、示差走査熱量分析計(DSC)を用いて測定することができる。
本実施形態の導電性接着剤において、導電性フィラーは、特に限定されないが、例えば、金属フィラー、金属被覆樹脂フィラー、カーボンフィラー及びそれらの混合物を使用することができる。金属フィラーとしては、銅粉、銀粉、ニッケル粉、銀コ-ト銅粉、金コート銅粉、銀コートニッケル粉、及び金コートニッケル粉等を挙げることができる。これら金属粉は、電解法、アトマイズ法、又は還元法等により作製することができる。中でも銀粉、銀コート銅粉及び銅粉のいずれかが好ましい。
本実施形態の導電性接着剤には、上述したエポキシ基を有するアクリル系樹脂、エポキシ基と反応する官能基を有する熱硬化性樹脂以外の硬化性樹脂成分を加えてもよい。このような硬化性樹脂成分としては、常温で固体のエポキシ樹脂や常温で液体のエポキシ樹脂を用いることができる。なお、エポキシ樹脂について「常温で固体」とは、25℃において無溶媒状態で流動性を有さない状態であることを意味するものとし、「常温で液体」とは同条件において流動性を有する状態であることを意味するものとする。
本実施形態の導電性接着剤にその他の硬化性樹脂成分を加える場合には、エポキシ基を有するアクリル系樹脂とエポキシ基と反応する官能基を有する熱硬化性樹脂の合計100質量部に対し、1.0~10.0質量部を配合することが好ましい。
本実施形態の導電性接着剤には、エポキシ基を有するアクリル系樹脂と、エポキシ基と反応する官能基を有する熱硬化性樹脂と、必要に応じてその他の硬化性樹脂成分との反応を促進させることを目的として、硬化性化合物を配合してもよい。このような硬化性化合物としては、イミダゾール系硬化剤、フェノール系硬化剤、カチオン系硬化剤等を使用することができる。これらは1種を単独で使用することもでき、2種以上を併用することもできる。
本実施形態の導電性接着剤には、消泡剤、酸化防止剤、粘度調整剤、希釈剤、沈降防止剤、レベリング剤、カップリング剤、着色剤、難燃剤等を添加することができる。これらの中でも、導電性接着剤に難燃性を付与させるため、難燃剤を添加することが好ましい。
本実施形態の導電性接着剤の使用方法の一例として、フレキシブルプリント配線基板への金属補強板の取付け方法を説明する。まず、図1に示すように、フレキシブルプリント配線基板110と、一方の面に本実施形態の導電性接着剤からなる導電性接着剤層130が設けられた金属補強板135とを準備する。
表1~表5に示す組成を有する実施例1~13、及び比較例1~7の導電性接着フィルムを、下記の製造方法により製造した。
金メッキ層又はポリイミドと導電性接着剤との密着性を、90°ピール試験により測定した。具体的には、まず、導電性接着フィルムと厚さ200μmのSUS板製金属補強板とを、プレス機を用いて温度:120℃、時間:5秒、圧力:0.5MPaの条件で仮貼りし、金属補強板211の表面に導電性接着剤層212が設けられた金属補強板付き導電性補強材料201を作製した。次に、ポリイミドフィルム221の表面に銅箔222が形成された銅箔積層フィルム203の銅箔222の表面に金めっき層224を形成した。次に、銅箔積層フィルム203の金めっき層224と金属補強板付き導電性補強材料201とを、プレス機を用いて温度:120℃、時間:5秒、圧力:0.5MPaの条件で貼り合わせた。この後、さらにプレス機を用いて温度:170℃、時間:3分、圧力:2~3MPaの条件で接着して、金属補強板付き銅箔積層フィルムを作製し、150℃、1時間でアフターキュアした。次いで、図4に示すように、銅箔積層フィルム203を、常温で引張試験機(島津製作所(株)製、商品名AGS-X50S)を用いて、引張速度50mm/分、剥離角度90°にて剥離し、破断時の最大値を、金めっき層に対する剥離強度とした。
次に、実施例、比較例において作製した導電性接着フィルム(セパレートフィルム付き)と金属補強板(SUS板の表面をNiめっきしたもの、厚み:200μm)とを、プレス機を用いて温度:120℃、時間:5秒、圧力:0.5MPaの条件で加熱加圧し、金属補強板付き導電性接着フィルムを作製した。次に、導電性接着フィルム上のセパレートフィルムを剥離し、フレキシブル基板に上記熱圧着と同じ条件で金属補強板付き導電性接着フィルムを接着した後、さらにプレス機で温度:170℃、時間:3分、圧力:2~3MPaの条件で接着して、金属補強板付き回路基板を作製した。
実施例、比較例において作製した金属補強板付き回路基板を用いて、図5に示すように、表面に金めっき層である表面層116が設けられた2本の銅箔パターン115間の電気抵抗値を抵抗計205で測定し、銅箔パターン115と金属補強板135との接続性を評価し、初期接続抵抗値(リフロー前の接続抵抗値)とした。
アクリル系樹脂(A)には、Mwが85万、エポキシ当量が4700g/eq、ガラス転移温度が12℃である樹脂(SG-P3、ナガセケムテックス社製)を用いた。熱硬化性樹脂(B)には、Mnが18000、酸価が20mgKOH/g、ガラス転移温度が40℃であるポリウレタン変性ポリエステル樹脂(UR3600、東洋紡社製)を用いた。配合量は、アクリル系樹脂(A)を30質量部、熱硬化性樹脂(B)を70質量部とした(A/(A+B)=30質量%)。導電性フィラーには、平均粒径が6μm、銀の被覆率が9質量%のデンドライト状の銀コート銅粉(D-1)を用いた。導電性フィラーは、樹脂成分100質量部に対し150質量部とした。
アクリル系樹脂を50質量部、熱硬化性樹脂を50質量部とした(A/(A+B)=50質量%)以外は、実施例1と同様にした。
アクリル系樹脂を70質量部、熱硬化性樹脂を30質量部とした(A/(A+B)=70質量%)以外は、実施例1と同様にした。
熱硬化性樹脂を、Mnが16000、酸価が17mgKOH/g、ガラス転移温度が15℃であるポリウレタン変性ポリエステル樹脂(BX-39SS、東洋紡社製)とした以外は、実施例1と同様にした。
アクリル系樹脂を50質量部、熱硬化性樹脂を50質量部とした(A/(A+B)=50質量%)以外は、実施例4と同様にした。
アクリル系樹脂を60質量部、熱硬化性樹脂を40質量部とした(A/(A+B)=60質量%)以外は、実施例4と同様にした。
アクリル系樹脂を70質量部、熱硬化性樹脂を30質量部とした(A/(A+B)=70質量%)以外は、実施例4と同様にした。
アクリル系樹脂を80質量部、熱硬化性樹脂を20質量部とした(A/(A+B)=80質量%)以外は、実施例4と同様にした。
アクリル系樹脂(SG-P3、ナガセケムテックス社製)及び熱硬化性樹脂(バイロンBX-39SS、東洋紡社製)に加えて、ビスフェノールA型の固形エポキシ樹脂(JER1003、三菱化学製)を添加した。配合量は、アクリル系樹脂60質量部、熱硬化性樹脂30質量部、固形エポキシ樹脂10質量部とした(A/(A+B)=66.6質量%)。また、導電性フィラーを平均粒径が12μm、銀の被覆率が8質量%のデンドライト状の銀コート銅粉(D-2)とした。
導電性フィラーを平均粒径が12μm、銀の被覆率が9質量%のデンドライト状の銀コート銅粉(D-3)とした以外は、実施例9と同様にした(A/(A+B)=66.6質量%)。
アクリル系樹脂(SG-P3、ナガセケムテックス社製)及び熱硬化性樹脂(UR3600、東洋紡社製)に加えて、ビスフェノールA型の固形エポキシ樹脂(JER1003、三菱化学製)を添加した。配合量は、アクリル系樹脂85質量部、熱硬化性樹脂10質量部、固形エポキシ樹脂5質量部とした(A/(A+B)=89.5質量%)。さらに、樹脂成分100質量部に対し、硬化剤として2-フェニル-1H-イミダゾール-4,5-ジメタノール(2PHZPW、四国化成工業製)を3質量部、難燃剤としてトリスジエチルホスフィン酸アルミニウム塩(OP935、クラリアントジャパン製)を35質量部添加した。導電性フィラーは、平均粒径が6μm、銀の被覆率が9質量%のデンドライト状の銀コート銅粉(D-1)とし、配合量は樹脂成分100質量部に対し150質量部とした。
難燃剤としてトリスジエチルホスフィン酸アルミニウム塩(OP935、クラリアントジャパン製)を樹脂成分100質量部に対し35質量部添加した以外は、実施例8と同様にした(A/(A+B)=80質量%)。
熱硬化性樹脂を、Mnが35000~45000、酸価が35mgKOH/g、ガラス転移温度が5℃~15℃であるポリウレタン変性ポリエステル樹脂(UR3500、東洋紡社製)した以外は、実施例8と同様にした(A/(A+B)=80質量%)。
アクリル系樹脂のみを用い、熱硬化性樹脂を添加しなかった(A/(A+B)=100質量%)以外は、実施例1と同様にした。
アクリル系樹脂を10質量部、熱硬化性樹脂を90質量部とした(A/(A+B)=10質量%)以外は、実施例1と同様にした。
熱硬化性樹脂のみを用い、アクリル系樹脂を添加しなかった(A/(A+B)=0質量%)以外は実施例1と同様にした。
アクリル系樹脂を、Mwが30万で、エポキシ当量が1680g/eq、ガラス転移温度が11℃である樹脂(SG-P3-MW1、ナガセケムテックス社製)とした以外は、比較例1と同様にした(A/(A+B)=100質量%)。
アクリル系樹脂を、Mwが60万で、エポキシ当量が3300g/eqである樹脂(SG-P3-MW8、ナガセケムテックス社製)とした以外は、比較例1と同様にした(A/(A+B)=100質量%)。
導電性フィラーを平均粒径が5μm、銀の被覆率が10質量%のフレーク状の銀コート銅粉(D-4)とした以外は、実施例7と同様にした(A/(A+B)=70質量%)。
導電性フィラーを平均粒径が5μm、銀の被覆率が10質量%のアトマイズ銀コート銅粉(D-5)とした以外は、実施例7と同様にした(A/(A+B)=70質量%)。
111 絶縁フィルム(カバーレイ)
112 ベース部材
113 接着剤層
115 グランド回路(銅箔パターン)
116 表面層
130 導電性接着剤層
135 金属補強板
141 導電性接着フィルム
142 剥離基材
160 開口部
201 導電性補強材料
203 銅箔積層フィルム
205 抵抗計
211 金属補強板
212 導電性接着剤層
221 ポリイミドフィルム
222 銅箔
224 金めっき層
Claims (5)
- 重量平均分子量が50万以上、100万以下で、エポキシ基を有するアクリル系樹脂と、
ガラス転移温度が5℃以上、100℃以下で、数平均分子量が1万以上、5万以下で、エポキシ基と反応する官能基を有する熱硬化性樹脂と、
導電性フィラーとを含有し、
前記アクリル系樹脂の前記アクリル系樹脂と前記熱硬化性樹脂との合計に対する比が、15質量%以上、95質量%以下である、導電性接着剤。 - 前記アクリル系樹脂は、ガラス転移温度が0℃以上、50℃以下である、請求項1に記載の導電性接着剤。
- 前記熱硬化性樹脂は、ウレタン変性ポリエステル樹脂である、請求項1又は2に記載の導電性接着剤。
- 前記アクリル系樹脂は、エポキシ当量が1000g/eq以上、10000g/eq以下である、請求項1~3のいずれか1項に記載の導電性接着剤。
- 前記熱硬化性樹脂は、酸価が5mgKOH/g以上、50mgKOH/g以下である、請求項1~4のいずれか1項に記載の導電性接着剤。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197035397A KR102310982B1 (ko) | 2017-05-19 | 2018-04-16 | 도전성 접착제 |
CN201880003166.5A CN109563388B (zh) | 2017-05-19 | 2018-04-16 | 导电性胶粘剂 |
JP2018542304A JP6956096B2 (ja) | 2017-05-19 | 2018-04-16 | 導電性接着剤 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-100006 | 2017-05-19 | ||
JP2017100006 | 2017-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018211887A1 true WO2018211887A1 (ja) | 2018-11-22 |
Family
ID=64274310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/015733 WO2018211887A1 (ja) | 2017-05-19 | 2018-04-16 | 導電性接着剤 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6956096B2 (ja) |
KR (1) | KR102310982B1 (ja) |
CN (1) | CN109563388B (ja) |
TW (1) | TWI720290B (ja) |
WO (1) | WO2018211887A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7137251B1 (ja) | 2021-08-06 | 2022-09-14 | パナック株式会社 | 接続体の製造方法及び接続体 |
JP7223090B1 (ja) | 2021-09-28 | 2023-02-15 | 古河電気工業株式会社 | 接着剤用組成物及びフィルム状接着剤、並びに、フィルム状接着剤を用いた半導体パッケージ及びその製造方法 |
US12094622B2 (en) | 2020-12-25 | 2024-09-17 | Panasonic Intellectual Property Management Co., Ltd. | Conductive resin composition, circuit board fabricated using conductive resin composition, and method of manufacturing circuit board |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110003811A (zh) * | 2019-04-17 | 2019-07-12 | 成都纺织高等专科学校 | 一种含载体型超薄阻燃双面胶带及其制备方法 |
CN113825815B (zh) * | 2019-05-31 | 2022-09-30 | 拓自达电线株式会社 | 各向同性导电性粘着片 |
KR102376969B1 (ko) * | 2020-02-28 | 2022-03-21 | (주)이녹스첨단소재 | 온도 변화에 대한 신뢰성이 우수한 접착제 조성물 및 이를 포함하는 절연필름과 플렉시블 플랫 케이블 |
CN115340835A (zh) * | 2022-08-16 | 2022-11-15 | 东莞理工学院 | 一种高剥离导电聚丙烯酸酯压敏胶及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000154307A (ja) * | 1998-11-18 | 2000-06-06 | Toray Ind Inc | 難燃性樹脂組成物および成形品 |
JP2003197409A (ja) * | 2001-12-19 | 2003-07-11 | E I Du Pont De Nemours & Co | 磁気特性をもたらす厚膜組成物 |
JP2007297608A (ja) * | 2006-04-07 | 2007-11-15 | Sumitomo Metal Mining Co Ltd | 透光性導電塗料及び透光性導電膜並びに分散型エレクトロルミネッセンス素子 |
JP2013045994A (ja) * | 2011-08-26 | 2013-03-04 | Dexerials Corp | 太陽電池用導電性接着剤及びこれを用いた接続方法、太陽電池モジュール、太陽電池モジュールの製造方法 |
WO2014010524A1 (ja) * | 2012-07-11 | 2014-01-16 | タツタ電線株式会社 | 硬化性導電性接着剤組成物、電磁波シールドフィルム、導電性接着フィルム、接着方法及び回路基板 |
JP2015093884A (ja) * | 2013-11-08 | 2015-05-18 | デクセリアルズ株式会社 | 接着剤組成物、及びフィルム巻装体 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7326369B2 (en) * | 2005-03-07 | 2008-02-05 | National Starch And Chemical Investment Holding Corporation | Low stress conductive adhesive |
CN102051143A (zh) * | 2007-01-10 | 2011-05-11 | 日立化成工业株式会社 | 电路部件连接用粘接剂及使用该粘接剂的半导体装置 |
TWI558557B (zh) * | 2013-03-05 | 2016-11-21 | 印可得股份有限公司 | 電磁干擾屏蔽膜及其製造方法 |
-
2018
- 2018-03-02 TW TW107107041A patent/TWI720290B/zh active
- 2018-04-16 WO PCT/JP2018/015733 patent/WO2018211887A1/ja active Application Filing
- 2018-04-16 CN CN201880003166.5A patent/CN109563388B/zh active Active
- 2018-04-16 JP JP2018542304A patent/JP6956096B2/ja active Active
- 2018-04-16 KR KR1020197035397A patent/KR102310982B1/ko active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000154307A (ja) * | 1998-11-18 | 2000-06-06 | Toray Ind Inc | 難燃性樹脂組成物および成形品 |
JP2003197409A (ja) * | 2001-12-19 | 2003-07-11 | E I Du Pont De Nemours & Co | 磁気特性をもたらす厚膜組成物 |
JP2007297608A (ja) * | 2006-04-07 | 2007-11-15 | Sumitomo Metal Mining Co Ltd | 透光性導電塗料及び透光性導電膜並びに分散型エレクトロルミネッセンス素子 |
JP2013045994A (ja) * | 2011-08-26 | 2013-03-04 | Dexerials Corp | 太陽電池用導電性接着剤及びこれを用いた接続方法、太陽電池モジュール、太陽電池モジュールの製造方法 |
WO2014010524A1 (ja) * | 2012-07-11 | 2014-01-16 | タツタ電線株式会社 | 硬化性導電性接着剤組成物、電磁波シールドフィルム、導電性接着フィルム、接着方法及び回路基板 |
JP2015093884A (ja) * | 2013-11-08 | 2015-05-18 | デクセリアルズ株式会社 | 接着剤組成物、及びフィルム巻装体 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12094622B2 (en) | 2020-12-25 | 2024-09-17 | Panasonic Intellectual Property Management Co., Ltd. | Conductive resin composition, circuit board fabricated using conductive resin composition, and method of manufacturing circuit board |
JP7554982B2 (ja) | 2020-12-25 | 2024-09-24 | パナソニックIpマネジメント株式会社 | 導電性樹脂組成物、並びに、それを用いた回路基板および回路基板の製造方法 |
JP7137251B1 (ja) | 2021-08-06 | 2022-09-14 | パナック株式会社 | 接続体の製造方法及び接続体 |
JP2023024205A (ja) * | 2021-08-06 | 2023-02-16 | パナック株式会社 | 接続体の製造方法及び接続体 |
JP7223090B1 (ja) | 2021-09-28 | 2023-02-15 | 古河電気工業株式会社 | 接着剤用組成物及びフィルム状接着剤、並びに、フィルム状接着剤を用いた半導体パッケージ及びその製造方法 |
WO2023053566A1 (ja) * | 2021-09-28 | 2023-04-06 | 古河電気工業株式会社 | 接着剤用組成物及びフィルム状接着剤、並びに、フィルム状接着剤を用いた半導体パッケージ及びその製造方法 |
JP2023048247A (ja) * | 2021-09-28 | 2023-04-07 | 古河電気工業株式会社 | 接着剤用組成物及びフィルム状接着剤、並びに、フィルム状接着剤を用いた半導体パッケージ及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR102310982B1 (ko) | 2021-10-07 |
KR20200010284A (ko) | 2020-01-30 |
CN109563388A (zh) | 2019-04-02 |
CN109563388B (zh) | 2021-06-08 |
JPWO2018211887A1 (ja) | 2020-03-19 |
TW201900810A (zh) | 2019-01-01 |
JP6956096B2 (ja) | 2021-10-27 |
TWI720290B (zh) | 2021-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018211887A1 (ja) | 導電性接着剤 | |
JP6748783B2 (ja) | 導電性接着剤 | |
JP6748784B2 (ja) | 導電性接着剤 | |
US10011745B2 (en) | Thermosetting adhesive composition and thermosetting adhesive sheet | |
WO2010073885A1 (ja) | フィルム状接着剤及び異方導電性接着剤 | |
JP6968041B2 (ja) | 導電性接着剤 | |
WO2017221885A1 (ja) | 接着剤組成物及び接着シート | |
US10887999B2 (en) | Mounting body manufacturing method and anisotropic conductive film | |
JP2016145287A (ja) | 熱硬化性接着組成物、及び熱硬化性接着シート | |
JP2009084307A (ja) | 電極接続用接着剤 | |
JP2019019280A (ja) | 導電性接着剤組成物、導電性接着シート及びそれを用いた配線デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018542304 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18802001 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197035397 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18802001 Country of ref document: EP Kind code of ref document: A1 |