WO2018211764A1 - Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device - Google Patents

Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device Download PDF

Info

Publication number
WO2018211764A1
WO2018211764A1 PCT/JP2018/006499 JP2018006499W WO2018211764A1 WO 2018211764 A1 WO2018211764 A1 WO 2018211764A1 JP 2018006499 W JP2018006499 W JP 2018006499W WO 2018211764 A1 WO2018211764 A1 WO 2018211764A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
wire
superconducting material
layer
particles
Prior art date
Application number
PCT/JP2018/006499
Other languages
French (fr)
Japanese (ja)
Inventor
康太郎 大木
永石 竜起
加藤 丈晴
大作 横江
司 平山
雄一 幾原
Original Assignee
住友電気工業株式会社
一般財団法人ファインセラミックスセンター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 一般財団法人ファインセラミックスセンター filed Critical 住友電気工業株式会社
Publication of WO2018211764A1 publication Critical patent/WO2018211764A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/81Containers; Mountings

Definitions

  • the present invention relates to a superconducting wire, a superconducting coil, a superconducting magnet, and a superconducting device.
  • the present application claims priority based on Japanese Patent Application No. 2017-099668, which is a Japanese patent application filed on May 19, 2017. All the descriptions described in the Japanese patent application are incorporated herein by reference.
  • Patent Document 1 includes a first wire including a first superconducting material layer, a second wire including a second superconducting material layer, a first superconducting material layer, and a first superconducting material layer.
  • a superconducting wire provided with a superconducting material joining layer that joins two superconducting material layers is disclosed.
  • the superconducting wire includes a first wire having a first superconducting material layer, a second wire having a second superconducting material layer, and a superconducting material bonding layer. Part of the first wire and part of the second wire are joined via the superconducting material joining layer so that the first superconducting material layer and the second superconducting material layer are overlapped.
  • the superconducting material bonding layer at least one of a plurality of particles functioning as a pinning center and a plurality of voids is dispersed.
  • the superconducting coil according to one aspect of the present invention includes the superconducting wire according to one aspect of the present invention.
  • the superconducting wire is wound around the central axis of the superconducting coil.
  • a superconducting magnet includes a superconducting coil according to an aspect of the present invention, a cryostat that houses the superconducting coil, and a refrigerator that cools the superconducting coil.
  • the superconducting device includes the superconducting magnet according to one aspect of the present invention.
  • FIG. 1 is a schematic sectional view of a superconducting wire according to the first embodiment.
  • FIG. 2 is a schematic partial enlarged cross-sectional view of region II shown in FIG.
  • FIG. 3 is a schematic partial enlarged sectional view of region III shown in FIG.
  • FIG. 4 is a diagram showing an SEM image of the cross-sectional structure of the superconducting material bonding layer.
  • FIG. 5 is a flowchart showing a method of manufacturing a superconducting wire according to the first embodiment.
  • FIG. 6 is a schematic cross-sectional view of the superconducting wire according to the second embodiment.
  • FIG. 7 is a schematic partial enlarged sectional view of region VII shown in FIG.
  • FIG. 8 is a schematic cross-sectional view of a superconducting magnet according to the third embodiment.
  • FIG. 9 is a schematic cross-sectional view of a superconducting device according to the fourth embodiment.
  • An object of one embodiment of the present invention is to provide superconducting characteristics in a magnetic field of a superconducting wire including a superconducting material joining layer that joins a first superconducting material layer of a first wire and a second superconducting material layer of a second wire. Is to improve.
  • An object of one aspect of the present invention is to provide a superconducting coil, a superconducting magnet, and a superconducting device including such a superconducting wire.
  • Superconducting wires 1 and 1b (see FIGS. 1 and 6) according to an aspect of the present invention have a first wire 10 having a first superconducting material layer 13 and a second superconducting material layer 23.
  • a second wire 20 and superconducting material bonding layers 40 and 42 are provided.
  • the superconducting material bonding layers 40 and 42 are formed so that the part 17 of the first wire 10 and the part 27 of the second wire 20 overlap the first superconducting material layer 13 and the second superconducting material layer 23. It is joined via.
  • at least one of a plurality of particles 44 functioning as a pinning center and a plurality of voids 46 (see FIG. 3) is dispersed.
  • the particles 44 and the voids 46 dispersed in the superconducting material bonding layers 40 and 42 function as pinning centers. Therefore, in the magnetic field of the superconducting material bonding layers 40 and 42 The critical current density Jc can be improved. Thereby, the superconducting characteristic in the magnetic field of the superconducting wire 1 and 1b can be improved.
  • the embodiment of the present invention includes a case where the first wire 10 and the second wire 20 are a common wire. For example, this is the case when a part 17 of the first wire 10 constitutes one end of one wire, and a part 27 of the second wire 20 constitutes the other end of the one wire. Applicable. This embodiment can be applied in a situation where a superconducting coil is formed by winding the one wire.
  • the area ratio of the plurality of particles 44 and the plurality of voids 46 per unit area in the cross section in the thickness direction of the superconducting material bonding layers 40 and 42 is 1% or more and 70% or less. It is.
  • the area ratio of the particles 44 and the voids 46 per unit cross-sectional area of the superconducting material bonding layer 40 is the area of the particles 44 and the voids 46 with respect to the area of the observation region of 10 ⁇ m ⁇ the thickness of the superconducting material bonding layer.
  • the ratio of The area of the particle 44 and the void 46 refers to the total value of the cross-sectional areas of all the particles 44 and the void 46 detected in the observation region.
  • each of the plurality of particles 44 and the plurality of voids 46 has a particle size of 10 nm to 2000 nm.
  • each of the particles 44 and the voids 46 can sufficiently function as a pinning center without interrupting the superconductor in the superconducting material bonding layers 40 and 42.
  • the particle size of the particles 44 refers to the long diameter of the particles 44 (or the voids 46) measured from an image (two-dimensional planar projection image) obtained by SEM.
  • the superconducting material bonding layers 40 and 42 are formed of RE 1 Ba 2 Cu 3 O y (where RE: rare earth element, Ba: barium, Cu: copper). , O: oxygen), and the plurality of particles 44 include RE 2 O 3 .
  • RE 2 O 3 (RE oxide) precipitated from the crystal can function as a pinning center in the superconducting material bonding layers 40 and 42 formed of the RE123-based oxide superconductor. Since RE 2 O 3 is dispersed in the superconducting material bonding layers 40 and 42, a high pinning function can be obtained.
  • the superconducting material bonding layer is composed of an RE123-based oxide superconductor, and the plurality of particles 44 include CuO.
  • CuO (copper oxide) precipitated from the crystal can function as a pinning center in the superconducting material bonding layers 40 and 42 formed of the RE123-based oxide superconductor. Since CuO is dispersed in the superconducting material bonding layers 40 and 42, a high pinning function can be obtained.
  • a superconducting coil 70 (see FIG. 8) according to an aspect of the present invention is a superconducting coil having a central axis, and includes the superconducting wires 1 and 1b according to the above (1) to (5).
  • the superconducting wires according to the above (1) to (5) are wound around the central axis.
  • the superconducting coil 70 according to the above (6) can generate a strong magnetic field.
  • a superconducting magnet 100 (see FIG. 8) according to one aspect of the present invention includes a superconducting coil 70 according to (6) above, a cryostat 105 that houses the superconducting coil 70, and a refrigerator 102 that cools the superconducting coil 70. With.
  • the superconducting magnet 100 according to the above (6) can generate a strong magnetic field.
  • a superconducting device 200 (see FIG. 9) according to an aspect of the present invention includes the superconducting magnet 100 according to (7) above.
  • the superconducting device 200 according to the above (8) can generate a strong magnetic field.
  • FIG. 1 is a schematic cross-sectional view of superconducting wire 1 according to the first embodiment.
  • FIG. 2 is a schematic partial enlarged cross-sectional view of region II shown in FIG.
  • the superconducting wire 1 mainly includes a first wire 10, a second wire 20, and a superconducting material bonding layer 40.
  • the first wire 10 includes a first superconducting material layer 13 having a first main surface 13s. Specifically, the first wire 10 is provided on the first metal substrate 11, the first intermediate layer 12 provided on the first metal substrate 11, and the first intermediate layer 12. The first superconducting material layer 13 may be included.
  • the second wire 20 includes a second superconducting material layer 23 having a second main surface 23s. Specifically, the second wire 20 is provided on the second metal substrate 21, the second intermediate layer 22 provided on the second metal substrate 21, and the second intermediate layer 22. The second superconducting material layer 23 may be included.
  • Each of the first metal substrate 11 and the second metal substrate 21 may be an oriented metal substrate.
  • An oriented metal substrate means a substrate in which crystal orientations are aligned with respect to the biaxial direction in the plane of the substrate surface.
  • the oriented metal substrate may be a clad type metal substrate in which, for example, a nickel layer and a copper layer are arranged on a SUS or Hastelloy (registered trademark) base metal substrate.
  • the first intermediate layer 12 may be made of a material that has extremely low reactivity with the first superconducting material layer 13 and does not deteriorate the superconducting characteristics of the first superconducting material layer 13.
  • the second intermediate layer 22 may be made of a material that has extremely low reactivity with the second superconducting material layer 23 and does not deteriorate the superconducting characteristics of the second superconducting material layer 23.
  • Each of the first intermediate layer 12 and the second intermediate layer 22 includes, for example, YSZ (yttrium stabilized zirconia), CeO 2 (cerium oxide), MgO (magnesium oxide), Y 2 O 3 (yttrium oxide), Al It may be composed of at least one of 2 O 3 (aluminum oxide), LaMnO 3 (lanthanum manganese oxide), and SrTiO 3 (strontium titanate).
  • YSZ yttrium stabilized zirconia
  • CeO 2 cerium oxide
  • MgO magnesium oxide
  • Y 2 O 3 yttrium oxide
  • Al It may be composed of at least one of 2 O 3 (aluminum oxide), LaMnO 3 (lanthanum manganese oxide), and SrTiO 3 (strontium titanate).
  • Each of the first intermediate layer 12 and the second intermediate layer 22 may be composed of a plurality of layers.
  • a non-oriented substrate whose surface is not oriented and crystallized such as a SUS substrate or a Hastelloy substrate
  • the first intermediate layer 12 and the second intermediate substrate 12 The layer 22 may be a crystal orientation layer formed by, for example, an IBAD (Ion Beam Assisted Deposition) method.
  • IBAD Ion Beam Assisted Deposition
  • the first intermediate layer 12 reduces the difference in crystal orientation between the first metal substrate 11 and the first superconducting material layer 13. Also good.
  • the second metal substrate 21 has crystal orientation on its surface
  • the second intermediate layer 22 reduces the difference in crystal orientation between the second metal substrate 21 and the second superconducting material layer 23. Also good.
  • the first superconducting material layer 13 is a portion of the first wire 10 through which a superconducting current flows.
  • the second superconducting material layer 23 is a portion of the second wire 20 through which a superconducting current flows.
  • the first superconducting material layer 13 and the second superconducting material layer 23 are not particularly limited, but may be composed of an oxide superconducting material.
  • the first superconducting material layer 13 may be made of RE1 1 Ba 2 Cu 3 O y1 (6.0 ⁇ y1 ⁇ 8.0, where RE1 represents a rare earth element).
  • the second superconducting material layer 23 may be composed of RE2 1 Ba 2 Cu 3 O y2 (6.0 ⁇ y2 ⁇ 8.0, where RE2 represents a rare earth element).
  • RE2 may be the same as or different from RE1. More specifically, RE1 and RE2 may each be yttrium (Y), gadolinium (Gd), samarium (Sm), or holmium (Ho). More specifically, y1 and y2 may be 6.8 or more and 7.0 or less, respectively.
  • the first superconducting material bonding layer 40 includes a first portion 17 of the first main surface 13 s of the first superconducting material layer 13 and a second portion of the second main surface 23 s of the second superconducting material layer 23. 27 is joined.
  • the first superconducting material bonding layer 40 is not particularly limited, but may be composed of an oxide superconducting material.
  • the first superconducting material bonding layer 40 may be made of RE3 1 Ba 2 Cu 3 O y3 (6.0 ⁇ y3 ⁇ 8.0, where RE3 represents a rare earth element).
  • RE3 may be the same as or different from RE1.
  • RE3 may be the same as or different from RE2.
  • RE3 is yttrium (Y), gadolinium (Gd), dysprosium (Dy), europium (Eu), lanthanum (La), neodymium (Nd), erbium (Er), thulium (Tm), ytterbium. (Yb), lutetium (Lu), samarium (Sm) or holmium (Ho) may be used. More specifically, y3 may be 6.8 or more and 7.0 or less.
  • FIG. 3 is a schematic partial enlarged sectional view of region III shown in FIG.
  • a plurality of particles 44 and a plurality of voids 46 are dispersed in the superconducting material bonding layer 40.
  • the plurality of particles 44 include at least one of RE3 2 O 3 and CuO.
  • Each of the particles 44 and the voids 46 can function as a magnetic flux pinning point (hereinafter referred to as “pinning center”) in the superconducting material bonding layer 40.
  • the pinning center functions to prevent the movement of the magnetic flux lines by capturing and fixing (pinning) the magnetic flux lines that have entered the superconducting material bonding layer 40 under a magnetic field.
  • the critical current density Jc in the magnetic field of the superconducting material bonding layer 40 can be improved.
  • the superconducting characteristic in the magnetic field of the superconducting wire 1 can be improved.
  • the interface between the normal conducting particles and the void crystal grains functions as a pinning center. Therefore, if at least one of the particles 44 and the voids 46 is dispersed in the superconducting material bonding layer 40, the critical current density Jc in the magnetic field is improved. It becomes possible.
  • FIG. 4 shows the result of observing the cross-sectional structure of the superconducting material bonding layer 40 with a scanning electron microscope (SEM).
  • FIG. 4 is a cross-sectional SEM image of region III shown in FIG. 3 in superconducting wire 1 in which RE1, RE2, and RE3 are all Gd.
  • Gd 2 O 3 particles are formed in the superconducting material bonding layer 40.
  • the particles of Gd 2 O 3 can function as pinning centers.
  • the particle size of each of the particles 44 and the voids 46 included in the superconducting material bonding layer 40 is preferably 10 nm or more and 1000 nm or less. If the size of the particles 44 and the voids 46 is too small, the surface area of the particles 44 and the voids 46 becomes small, so that the function as the pinning center cannot be sufficiently exhibited. On the other hand, if the size of the particles 44 and the voids 46 is too large, the oxide superconductor in the superconducting material bonding layer 40 is disconnected by the particles 44 and the voids 46, and the superconducting characteristics of the superconducting wire 1 may be degraded. .
  • the particle size of particles (or voids) refers to the long diameter of particles (or voids) measured from an image (two-dimensional planar projection image) obtained by SEM.
  • the area ratio of the particles 44 and the voids 46 per unit cross-sectional area of the superconducting material bonding layer 40 is preferably 2% or more and 70% or less. If the area ratio of the particles 44 and the voids 46 is too low, a sufficient amount of pinning centers cannot be obtained. On the other hand, if the area ratio of the particles 44 and the voids 46 is too high, the density of the oxide superconductor constituting the superconducting material bonding layer 40 is lowered, and there is a possibility that the superconducting characteristics such as the critical current Ic are deteriorated.
  • the area ratio of the particles 44 and the voids 46 per unit cross-sectional area of the superconducting material bonding layer 40 is the area of the particles 44 and the voids 46 with respect to the area of the observation region of 10 ⁇ m ⁇ superconducting material bonding layer 40 thickness.
  • the ratio of The area of the particle 44 and the void 46 refers to the total value of the cross-sectional areas of all the particles 44 and the void 46 detected in the observation region.
  • first superconducting material layer 13 and second superconducting material layer 23 is a microcrystal composed of the material of first superconducting material bonding layer 40.
  • the method of manufacturing superconducting wire 1 includes a microcrystal generation step (S10), a bonding step (S20), and a heating and pressing step (S30).
  • S10 microcrystal generation step
  • S20 bonding step
  • S30 heating and pressing step
  • the microcrystal production step (S10) includes a coating film formation step (S11), a temporary combustion formation step (S12), and a temporary fired film decomposition step (S13). After performing the temporary fired film decomposition step (S12), the bonding step (S20) is performed. Then, through the main combustion treatment step as the heating and pressurizing step (S30), the superconducting material bonding layer 40 including the oxide superconductor shown in FIG. The superconducting wire 1 is manufactured by joining the superconducting material layer 13 and the second superconducting material layer 23 together. Hereinafter, each process is demonstrated in order.
  • Microcrystal production process In the microcrystal production process (S10), as shown below, it passes through a coating-film formation process (S11), a temporary combustion formation process (S12), and a temporary baking film
  • (A) Coating film forming step In the coating film forming step (S11), on at least one of the first portion 17 of the first superconducting material layer 13 and the second portion 27 of the second superconducting material layer 23, A solution containing a metal organic compound constituting the first superconducting material bonding layer 40 is applied and then dried to form a coating film.
  • a raw material solution in the MOD method that is, an organic compound of an element constituting RE3 1 Ba 2 Cu 3 O y which is a material of the first superconducting material bonding layer 40 (for example, organic A solution in which a metal compound or an organometallic complex) is dissolved in an organic solvent is used.
  • the organic compound may be an organic compound not containing fluorine.
  • the coating method include a die coating method and an inkjet method, but other coating methods may be employed.
  • the coating is applied to the entire surface of at least one of the first portion 17 and the second portion 27, and the thickness of the coating film is appropriately set.
  • the raw material solution is prepared with each of the RE3, Ba, and Cu organometallic compounds so that the composition ratio of RE3, Ba, and Cu (RE3: Ba: Cu) is a: 2: b. It is prepared by dissolving in a solvent.
  • the composition ratio (RE3: Ba: Cu) refers to an atomic concentration ratio (molar ratio) of RE3, Ba, and Cu.
  • the composition ratio of the superconducting material bonding layer 40 to be formed can be controlled by adjusting the composition ratio of the raw material solution.
  • a is preferably selected within a range satisfying 1 ⁇ a ⁇ 1.5, It is more preferable to select within the range of 1.1 ⁇ a ⁇ 1.3.
  • b is preferably selected within a range satisfying 3 ⁇ b ⁇ 3.5, and more preferably selected within a range satisfying 3.1 ⁇ b ⁇ 3.4.
  • the total cation concentration of RE3 3+ , Ba 2+ and Cu 2+ in the raw material solution is 1 mol / L.
  • the composition ratio (RE: Ba: Cu) is 1: 2: 3.
  • at least one of the RE atom concentration and the Cu atom concentration is made higher than that of this general RE123-based oxide superconductor.
  • oxide particles such as RE3 2 O 3 and CuO can be precipitated in the superconducting material bonding layer 40.
  • RE3 2 O 3 and CuO constitute a plurality of particles 44 dispersed in the superconducting material bonding layer 40 and have a pinning function. That is, by increasing at least one of the RE atom concentration and the Cu atom concentration, the pinning center can be efficiently introduced into the superconducting material bonding layer 40.
  • the density of the RE123-based oxide superconductor in the superconducting material bonding layer 40 decreases, so that there is a possibility that the superconducting characteristics may deteriorate instead.
  • the pinning centers can be appropriately dispersed in the superconducting material bonding layer 40 without deteriorating the superconducting characteristics.
  • the dried coating film is heat-treated at the first temperature.
  • the first temperature is equal to or higher than the decomposition temperature of the organometallic compound and lower than the temperature at which the oxide superconductor constituting the first superconducting material bonding layer 40 is generated.
  • the organometallic compound of the coating film is thermally decomposed to become a precursor of the oxide superconductor (hereinafter, a film containing this precursor is referred to as “calcined film”).
  • the precursor of the oxide superconductor includes, for example, BaCO 3 which is a carbon compound of Ba, RE3 2 O 3 which is a rare earth element oxide, and CuO.
  • the pre-combustion process may be performed, for example, in an atmosphere having a temperature of about 500 ° C. (first temperature) and an oxygen concentration of 20% or more.
  • the calcined film pyrolysis step (S13) the calcined film is heated at a second temperature higher than the first temperature, and the carbon compound contained in the calcined film is changed. Thermally decompose. 650 degreeC or more and 800 degrees C or less may be sufficient as 2nd temperature, for example.
  • the carbon compound contained in the calcined film is thermally decomposed to obtain an oxide superconductor constituting the first superconducting material bonding layer 40.
  • the calcined film pyrolysis step (S13) is performed in an atmosphere having a first oxygen concentration.
  • the first oxygen concentration is 1% to 100% (oxygen partial pressure 1 atm).
  • the microcrystal grows and the average grain size of the microcrystal becomes larger than 300 nm.
  • Heating and pressing step In the heating and pressing step (S30), heat is applied while applying pressure to the first wire 10 and the second wire 20. Specifically, the first wire 10 and the second wire 20 are pressed against each other by applying pressure to the first wire 10 and the second wire 20 at a pressure of 1 MPa or more using a pressing jig. In this state, the first wire 10, the second wire 20, and the microcrystal are heated at a third temperature and in an atmosphere having a second oxygen concentration.
  • the third temperature is equal to or higher than the second temperature and equal to or higher than the temperature at which the oxide superconductor constituting the first superconductive material bonding layer 40 is generated.
  • the second oxygen concentration is lower than the first oxygen concentration.
  • the second oxygen concentration may be 100 ppm, for example.
  • the microcrystals generated in the pre-baked film pyrolysis step (S20) grow to generate the first superconducting material bonding layer 40 composed of crystals having a large particle size.
  • the A microcrystal grows along the crystal orientation of at least one of the first superconducting material layer 13 and the second superconducting material layer 23 on which the coating film has been formed in the coating film forming step (S11).
  • the material bonding layer 40 is obtained.
  • the first superconducting material layer 13 of the first wire 10 and the second superconducting material layer 23 of the second wire 20 are joined to each other via the first superconducting material joining layer 40.
  • the voids 46 can be dispersed and formed in the first superconducting material bonding layer 40.
  • the particle size of the void 46 is preferably 10 nm or more and 1000 nm or less.
  • the particle size of the microcrystal formed in the pre-baked film pyrolysis step (S13) and / or the third temperature and the second temperature in the heating and pressurizing step (S30) are prepared. It can be controlled by adjusting conditions such as oxygen concentration.
  • the pre-fired film pyrolysis step (S13) includes fine crystals having a particle size of 100 nm or more and 300 nm or less.
  • the second temperature may be 650 ° C. or higher and 800 ° C. or lower.
  • the first oxygen concentration may be 50% or more and 100% or less.
  • the second oxygen concentration may be 50 ppm or more and 0.01% or less.
  • the method for manufacturing the superconducting wire 1 according to the present embodiment may further include an oxygen annealing step (S40).
  • the oxygen annealing step (S40) is performed at a fourth temperature and in an atmosphere having a third oxygen concentration.
  • the fourth temperature is equal to or lower than the third temperature.
  • the fourth temperature may be 200 ° C. or higher and 500 ° C. or lower.
  • the third oxygen concentration is higher than the second oxygen concentration.
  • the third oxygen concentration may be, for example, 100% (oxygen partial pressure 1 atm).
  • oxygen can be sufficiently supplied to the first superconducting material layer 13, the first superconducting material bonding layer 40, and the second superconducting material layer.
  • Superconducting wire 1 according to the present embodiment can be manufactured through the above steps.
  • a first superconducting material bonding layer that joins the first superconducting material layer 13 of the first wire 10 and the second superconducting material layer 23 of the second wire 20.
  • At least one of the plurality of particles 44 and the plurality of voids 46 is dispersed in 40 (see FIG. 3). According to this, since at least one of the plurality of particles 44 and the plurality of voids 46 functions as a pinning center in the superconducting material bonding layer 40, the critical current density Jc in the magnetic field can be improved. As a result, the superconducting characteristic in the magnetic field of the superconducting wire 1 can be improved.
  • FIG. 6 is a schematic cross-sectional view of superconducting wire 1 according to the second embodiment.
  • FIG. 7 is a schematic partial enlarged sectional view of region VII shown in FIG.
  • the superconducting wire 1b according to the present embodiment has the same configuration as the superconducting wire 1 according to the first embodiment and has the same effect, but is mainly different in the following points.
  • the superconducting wire 1b according to the present embodiment further includes a third wire 30 and a second superconducting material bonding layer 42.
  • the third wire 30 includes a third superconducting material layer 33 having a third main surface 33s. Specifically, the third wire 30 is provided on the third metal substrate 31, the third intermediate layer 32 provided on the third metal substrate 31, and the third intermediate layer 32. The third superconducting material layer 33 may be included. The third wire 30 may be configured in the same manner as the first wire 10.
  • the third metal substrate 31 may be an oriented metal substrate.
  • An oriented metal substrate means a metal substrate having a uniform crystal orientation on the surface of the metal substrate.
  • the oriented metal substrate may be, for example, a clad type metal substrate in which a nickel layer, a copper layer, and the like are arranged on a SUS or Hastelloy (registered trademark) base metal substrate.
  • the third intermediate layer 32 may be made of a material that has extremely low reactivity with the third superconducting material layer 33 and does not deteriorate the superconducting characteristics of the third superconducting material layer 33.
  • the third intermediate layer 32 may be composed of, for example, at least one of YSZ, CeO 2 , MgO, Y 2 O 3 , Al 2 O 3 , LaMnO 3 , Gd 2 Zr 2 O 7 and SrTiO 3 .
  • the third intermediate layer 32 may be composed of a plurality of layers.
  • the third intermediate layer 32 may be a crystal orientation layer formed by, for example, an IBAD method.
  • the third intermediate layer 32 reduces the difference in crystal orientation between the third metal substrate 31 and the third superconducting material layer 33. Also good.
  • the third superconducting material layer 33 is a portion of the third wire 30 through which the superconducting current flows.
  • the third superconducting material layer 33 is not particularly limited, but may be composed of an oxide superconducting material.
  • the third superconducting material layer 33 may be made of RE4 1 Ba 2 Cu 3 O y4 (6.0 ⁇ y4 ⁇ 8.0, where RE4 represents a rare earth element).
  • RE4 may be the same as or different from RE1.
  • RE4 may be the same as or different from RE2. More specifically, RE4 may be Y, Gd, Sm, or Ho. More specifically, y4 may be 6.8 or more and 7.0 or less.
  • the second length of the second wire 20 in the longitudinal direction of the second wire 20 is the first length of the first wire 10 and the length of the third wire 30 in the longitudinal direction of the first wire 10. Shorter than the third length of the third wire 30 in the direction.
  • the first wire 10 has a first end face 10e.
  • the third wire 30 has a second end face 30e.
  • the second end surface 30e is opposed to the first end surface 10e with a space between the second end surface 30e and the first end surface 10e.
  • the first main surface 13 s of the first superconducting material layer 13 and the second main surface 23 s of the second superconducting material layer 23 are bonded to each other through the first superconducting material bonding layer 40.
  • the second main surface 23 s of the second superconducting material layer 23 and the third main surface 33 s of the third superconducting material layer 33 are joined to each other via the second superconducting material joining layer 42.
  • the second wire 20 straddles the first end surface 10 e of the first wire 10 and the second end surface 30 e of the third wire 30.
  • the second superconducting material layer 23 bridges the first superconducting material layer 13 and the third superconducting material layer 33.
  • the second superconducting material bonding layer 42 includes a third portion 28 of the second main surface 23 s of the second superconducting material layer 23 and a fourth portion of the third main surface 33 s of the third superconducting material layer 33. 38 is joined.
  • the third portion 28 is different from the second portion 27.
  • the second superconducting material bonding layer 42 is not particularly limited, but may be composed of an oxide superconducting material.
  • the second superconducting material bonding layer 42 may be made of RE5 1 Ba 2 Cu 3 O y5 (6.0 ⁇ y5 ⁇ 8.0, where RE5 represents a rare earth element).
  • RE5 may be the same as RE2, or may be different.
  • RE5 may be the same as RE3 or different.
  • RE5 may be the same as RE4 or different. More specifically, RE5 may be Y, Gd, Dy, Eu, La, Nd, Er, Tm, Yb, Lu, Sm or Ho. More specifically, y5 may be 6.8 or more and 7.0 or less.
  • the method of joining the second superconducting material layer 23 and the third superconducting material layer 33 through the second superconducting material joining layer 42 is the same as that of the first superconducting material joining layer 40 in the first embodiment. This is the same as the method of joining the first superconducting material layer 13 and the second superconducting material layer 23 (see FIG. 5).
  • the superconducting wire 1b according to the present embodiment has the same effects as the superconducting wire 1 according to the first embodiment as follows.
  • the first superconducting material bonding layer 40 that joins the first superconducting material layer 13 and the second superconducting material layer 23, and the second superconducting material layer 23 and the second superconducting material layer 23.
  • each of the second superconducting material joining layers 42 joining the three superconducting material layers 33 at least one of the plurality of particles 44 and the plurality of voids 46 is dispersed.
  • at least one of the plurality of particles 44 and the plurality of voids 46 functions as a pinning center, so that the critical current density Jc in the magnetic field of each superconducting material bonding layer can be improved.
  • the superconducting characteristic in the magnetic field of the superconducting wire 1b can be improved.
  • the superconducting wire 1b may be applied to a superconducting coil that can be used in the permanent current mode.
  • the superconducting closed loop circuit may be configured by connecting the first wire 10 and the third wire 30 to a superconducting coil (not shown).
  • Superconducting magnet 100 includes a superconducting coil 70 including any of superconducting wires 1 and 1b according to the first and second embodiments, a cryostat 105 housing superconducting coil 70, and a refrigeration for cooling superconducting coil 70.
  • the superconducting magnet 100 may further include a heat shield 106 held inside the cryostat 105 and a magnetic shield 140.
  • superconducting coil 70 one of superconducting wires 1 and 1b according to the first and second embodiments is wound around the central axis of superconducting coil 70.
  • Superconducting coil body 110 including superconducting coil 70 is housed in cryostat 105.
  • Superconducting coil body 110 is held inside heat shield 106.
  • Superconducting coil body 110 includes a plurality of superconducting coils 70, an upper support portion 114, and a lower support portion 111.
  • a plurality of superconducting coils 70 are stacked. The upper and lower end surfaces of the superconducting coils 70 stacked are arranged so that the upper support portion 114 and the lower support portion 111 sandwich the upper end surface and the lower end surface.
  • a cooling plate 113 is disposed on the upper end surface of the superconducting coil 70 that is laminated and on the lower end surface of the superconducting coil 70 that is laminated.
  • a cooling plate (not shown) is also disposed between the superconducting coils 70 adjacent to each other.
  • One end of the cooling plate 113 is connected to the second cooling head 131 of the refrigerator 102.
  • a cooling plate (not shown) disposed between the superconducting coils 70 adjacent to each other is also connected to the second cooling head 131 at one end thereof.
  • the first cooling head 132 of the refrigerator 102 may be connected to the wall portion of the heat shield 106. Therefore, the wall portion of the heat shield 106 can also be cooled by the refrigerator 102.
  • the lower support part 111 of the superconducting coil body 110 has a size larger than the planar shape of the superconducting coil 70.
  • the lower support portion 111 is fixed to the heat shield 106 by a plurality of support members 115.
  • the plurality of support members 115 are rod-shaped members, and connect the upper wall of the heat shield 106 and the outer peripheral portion of the lower support portion 111.
  • a plurality of support members 115 are arranged on the outer periphery of the superconducting coil body 110. Support members 115 are arranged to surround superconducting coil 70 at the same interval.
  • the heat shield 106 that holds the superconducting coil body 110 is connected to the cryostat 105 by the connecting portion 120.
  • the connecting portions 120 are arranged at equal intervals along the outer peripheral portion of the superconducting coil body 110 so as to surround the central axis of the superconducting coil body 110.
  • the connection part 120 connects the lid body 135 of the cryostat 105 and the upper wall of the heat shield 106.
  • the refrigerator 102 is arranged so as to extend from the upper part of the lid 135 of the cryostat 105 to the inside of the heat shield 106.
  • the refrigerator 102 cools the superconducting coil body 110.
  • the main body 133 and the motor 134 of the refrigerator 102 are disposed above the upper surface of the lid 135.
  • the refrigerator 102 is arranged so as to reach the inside of the heat shield 106 from the main body 133.
  • the refrigerator 102 may be, for example, a Gifford McMahon refrigerator.
  • the refrigerator 102 is connected through a pipe 137 to a compressor (not shown) that compresses the refrigerant.
  • the refrigerant for example, helium gas
  • the refrigerant is expanded by a displacer driven by a motor 134, whereby the regenerator material provided in the refrigerator 102 is cooled.
  • the refrigerant which has become low pressure due to expansion, is returned to the compressor and is increased in pressure again.
  • the first cooling head 132 of the refrigerator 102 cools the heat shield 106 to prevent external heat from entering the heat shield 106.
  • the second cooling head 131 of the refrigerator 102 cools the superconducting coil 70 via the cooling plate 113.
  • the superconducting coil 70 is in a superconducting state.
  • the cryostat 105 includes a cryostat main body 136 and a lid body 135.
  • the periphery of the main body 133 and the motor 134 is surrounded by a magnetic shield 140.
  • the magnetic shield 140 can prevent a part of the magnetic field generated from the superconducting coil body 110 from entering the motor 134.
  • the superconducting magnet 100 is formed with an opening 107 that penetrates the cryostat 105 and the heat shield 106 and reaches the bottom wall of the cryostat main body 136 from the lid body 135 of the cryostat 105.
  • the opening 107 is disposed so as to penetrate the central portion of the superconducting coil 70 of the superconducting coil body 110.
  • a detected body 210 (see FIG. 13) is disposed inside the opening 107, and a magnetic field generated from the superconducting coil body 110 is applied to the detected body 210.
  • Superconducting coil 70 of the present embodiment includes superconducting coil 70 including any of superconducting wires 1 and 1b according to the first and second embodiments. Any of superconducting wires 1 and 1b according to the first and second embodiments is wound around the central axis of the superconducting coil. Therefore, the superconducting coil 70 of the present embodiment can generate a strong magnetic field.
  • Superconducting magnet 100 of the present embodiment includes a superconducting coil 70 including any of superconducting wires 1 and 1b according to the first and second embodiments, a cryostat 105 that accommodates superconducting coil 70, and a refrigerator that cools superconducting coil 70. 102. Therefore, superconducting magnet 100 according to the present embodiment can generate a strong magnetic field.
  • Superconducting device 200 may be, for example, a magnetic resonance imaging (MRI) apparatus.
  • MRI magnetic resonance imaging
  • Superconducting device 200 mainly includes superconducting magnet 100 according to the third embodiment.
  • Superconducting device 200 according to the present embodiment may further include a movable table 202 and a control unit 208.
  • the movable table 202 includes a top plate 205 on which the detected object 210 is placed and a drive unit 204 that moves the top plate 205.
  • the control unit 208 is connected to the superconducting magnet 100 and the drive unit 204.
  • the control unit 208 drives the superconducting magnet 100 to generate a uniform magnetic field in the opening 107 of the superconducting magnet 100.
  • the control unit 208 moves the movable table 202 and causes the detected object 210 placed on the movable table 202 to enter the opening 107 of the superconducting magnet 100.
  • the control unit 208 moves the movable table 202 and causes the detected object 210 placed on the movable table 202 to exit from the opening 107 of the superconducting magnet 100.
  • Superconducting device 200 according to the present embodiment includes superconducting magnet 100. Therefore, superconducting device 200 according to the present embodiment can generate a strong magnetic field. Using the superconducting device 200 according to the present embodiment, the detected object 210 can be accurately imaged.
  • Embodiment 1-4 disclosed this time is illustrative in all respects and not restrictive.
  • the scope of the present invention is shown not by the above-described first to fifth embodiments but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
  • 1, 1b superconducting wire 10 first wire, 10e first end face, 11 first metal substrate, 12 first intermediate layer, 13 first superconducting material layer, 13s first main surface, 17 first Part 20, 20 second wire, 21 second metal substrate, 22 second intermediate layer, 23 second superconducting material layer, 23s second main surface, 27 second part, 28 third part, 30 3rd wire, 30e 2nd end face, 31 3rd metal substrate, 32 3rd intermediate layer, 33 3rd superconducting material layer, 33s 3rd main surface, 38 4th part, 40 1st Superconducting material joining layer, 42 second superconducting material joining layer, 70 superconducting coil, 100 superconducting magnet, 102 refrigerator, 105 cryostat, 106 heat shield, 107 opening, 110 superconducting coil body, 111 Lower support part, 113 cooling plate, 114 upper support part, 115 support member, 120 connection part, 131 second cooling head, 132 first cooling head, 133 main body part, 134 motor, 135 lid body, 136 cry

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

This superconducting wire material is provided with a first wire material having a first superconducting material layer, a second wire material having a second superconducting material layer, and a superconducting material joining layer. A portion of the first wire material and a portion of the second wire material are joined via the superconducting material joining layer such that the first superconducting material layer and the second superconducting material layer overlap. A plurality of particles and/or a plurality of voids, both of which functioning as a pinning center, are dispersed within the superconducting material joining layer.

Description

超電導線材、超電導コイル、超電導マグネットおよび超電導機器Superconducting wire, superconducting coil, superconducting magnet and superconducting equipment
 この発明は、超電導線材、超電導コイル、超電導マグネットおよび超電導機器に関する。本出願は、2017年5月19日に出願した日本特許出願である特願2017-099668号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present invention relates to a superconducting wire, a superconducting coil, a superconducting magnet, and a superconducting device. The present application claims priority based on Japanese Patent Application No. 2017-099668, which is a Japanese patent application filed on May 19, 2017. All the descriptions described in the Japanese patent application are incorporated herein by reference.
 国際公開第2016/129469号(特許文献1)は、第1の超電導材料層を含む第1の線材と、第2の超電導材料層を含む第2の線材と、第1の超電導材料層と第2の超電導材料層とを接合する超電導材料接合層とを備える超電導線材を開示している。 International Publication No. 2016/129469 (Patent Document 1) includes a first wire including a first superconducting material layer, a second wire including a second superconducting material layer, a first superconducting material layer, and a first superconducting material layer. A superconducting wire provided with a superconducting material joining layer that joins two superconducting material layers is disclosed.
国際公開第2016/129469号International Publication No. 2016/129469
 本発明の一態様に係る超電導線材は、第1の超電導材料層を有する第1の線材と、第2の超電導材料層を有する第2の線材と、超電導材料接合層とを備える。第1の線材の一部と第2の線材の一部とは、第1の超電導材料層と第2の超電導材料層とが重ね合わさるように、超電導材料接合層を介して接合される。超電導材料接合層中には、ピンニング中心として機能する複数の粒子および複数の空隙の少なくとも一方が分散されている。 The superconducting wire according to one embodiment of the present invention includes a first wire having a first superconducting material layer, a second wire having a second superconducting material layer, and a superconducting material bonding layer. Part of the first wire and part of the second wire are joined via the superconducting material joining layer so that the first superconducting material layer and the second superconducting material layer are overlapped. In the superconducting material bonding layer, at least one of a plurality of particles functioning as a pinning center and a plurality of voids is dispersed.
 本発明の一態様に係る超電導コイルは、本発明の一態様に係る超電導線材を備える。超電導線材は、超電導コイルの中心軸周りに巻き回されている。 The superconducting coil according to one aspect of the present invention includes the superconducting wire according to one aspect of the present invention. The superconducting wire is wound around the central axis of the superconducting coil.
 本発明の一態様に係る超電導マグネットは、本発明の一態様に係る超電導コイルと、超電導コイルを収容するクライオスタットと、超電導コイルを冷却する冷凍機とを備える。 A superconducting magnet according to an aspect of the present invention includes a superconducting coil according to an aspect of the present invention, a cryostat that houses the superconducting coil, and a refrigerator that cools the superconducting coil.
 本発明の一態様に係る超電導機器は、本発明の一態様に係る超電導マグネットを備える。 The superconducting device according to one aspect of the present invention includes the superconducting magnet according to one aspect of the present invention.
図1は、実施の形態1に従う超電導線材の概略断面図である。FIG. 1 is a schematic sectional view of a superconducting wire according to the first embodiment. 図2は、図1に示される領域IIの概略部分拡大断面図である。FIG. 2 is a schematic partial enlarged cross-sectional view of region II shown in FIG. 図3は、図2に示される領域IIIの概略部分拡大断面図である。FIG. 3 is a schematic partial enlarged sectional view of region III shown in FIG. 図4は、超電導材料接合層の断面構造のSEM画像を示す図である。FIG. 4 is a diagram showing an SEM image of the cross-sectional structure of the superconducting material bonding layer. 図5は、実施の形態1に係る超電導線材の製造方法を示すフローチャートである。FIG. 5 is a flowchart showing a method of manufacturing a superconducting wire according to the first embodiment. 図6は、実施の形態2に従う超電導線材の概略断面図である。FIG. 6 is a schematic cross-sectional view of the superconducting wire according to the second embodiment. 図7は、図6に示される領域VIIの概略部分拡大断面図である。FIG. 7 is a schematic partial enlarged sectional view of region VII shown in FIG. 図8は、実施の形態3に従う超電導マグネットの概略断面図である。FIG. 8 is a schematic cross-sectional view of a superconducting magnet according to the third embodiment. 図9は、実施の形態4に従う超電導機器の概略断面図である。FIG. 9 is a schematic cross-sectional view of a superconducting device according to the fourth embodiment.
[本開示が解決しようとする課題]
 本発明の一態様の目的は、第1の線材の第1の超電導材料層と第2の線材の第2の超電導材料層とを接合する超電導材料接合層を備える超電導線材の磁場中における超電導特性を改善することである。本発明の一態様の目的は、このような超電導線材を含む超電導コイル、超電導マグネットおよび超電導機器を提供することである。
[本開示の効果]
 上記によれば、第1の線材の第1の超電導材料層と第2の線材の第2の超電導材料層とを接合する超電導材料接合層の磁場中における臨界電流密度を向上させることができる。上記によれば、超電導線材の磁場中における超電導特性を改善することができるため、該超電導線材を含む超電導コイル、超電導マグネットおよび超電導機器の各々において、強い磁場を発生し得る。
[Problems to be solved by this disclosure]
An object of one embodiment of the present invention is to provide superconducting characteristics in a magnetic field of a superconducting wire including a superconducting material joining layer that joins a first superconducting material layer of a first wire and a second superconducting material layer of a second wire. Is to improve. An object of one aspect of the present invention is to provide a superconducting coil, a superconducting magnet, and a superconducting device including such a superconducting wire.
[Effects of the present disclosure]
Based on the above, it is possible to improve the critical current density in the magnetic field of the superconducting material joining layer that joins the first superconducting material layer of the first wire and the second superconducting material layer of the second wire. According to the above, since the superconducting characteristics of the superconducting wire in the magnetic field can be improved, a strong magnetic field can be generated in each of the superconducting coil, superconducting magnet, and superconducting device including the superconducting wire.
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.
 (1)本発明の一態様に係る超電導線材1,1b(図1および図6参照)は、第1の超電導材料層13を有する第1の線材10と、第2の超電導材料層23を有する第2の線材20と、超電導材料接合層40,42とを備える。第1の線材10の一部17と第2の線材20の一部27とは、第1の超電導材料層13第2の超電導材料層23とが重ね合わさるように、超電導材料接合層40,42を介して接合される。超電導材料接合層40,42中には、ピンニング中心として機能する複数の粒子44および複数の空隙46(図3参照)の少なくとも一方が分散されている。 (1) Superconducting wires 1 and 1b (see FIGS. 1 and 6) according to an aspect of the present invention have a first wire 10 having a first superconducting material layer 13 and a second superconducting material layer 23. A second wire 20 and superconducting material bonding layers 40 and 42 are provided. The superconducting material bonding layers 40 and 42 are formed so that the part 17 of the first wire 10 and the part 27 of the second wire 20 overlap the first superconducting material layer 13 and the second superconducting material layer 23. It is joined via. In the superconducting material bonding layers 40 and 42, at least one of a plurality of particles 44 functioning as a pinning center and a plurality of voids 46 (see FIG. 3) is dispersed.
 上記(1)に係る超電導線材1,1bでは、超電導材料接合層40,42中に分散されている粒子44および空隙46がピンニング中心として機能するため、超電導材料接合層40,42の磁場中における臨界電流密度Jcを向上させることができる。これにより、超電導線材1,1bの磁場中における超電導特性を改善することができる。 In the superconducting wires 1 and 1b according to the above (1), the particles 44 and the voids 46 dispersed in the superconducting material bonding layers 40 and 42 function as pinning centers. Therefore, in the magnetic field of the superconducting material bonding layers 40 and 42 The critical current density Jc can be improved. Thereby, the superconducting characteristic in the magnetic field of the superconducting wire 1 and 1b can be improved.
 なお、本発明の実施態様には、第1の線材10と第2の線材20とが共通の線材である場合も含まれる。たとえば、第1の線材10の一部17が1本の線材の一方端部を構成し、第2の線材20の一部27が該1本の線材の他方端部を構成する場合がこれに該当する。本実施態様は、該1本の線材を巻き回して超電導コイルが形成される場面において適用され得る。 The embodiment of the present invention includes a case where the first wire 10 and the second wire 20 are a common wire. For example, this is the case when a part 17 of the first wire 10 constitutes one end of one wire, and a part 27 of the second wire 20 constitutes the other end of the one wire. Applicable. This embodiment can be applied in a situation where a superconducting coil is formed by winding the one wire.
 (2)上記(1)の超電導線材において、超電導材料接合層40,42の厚さ方向での断面における単位面積当たりの複数の粒子44および複数の空隙46の面積率は1%以上70%以下である。 (2) In the superconducting wire of (1) above, the area ratio of the plurality of particles 44 and the plurality of voids 46 per unit area in the cross section in the thickness direction of the superconducting material bonding layers 40 and 42 is 1% or more and 70% or less. It is.
 このようにすると、超電導材料接合層40,42における超電導体の密度を低下させることなく、臨界電流密度Jcの向上に適当な量のピンニング中心を超電導材料接合層40,42中に導入することができる。 In this way, an appropriate amount of pinning centers for improving the critical current density Jc can be introduced into the superconducting material bonding layers 40, 42 without reducing the density of the superconductor in the superconducting material bonding layers 40, 42. it can.
 なお、本明細書において、超電導材料接合層40の単位断面積当たりの粒子44および空隙46の面積率とは、10μm×超電導材料接合層の厚みの観察領域の面積に対する粒子44および空隙46の面積の割合をいう。粒子44および空隙46の面積とは、上記観察領域内に検出される全ての粒子44および空隙46の断面積の合計値をいう。 In this specification, the area ratio of the particles 44 and the voids 46 per unit cross-sectional area of the superconducting material bonding layer 40 is the area of the particles 44 and the voids 46 with respect to the area of the observation region of 10 μm × the thickness of the superconducting material bonding layer. The ratio of The area of the particle 44 and the void 46 refers to the total value of the cross-sectional areas of all the particles 44 and the void 46 detected in the observation region.
 (3)上記(1)または(2)に係る超電導線材において、複数の粒子44および複数の空隙46の各々の粒径は10nm以上2000nm以下である。 (3) In the superconducting wire according to (1) or (2) above, each of the plurality of particles 44 and the plurality of voids 46 has a particle size of 10 nm to 2000 nm.
 このようにすると、超電導材料接合層40,42内部において超電導体を途切れさせることなく、粒子44および空隙46の各々がピンニング中心としての機能を十分に発揮することができる。 In this way, each of the particles 44 and the voids 46 can sufficiently function as a pinning center without interrupting the superconductor in the superconducting material bonding layers 40 and 42.
 なお、本明細書において、粒子44(または空隙46)の粒径とは、SEMで得られた像(2次元平面投影像)から計測した粒子44(または空隙46)の長径をいう。 In this specification, the particle size of the particles 44 (or the voids 46) refers to the long diameter of the particles 44 (or the voids 46) measured from an image (two-dimensional planar projection image) obtained by SEM.
 (4)上記(1)から(3)に係る超電導線材において、超電導材料接合層40,42は、REBaCu(式中、RE:希土類元素、Ba:バリウム、Cu:銅、O:酸素)で表されるRE123系酸化物超電導体により構成されており、複数の粒子44はREを含む。 (4) In the superconducting wire according to the above (1) to (3), the superconducting material bonding layers 40 and 42 are formed of RE 1 Ba 2 Cu 3 O y (where RE: rare earth element, Ba: barium, Cu: copper). , O: oxygen), and the plurality of particles 44 include RE 2 O 3 .
 これによると、RE123系酸化物超電導体により構成された超電導材料接合層40,42において、結晶中から析出したRE(RE酸化物)がピンニング中心として機能し得る。REは超電導材料接合層40,42中に分散されているため、高いピン止めの機能を得ることができる。 According to this, RE 2 O 3 (RE oxide) precipitated from the crystal can function as a pinning center in the superconducting material bonding layers 40 and 42 formed of the RE123-based oxide superconductor. Since RE 2 O 3 is dispersed in the superconducting material bonding layers 40 and 42, a high pinning function can be obtained.
 (5)上記(1)から(4)に係る超電導線材において、超電導材料接合層は、RE123系酸化物超電導体により構成されており、複数の粒子44はCuOを含む。 (5) In the superconducting wires according to the above (1) to (4), the superconducting material bonding layer is composed of an RE123-based oxide superconductor, and the plurality of particles 44 include CuO.
 これによると、RE123系酸化物超電導体により構成された超電導材料接合層40,42において、結晶中から析出したCuO(酸化銅)がピンニング中心として機能し得る。CuOは超電導材料接合層40,42中に分散されているため、高いピン止めの機能を得ることができる。 According to this, CuO (copper oxide) precipitated from the crystal can function as a pinning center in the superconducting material bonding layers 40 and 42 formed of the RE123-based oxide superconductor. Since CuO is dispersed in the superconducting material bonding layers 40 and 42, a high pinning function can be obtained.
 (6)本発明の一態様に係る超電導コイル70(図8参照)は、中心軸を有する超電導コイルであって、上記(1)から(5)に係る超電導線材1,1bを備える。上記(1)から(5)に係る超電導線材は、中心軸周りに巻き回されている。上記(6)に係る超電導コイル70は、強い磁場を発生し得る。 (6) A superconducting coil 70 (see FIG. 8) according to an aspect of the present invention is a superconducting coil having a central axis, and includes the superconducting wires 1 and 1b according to the above (1) to (5). The superconducting wires according to the above (1) to (5) are wound around the central axis. The superconducting coil 70 according to the above (6) can generate a strong magnetic field.
 (7)本発明の一態様に係る超電導マグネット100(図8参照)は、上記(6)に係る超電導コイル70と、超電導コイル70を収容するクライオスタット105と、超電導コイル70を冷却する冷凍機102とを備える。上記(6)に係る超電導マグネット100は、強い磁場を発生し得る。 (7) A superconducting magnet 100 (see FIG. 8) according to one aspect of the present invention includes a superconducting coil 70 according to (6) above, a cryostat 105 that houses the superconducting coil 70, and a refrigerator 102 that cools the superconducting coil 70. With. The superconducting magnet 100 according to the above (6) can generate a strong magnetic field.
 (8)本発明の一態様に係る超電導機器200(図9参照)は、上記(7)に係る超電導マグネット100を備える。上記(8)に係る超電導機器200は、強い磁場を発生し得る。 (8) A superconducting device 200 (see FIG. 9) according to an aspect of the present invention includes the superconducting magnet 100 according to (7) above. The superconducting device 200 according to the above (8) can generate a strong magnetic field.
 [本発明の実施形態の詳細]
 以下、本発明の実施の形態について図面に基づいて説明する。なお、以下の図面において、同一または相当する部分には同一の参照符号を付し、その説明は繰り返さない。
[Details of the embodiment of the present invention]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated.
 [実施の形態1]
 (超電導線材)
 図1は、実施の形態1に係る超電導線材1の概略断面図である。図2は、図1に示される領域IIの概略部分拡大断面図である。
[Embodiment 1]
(Superconducting wire)
FIG. 1 is a schematic cross-sectional view of superconducting wire 1 according to the first embodiment. FIG. 2 is a schematic partial enlarged cross-sectional view of region II shown in FIG.
 図1および図2に示されるように、本実施の形態に係る超電導線材1は、第1の線材10と、第2の線材20と、超電導材料接合層40とを主に備える。 1 and 2, the superconducting wire 1 according to the present embodiment mainly includes a first wire 10, a second wire 20, and a superconducting material bonding layer 40.
 第1の線材10は、第1の主面13sを有する第1の超電導材料層13を含む。特定的には、第1の線材10は、第1の金属基板11と、第1の金属基板11上に設けられた第1の中間層12と、第1の中間層12上に設けられた第1の超電導材料層13とを含んでもよい。 The first wire 10 includes a first superconducting material layer 13 having a first main surface 13s. Specifically, the first wire 10 is provided on the first metal substrate 11, the first intermediate layer 12 provided on the first metal substrate 11, and the first intermediate layer 12. The first superconducting material layer 13 may be included.
 第2の線材20は、第2の主面23sを有する第2の超電導材料層23を含む。特定的には、第2の線材20は、第2の金属基板21と、第2の金属基板21上に設けられた第2の中間層22と、第2の中間層22上に設けられた第2の超電導材料層23とを含んでもよい。 The second wire 20 includes a second superconducting material layer 23 having a second main surface 23s. Specifically, the second wire 20 is provided on the second metal substrate 21, the second intermediate layer 22 provided on the second metal substrate 21, and the second intermediate layer 22. The second superconducting material layer 23 may be included.
 第1の金属基板11および第2の金属基板21の各々は、配向金属基板であってもよい。配向金属基板は、基板表面の面内の2軸方向に関して結晶方位が揃っている基板を意味する。配向金属基板は、たとえばSUSまたはハステロイ(登録商標)のベース金属基板上にニッケル層および銅層などが配置されたクラッドタイプの金属基板であってもよい。 Each of the first metal substrate 11 and the second metal substrate 21 may be an oriented metal substrate. An oriented metal substrate means a substrate in which crystal orientations are aligned with respect to the biaxial direction in the plane of the substrate surface. The oriented metal substrate may be a clad type metal substrate in which, for example, a nickel layer and a copper layer are arranged on a SUS or Hastelloy (registered trademark) base metal substrate.
 第1の中間層12は、第1の超電導材料層13との反応性が極めて低く、第1の超電導材料層13の超電導特性を低下させないような材料を用いることができる。第2の中間層22は、第2の超電導材料層23との反応性が極めて低く、第2の超電導材料層23の超電導特性を低下させないような材料を用いることができる。第1の中間層12および第2の中間層22の各々は、たとえば、YSZ(イットリウム安定化ジルコニア)、CeO(酸化セリウム)、MgO(酸化マグネシウム)、Y(酸化イットリウム)、Al(酸化アルミニウム)、LaMnO(酸化ランタンマンガン)およびSrTiO(チタン酸ストロンチウム)の少なくとも1つから構成されてもよい。 The first intermediate layer 12 may be made of a material that has extremely low reactivity with the first superconducting material layer 13 and does not deteriorate the superconducting characteristics of the first superconducting material layer 13. The second intermediate layer 22 may be made of a material that has extremely low reactivity with the second superconducting material layer 23 and does not deteriorate the superconducting characteristics of the second superconducting material layer 23. Each of the first intermediate layer 12 and the second intermediate layer 22 includes, for example, YSZ (yttrium stabilized zirconia), CeO 2 (cerium oxide), MgO (magnesium oxide), Y 2 O 3 (yttrium oxide), Al It may be composed of at least one of 2 O 3 (aluminum oxide), LaMnO 3 (lanthanum manganese oxide), and SrTiO 3 (strontium titanate).
 第1の中間層12および第2の中間層22の各々は、複数の層により構成されていてもよい。第1の金属基板11および第2の金属基板21としてSUS基板またはハステロイ基板等、表面が配向結晶化されていない無配向基板が用いられる場合には、第1の中間層12および第2の中間層22は、たとえばIBAD(Ion Beam Assisted Deposition)法にて形成された結晶配向層であってもよい。第1の金属基板11がその表面に結晶配向性を有するとき、第1の中間層12は、第1の金属基板11と第1の超電導材料層13との結晶配向性の差を緩和してもよい。第2の金属基板21がその表面に結晶配向性を有するとき、第2の中間層22は、第2の金属基板21と第2の超電導材料層23との結晶配向性の差を緩和してもよい。 Each of the first intermediate layer 12 and the second intermediate layer 22 may be composed of a plurality of layers. When a non-oriented substrate whose surface is not oriented and crystallized, such as a SUS substrate or a Hastelloy substrate, is used as the first metal substrate 11 and the second metal substrate 21, the first intermediate layer 12 and the second intermediate substrate 12 The layer 22 may be a crystal orientation layer formed by, for example, an IBAD (Ion Beam Assisted Deposition) method. When the first metal substrate 11 has crystal orientation on its surface, the first intermediate layer 12 reduces the difference in crystal orientation between the first metal substrate 11 and the first superconducting material layer 13. Also good. When the second metal substrate 21 has crystal orientation on its surface, the second intermediate layer 22 reduces the difference in crystal orientation between the second metal substrate 21 and the second superconducting material layer 23. Also good.
 第1の超電導材料層13は、第1の線材10のうち、超電導電流が流れる部分である。第2の超電導材料層23は、第2の線材20のうち、超電導電流が流れる部分である。第1の超電導材料層13および第2の超電導材料層23は、特に限定されないが、酸化物超電導材料で構成されてもよい。特定的には、第1の超電導材料層13は、RE1BaCuy1(6.0≦y1≦8.0、RE1は希土類元素を表す)により構成されてもよい。第2の超電導材料層23は、RE2BaCuy2(6.0≦y2≦8.0、RE2は希土類元素を表す)により構成されてもよい。RE2は、RE1と同じであってもよいし、異なってもよい。さらに特定的には、RE1及びRE2は、各々、イットリウム(Y)、ガドリニウム(Gd)、サマリウム(Sm)またはホルミウム(Ho)であってもよい。さらに特定的には、y1およびy2は、各々、6.8以上7.0以下であってもよい。 The first superconducting material layer 13 is a portion of the first wire 10 through which a superconducting current flows. The second superconducting material layer 23 is a portion of the second wire 20 through which a superconducting current flows. The first superconducting material layer 13 and the second superconducting material layer 23 are not particularly limited, but may be composed of an oxide superconducting material. Specifically, the first superconducting material layer 13 may be made of RE1 1 Ba 2 Cu 3 O y1 (6.0 ≦ y1 ≦ 8.0, where RE1 represents a rare earth element). The second superconducting material layer 23 may be composed of RE2 1 Ba 2 Cu 3 O y2 (6.0 ≦ y2 ≦ 8.0, where RE2 represents a rare earth element). RE2 may be the same as or different from RE1. More specifically, RE1 and RE2 may each be yttrium (Y), gadolinium (Gd), samarium (Sm), or holmium (Ho). More specifically, y1 and y2 may be 6.8 or more and 7.0 or less, respectively.
 第1の超電導材料接合層40は、第1の超電導材料層13の第1の主面13sの第1の部分17と第2の超電導材料層23の第2の主面23sの第2の部分27とを接合する。第1の超電導材料接合層40は、特に限定されないが、酸化物超電導材料で構成されてもよい。特定的には、第1の超電導材料接合層40は、RE3BaCuy3(6.0≦y3≦8.0、RE3は希土類元素を表す)により構成されてもよい。RE3は、RE1と同じであってもよいし、異なってもよい。RE3は、RE2と同じであってもよいし、異なってもよい。さらに特定的には、RE3は、イットリウム(Y)、ガドリニウム(Gd)、ジスプロシウム(Dy)、ユウロピウム(Eu)、ランタン(La)、ネオジム(Nd)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、サマリウム(Sm)またはホルミウム(Ho)であってもよい。さらに特定的には、y3は、6.8以上7.0以下であってもよい。 The first superconducting material bonding layer 40 includes a first portion 17 of the first main surface 13 s of the first superconducting material layer 13 and a second portion of the second main surface 23 s of the second superconducting material layer 23. 27 is joined. The first superconducting material bonding layer 40 is not particularly limited, but may be composed of an oxide superconducting material. Specifically, the first superconducting material bonding layer 40 may be made of RE3 1 Ba 2 Cu 3 O y3 (6.0 ≦ y3 ≦ 8.0, where RE3 represents a rare earth element). RE3 may be the same as or different from RE1. RE3 may be the same as or different from RE2. More specifically, RE3 is yttrium (Y), gadolinium (Gd), dysprosium (Dy), europium (Eu), lanthanum (La), neodymium (Nd), erbium (Er), thulium (Tm), ytterbium. (Yb), lutetium (Lu), samarium (Sm) or holmium (Ho) may be used. More specifically, y3 may be 6.8 or more and 7.0 or less.
 図3は、図2に示される領域IIIの概略部分拡大断面図である。
 図3に示されるように、超電導材料接合層40中には、複数の粒子44および複数の空隙46が分散している。複数の粒子44は、RE3およびCuOの少なくとも1つを含んでいる。
FIG. 3 is a schematic partial enlarged sectional view of region III shown in FIG.
As shown in FIG. 3, a plurality of particles 44 and a plurality of voids 46 are dispersed in the superconducting material bonding layer 40. The plurality of particles 44 include at least one of RE3 2 O 3 and CuO.
 粒子44および空隙46の各々は、超電導材料接合層40中において、磁束ピン止め点(以下、「ピンニング中心」という)として機能し得る。ピンニング中心は、磁場下において超電導材料接合層40の内部に侵入した磁束線を捕捉して固定(ピン止め)することにより、磁束線の運動を妨げる働きをする。超電導材料接合層40にピンニング中心を導入することにより、超電導材料接合層40の磁場中における臨界電流密度Jcを向上させることができる。この結果、超電導線材1の磁場中における超電導特性を改善することができる。 Each of the particles 44 and the voids 46 can function as a magnetic flux pinning point (hereinafter referred to as “pinning center”) in the superconducting material bonding layer 40. The pinning center functions to prevent the movement of the magnetic flux lines by capturing and fixing (pinning) the magnetic flux lines that have entered the superconducting material bonding layer 40 under a magnetic field. By introducing a pinning center into the superconducting material bonding layer 40, the critical current density Jc in the magnetic field of the superconducting material bonding layer 40 can be improved. As a result, the superconducting characteristic in the magnetic field of the superconducting wire 1 can be improved.
 なお、常電導粒子および空隙結晶粒界面はピンニング中心として機能するため、超電導材料接合層40中に粒子44および空隙46の少なくとも一方が分散されていれば、磁場中における臨界電流密度Jcを向上させることが可能となる。 The interface between the normal conducting particles and the void crystal grains functions as a pinning center. Therefore, if at least one of the particles 44 and the voids 46 is dispersed in the superconducting material bonding layer 40, the critical current density Jc in the magnetic field is improved. It becomes possible.
 図4に、超電導材料接合層40の断面構造を、走査型電子顕微鏡(SEM:Scanning Electron Microscope)によって観察した結果を示す。図4は、RE1、RE2およびRE3がともにGdである超電導線材1における、図3に示される領域IIIの断面SEM像である。 FIG. 4 shows the result of observing the cross-sectional structure of the superconducting material bonding layer 40 with a scanning electron microscope (SEM). FIG. 4 is a cross-sectional SEM image of region III shown in FIG. 3 in superconducting wire 1 in which RE1, RE2, and RE3 are all Gd.
 図4に示されるように、超電導材料接合層40中にGdの粒子が形成されている。Gdの粒子はピンニング中心として機能し得る。 As shown in FIG. 4, Gd 2 O 3 particles are formed in the superconducting material bonding layer 40. The particles of Gd 2 O 3 can function as pinning centers.
 本実施の形態に係る超電導線材1において、超電導材料接合層40中に含まれる粒子44および空隙46の各々の粒径は10nm以上1000nm以下であることが好ましい。粒子44および空隙46のサイズが小さすぎると、粒子44および空隙46の表面積が小さくなるため、ピンニング中心としての機能を十分に発揮させることができない。一方、粒子44および空隙46のサイズが大きすぎると、超電導材料接合層40中の酸化物超電導体が粒子44および空隙46によって断絶されることとなり、超電導線材1の超電導特性を低下させる虞がある。なお、本明細書において、粒子(または空隙)の粒径とは、SEMで得られた像(2次元平面投影像)から計測した粒子(または空隙)の長径をいう。 In the superconducting wire 1 according to the present embodiment, the particle size of each of the particles 44 and the voids 46 included in the superconducting material bonding layer 40 is preferably 10 nm or more and 1000 nm or less. If the size of the particles 44 and the voids 46 is too small, the surface area of the particles 44 and the voids 46 becomes small, so that the function as the pinning center cannot be sufficiently exhibited. On the other hand, if the size of the particles 44 and the voids 46 is too large, the oxide superconductor in the superconducting material bonding layer 40 is disconnected by the particles 44 and the voids 46, and the superconducting characteristics of the superconducting wire 1 may be degraded. . In this specification, the particle size of particles (or voids) refers to the long diameter of particles (or voids) measured from an image (two-dimensional planar projection image) obtained by SEM.
 また、本実施の形態に係る超電導線材1において、超電導材料接合層40の単位断面積当たりの粒子44および空隙46の面積率は2%以上70%以下であることが好ましい。粒子44および空隙46の面積率が低すぎると、十分な量のピンニング中心を得ることができない。一方で、粒子44および空隙46の面積率が高すぎると、超電導材料接合層40を構成する酸化物超電導体の密度が低くなり、臨界電流Icなどの超電導特性を低下させる虞がある。 In the superconducting wire 1 according to the present embodiment, the area ratio of the particles 44 and the voids 46 per unit cross-sectional area of the superconducting material bonding layer 40 is preferably 2% or more and 70% or less. If the area ratio of the particles 44 and the voids 46 is too low, a sufficient amount of pinning centers cannot be obtained. On the other hand, if the area ratio of the particles 44 and the voids 46 is too high, the density of the oxide superconductor constituting the superconducting material bonding layer 40 is lowered, and there is a possibility that the superconducting characteristics such as the critical current Ic are deteriorated.
 なお、本明細書において、超電導材料接合層40の単位断面積当たりの粒子44および空隙46の面積率とは、10μm×超電導材料接合層40厚みの観察領域の面積に対する粒子44および空隙46の面積の割合をいう。粒子44および空隙46の面積とは、上記観察領域内に検出される全ての粒子44および空隙46の断面積の合計値をいう。 In the present specification, the area ratio of the particles 44 and the voids 46 per unit cross-sectional area of the superconducting material bonding layer 40 is the area of the particles 44 and the voids 46 with respect to the area of the observation region of 10 μm × superconducting material bonding layer 40 thickness. The ratio of The area of the particle 44 and the void 46 refers to the total value of the cross-sectional areas of all the particles 44 and the void 46 detected in the observation region.
 (超電導線材の製造方法)
 次に、図5を参照して、本実施の形態に係る超電導線材1の製造方法について説明する。本実施の形態に係る超電導線材1の製造方法は、第1の超電導材料層13および第2の超電導材料層23の少なくとも一方に、第1の超電導材料接合層40の材料により構成される微結晶を生成させる微結晶生成工程(S10)を有している。
(Manufacturing method of superconducting wire)
Next, with reference to FIG. 5, the manufacturing method of the superconducting wire 1 which concerns on this Embodiment is demonstrated. In the method of manufacturing superconducting wire 1 according to the present embodiment, at least one of first superconducting material layer 13 and second superconducting material layer 23 is a microcrystal composed of the material of first superconducting material bonding layer 40. A microcrystal generation step (S10) for generating.
 本実施の形態では、熱塗布分解(MOD:Metal Organic Decomposition)法を例に挙げて説明する。図5に示すように、本実施の形態に係る超電導線材1の製造方法は、微結晶生成工程(S10)、貼り合わせ工程(S20)および加熱加圧工程(S30)を含む。 In the present embodiment, a thermal coating decomposition (MOD: Metal Organic Decomposition) method will be described as an example. As shown in FIG. 5, the method of manufacturing superconducting wire 1 according to the present embodiment includes a microcrystal generation step (S10), a bonding step (S20), and a heating and pressing step (S30).
 微結晶生成工程(S10)は、塗膜形成工程(S11)、仮燃成工程(S12)および仮焼成膜分解工程(S13)を含む。仮焼成膜分解工程(S12)を行なった後に、貼り合わせ工程(S20)を行なう。そして、加熱加圧工程(S30)としての本燃焼処理工程を経て、図2に示した酸化物超電導体を含む超電導材料接合層40を形成することにより、超電導材料接合層40を介して第1の超電導材料層13および第2の超電導材料層23を接合して長尺化された超電導線材1を製造する。以下、それぞれの工程を順に説明する。 The microcrystal production step (S10) includes a coating film formation step (S11), a temporary combustion formation step (S12), and a temporary fired film decomposition step (S13). After performing the temporary fired film decomposition step (S12), the bonding step (S20) is performed. Then, through the main combustion treatment step as the heating and pressurizing step (S30), the superconducting material bonding layer 40 including the oxide superconductor shown in FIG. The superconducting wire 1 is manufactured by joining the superconducting material layer 13 and the second superconducting material layer 23 together. Hereinafter, each process is demonstrated in order.
 (1)微結晶生成工程
 微結晶生成工程(S10)においては、以下に示すように、塗膜形成工程(S11)、仮燃成工程(S12)、仮焼成膜熱分解工程(S13)を経て微結晶を生成させる。
(1) Microcrystal production process In the microcrystal production process (S10), as shown below, it passes through a coating-film formation process (S11), a temporary combustion formation process (S12), and a temporary baking film | membrane thermal decomposition process (S13). Microcrystals are formed.
 (a)塗膜形成工程
 塗膜形成工程(S11)では、第1の超電導材料層13の第1の部分17および第2の超電導材料層23の第2の部分27の少なくとも一方の上に、第1の超電導材料接合層40を構成する金属の有機化合物を含む溶液を塗布した後、乾燥させて塗膜を形成する。
(A) Coating film forming step In the coating film forming step (S11), on at least one of the first portion 17 of the first superconducting material layer 13 and the second portion 27 of the second superconducting material layer 23, A solution containing a metal organic compound constituting the first superconducting material bonding layer 40 is applied and then dried to form a coating film.
 このような溶液として、具体的には、MOD法における原料溶液、すなわち、第1の超電導材料接合層40の材料であるRE3BaCuを構成する元素の有機化合物(たとえば、有機金属化合物または有機金属錯体)を有機溶媒に溶解した溶液が用いられる。有機化合物は、フッ素を含まない有機化合物であってもよい。 As such a solution, specifically, a raw material solution in the MOD method, that is, an organic compound of an element constituting RE3 1 Ba 2 Cu 3 O y which is a material of the first superconducting material bonding layer 40 (for example, organic A solution in which a metal compound or an organometallic complex) is dissolved in an organic solvent is used. The organic compound may be an organic compound not containing fluorine.
 具体的な塗布方法としては、たとえば、ダイコート方法またはインクジェット方法などを挙げることができるが、それ以外の塗布方法を採用してもよい。また、塗布に際しては、第1の部分17および第2の部分27の少なくとも一方の全面に塗布するが、塗膜の厚みは適宜設定する。 Specific examples of the coating method include a die coating method and an inkjet method, but other coating methods may be employed. In addition, the coating is applied to the entire surface of at least one of the first portion 17 and the second portion 27, and the thickness of the coating film is appropriately set.
 本実施の形態では、原料溶液を、RE3、Ba、Cuの各有機金属化合物を、RE3、Ba、Cuの組成比(RE3:Ba:Cu)がa:2:bとなるように調製して溶媒に溶解することによって作製する。なお、本明細書において、組成比(RE3:Ba:Cu)とは、RE3、Ba、Cuの原子濃度比(モル比)をいう。MOD法では、原料溶液の組成比を調製することによって、形成される超電導材料接合層40の組成比を制御することができる。 In the present embodiment, the raw material solution is prepared with each of the RE3, Ba, and Cu organometallic compounds so that the composition ratio of RE3, Ba, and Cu (RE3: Ba: Cu) is a: 2: b. It is prepared by dissolving in a solvent. In the present specification, the composition ratio (RE3: Ba: Cu) refers to an atomic concentration ratio (molar ratio) of RE3, Ba, and Cu. In the MOD method, the composition ratio of the superconducting material bonding layer 40 to be formed can be controlled by adjusting the composition ratio of the raw material solution.
 上記組成比(a:2:b)において、超電導材料接合層40にピンニング中心を効率的に導入するためには、aは1≦a≦1.5を満たす範囲内で選択することが好ましく、1.1≦a≦1.3の範囲内で選択することがより好ましい。また上記組成比において、bは、3≦b≦3.5を満たす範囲内で選択することが好ましく、3.1≦b≦3.4を満たす範囲内で選択することがより好ましい。なお、本実施の形態では、原料溶液のRE33+、Ba2+、Cu2+を合わせた総カチオン濃度は1mol/Lとする。 In the composition ratio (a: 2: b), in order to efficiently introduce the pinning center into the superconducting material bonding layer 40, a is preferably selected within a range satisfying 1 ≦ a ≦ 1.5, It is more preferable to select within the range of 1.1 ≦ a ≦ 1.3. In the composition ratio, b is preferably selected within a range satisfying 3 ≦ b ≦ 3.5, and more preferably selected within a range satisfying 3.1 ≦ b ≦ 3.4. In the present embodiment, the total cation concentration of RE3 3+ , Ba 2+ and Cu 2+ in the raw material solution is 1 mol / L.
 一般的なRE123系酸化物超電導体では、組成比(RE:Ba:Cu)は1:2:3である。本実施の形態では、この一般的なRE123系酸化物超電導体に比べて、RE原子濃度およびCu原子濃度の少なくとも一方を高くする。このようにすると、超電導材料接合層40中にRE3およびCuOなどの酸化物粒子を多く析出させることができる。図3に示したように、RE3およびCuOは、超電導材料接合層40中に分散された複数の粒子44を構成し、ピン止めの機能を有している。すなわち、RE原子濃度およびCu原子濃度の少なくとも一方を高くすることで、超電導材料接合層40中にピンニング中心を効率良く導入することができる。 In a general RE123-based oxide superconductor, the composition ratio (RE: Ba: Cu) is 1: 2: 3. In this embodiment, at least one of the RE atom concentration and the Cu atom concentration is made higher than that of this general RE123-based oxide superconductor. In this way, a large amount of oxide particles such as RE3 2 O 3 and CuO can be precipitated in the superconducting material bonding layer 40. As shown in FIG. 3, RE3 2 O 3 and CuO constitute a plurality of particles 44 dispersed in the superconducting material bonding layer 40 and have a pinning function. That is, by increasing at least one of the RE atom concentration and the Cu atom concentration, the pinning center can be efficiently introduced into the superconducting material bonding layer 40.
 ただし、超電導材料接合層40中に形成される酸化物粒子が多くなりすぎると、超電導材料接合層40におけるRE123系酸化物超電導体の密度が減少するため、却って超電導特性が低下する可能性がある。上述した範囲内でRE濃度およびCu濃度を選択することで、超電導特性を低下させることなく、超電導材料接合層40中に適当にピンニング中心を分散させることができる。 However, if too many oxide particles are formed in the superconducting material bonding layer 40, the density of the RE123-based oxide superconductor in the superconducting material bonding layer 40 decreases, so that there is a possibility that the superconducting characteristics may deteriorate instead. . By selecting the RE concentration and the Cu concentration within the above-mentioned ranges, the pinning centers can be appropriately dispersed in the superconducting material bonding layer 40 without deteriorating the superconducting characteristics.
 (b)仮燃成工程
 仮燃成工程(S12)では、乾燥した塗膜を熱処理することにより熱分解して、第1の超電導材料接合層40を構成する元素の有機化合物を含む膜を仮焼成する。
(B) Temporary Combustion Step In the temporary combustion formation step (S12), the dried coating film is thermally decomposed by heat treatment, and a film containing an organic compound of an element constituting the first superconducting material bonding layer 40 is temporarily added. Bake.
 具体的には、乾燥した塗膜に対して、第1の温度で加熱処理する。第1の温度は、有機金属化合物の分解温度以上、かつ、第1の超電導材料接合層40を構成する酸化物超電導体が生成される温度未満である。これにより、塗膜の有機金属化合物が熱分解して、酸化物超電導体の前駆体となる(以下、この前駆体を含む膜を「仮焼膜」という)。酸化物超電導体の前駆体は、たとえば、Baの炭素化合物であるBaCO、希土類元素酸化物であるRE3、CuOを含む。仮燃成工程は、たとえば、約500℃の温度(第1の温度)で、かつ、20%以上の酸素濃度の雰囲気下で行なわれてもよい。 Specifically, the dried coating film is heat-treated at the first temperature. The first temperature is equal to or higher than the decomposition temperature of the organometallic compound and lower than the temperature at which the oxide superconductor constituting the first superconducting material bonding layer 40 is generated. Thereby, the organometallic compound of the coating film is thermally decomposed to become a precursor of the oxide superconductor (hereinafter, a film containing this precursor is referred to as “calcined film”). The precursor of the oxide superconductor includes, for example, BaCO 3 which is a carbon compound of Ba, RE3 2 O 3 which is a rare earth element oxide, and CuO. The pre-combustion process may be performed, for example, in an atmosphere having a temperature of about 500 ° C. (first temperature) and an oxygen concentration of 20% or more.
 (c)仮燃成膜熱分解工程
 仮焼膜熱分解工程(S13)では、第1の温度よりも高い第2の温度で仮焼膜を加熱して、仮焼膜に含まれる炭素化合物を熱分解させる。第2の温度は、たとえば、650℃以上800℃以下であってもよい。仮焼膜に含まれる炭素化合物が熱分解されて、第1の超電導材料接合層40を構成する酸化物超電導体が得られる。仮焼膜熱分解工程(S13)は、第1の酸素濃度の雰囲気下で行なわれる。第1の酸素濃度は、1%以上100%以下(酸素分圧1atm)である。そのため、微結晶が成長して微結晶の平均粒径が300nmより大きくなることが抑制される。こうして、第1の超電導材料層13の第1の部分17および第2の超電導材料層23の第2の部分27の少なくとも一方の上に、第1の超電導材料接合層40を構成する酸化物超電導体の微結晶が形成される。
(C) Calcined film formation pyrolysis step In the calcined film pyrolysis step (S13), the calcined film is heated at a second temperature higher than the first temperature, and the carbon compound contained in the calcined film is changed. Thermally decompose. 650 degreeC or more and 800 degrees C or less may be sufficient as 2nd temperature, for example. The carbon compound contained in the calcined film is thermally decomposed to obtain an oxide superconductor constituting the first superconducting material bonding layer 40. The calcined film pyrolysis step (S13) is performed in an atmosphere having a first oxygen concentration. The first oxygen concentration is 1% to 100% (oxygen partial pressure 1 atm). Therefore, it is suppressed that the microcrystal grows and the average grain size of the microcrystal becomes larger than 300 nm. In this way, the oxide superconductivity constituting the first superconducting material bonding layer 40 on at least one of the first portion 17 of the first superconducting material layer 13 and the second portion 27 of the second superconducting material layer 23. Microcrystals of the body are formed.
 (2)貼り合わせ工程(S20)
 貼り合わせ工程(S20)では、微結晶を介して、第1の線材10の一部と第2の線材20の一部とを重ね合わせる。第1の線材10の一部は第1の線材10の第1の部分17であってもよく、第2の線材20の一部は第2の線材20の第2の部分27であってもよい。
(2) Bonding step (S20)
In the bonding step (S20), a part of the first wire rod 10 and a part of the second wire rod 20 are overlapped via the microcrystal. A part of the first wire 10 may be the first part 17 of the first wire 10, and a part of the second wire 20 may be the second part 27 of the second wire 20. Good.
 (3)加熱加圧工程
 加熱加圧工程(S30)では、第1の線材10および第2の線材20に圧力を加えながら熱を加える。具体的には、押圧治具を用いて、1MPa以上の圧力で第1の線材10および第2の線材20に圧力を加えて、第1の線材10と第2の線材20とを互いに押し付ける。この状態で、第1の線材10、第2の線材20および微結晶を、第3の温度で、かつ、第2の酸素濃度の雰囲気下で加熱する。第3の温度は第2の温度以上であり、かつ、第1の超電導材料接合層40を構成する酸化物超電導体が生成される温度以上である。第2の酸素濃度は、第1の酸素濃度よりも低い。第2の酸素濃度は、たとえば、100ppmであってもよい。
(3) Heating and pressing step In the heating and pressing step (S30), heat is applied while applying pressure to the first wire 10 and the second wire 20. Specifically, the first wire 10 and the second wire 20 are pressed against each other by applying pressure to the first wire 10 and the second wire 20 at a pressure of 1 MPa or more using a pressing jig. In this state, the first wire 10, the second wire 20, and the microcrystal are heated at a third temperature and in an atmosphere having a second oxygen concentration. The third temperature is equal to or higher than the second temperature and equal to or higher than the temperature at which the oxide superconductor constituting the first superconductive material bonding layer 40 is generated. The second oxygen concentration is lower than the first oxygen concentration. The second oxygen concentration may be 100 ppm, for example.
 加熱加圧工程(S30)では、仮焼成膜熱分解工程(S20)において生成された微結晶が成長して、大きな粒径を有する結晶により構成される第1の超電導材料接合層40が生成される。塗膜形成工程(S11)において塗膜が形成されていた第1の超電導材料層13および第2の超電導材料層23の少なくとも一方の結晶方位に沿って微結晶が成長して、第1の超電導材料接合層40になる。こうして、第1の超電導材料接合層40を介して、第1の線材10の第1の超電導材料層13と第2の線材20の第2の超電導材料層23とは互いに接合される。 In the heating and pressurizing step (S30), the microcrystals generated in the pre-baked film pyrolysis step (S20) grow to generate the first superconducting material bonding layer 40 composed of crystals having a large particle size. The A microcrystal grows along the crystal orientation of at least one of the first superconducting material layer 13 and the second superconducting material layer 23 on which the coating film has been formed in the coating film forming step (S11). The material bonding layer 40 is obtained. Thus, the first superconducting material layer 13 of the first wire 10 and the second superconducting material layer 23 of the second wire 20 are joined to each other via the first superconducting material joining layer 40.
 加熱加圧工程(S30)によって、第1の超電導材料接合層40中には空隙46(図3参照)が分散して形成され得る。上述したように、空隙46がピンニング中心として機能するためには、空隙46の粒径は10nm以上1000nm以下であることが好ましい。空隙46の粒径は、仮焼成膜熱分解工程(S13)で形成される微結晶の粒径を調製すること、および/または、加熱加圧工程(S30)における第3の温度および第2の酸素濃度などの条件を調製することで、制御することができる。 By the heating and pressurizing step (S30), the voids 46 (see FIG. 3) can be dispersed and formed in the first superconducting material bonding layer 40. As described above, in order for the void 46 to function as a pinning center, the particle size of the void 46 is preferably 10 nm or more and 1000 nm or less. As for the particle size of the void 46, the particle size of the microcrystal formed in the pre-baked film pyrolysis step (S13) and / or the third temperature and the second temperature in the heating and pressurizing step (S30) are prepared. It can be controlled by adjusting conditions such as oxygen concentration.
 具体的には、仮焼成膜熱分解工程(S13)において、100nm以上300nm以下の粒径の微結晶を含むことが好ましい。これには、第2の温度を650℃以上800℃以下にすればよい。また、第1の酸素濃度を50%以上100%以下にすればよい。また、加熱加圧工程(S30)において、第3の温度を650℃以上800℃以下にすればよい。また、第2の酸素濃度を50ppm以上0.01%以下にすればよい。 Specifically, it is preferable that the pre-fired film pyrolysis step (S13) includes fine crystals having a particle size of 100 nm or more and 300 nm or less. For this purpose, the second temperature may be 650 ° C. or higher and 800 ° C. or lower. Further, the first oxygen concentration may be 50% or more and 100% or less. Moreover, what is necessary is just to make 3rd temperature into 650 degreeC or more and 800 degrees C or less in a heating-pressing process (S30). The second oxygen concentration may be 50 ppm or more and 0.01% or less.
 本実施の形態に係る超電導線材1の製造方法は、酸素アニール工程(S40)をさらに備えてもよい。酸素アニール工程(S40)は、第4の温度で、かつ、第3の酸素濃度の雰囲気下で行なわれる。第4の温度は、第3の温度以下である。第4の温度は、200℃以上500℃以下であってもよい。第3の酸素濃度は、第2の酸素濃度よりも高い。第3の酸素濃度は、たとえば、100%(酸素分圧1atm)であってもよい。酸素アニール工程(S50)において、第1の超電導材料層13、第1の超電導材料接合層40および第2の超電導材料層23に、酸素が十分に供給され得る。以上の工程によって、本実施の形態に係る超電導線材1は製造され得る。 The method for manufacturing the superconducting wire 1 according to the present embodiment may further include an oxygen annealing step (S40). The oxygen annealing step (S40) is performed at a fourth temperature and in an atmosphere having a third oxygen concentration. The fourth temperature is equal to or lower than the third temperature. The fourth temperature may be 200 ° C. or higher and 500 ° C. or lower. The third oxygen concentration is higher than the second oxygen concentration. The third oxygen concentration may be, for example, 100% (oxygen partial pressure 1 atm). In the oxygen annealing step (S50), oxygen can be sufficiently supplied to the first superconducting material layer 13, the first superconducting material bonding layer 40, and the second superconducting material layer. Superconducting wire 1 according to the present embodiment can be manufactured through the above steps.
 以下、本実施の形態に係る超電導線材1の効果について説明する。
 本実施の形態に係る超電導線材1において、第1の線材10の第1の超電導材料層13と、第2の線材20の第2の超電導材料層23とを接合する第1の超電導材料接合層40中に、複数の粒子44および複数の空隙46の少なくとも一方が分散されている(図3参照)。これによると、複数の粒子44および複数の空隙46の少なくとも一方は、超電導材料接合層40内でピンニング中心として機能するため、磁場中における臨界電流密度Jcを向上させることができる。この結果、超電導線材1の磁場中における超電導特性を改善することができる。
Hereinafter, the effect of the superconducting wire 1 according to the present embodiment will be described.
In the superconducting wire 1 according to the present embodiment, a first superconducting material bonding layer that joins the first superconducting material layer 13 of the first wire 10 and the second superconducting material layer 23 of the second wire 20. At least one of the plurality of particles 44 and the plurality of voids 46 is dispersed in 40 (see FIG. 3). According to this, since at least one of the plurality of particles 44 and the plurality of voids 46 functions as a pinning center in the superconducting material bonding layer 40, the critical current density Jc in the magnetic field can be improved. As a result, the superconducting characteristic in the magnetic field of the superconducting wire 1 can be improved.
 [実施の形態2]
 図2、図6および図7を参照して、実施の形態2に従う超電導線材1bについて説明する。図6は、実施の形態2に従う超電導線材1の概略断面図である。図7は、図6に示される領域VIIの概略部分拡大断面図である。
[Embodiment 2]
A superconducting wire 1b according to the second embodiment will be described with reference to FIG. 2, FIG. 6, and FIG. FIG. 6 is a schematic cross-sectional view of superconducting wire 1 according to the second embodiment. FIG. 7 is a schematic partial enlarged sectional view of region VII shown in FIG.
 本実施の形態に係る超電導線材1bは、実施の形態1に従う超電導線材1と同様の構成を備え、かつ、同様の効果を奏するが、以下の点で主に異なる。 The superconducting wire 1b according to the present embodiment has the same configuration as the superconducting wire 1 according to the first embodiment and has the same effect, but is mainly different in the following points.
 本実施の形態に係る超電導線材1bは、第3の線材30と、第2の超電導材料接合層42とをさらに備える。 The superconducting wire 1b according to the present embodiment further includes a third wire 30 and a second superconducting material bonding layer 42.
 第3の線材30は、第3の主面33sを有する第3の超電導材料層33を含む。特定的には、第3の線材30は、第3の金属基板31と、第3の金属基板31上に設けられた第3の中間層32と、第3の中間層32上に設けられた第3の超電導材料層33とを含んでもよい。第3の線材30は、第1の線材10と同様に構成されてもよい。 The third wire 30 includes a third superconducting material layer 33 having a third main surface 33s. Specifically, the third wire 30 is provided on the third metal substrate 31, the third intermediate layer 32 provided on the third metal substrate 31, and the third intermediate layer 32. The third superconducting material layer 33 may be included. The third wire 30 may be configured in the same manner as the first wire 10.
 第3の金属基板31は、配向金属基板であってもよい。配向金属基板は、金属基板の表面において、結晶方位が揃っている金属基板を意味する。配向金属基板は、例えば、SUSまたはハステロイ(登録商標)のベース金属基板上にニッケル層および銅層などが配置されたクラッドタイプの金属基板であってもよい。 The third metal substrate 31 may be an oriented metal substrate. An oriented metal substrate means a metal substrate having a uniform crystal orientation on the surface of the metal substrate. The oriented metal substrate may be, for example, a clad type metal substrate in which a nickel layer, a copper layer, and the like are arranged on a SUS or Hastelloy (registered trademark) base metal substrate.
 第3の中間層32は、第3の超電導材料層33との反応性が極めて低く、第3の超電導材料層33の超電導特性を低下させないような材料を用いることができる。第3の中間層32は、例えば、YSZ、CeO、MgO、Y、Al、LaMnO、GdZrおよびSrTiOの少なくとも一つから構成されてもよい。 The third intermediate layer 32 may be made of a material that has extremely low reactivity with the third superconducting material layer 33 and does not deteriorate the superconducting characteristics of the third superconducting material layer 33. The third intermediate layer 32 may be composed of, for example, at least one of YSZ, CeO 2 , MgO, Y 2 O 3 , Al 2 O 3 , LaMnO 3 , Gd 2 Zr 2 O 7 and SrTiO 3 .
 第3の中間層32は、複数の層により構成されていてもよい。第3の金属基板31としてSUS基板またはハステロイ基板が用いられる場合、第3の中間層32は、例えば、IBAD法にて形成された結晶配向層であってもよい。第3の金属基板31がその表面に結晶配向性を有するとき、第3の中間層32は、第3の金属基板31と第3の超電導材料層33との結晶配向性の差を緩和してもよい。 The third intermediate layer 32 may be composed of a plurality of layers. When a SUS substrate or a Hastelloy substrate is used as the third metal substrate 31, the third intermediate layer 32 may be a crystal orientation layer formed by, for example, an IBAD method. When the third metal substrate 31 has crystal orientation on its surface, the third intermediate layer 32 reduces the difference in crystal orientation between the third metal substrate 31 and the third superconducting material layer 33. Also good.
 第3の超電導材料層33は、第3の線材30のうち、超電導電流が流れる部分である。第3の超電導材料層33は、特に限定されないが、酸化物超電導材料で構成されてもよい。特定的には、第3の超電導材料層33は、RE4BaCuy4(6.0≦y4≦8.0、RE4は希土類元素を表す)により構成されてもよい。RE4は、RE1と同じであってもよいし、異なってもよい。RE4は、RE2と同じであってもよいし、異なってもよい。さらに特定的には、RE4は、Y、Gd、SmまたはHoであってもよい。さらに特定的には、y4は、6.8以上7.0以下であってもよい。 The third superconducting material layer 33 is a portion of the third wire 30 through which the superconducting current flows. The third superconducting material layer 33 is not particularly limited, but may be composed of an oxide superconducting material. Specifically, the third superconducting material layer 33 may be made of RE4 1 Ba 2 Cu 3 O y4 (6.0 ≦ y4 ≦ 8.0, where RE4 represents a rare earth element). RE4 may be the same as or different from RE1. RE4 may be the same as or different from RE2. More specifically, RE4 may be Y, Gd, Sm, or Ho. More specifically, y4 may be 6.8 or more and 7.0 or less.
 第2の線材20の長手方向における第2の線材20の第2の長さは、第1の線材10の長手方向における第1の線材10の第1の長さおよび第3の線材30の長手方向における第3の線材30の第3の長さよりも短い。 The second length of the second wire 20 in the longitudinal direction of the second wire 20 is the first length of the first wire 10 and the length of the third wire 30 in the longitudinal direction of the first wire 10. Shorter than the third length of the third wire 30 in the direction.
 第1の線材10は、第1の端面10eを有する。第3の線材30は、第2の端面30eを有する。第2の端面30eは、第1の端面10eとの間に間隔を空けて、第1の端面10eに対向している。第1の超電導材料層13の第1の主面13sと第2の超電導材料層23の第2の主面23sとは、第1の超電導材料接合層40を介して、互いに接合されている。第2の超電導材料層23の第2の主面23sと第3の超電導材料層33の第3の主面33sとは、第2の超電導材料接合層42を介して、互いに接合されている。第2の線材20は、第1の線材10の第1の端面10eと第3の線材30の第2の端面30eとを跨いでいる。第2の超電導材料層23は、第1の超電導材料層13と第3の超電導材料層33とを橋渡ししている。 The first wire 10 has a first end face 10e. The third wire 30 has a second end face 30e. The second end surface 30e is opposed to the first end surface 10e with a space between the second end surface 30e and the first end surface 10e. The first main surface 13 s of the first superconducting material layer 13 and the second main surface 23 s of the second superconducting material layer 23 are bonded to each other through the first superconducting material bonding layer 40. The second main surface 23 s of the second superconducting material layer 23 and the third main surface 33 s of the third superconducting material layer 33 are joined to each other via the second superconducting material joining layer 42. The second wire 20 straddles the first end surface 10 e of the first wire 10 and the second end surface 30 e of the third wire 30. The second superconducting material layer 23 bridges the first superconducting material layer 13 and the third superconducting material layer 33.
 第2の超電導材料接合層42は、第2の超電導材料層23の第2の主面23sの第3の部分28と第3の超電導材料層33の第3の主面33sの第4の部分38とを接合する。第3の部分28は、第2の部分27とは異なる。第2の超電導材料接合層42は、特に限定されないが、酸化物超電導材料で構成されてもよい。特定的には、第2の超電導材料接合層42は、RE5BaCuy5(6.0≦y5≦8.0、RE5は希土類元素を表す)により構成されてもよい。RE5は、RE2と同じであってもよいし、異なってもよい。RE5は、RE3と同じであってもよいし、異なってもよい。RE5は、RE4と同じであってもよいし、異なってもよい。さらに特定的には、RE5は、Y、Gd、Dy、Eu、La、Nd、Er、Tm、Yb、Lu、SmまたはHoであってもよい。さらに特定的には、y5は、6.8以上7.0以下であってもよい。 The second superconducting material bonding layer 42 includes a third portion 28 of the second main surface 23 s of the second superconducting material layer 23 and a fourth portion of the third main surface 33 s of the third superconducting material layer 33. 38 is joined. The third portion 28 is different from the second portion 27. The second superconducting material bonding layer 42 is not particularly limited, but may be composed of an oxide superconducting material. Specifically, the second superconducting material bonding layer 42 may be made of RE5 1 Ba 2 Cu 3 O y5 (6.0 ≦ y5 ≦ 8.0, where RE5 represents a rare earth element). RE5 may be the same as RE2, or may be different. RE5 may be the same as RE3 or different. RE5 may be the same as RE4 or different. More specifically, RE5 may be Y, Gd, Dy, Eu, La, Nd, Er, Tm, Yb, Lu, Sm or Ho. More specifically, y5 may be 6.8 or more and 7.0 or less.
 第2の超電導材料接合層42を介して第2の超電導材料層23と第3の超電導材料層33とを接合する方法は、実施の形態1における第1の超電導材料接合層40を介して第1の超電導材料層13と第2の超電導材料層23とを接合する方法(図5を参照)と同様である。 The method of joining the second superconducting material layer 23 and the third superconducting material layer 33 through the second superconducting material joining layer 42 is the same as that of the first superconducting material joining layer 40 in the first embodiment. This is the same as the method of joining the first superconducting material layer 13 and the second superconducting material layer 23 (see FIG. 5).
 本実施の形態に係る超電導線材1bは、以下のように、実施の形態1に従う超電導線材1と同様の効果を奏する。 The superconducting wire 1b according to the present embodiment has the same effects as the superconducting wire 1 according to the first embodiment as follows.
 本実施の形態に係る超電導線材1bでは、第1の超電導材料層13と第2の超電導材料層23とを接合する第1の超電導材料接合層40、および、第2の超電導材料層23と第3の超電導材料層33とを接合する第2の超電導材料接合層42の各々において、複数の粒子44および複数の空隙46の少なくとも一方が分散されている。各超電導材料接合層内において、複数の粒子44および複数の空隙46の少なくとも一方はピンニング中心として機能するため、各超電導材料接合層の磁場中における臨界電流密度Jcを向上させることができる。この結果、超電導線材1bの磁場中における超電導特性を改善することができる。 In the superconducting wire 1b according to the present embodiment, the first superconducting material bonding layer 40 that joins the first superconducting material layer 13 and the second superconducting material layer 23, and the second superconducting material layer 23 and the second superconducting material layer 23. In each of the second superconducting material joining layers 42 joining the three superconducting material layers 33, at least one of the plurality of particles 44 and the plurality of voids 46 is dispersed. In each superconducting material bonding layer, at least one of the plurality of particles 44 and the plurality of voids 46 functions as a pinning center, so that the critical current density Jc in the magnetic field of each superconducting material bonding layer can be improved. As a result, the superconducting characteristic in the magnetic field of the superconducting wire 1b can be improved.
 本実施の形態に係る超電導線材1bは、永久電流モードで使用可能な超電導コイルに適用されてもよい。具体的には、第1の線材10および第3の線材30が超電導コイル(図示せず)に接続されて、超電導閉ループ回路が構成されてもよい。 The superconducting wire 1b according to the present embodiment may be applied to a superconducting coil that can be used in the permanent current mode. Specifically, the superconducting closed loop circuit may be configured by connecting the first wire 10 and the third wire 30 to a superconducting coil (not shown).
 [実施の形態3]
 図8を参照して、実施の形態3に従う超電導マグネット100について説明する。
[Embodiment 3]
With reference to FIG. 8, superconducting magnet 100 according to the third embodiment will be described.
 本実施の形態に係る超電導マグネット100は、実施の形態1および2に従う超電導線材1,1bのいずれかを含む超電導コイル70と、超電導コイル70を収容するクライオスタット105と、超電導コイル70を冷却する冷凍機102とを主に備える。特定的には、超電導マグネット100は、クライオスタット105の内部に保持された熱シールド106と、磁性体シールド140とをさらに備えてもよい。 Superconducting magnet 100 according to the present embodiment includes a superconducting coil 70 including any of superconducting wires 1 and 1b according to the first and second embodiments, a cryostat 105 housing superconducting coil 70, and a refrigeration for cooling superconducting coil 70. Machine 102. Specifically, the superconducting magnet 100 may further include a heat shield 106 held inside the cryostat 105 and a magnetic shield 140.
 超電導コイル70では、実施の形態1および2に従う超電導線材1,1bのいずれかが、超電導コイル70の中心軸周りに巻き回されている。超電導コイル70を含む超電導コイル体110は、クライオスタット105内に収容されている。超電導コイル体110は、熱シールド106の内部に保持されている。超電導コイル体110は、複数の超電導コイル70と、上方支持部114と、下方支持部111とを含む。複数の超電導コイル70は積層されている。積層された超電導コイル70の上端面および下端面を上方支持部114と下方支持部111とが挟むように配置されている。 In superconducting coil 70, one of superconducting wires 1 and 1b according to the first and second embodiments is wound around the central axis of superconducting coil 70. Superconducting coil body 110 including superconducting coil 70 is housed in cryostat 105. Superconducting coil body 110 is held inside heat shield 106. Superconducting coil body 110 includes a plurality of superconducting coils 70, an upper support portion 114, and a lower support portion 111. A plurality of superconducting coils 70 are stacked. The upper and lower end surfaces of the superconducting coils 70 stacked are arranged so that the upper support portion 114 and the lower support portion 111 sandwich the upper end surface and the lower end surface.
 積層された超電導コイル70の上端面上と、積層された超電導コイル70の下端面上とに冷却板113が配置されている。互いに隣接する超電導コイル70の間にも冷却板(図示せず)が配置されている。冷却板113は、一方端が冷凍機102の第2冷却ヘッド131に接続されている。互いに隣接する超電導コイル70の間に配置された冷却板(図示せず)も、その一方端が第2冷却ヘッド131に接続されている。冷凍機102の第1冷却ヘッド132は熱シールド106の壁部に接続されてもよい。そのため、冷凍機102によって熱シールド106の壁部も冷却され得る。 A cooling plate 113 is disposed on the upper end surface of the superconducting coil 70 that is laminated and on the lower end surface of the superconducting coil 70 that is laminated. A cooling plate (not shown) is also disposed between the superconducting coils 70 adjacent to each other. One end of the cooling plate 113 is connected to the second cooling head 131 of the refrigerator 102. A cooling plate (not shown) disposed between the superconducting coils 70 adjacent to each other is also connected to the second cooling head 131 at one end thereof. The first cooling head 132 of the refrigerator 102 may be connected to the wall portion of the heat shield 106. Therefore, the wall portion of the heat shield 106 can also be cooled by the refrigerator 102.
 超電導コイル体110の下方支持部111は、超電導コイル70の平面形状より大きいサイズを有する。下方支持部111は、複数の支持部材115によって熱シールド106に固定されている。複数の支持部材115は、棒状の部材であって、熱シールド106の上壁と下方支持部111の外周部とを接続している。複数の支持部材115が超電導コイル体110の外周部に配置されている。支持部材115は、互いに同じ間隔を隔てて超電導コイル70を囲むように配置されている。 The lower support part 111 of the superconducting coil body 110 has a size larger than the planar shape of the superconducting coil 70. The lower support portion 111 is fixed to the heat shield 106 by a plurality of support members 115. The plurality of support members 115 are rod-shaped members, and connect the upper wall of the heat shield 106 and the outer peripheral portion of the lower support portion 111. A plurality of support members 115 are arranged on the outer periphery of the superconducting coil body 110. Support members 115 are arranged to surround superconducting coil 70 at the same interval.
 超電導コイル体110を保持する熱シールド106は、接続部120によってクライオスタット105に接続されている。接続部120は、超電導コイル体110の中心軸を囲むように、超電導コイル体110の外周部に沿って等間隔で配置されている。接続部120は、クライオスタット105の蓋体135と熱シールド106の上壁とを接続している。 The heat shield 106 that holds the superconducting coil body 110 is connected to the cryostat 105 by the connecting portion 120. The connecting portions 120 are arranged at equal intervals along the outer peripheral portion of the superconducting coil body 110 so as to surround the central axis of the superconducting coil body 110. The connection part 120 connects the lid body 135 of the cryostat 105 and the upper wall of the heat shield 106.
 クライオスタット105の蓋体135の上部から熱シールド106の内部まで延在するように冷凍機102が配置されている。冷凍機102は、超電導コイル体110を冷却する。具体的には、蓋体135の上部表面の上方に冷凍機102の本体部133およびモータ134が配置される。本体部133から熱シールド106の内部にまで到達するように冷凍機102が配置されている。 The refrigerator 102 is arranged so as to extend from the upper part of the lid 135 of the cryostat 105 to the inside of the heat shield 106. The refrigerator 102 cools the superconducting coil body 110. Specifically, the main body 133 and the motor 134 of the refrigerator 102 are disposed above the upper surface of the lid 135. The refrigerator 102 is arranged so as to reach the inside of the heat shield 106 from the main body 133.
 冷凍機102は、たとえばギフォード・マクマホン式冷凍機であってもよい。冷凍機102は、配管137を通じて、冷媒を圧縮するコンプレッサ(図示せず)に接続されている。コンプレッサで高圧に圧縮された冷媒(たとえば、ヘリウムガス)は冷凍機102に供給される。この冷媒がモータ134により駆動されるディスプレーサにより膨張されることにより、冷凍機102に内設された蓄冷材が冷却される。膨張することにより低圧となった冷媒はコンプレッサに戻されて再び高圧化される。 The refrigerator 102 may be, for example, a Gifford McMahon refrigerator. The refrigerator 102 is connected through a pipe 137 to a compressor (not shown) that compresses the refrigerant. The refrigerant (for example, helium gas) compressed to a high pressure by the compressor is supplied to the refrigerator 102. The refrigerant is expanded by a displacer driven by a motor 134, whereby the regenerator material provided in the refrigerator 102 is cooled. The refrigerant, which has become low pressure due to expansion, is returned to the compressor and is increased in pressure again.
 冷凍機102の第1冷却ヘッド132が熱シールド106を冷却することによって外部の熱が熱シールド106内に侵入することが防止される。冷凍機102の第2冷却ヘッド131が冷却板113を介して超電導コイル70を冷却する。こうして、超電導コイル70は超電導状態となる。 The first cooling head 132 of the refrigerator 102 cools the heat shield 106 to prevent external heat from entering the heat shield 106. The second cooling head 131 of the refrigerator 102 cools the superconducting coil 70 via the cooling plate 113. Thus, the superconducting coil 70 is in a superconducting state.
 クライオスタット105は、クライオスタット本体部136と蓋体135とを含む。本体部133およびモータ134の周囲は、磁性体シールド140によって囲まれている。磁性体シールド140は、超電導コイル体110から発生した磁場の一部がモータ134に侵入することを防止し得る。 The cryostat 105 includes a cryostat main body 136 and a lid body 135. The periphery of the main body 133 and the motor 134 is surrounded by a magnetic shield 140. The magnetic shield 140 can prevent a part of the magnetic field generated from the superconducting coil body 110 from entering the motor 134.
 超電導マグネット100には、クライオスタット105および熱シールド106を貫通し、クライオスタット105の蓋体135からクライオスタット本体部136の底壁まで到達する開口部107が形成されている。開口部107は、超電導コイル体110の超電導コイル70の中央部を貫通するように配置されている。被検知体210(図13を参照)が開口部107の内部に配置されて、被検知体210に超電導コイル体110から発生した磁場が印加される。 The superconducting magnet 100 is formed with an opening 107 that penetrates the cryostat 105 and the heat shield 106 and reaches the bottom wall of the cryostat main body 136 from the lid body 135 of the cryostat 105. The opening 107 is disposed so as to penetrate the central portion of the superconducting coil 70 of the superconducting coil body 110. A detected body 210 (see FIG. 13) is disposed inside the opening 107, and a magnetic field generated from the superconducting coil body 110 is applied to the detected body 210.
 本実施の形態に係る超電導コイル70の効果について説明する。本実施の形態の超電導コイル70は、実施の形態1および2に従う超電導線材1,1bのいずれかを含む超電導コイル70を備える。実施の形態1および2に従う超電導線材1,1bのいずれかは、超電導コイルの中心軸周りに巻き回されている。そのため、本実施の形態の超電導コイル70は、強い磁場を発生し得る。 The effect of the superconducting coil 70 according to the present embodiment will be described. Superconducting coil 70 of the present embodiment includes superconducting coil 70 including any of superconducting wires 1 and 1b according to the first and second embodiments. Any of superconducting wires 1 and 1b according to the first and second embodiments is wound around the central axis of the superconducting coil. Therefore, the superconducting coil 70 of the present embodiment can generate a strong magnetic field.
 本実施の形態の超電導マグネット100の効果について説明する。本実施の形態の超電導マグネット100は、実施の形態1および2に従う超電導線材1,1bのいずれかを含む超電導コイル70と、超電導コイル70を収容するクライオスタット105と、超電導コイル70を冷却する冷凍機102とを備える。そのため、本実施の形態に係る超電導マグネット100は、強い磁場を発生し得る。 The effect of the superconducting magnet 100 of this embodiment will be described. Superconducting magnet 100 of the present embodiment includes a superconducting coil 70 including any of superconducting wires 1 and 1b according to the first and second embodiments, a cryostat 105 that accommodates superconducting coil 70, and a refrigerator that cools superconducting coil 70. 102. Therefore, superconducting magnet 100 according to the present embodiment can generate a strong magnetic field.
 [実施の形態4]
 図9を参照して、実施の形態4に従う超電導機器200について説明する。本実施の形態の超電導機器200は、たとえば、磁気共鳴イメージング(MRI)装置であってもよい。
[Embodiment 4]
Referring to FIG. 9, superconducting device 200 according to the fourth embodiment will be described. Superconducting device 200 of the present embodiment may be, for example, a magnetic resonance imaging (MRI) apparatus.
 本実施の形態に係る超電導機器200は、実施の形態3に従う超電導マグネット100を主に備える。本実施の形態に係る超電導機器200は、可動台202と制御部208とをさらに備えてもよい。可動台202は、被検知体210が載置される天板205と、天板205を移動させる駆動部204とを含む。制御部208は、超電導マグネット100と、駆動部204とに接続されている。 Superconducting device 200 according to the present embodiment mainly includes superconducting magnet 100 according to the third embodiment. Superconducting device 200 according to the present embodiment may further include a movable table 202 and a control unit 208. The movable table 202 includes a top plate 205 on which the detected object 210 is placed and a drive unit 204 that moves the top plate 205. The control unit 208 is connected to the superconducting magnet 100 and the drive unit 204.
 制御部208は、超電導マグネット100を駆動して、超電導マグネット100の開口部107内に均一な磁場を発生させる。制御部208は、可動台202を移動させて、可動台202上に載置された被検知体210を超電導マグネット100の開口部107内に進入させる。被検知体210の撮像を終えると、制御部208は可動台202を移動させて、可動台202上に載置された被検知体210を超電導マグネット100の開口部107から退出させる。 The control unit 208 drives the superconducting magnet 100 to generate a uniform magnetic field in the opening 107 of the superconducting magnet 100. The control unit 208 moves the movable table 202 and causes the detected object 210 placed on the movable table 202 to enter the opening 107 of the superconducting magnet 100. When the imaging of the detected object 210 is completed, the control unit 208 moves the movable table 202 and causes the detected object 210 placed on the movable table 202 to exit from the opening 107 of the superconducting magnet 100.
 本実施の形態に係る超電導機器200の効果について説明する。本実施の形態に係る超電導機器200は、超電導マグネット100を備える。そのため、本実施の形態に係る超電導機器200は、強い磁場を発生し得る。本実施の形態に係る超電導機器200を用いて、被検知体210は精度よく撮像され得る。 The effect of the superconducting device 200 according to the present embodiment will be described. Superconducting device 200 according to the present embodiment includes superconducting magnet 100. Therefore, superconducting device 200 according to the present embodiment can generate a strong magnetic field. Using the superconducting device 200 according to the present embodiment, the detected object 210 can be accurately imaged.
 今回開示された実施の形態1-4はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態1-5ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be considered that Embodiment 1-4 disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is shown not by the above-described first to fifth embodiments but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
1,1b 超電導線材、10 第1の線材、10e 第1の端面、11 第1の金属基板、12 第1の中間層、13 第1の超電導材料層、13s 第1の主面、17 第1の部分、20 第2の線材、21 第2の金属基板、22 第2の中間層、23 第2の超電導材料層、23s 第2の主面、27 第2の部分、28 第3の部分、30 第3の線材、30e 第2の端面、31 第3の金属基板、32 第3の中間層、33 第3の超電導材料層、33s 第3の主面、38 第4の部分、40 第1の超電導材料接合層、42 第2の超電導材料接合層、70 超電導コイル、100 超電導マグネット、102 冷凍機、105 クライオスタット、106 熱シールド、107 開口部、110 超電導コイル体、111 下方支持部、113 冷却板、114 上方支持部、115 支持部材、120 接続部、131 第2冷却ヘッド、132 第1冷却ヘッド、133 本体部、134 モータ、135 蓋体、136 クライオスタット本体部、137 配管、140 磁性体シールド、200 超電導機器、202 可動台、204 駆動部、205 天板、208 制御部、210 被検知体。 1, 1b superconducting wire, 10 first wire, 10e first end face, 11 first metal substrate, 12 first intermediate layer, 13 first superconducting material layer, 13s first main surface, 17 first Part 20, 20 second wire, 21 second metal substrate, 22 second intermediate layer, 23 second superconducting material layer, 23s second main surface, 27 second part, 28 third part, 30 3rd wire, 30e 2nd end face, 31 3rd metal substrate, 32 3rd intermediate layer, 33 3rd superconducting material layer, 33s 3rd main surface, 38 4th part, 40 1st Superconducting material joining layer, 42 second superconducting material joining layer, 70 superconducting coil, 100 superconducting magnet, 102 refrigerator, 105 cryostat, 106 heat shield, 107 opening, 110 superconducting coil body, 111 Lower support part, 113 cooling plate, 114 upper support part, 115 support member, 120 connection part, 131 second cooling head, 132 first cooling head, 133 main body part, 134 motor, 135 lid body, 136 cryostat main body part, 137 Piping, 140 magnetic shield, 200 superconducting equipment, 202 movable base, 204 drive unit, 205 top plate, 208 control unit, 210 object to be detected.

Claims (8)

  1.  第1の超電導材料層を有する第1の線材と、
     第2の超電導材料層を有する第2の線材と、
     超電導材料接合層とを備え、
     前記第1の線材の一部と前記第2の線材の一部とは、前記第1の超電導材料層と前記第2の超電導材料層とが重ね合わさるように、前記超電導材料接合層を介して接合され、
     前記超電導材料接合層中には、ピンニング中心として機能する複数の粒子および複数の空隙の少なくとも一方が分散されている、超電導線材。
    A first wire having a first superconducting material layer;
    A second wire having a second superconducting material layer;
    A superconducting material bonding layer,
    The part of the first wire and the part of the second wire are arranged via the superconducting material bonding layer so that the first superconducting material layer and the second superconducting material layer overlap each other. Joined and
    In the superconducting material bonding layer, at least one of a plurality of particles functioning as a pinning center and a plurality of voids is dispersed.
  2.  前記超電導材料接合層の厚さ方向での断面における単位面積当たりの前記複数の粒子および前記複数の空隙の面積率は1%以上70%以下である、請求項1に記載の超電導線材。 The superconducting wire according to claim 1, wherein an area ratio of the plurality of particles and the plurality of voids per unit area in a cross section in the thickness direction of the superconducting material bonding layer is 1% or more and 70% or less.
  3.  前記複数の粒子および前記複数の空隙の各々の粒径は10nm以上1000nm以下である、請求項1または請求項2に記載の超電導線材。 The superconducting wire according to claim 1 or 2, wherein each of the plurality of particles and the plurality of voids has a particle size of 10 nm or more and 1000 nm or less.
  4.  前記超電導材料接合層は、REBaCu(式中、RE:希土類元素、Ba:バリウム、Cu:銅、O:酸素)で表されるRE123系酸化物超電導体により構成されており、
     前記複数の粒子はREを含む、請求項1から請求項3のいずれか1項に記載の超電導線材。
    The superconducting material bonding layer is composed of an RE123-based oxide superconductor represented by RE 1 Ba 2 Cu 3 O y (wherein RE: rare earth element, Ba: barium, Cu: copper, O: oxygen). And
    Wherein the plurality of particles comprise RE 2 O 3, the superconducting wire according to any one of claims 1 to 3.
  5.  前記超電導材料接合層は、REBaCu(式中、RE:希土類元素、Ba:バリウム、Cu:銅、O:酸素)で表されるRE123系酸化物超電導体により構成されており、
     前記複数の粒子はCuOを含む、請求項1から請求項4のいずれか1項に記載の超電導線材。
    The superconducting material bonding layer is composed of a RE123 oxide superconductor represented by REBa 2 Cu 3 O y (wherein RE: rare earth element, Ba: barium, Cu: copper, O: oxygen),
    The superconducting wire according to any one of claims 1 to 4, wherein the plurality of particles include CuO.
  6.  中心軸を有する超電導コイルであって、
     請求項1から請求項5のいずれか1項に記載の前記超電導線材を備え、
     前記超電導線材は、前記中心軸周りに巻き回されている、超電導コイル。
    A superconducting coil having a central axis,
    The superconducting wire according to any one of claims 1 to 5,
    The superconducting wire is a superconducting coil wound around the central axis.
  7.  請求項6に記載の前記超電導コイルと、
     前記超電導コイルを収容するクライオスタットと、
     前記超電導コイルを冷却する冷凍機とを備える、超電導マグネット。
    The superconducting coil according to claim 6,
    A cryostat that houses the superconducting coil;
    A superconducting magnet comprising a refrigerator for cooling the superconducting coil.
  8.  請求項7に記載の前記超電導マグネットを備える、超電導機器。 A superconducting device comprising the superconducting magnet according to claim 7.
PCT/JP2018/006499 2017-05-19 2018-02-22 Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device WO2018211764A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-099668 2017-05-19
JP2017099668 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018211764A1 true WO2018211764A1 (en) 2018-11-22

Family

ID=64273750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006499 WO2018211764A1 (en) 2017-05-19 2018-02-22 Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device

Country Status (1)

Country Link
WO (1) WO2018211764A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049800A1 (en) * 2020-09-01 2022-03-10 Kabushiki Kaisha Toshiba Structure and method for connecting superconducting layers, superconducting wire and coil including the structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113665A (en) * 2009-11-24 2011-06-09 International Superconductivity Technology Center Method for manufacturing rare earth-based oxide superconducting wire
JP2013235766A (en) * 2012-05-10 2013-11-21 Sumitomo Electric Ind Ltd Oxide superconducting thin film and method for manufacturing the same
JP2014150223A (en) * 2013-02-04 2014-08-21 Sumitomo Electric Ind Ltd Superconducting coil and superconducting coil device
JP2015198057A (en) * 2014-04-02 2015-11-09 国立大学法人名古屋大学 Application method of superconductive film and superconductive film
WO2016129469A1 (en) * 2015-02-12 2016-08-18 住友電気工業株式会社 Superconducting wire material production method and superconducting wire material joining member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113665A (en) * 2009-11-24 2011-06-09 International Superconductivity Technology Center Method for manufacturing rare earth-based oxide superconducting wire
JP2013235766A (en) * 2012-05-10 2013-11-21 Sumitomo Electric Ind Ltd Oxide superconducting thin film and method for manufacturing the same
JP2014150223A (en) * 2013-02-04 2014-08-21 Sumitomo Electric Ind Ltd Superconducting coil and superconducting coil device
JP2015198057A (en) * 2014-04-02 2015-11-09 国立大学法人名古屋大学 Application method of superconductive film and superconductive film
WO2016129469A1 (en) * 2015-02-12 2016-08-18 住友電気工業株式会社 Superconducting wire material production method and superconducting wire material joining member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049800A1 (en) * 2020-09-01 2022-03-10 Kabushiki Kaisha Toshiba Structure and method for connecting superconducting layers, superconducting wire and coil including the structure
CN114467154A (en) * 2020-09-01 2022-05-10 株式会社东芝 Connection structure of superconducting layers, superconducting wire, superconducting coil, superconducting device, and connection method of superconducting layers
JP7481963B2 (en) 2020-09-01 2024-05-13 株式会社東芝 Superconducting layer connection structure, superconducting wire, superconducting coil, superconducting device, and superconducting layer connection method

Similar Documents

Publication Publication Date Title
JP2008066399A (en) Connection structure of superconducting wire rod, superconducting coil, and connecting method of superconducting wire rod
JPWO2016129469A1 (en) Superconducting wire manufacturing method and superconducting wire joining member
US10541068B2 (en) Connection structure of superconducting wires
JP4653555B2 (en) Oxide superconducting magnet material and oxide superconducting magnet system
WO2017145401A1 (en) Oxide superconductor and method for producing same
WO2018211766A1 (en) Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device
JP2013012645A (en) Oxide superconducting coil and superconducting apparatus
JP5736603B2 (en) REBCO oxide superconducting thin film and manufacturing method thereof
WO2018211764A1 (en) Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device
WO2018211702A1 (en) Superconducting wire material and production method therefor, superconducting coil, superconducting magnet, and superconducting device
WO2018211699A1 (en) Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device
WO2018211700A1 (en) Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device
JP6556674B2 (en) Oxide superconductor and manufacturing method thereof
WO2018211765A1 (en) Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device
JP2012064495A (en) Method of producing coated superconducting wire rod, electrodeposition method of superconducting wire rod, and coated superconducting wire rod
JPWO2018211797A1 (en) Superconducting magnet
JP5562615B2 (en) Rare earth oxide superconducting wire manufacturing method
JP2013235765A (en) Oxide superconducting wire material and method for manufacturing the same
JP7330152B2 (en) Oxide superconductor and its manufacturing method
JPWO2004038816A1 (en) Oxide superconductor thin film element
JPH05319824A (en) Production of oxide superconductor laminated body
JP2022169922A (en) Connection structure of high-temperature superconducting wire
JP2010238633A (en) Method of manufacturing rare earth-based thick film oxide superconducting wire
JP2011146292A (en) Oxide superconductive current lead
JPH08264045A (en) Oxide superconducting wire and manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18803188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18803188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP