WO2018211765A1 - Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device - Google Patents

Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device Download PDF

Info

Publication number
WO2018211765A1
WO2018211765A1 PCT/JP2018/006509 JP2018006509W WO2018211765A1 WO 2018211765 A1 WO2018211765 A1 WO 2018211765A1 JP 2018006509 W JP2018006509 W JP 2018006509W WO 2018211765 A1 WO2018211765 A1 WO 2018211765A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
superconducting material
material layer
wire
crystal axis
Prior art date
Application number
PCT/JP2018/006509
Other languages
French (fr)
Japanese (ja)
Inventor
康太郎 大木
永石 竜起
加藤 丈晴
大作 横江
司 平山
雄一 幾原
Original Assignee
住友電気工業株式会社
一般財団法人ファインセラミックスセンター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 一般財団法人ファインセラミックスセンター filed Critical 住友電気工業株式会社
Publication of WO2018211765A1 publication Critical patent/WO2018211765A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/81Containers; Mountings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a superconducting wire, a superconducting coil, a superconducting magnet, and a superconducting device.
  • Patent Document 1 includes a first wire including a first superconducting material layer, a second wire including a second superconducting material layer, a first superconducting material layer, and a first superconducting material layer.
  • a superconducting wire provided with a superconducting material joining layer that joins two superconducting material layers is disclosed.
  • a superconducting wire includes a first wire including a first superconducting material layer, a second wire including a second superconducting material layer, a first superconducting material layer, and a second superconducting material.
  • a first superconducting material bonding layer for bonding the material layer.
  • the first superconducting material layer extends along the thickness direction of the first superconducting material layer. It has a crystal axis and a second crystal axis extending along the in-plane direction of the first superconducting material layer perpendicular to the thickness direction of the first superconducting material layer.
  • the second superconducting material layer extends along the thickness direction of the second superconducting material layer.
  • a crystal axis, and a fourth crystal axis extending along the in-plane direction of the second superconducting material layer orthogonal to the thickness direction of the second superconducting material layer and equivalent to the second crystal axis.
  • the angular deviation between the first crystal axis and the third crystal axis is 10 ° or less.
  • the angular deviation between the second crystal axis and the fourth crystal axis is 10 ° or less.
  • the superconducting coil according to one aspect of the present invention includes the superconducting wire according to one aspect of the present invention.
  • the superconducting wire is wound around the central axis of the superconducting coil.
  • a superconducting magnet includes a superconducting coil according to an aspect of the present invention, a cryostat that houses the superconducting coil, and a refrigerator that cools the superconducting coil.
  • the superconducting device includes the superconducting magnet according to one aspect of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a superconducting wire according to Embodiment 1.
  • FIG. 2 is a schematic partial enlarged sectional view of region II shown in FIG. 1 of the superconducting wire according to the first embodiment.
  • FIG. 9 is a schematic partial enlarged sectional view of a region II shown in FIG. 8 of the superconducting wire according to the second embodiment.
  • FIG. 3 shows the first crystal axis of the first superconducting material layer in the vicinity of the first superconducting material bonding layer of the superconducting wire according to Embodiment 1, measured by the electron beam backscatter diffraction (EBSD) method.
  • EBSD electron beam backscatter diffraction
  • FIG. 4 shows the second crystal axis of the first superconducting material layer in the vicinity of the first superconducting material bonding layer of the superconducting wire according to Embodiment 1, measured by an electron beam backscatter diffraction (EBSD) method. It is a figure which shows the orientation of and the orientation of the 4th crystal axis of a 2nd superconducting material layer.
  • FIG. 5 is a diagram showing a flowchart of the method of manufacturing a superconducting wire according to the first embodiment.
  • FIG. 6 is a diagram showing a two-dimensional X-ray diffraction image of the first superconducting material bonding layer after the microcrystal formation step in the superconducting wire manufacturing method according to Embodiment 1.
  • FIG. 7 is a diagram showing a two-dimensional X-ray diffraction image of the first superconducting material bonding layer after the heating and pressing step in the superconducting wire manufacturing method according to Embodiment 1.
  • FIG. 8 is a schematic cross-sectional view of the superconducting wire according to the second embodiment.
  • FIG. 9 is a schematic partial enlarged cross-sectional view of the region IX shown in FIG. 8 of the superconducting wire according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view of the superconducting magnet according to the third embodiment.
  • FIG. 11 is a schematic side view of the superconducting device according to the fourth embodiment.
  • An object of one aspect of the present invention is to provide a superconducting wire in which the superconducting critical current density is increased.
  • An object of one embodiment of the present invention is to provide a superconducting coil, a superconducting magnet, and a superconducting device including such a superconducting wire.
  • the superconducting critical current density of the superconducting wire increases.
  • the superconducting coil, the superconducting magnet, and the superconducting device can each generate a strong magnetic field.
  • Superconducting wires 1 and 1b include a first wire 10 including a first superconducting material layer 13, a second wire 20 including a second superconducting material layer 23, The first superconducting material layer 13 and the first superconducting material layer 23 are joined to each other. In the first portion 17 of the first superconducting material layer 13 in contact with the first superconducting material bonding layer 40, the first superconducting material layer 13 extends along the thickness direction of the first superconducting material layer 13. The first crystal axis is present, and the second crystal axis extends along the in-plane direction of the first superconducting material layer 13 perpendicular to the thickness direction of the first superconducting material layer 13.
  • the second superconducting material layer 23 extends along the thickness direction of the second superconducting material layer 23.
  • the third crystal axis that exists and extends along the in-plane direction of the second superconducting material layer 23 orthogonal to the thickness direction of the second superconducting material layer 23 and is equivalent to the second crystal axis And a fourth crystal axis.
  • the angular deviation between the first crystal axis and the third crystal axis is 10 ° or less.
  • the angular deviation between the second crystal axis and the fourth crystal axis is 10 ° or less.
  • the first superconducting material layer 13 and the second superconducting material layer 23 are formed by reducing the distortion of the crystal lattice and the disordered crystal structure.
  • the superconductive material bonding layers 40 are bonded to each other. Therefore, the superconducting critical current density J c in the superconducting joint between the first superconductive material layer 13 and the second superconducting material layer 23 through the first superconducting material bonding layer 40 is increased.
  • Superconducting critical current density J c of the superconducting wire 1,1b increases.
  • the first superconducting material layer 13 has RE1 1 Ba 2 Cu 3 O y1 (6.0 ⁇ y1 ⁇ 8.0, RE1 represents a rare earth element. ).
  • the second superconducting material layer 23 is composed of RE2 1 Ba 2 Cu 3 O y2 (6.0 ⁇ y2 ⁇ 8.0, where RE2 represents a rare earth element).
  • the first superconducting material bonding layer 40 is composed of RE3 1 Ba 2 Cu 3 O y3 (6.0 ⁇ y3 ⁇ 8.0, where RE3 represents a rare earth element).
  • the first superconducting material layer 13, the second superconducting material layer 23, and the first superconducting material bonding layer 40 have the same crystal structure.
  • the first superconducting material layer 13 and the second superconducting material layer 23 are bonded to each other through the first superconducting material bonding layer 40 with reduced crystal lattice distortion and reduced crystal structure disturbance.
  • the critical current density Jc increases.
  • Superconducting critical current density J c of the superconducting wire 1,1b increases.
  • the superconducting wire 1b includes a third wire 30 including a third superconducting material layer 33, a second superconducting material layer 23, a third superconducting material layer 33, And a second superconducting material bonding layer 42 for bonding the two.
  • the second length of the second wire 20 in the longitudinal direction of the second wire 20 is the first length of the first wire 10 and the length of the third wire 30 in the longitudinal direction of the first wire 10. Shorter than the third length of the third wire 30 in the direction.
  • the second superconducting material layer 23 has a third crystal axis and a fourth crystal axis. .
  • the third superconducting material layer 33 extends along the thickness direction of the third superconducting material layer 33.
  • the fifth crystal axis that exists and extends along the in-plane direction of the third superconducting material layer 33 perpendicular to the thickness direction of the third superconducting material layer 33 and is equivalent to the fourth crystal axis.
  • a sixth crystal axis a sixth crystal axis.
  • the angular deviation between the third crystal axis and the fifth crystal axis is 10 ° or less.
  • the angular deviation between the fourth crystal axis and the sixth crystal axis is 10 ° or less.
  • the second superconducting material layer 23 and the third superconducting material layer 33 are formed by reducing the distortion of the crystal lattice and the disorder of the crystal structure. They are bonded to each other via the material bonding layer 42. Therefore, the superconducting critical current density J c in the superconducting junction between the second superconducting material layer 23 through the second superconducting material bonding layer 42 and the third superconductive material layer 33 is increased. Superconducting critical current density J c of the superconducting wire 1b is increased.
  • the second superconducting material layer 23 is made of RE2 1 Ba 2 Cu 3 O y2 (6.0 ⁇ y2 ⁇ 8.0, where RE2 represents a rare earth element). It is configured.
  • the third superconducting material layer 33 is composed of RE4 1 Ba 2 Cu 3 O y4 (6.0 ⁇ y4 ⁇ 8.0, where RE4 represents a rare earth element).
  • the second superconducting material bonding layer 42 is composed of RE5 1 Ba 2 Cu 3 O y5 (6.0 ⁇ y5 ⁇ 8.0, where RE5 represents a rare earth element).
  • the second superconducting material layer 23 and the third superconducting material layer 33 are formed by the second superconducting material layer 23 due to reduced crystal lattice distortion and reduced crystal structure disturbance. They are bonded to each other via the material bonding layer 42.
  • the density Jc increases.
  • Superconducting critical current density J c of the superconducting wire 1b is increased.
  • a superconducting coil 70 according to an aspect of the present invention includes any one of the superconducting wires 1 and 1b according to the above (1) to (4), and any of the superconducting wires 1 and 1b includes the superconducting coil 70. It is wound around the central axis.
  • the superconducting coil 70 according to the above (5) can generate a strong magnetic field.
  • the superconducting magnet 100 includes the superconducting coil 70 according to the above (5), a cryostat 105 that houses the superconducting coil 70, and a refrigerator 102 that cools the superconducting coil 70.
  • the superconducting magnet 100 according to the above (6) can generate a strong magnetic field.
  • a superconducting device 200 according to an aspect of the present invention includes the superconducting magnet 100 according to (6) above.
  • the superconducting device 200 according to the above (7) can generate a strong magnetic field.
  • the superconducting wire 1 according to the present embodiment mainly includes a first wire 10, a second wire 20, and a first superconducting material bonding layer 40.
  • Superconducting wire 1 according to the present embodiment may further include a first conductive member 50.
  • the first wire 10 includes a first superconducting material layer 13 having a first main surface 13s. Specifically, the first wire 10 is provided on the first metal substrate 11, the first intermediate layer 12 provided on the first metal substrate 11, and the first intermediate layer 12. The first superconducting material layer 13 may be included.
  • the second wire 20 includes a second superconducting material layer 23 having a second main surface 23s. Specifically, the second wire 20 is provided on the second metal substrate 21, the second intermediate layer 22 provided on the second metal substrate 21, and the second intermediate layer 22. The second superconducting material layer 23 may be included.
  • the second wire 20 may be configured in the same manner as the first wire 10.
  • the first wire 10 and the second wire 20 may be a common wire.
  • the first portion 17 of the first wire 10 constitutes one end of one wire
  • the second portion 27 of the second wire 20 constitutes the other end of one wire. May be.
  • the first metal substrate 11 and the second metal substrate 21 may each be an oriented metal substrate.
  • An oriented metal substrate means a metal substrate having a uniform crystal orientation on the surface of the metal substrate.
  • the oriented metal substrate may be, for example, a clad type metal substrate in which a nickel layer, a copper layer, and the like are arranged on a SUS or Hastelloy (registered trademark) base metal substrate.
  • the first intermediate layer 12 may be made of a material that has extremely low reactivity with the first superconducting material layer 13 and does not deteriorate the superconducting characteristics of the first superconducting material layer 13.
  • the second intermediate layer 22 may be made of a material that has extremely low reactivity with the second superconducting material layer 23 and does not deteriorate the superconducting characteristics of the second superconducting material layer 23.
  • the first intermediate layer 12 and the second intermediate layer 22 are, for example, YSZ (yttria stabilized zirconia), CeO 2 (cerium oxide), MgO (magnesium oxide), Y 2 O 3 (yttrium oxide), Al, respectively.
  • It may be composed of at least one of 2 O 3 (aluminum oxide), LaMnO 3 (lanthanum manganese oxide), Gd 2 Zr 2 O 7 (gadolinium zirconate) and SrTiO 3 (strontium titanate).
  • 2 O 3 aluminum oxide
  • LaMnO 3 lanthanum manganese oxide
  • Gd 2 Zr 2 O 7 gadolinium zirconate
  • SrTiO 3 sinrontium titanate
  • the first intermediate layer 12 and the second intermediate layer 22 may each be composed of a plurality of layers.
  • the first intermediate layer 12 and the second intermediate layer 22 are formed by, for example, an IBAD (Ion Beam Assisted Deposition) method. It may be a crystal orientation layer formed in the above manner.
  • the first metal substrate 11 has crystal orientation on its surface
  • the first intermediate layer 12 reduces the difference in crystal orientation between the first metal substrate 11 and the first superconducting material layer 13. Also good.
  • the second metal substrate 21 has crystal orientation on its surface
  • the second intermediate layer 22 reduces the difference in crystal orientation between the second metal substrate 21 and the second superconducting material layer 23. Also good.
  • the first superconducting material layer 13 is a portion of the first wire 10 through which a superconducting current flows.
  • the second superconducting material layer 23 is a portion of the second wire 20 through which a superconducting current flows.
  • the first superconducting material layer 13 and the second superconducting material layer 23 are not particularly limited, but may be composed of an oxide superconducting material.
  • the first superconducting material layer 13 may be made of RE1 1 Ba 2 Cu 3 O y1 (6.0 ⁇ y1 ⁇ 8.0, where RE1 represents a rare earth element).
  • the second superconducting material layer 23 may be made of RE2 1 Ba 2 Cu 3 O y2 (6.0 ⁇ y2 ⁇ 8.0, where RE2 represents a rare earth element).
  • RE2 may be the same as or different from RE1. More specifically, RE1 and RE2 are respectively yttrium (Y), gadolinium (Gd), dysprosium (Dy), europium (Eu), samarium (Sm), lanthanum (La), neodymium (Nd), erbium ( Er), thulium (Tm), ytterbium (Yb), lutetium (Lu) or holmium (Ho). More specifically, y1 and y2 may be 6.8 or more and 7.0 or less, respectively.
  • the first superconducting material bonding layer 40 includes a first portion 17 of the first main surface 13 s of the first superconducting material layer 13 and a second portion of the second main surface 23 s of the second superconducting material layer 23. 27 is joined.
  • the first portion 17 may be located at the first end (17) of the first wire 10.
  • the second portion 27 may be located at the second end (27) of the second wire 20.
  • the first superconducting material bonding layer 40 is not particularly limited, but may be composed of an oxide superconducting material.
  • the first superconducting material bonding layer 40 may be made of RE3 1 Ba 2 Cu 3 O y3 (6.0 ⁇ y3 ⁇ 8.0, where RE3 represents a rare earth element).
  • RE3 may be the same as or different from RE1.
  • RE3 may be the same as or different from RE2. More specifically, RE3 is yttrium (Y), gadolinium (Gd), dysprosium (Dy), europium (Eu), samarium (Sm), lanthanum (La), neodymium (Nd), erbium (Er), thulium. (Tm), ytterbium (Yb), lutetium (Lu), or holmium (Ho). More specifically, y3 may be 6.8 or more and 7.0 or less.
  • the first superconducting material layer 13 extends along the thickness direction of the first superconducting material layer 13.
  • the first crystal axis is present, and the second crystal axis extends along the in-plane direction of the first superconducting material layer 13 perpendicular to the thickness direction of the first superconducting material layer 13.
  • the first superconducting material layer 13 is composed of RE1 1 Ba 2 Cu 3 O y1
  • the first crystal axis is the c axis of RE1 1 Ba 2 Cu 3 O y1
  • the second crystal axis is This is the a-axis of RE1 1 Ba 2 Cu 3 O y1 .
  • the second superconducting material layer 23 extends along the thickness direction of the second superconducting material layer 23.
  • the third crystal axis that exists and extends along the in-plane direction of the second superconducting material layer 23 orthogonal to the thickness direction of the second superconducting material layer 23 and is equivalent to the second crystal axis And a fourth crystal axis.
  • the third crystal axis is the c axis of RE2 1 Ba 2 Cu 3 O y2
  • the fourth crystal axis is This is the a-axis of RE2 1 Ba 2 Cu 3 O y2 .
  • the angular deviation between the first crystal axis and the third crystal axis is 10 ° or less.
  • the angular deviation between the first crystal axis and the third crystal axis may be 5 ° or less, or 2 ° or less.
  • the angular deviation between the second crystal axis and the fourth crystal axis is 10 ° or less.
  • the angular deviation between the second crystal axis and the fourth crystal axis may be 5 ° or less, or 2 ° or less.
  • the angular deviation between the first crystal axis and the third crystal axis and the angular deviation between the second crystal axis and the fourth crystal axis are measured as follows.
  • the orientation of crystal axes of a plurality of crystal grains included in the first superconducting material layer 13 and the second superconducting material layer 23 is measured by an electron beam backscatter diffraction (EBSD) method.
  • EBSD electron beam backscatter diffraction
  • the average direction of the crystal axes of the plurality of crystal grains included in the first superconducting material layer 13 is calculated, and the direction of the first crystal axis (for example, c-axis) of the first superconducting material layer 13 and the first direction
  • the direction of two crystal axes (for example, a axis) is determined.
  • the average direction of the crystal axes of the plurality of crystal grains included in the second superconducting material layer 23 is calculated, and the direction of the third crystal axis (for example, c-axis) of the second superconducting material layer 23 and the first direction 4 crystal axis (for example, a axis) direction is determined. From the difference between the direction of the first crystal axis of the first superconducting material layer 13 and the direction of the third crystal axis of the second superconducting material layer 23, it is between the first crystal axis and the third crystal axis. Is calculated.
  • FIG. 3 shows the orientation of the third crystal axis (c-axis) of the crystal grains in the second superconducting material layer 23. From FIG. 3, it is calculated that the angular deviation between the first crystal axis and the third crystal axis is 10 ° or less.
  • the orientation of the fourth crystal axis (a-axis) of the crystal grains in the second superconducting material layer 23 is shown in FIG. From FIG. 4, it is calculated that the angular deviation between the second crystal axis and the fourth crystal axis is 10 ° or less.
  • the angle deviation between the first crystal axis and the third crystal axis is 10 ° or less, and between the second crystal axis and the fourth crystal axis.
  • the angle deviation is 10 ° or less. Therefore, the first superconducting material layer 13 and the second superconducting material layer 23 are connected to each other via the first superconducting material bonding layer 40 due to reduced crystal lattice distortion and reduced crystal structure disturbance. Be joined. Therefore, the superconducting critical current density J c in the superconducting joint between the first superconductive material layer 13 and the second superconducting material layer 23 through the first superconducting material bonding layer 40 is increased.
  • the superconducting critical current density J c in the superconducting junction is defined as a value obtained by dividing the superconducting critical current I c by the junction area of the superconducting junction.
  • the junction area of the superconducting junction is the first superconducting material layer 13 and the second superconducting material layer 23 via the first superconducting material joining layer 40 in plan view from the normal direction of the first main surface 13s. Is defined as the junction area between.
  • the angular deviation between the second crystal axis and the fourth crystal axis is 11 °, and the superconducting critical current density J c at the superconducting junction is 70 A / cm 2 .
  • the angular deviation between the first crystal axis and the third crystal axis is between the second crystal axis and the fourth crystal axis. Is small enough to be ignored compared to the angle deviation (angle deviation of the a-axis).
  • the superconducting critical current density J c in the superconducting junction of Example 1-4 is 100 A / cm 2 or more, whereas the superconducting critical current density J c in the superconducting junction of the comparative example is less than 100 A / cm 2 . Therefore, the angle deviation between the first crystal axis and the third crystal axis is 10 ° or less, and the angle deviation between the second crystal axis and the fourth crystal axis is 10 ° or less. As a result, the superconducting critical current density J c at the superconducting junction between the first superconducting material layer 13 and the second superconducting material layer 23 via the first superconducting material joining layer 40 increases.
  • the manufacturing method of the superconducting wire 1 of this Embodiment is demonstrated.
  • the manufacturing method of the superconducting wire 1 of the present embodiment is performed on at least one of the first superconducting material layer 13 included in the first wire 10 and the second superconducting material layer 23 included in the second wire 20.
  • Forming microcrystals includes forming the first superconducting material on at least one of the first portion 17 of the first superconducting material layer 13 and the second portion 27 of the second superconducting material layer 23. Forming a film containing an organic compound of an element constituting the bonding layer 40 (S11). In one example, a solution containing an organic compound of an element constituting the first superconducting material bonding layer 40 is used as the first portion 17 of the first superconducting material layer 13 and the second portion 27 of the second superconducting material layer 23. On at least one of the coatings.
  • a raw material solution in the MOD method that is, an organic compound of an element constituting RE3 1 Ba 2 Cu 3 O y3 which is a material of the first superconducting material bonding layer 40 (for example, an organometallic compound)
  • an organic compound for example, an organometallic compound
  • a solution in which an organometallic complex is dissolved in an organic solvent is used.
  • the organic compound may be an organic compound not containing fluorine.
  • Forming microcrystals includes pre-baking (S12) a film containing an organic compound of an element constituting the first superconducting material bonding layer 40. Specifically, this film is temporarily fired at a first temperature.
  • the first temperature is equal to or higher than the decomposition temperature of the organic compound and equal to or lower than the temperature at which the oxide superconducting material constituting the first superconducting material bonding layer 40 is generated.
  • the organic compound contained in this film is thermally decomposed to become a precursor of the oxide superconducting material (hereinafter, a film containing this precursor is referred to as a pre-baked film).
  • the precursor of the oxide superconducting material includes, for example, BaCO 3 which is a carbon compound of Ba, an oxide of a rare earth element (RE3), and CuO.
  • the provisional baking step (S12) may be performed at a first temperature such as a temperature of about 500 ° C. and in an atmosphere having an oxygen concentration of 20% or more.
  • Forming microcrystals (S10) includes heating the temporarily fired film at a second temperature higher than the first temperature to thermally decompose the carbon compound contained in the temporarily fired film (S13).
  • the second temperature may be, for example, 650 ° C. or higher and 800 ° C. or lower.
  • the carbon compound contained in the temporarily fired film is thermally decomposed, and the oxide superconducting material constituting the first superconducting material bonding layer 40 is obtained.
  • the step (S13) of thermally decomposing the carbon compound contained in the temporarily fired film is performed in an atmosphere having a first oxygen concentration.
  • the first oxygen concentration is 1% to 100% (oxygen partial pressure 1 atm).
  • the angular deviation between the first crystal axis and the third crystal axis is 10 ° or less
  • the second crystal axis and the fourth crystal axis are The first wire rod 10 and the second wire rod 20 are aligned with each other (S20) so that the angle deviation between them is 10 ° or less.
  • the direction of the first crystal axis (for example, c-axis) with respect to the thickness direction of the first superconducting material layer 13 and the second direction with respect to the longitudinal direction of the first superconducting material layer 13 are determined by two-dimensional X-ray diffraction.
  • the orientation of the crystal axis is measured.
  • a fourth crystal axis (for example, c-axis) direction with respect to the thickness direction of the second superconducting material layer 23 and a fourth direction with respect to the longitudinal direction of the second superconducting material layer 23 are used.
  • the orientation of the crystal axis (for example, the a axis) is measured.
  • the angular deviation between the first crystal axis and the third crystal axis is 10 ° or less, and the angular deviation between the second crystal axis and the fourth crystal axis is 10 ° or less.
  • the first wire 10 and the second wire 20 are aligned with each other using an alignment jig.
  • the manufacturing method of the superconducting wire 1 according to the present embodiment includes placing the second portion 27 of the second wire 20 on the first portion 17 of the first wire 10 via microcrystals. (S30).
  • heat is applied to the first wire 10, the microcrystal, and the second wire 20 while applying pressure to form the first superconducting material bonding layer 40 from the microcrystal.
  • Generating (S40). Specifically, a pressure of 1 MPa or more is applied to the first wire 10, the microcrystal, and the second wire 20 by pressing the first wire 10 and the second wire 20 together using a pressing jig.
  • Add while applying pressure to the first wire 10, the microcrystal, and the second wire 20, the first wire 10, the microcrystal, and the second wire 20 are brought to the third temperature and the second oxygen. Heat in an atmosphere of concentration.
  • the third temperature is equal to or higher than the second temperature and equal to or higher than the temperature at which the oxide superconducting material constituting the first superconducting material bonding layer 40 is generated.
  • the second oxygen concentration is lower than the first oxygen concentration.
  • the second oxygen concentration may be 100 ppm, for example.
  • the microcrystals generated in the pre-baked film pyrolysis step (S13) grow to form the first superconducting material bonding layer 40 composed of crystals having a large particle size. Is done.
  • the microcrystal grows along at least one crystal orientation of the first superconducting material layer 13 and the second superconducting material layer 23 on which the film is formed in the film forming step (S11), and the first superconducting material junction is formed. It becomes layer 40.
  • the first superconducting material layer 13 of the first wire 10 and the second superconducting material layer 23 of the second wire 20 are joined to each other via the first superconducting material joining layer 40.
  • oxygen can be sufficiently supplied to the first superconducting material layer 13, the first superconducting material bonding layer 40, and the second superconducting material layer.
  • the superconducting wire 1 of the present embodiment can be manufactured through the above steps.
  • the first crystal axis is present, and the second crystal axis extends along the in-plane direction of the first superconducting material layer 13 perpendicular to the thickness direction of the first superconducting material layer 13.
  • the second superconducting material layer 23 extends along the thickness direction of the second superconducting material layer 23.
  • the third crystal axis that exists and extends along the in-plane direction of the second superconducting material layer 23 orthogonal to the thickness direction of the second superconducting material layer 23 and is equivalent to the second crystal axis
  • a fourth crystal axis is equivalent to the second crystal axis
  • the angular deviation between the first crystal axis and the third crystal axis is 10 ° or less.
  • the angular deviation between the second crystal axis and the fourth crystal axis is 10 ° or less.
  • the first superconducting material layer 13 and the second superconducting material layer 23 are connected to each other via the first superconducting material bonding layer 40 due to reduced crystal lattice distortion and reduced crystal structure disturbance. Be joined.
  • Superconducting critical current density J c in the superconducting joint between the first superconductive material layer 13 and the second superconducting material layer 23 through the first superconducting material bonding layer 40 is increased.
  • Superconducting critical current density J c of the superconducting wire 1 is increased.
  • the first superconducting material layer 13 is composed of RE1 1 Ba 2 Cu 3 O y1 (6.0 ⁇ y1 ⁇ 8.0, where RE1 represents a rare earth element).
  • the second superconducting material layer 23 is composed of RE2 1 Ba 2 Cu 3 O y2 (6.0 ⁇ y2 ⁇ 8.0, where RE2 represents a rare earth element).
  • the first superconducting material bonding layer 40 is composed of RE3 1 Ba 2 Cu 3 O y3 (6.0 ⁇ y3 ⁇ 8.0, where RE3 represents a rare earth element). Therefore, the first superconducting material layer 13, the second superconducting material layer 23, and the first superconducting material bonding layer 40 have the same crystal structure.
  • the first superconducting material layer 13 and the second superconducting material layer 23 are bonded to each other through the first superconducting material bonding layer 40 with reduced crystal lattice distortion and reduced crystal structure disturbance.
  • the according to the superconducting wire 1 of the present embodiment the superconducting critical current density at the superconducting junction between the first superconducting material layer 13 and the second superconducting material layer 23 via the first superconducting material joining layer 40. J c increases. Superconducting critical current density J c of the superconducting wire 1 is increased.
  • the superconducting wire 1b according to the second embodiment will be described with reference to FIGS.
  • the superconducting wire 1b of the present embodiment has the same configuration as the superconducting wire 1 of the first embodiment, but is mainly different in the following points.
  • the superconducting wire 1b of the present embodiment further includes a third wire 30 and a second superconducting material bonding layer 42.
  • Superconducting wire 1b of the present embodiment may further include a second conductive member 52.
  • the third wire 30 includes a third superconducting material layer 33 having a third main surface 33s. Specifically, the third wire 30 is provided on the third metal substrate 31, the third intermediate layer 32 provided on the third metal substrate 31, and the third intermediate layer 32. The third superconducting material layer 33 may be included. The third wire 30 may be configured in the same manner as the first wire 10. In the superconducting wire 1b of the present embodiment, the first wire 10 and the third wire 30 may be a common wire. For example, the first portion 17 of the first wire 10 constitutes one end of one wire, and the fourth portion 38 of the third wire 30 constitutes the other end of one wire. May be.
  • the third intermediate layer 32 may be composed of a plurality of layers.
  • the third intermediate layer 32 may be a crystal orientation layer formed by, for example, an IBAD (Ion Beam Assisted Deposition) method.
  • IBAD Ion Beam Assisted Deposition
  • the third intermediate layer 32 reduces the difference in crystal orientation between the third metal substrate 31 and the third superconducting material layer 33. Also good.
  • the third superconducting material layer 33 is a portion of the third wire 30 through which the superconducting current flows.
  • the third superconducting material layer 33 is not particularly limited, but may be composed of an oxide superconducting material.
  • the third superconducting material layers 33, RE4 1 Ba 2 Cu 3 O y4 (6.0 ⁇ y4 ⁇ 8.0, RE4 represents a rare earth element) may be configured with.
  • RE4 may be the same as or different from RE1.
  • RE4 may be the same as or different from RE2.
  • RE4 is yttrium (Y), gadolinium (Gd), dysprosium (Dy), europium (Eu), samarium (Sm), lanthanum (La), neodymium (Nd), erbium (Er), thulium. (Tm), ytterbium (Yb), lutetium (Lu), or holmium (Ho). More specifically, y4 may be 6.8 or more and 7.0 or less.
  • the second length of the second wire 20 in the longitudinal direction of the second wire 20 is the first length of the first wire 10 and the length of the third wire 30 in the longitudinal direction of the first wire 10. Shorter than the third length of the third wire 30 in the direction.
  • the first wire 10 has a first end face 10e.
  • the third wire 30 has a second end face 30e.
  • the second end surface 30e is opposed to the first end surface 10e with a space between the second end surface 30e and the first end surface 10e.
  • the first main surface 13 s of the first superconducting material layer 13 and the second main surface 23 s of the second superconducting material layer 23 are bonded to each other through the first superconducting material bonding layer 40.
  • the second main surface 23 s of the second superconducting material layer 23 and the third main surface 33 s of the third superconducting material layer 33 are joined to each other via the second superconducting material joining layer 42.
  • the second wire 20 straddles the first end surface 10 e of the first wire 10 and the second end surface 30 e of the third wire 30.
  • the second superconducting material layer 23 bridges the first superconducting material layer 13 and the third superconducting material layer 33.
  • the second superconducting material bonding layer 42 includes a third portion 28 of the second main surface 23 s of the second superconducting material layer 23 and a fourth portion of the third main surface 33 s of the third superconducting material layer 33. 38 is joined.
  • the third portion 28 is different from the second portion 27.
  • the third portion 28 may be located at the third end (28) of the second wire 20.
  • the fourth portion 38 may be located at the third end (38) of the third wire 30.
  • the second superconducting material bonding layer 42 is not particularly limited, but may be composed of an oxide superconducting material.
  • the second superconducting material bonding layer 42 may be composed of RE5 1 Ba 2 Cu 3 O y5 (6.0 ⁇ y5 ⁇ 8.0, where RE5 represents a rare earth element).
  • RE5 may be the same as RE2, or may be different.
  • RE5 may be the same as RE3 or different.
  • RE5 may be the same as RE4 or different. More specifically, RE5 is yttrium (Y), gadolinium (Gd), dysprosium (Dy), europium (Eu), samarium (Sm), lanthanum (La), neodymium (Nd), erbium (Er), thulium. (Tm), ytterbium (Yb), lutetium (Lu), or holmium (Ho). More specifically, y5 may be 6.8 or more and 7.0 or less.
  • the second superconducting material layer 23 extends along the thickness direction of the second superconducting material layer 23.
  • a fourth crystal axis extending along the in-plane direction of the second superconducting material layer 23 perpendicular to the thickness direction of the second superconducting material layer 23.
  • the third crystal axis is the c axis of RE2 1 Ba 2 Cu 3 O y2
  • the fourth crystal axis is This is the a-axis of RE2 1 Ba 2 Cu 3 O y2 .
  • the third superconducting material layer 33 extends along the thickness direction of the third superconducting material layer 33.
  • the fifth crystal axis that exists and extends along the in-plane direction of the third superconducting material layer 33 perpendicular to the thickness direction of the third superconducting material layer 33 and is equivalent to the fourth crystal axis.
  • a sixth crystal axis that exists and extends along the in-plane direction of the third superconducting material layer 33 perpendicular to the thickness direction of the third superconducting material layer 33 and is equivalent to the fourth crystal axis.
  • a sixth crystal axis that exists and extends along the in-plane direction of the third superconducting material layer 33 perpendicular to the thickness direction of the third superconducting material layer 33 and is equivalent to the fourth crystal axis.
  • a sixth crystal axis that exists and extends along the in-plane direction of the third superconducting material layer 33 perpendicular to the thickness direction of the third superconducting material layer 33
  • the fifth crystal axis is the c axis of RE4 1 Ba 2 Cu 3 O y4
  • the sixth crystal axis is This is the a-axis of RE4 1 Ba 2 Cu 3 O y4 .
  • the angular deviation between the third crystal axis and the fifth crystal axis is 10 ° or less.
  • the angular deviation between the third crystal axis and the fifth crystal axis may be 5 ° or less, or 2 ° or less.
  • the angular deviation between the fourth crystal axis and the sixth crystal axis is 10 ° or less.
  • the angular deviation between the fourth crystal axis and the sixth crystal axis may be 5 ° or less, or 2 ° or less.
  • the angular deviation between the fourth crystal axis and the sixth crystal axis is the same as the angular deviation between the first crystal axis and the third crystal axis and the second crystal axis in the first embodiment. Similar to the angular misalignment between the four crystal axes, the electron beam backscatter diffraction (EBSD) method is used.
  • EBSD electron beam backscatter diffraction
  • the angular deviation between the third crystal axis and the fifth crystal axis is 10 ° or less, and between the fourth crystal axis and the sixth crystal axis.
  • the angle deviation is 10 ° or less. Therefore, the second superconducting material layer 23 and the third superconducting material layer 33 are connected to each other through the second superconducting material bonding layer 42 due to reduced crystal lattice distortion and reduced disorder of the crystal structure. Be joined. Therefore, the superconducting critical current density J c in the superconducting junction between the second superconducting material layer 23 through the second superconducting material bonding layer 42 and the third superconductive material layer 33 is increased. Superconducting critical current density J c of the superconducting wire 1b is increased.
  • the method of joining the second superconducting material layer 23 and the third superconducting material layer 33 through the second superconducting material joining layer 42 is the same as that of the first superconducting material joining layer 40 in the first embodiment. This is the same as the method of joining the first superconducting material layer 13 and the second superconducting material layer 23 (see FIG. 5).
  • the superconducting wire 1b of the present embodiment has the following effects in addition to the effects of the superconducting wire 1 of the first embodiment as follows.
  • the superconducting wire 1b of the present embodiment includes a second superconducting material that joins the third wire 30 including the third superconducting material layer 33, the second superconducting material layer 23, and the third superconducting material layer 33. And a bonding layer 42.
  • the second length of the second wire 20 in the longitudinal direction of the second wire 20 is the first length of the first wire 10 and the length of the third wire 30 in the longitudinal direction of the first wire 10. Shorter than the third length of the third wire 30 in the direction.
  • the second superconducting material layer 23 has a third crystal axis and a fourth crystal axis. .
  • the third superconducting material layer 33 extends along the thickness direction of the third superconducting material layer 33.
  • the fifth crystal axis that exists and extends along the in-plane direction of the third superconducting material layer 33 perpendicular to the thickness direction of the third superconducting material layer 33 and is equivalent to the fourth crystal axis.
  • a sixth crystal axis a sixth crystal axis.
  • the angular deviation between the third crystal axis and the fifth crystal axis is 10 ° or less.
  • the angular deviation between the fourth crystal axis and the sixth crystal axis is 10 ° or less.
  • the second superconducting material layer 23 and the third superconducting material layer 33 are connected to each other through the second superconducting material bonding layer 42 due to reduced crystal lattice distortion and reduced disorder of the crystal structure. Be joined.
  • Superconducting critical current density J c in the superconducting junction between the second superconducting material layer 23 and the third superconductive material layer 33 through the second superconducting material bonding layer 42 is increased.
  • Superconducting critical current density J c of the superconducting wire 1b is increased.
  • the second superconducting material layer 23 is composed of RE2 1 Ba 2 Cu 3 O y2 (6.0 ⁇ y2 ⁇ 8.0, where RE2 represents a rare earth element).
  • the third superconducting material layer 33 is composed of RE4 1 Ba 2 Cu 3 O y4 (6.0 ⁇ y4 ⁇ 8.0, where RE4 represents a rare earth element).
  • the second superconducting material bonding layer 42 is composed of RE5 1 Ba 2 Cu 3 O y5 (6.0 ⁇ y5 ⁇ 8.0, where RE5 represents a rare earth element). Therefore, the second superconducting material layer 23, the third superconducting material layer 33, and the second superconducting material bonding layer 42 have the same crystal structure.
  • the second superconducting material layer 23 and the third superconducting material layer 33 are bonded to each other via the second superconducting material bonding layer 42 with reduced crystal lattice distortion and reduced crystal structure disturbance.
  • the superconducting critical current density in the superconducting junction between the second superconducting material layer 23 and the third superconducting material layer 33 through the second superconducting material joining layer 42 is used. J c increases. Superconducting critical current density J c is increased at the superconducting junction of the superconducting wire 1b.
  • the superconducting magnet 100 of the present embodiment cools the superconducting coil 70 including any of the superconducting wires 1 and 1b of the first to second embodiments, the cryostat 105 that houses the superconducting coil 70, and the superconducting coil 70.
  • the refrigerator 102 is mainly provided.
  • the superconducting magnet 100 may further include a heat shield 106 held inside the cryostat 105 and a magnetic shield 140.
  • superconducting coil 70 one of the superconducting wires 1 and 1b is wound around the central axis of the superconducting coil 70.
  • Superconducting coil body 110 including superconducting coil 70 is housed in cryostat 105.
  • Superconducting coil body 110 is held inside heat shield 106.
  • Superconducting coil body 110 includes a plurality of superconducting coils 70, an upper support portion 114, and a lower support portion 111.
  • a plurality of superconducting coils 70 are stacked. The upper and lower end surfaces of the superconducting coils 70 stacked are arranged so that the upper support portion 114 and the lower support portion 111 sandwich the upper end surface and the lower end surface.
  • a cooling plate 113 is disposed on the upper end surface of the superconducting coil 70 that is laminated and on the lower end surface of the superconducting coil 70 that is laminated.
  • a cooling plate (not shown) is also disposed between the superconducting coils 70 adjacent to each other.
  • One end of the cooling plate 113 is connected to the second cooling head 131 of the refrigerator 102.
  • a cooling plate (not shown) disposed between the superconducting coils 70 adjacent to each other is also connected to the second cooling head 131 at one end thereof.
  • the first cooling head 132 of the refrigerator 102 may be connected to the wall portion of the heat shield 106. Therefore, the wall portion of the heat shield 106 can also be cooled by the refrigerator 102.
  • the lower support part 111 of the superconducting coil body 110 has a size larger than the planar shape of the superconducting coil 70.
  • the lower support portion 111 is fixed to the heat shield 106 by a plurality of support members 115.
  • the plurality of support members 115 are rod-shaped members, and connect the upper wall of the heat shield 106 and the outer peripheral portion of the lower support portion 111.
  • a plurality of support members 115 are arranged on the outer periphery of the superconducting coil body 110. Support members 115 are arranged to surround superconducting coil 70 at the same interval.
  • the heat shield 106 that holds the superconducting coil body 110 is connected to the cryostat 105 by the connecting portion 120.
  • the connecting portions 120 are arranged at equal intervals along the outer peripheral portion of the superconducting coil body 110 so as to surround the central axis of the superconducting coil body 110.
  • the connection part 120 connects the lid body 135 of the cryostat 105 and the upper wall of the heat shield 106.
  • the refrigerator 102 is arranged so as to extend from the upper part of the lid 135 of the cryostat 105 to the inside of the heat shield 106.
  • the refrigerator 102 cools the superconducting coil body 110.
  • the main body 133 and the motor 134 of the refrigerator 102 are disposed above the upper surface of the lid 135.
  • the refrigerator 102 is arranged so as to reach the inside of the heat shield 106 from the main body 133.
  • the refrigerator 102 may be, for example, a Gifford McMahon refrigerator.
  • the refrigerator 102 is connected through a pipe 137 to a compressor (not shown) that compresses the refrigerant.
  • the refrigerant for example, helium gas
  • the refrigerant is expanded by a displacer driven by a motor 134, whereby the regenerator material provided in the refrigerator 102 is cooled.
  • the refrigerant which has become low pressure due to expansion, is returned to the compressor and is increased in pressure again.
  • the first cooling head 132 of the refrigerator 102 cools the heat shield 106 to prevent external heat from entering the heat shield 106.
  • the second cooling head 131 of the refrigerator 102 cools the superconducting coil 70 via the cooling plate 113.
  • the superconducting coil 70 is in a superconducting state.
  • the cryostat 105 includes a cryostat main body 136 and a lid body 135.
  • the periphery of the main body 133 and the motor 134 is surrounded by a magnetic shield 140.
  • the magnetic shield 140 can prevent a part of the magnetic field generated from the superconducting coil body 110 from entering the motor 134.
  • the superconducting magnet 100 is formed with an opening 107 that penetrates the cryostat 105 and the heat shield 106 and reaches the bottom wall of the cryostat main body 136 from the lid body 135 of the cryostat 105.
  • the opening 107 is disposed so as to penetrate the central portion of the superconducting coil 70 of the superconducting coil body 110.
  • a detected object 210 (see FIG. 11) is disposed inside the opening 107, and a magnetic field generated from the superconducting coil body 110 can be applied to the detected object 210.
  • Superconducting coil 70 of the present embodiment includes superconducting coil 70 including any one of superconducting wires 1 and 1b.
  • One of the superconducting wires 1 and 1b is wound around the central axis of the superconducting coil. Therefore, the superconducting coil 70 of the present embodiment can generate a strong magnetic field.
  • the superconducting magnet 100 of this embodiment includes a superconducting coil 70 including any of the superconducting wires 1 and 1b, a cryostat 105 that accommodates the superconducting coil 70, and a refrigerator 102 that cools the superconducting coil 70. Therefore, the superconducting magnet 100 of the present embodiment can generate a strong magnetic field.
  • Superconducting device 200 of the fourth embodiment may be, for example, a magnetic resonance imaging (MRI) apparatus.
  • MRI magnetic resonance imaging
  • the superconducting device 200 of the present embodiment mainly includes the superconducting magnet 100 of the third embodiment.
  • Superconducting device 200 of the present embodiment may further include a movable table 202 and a control unit 208.
  • the movable table 202 includes a top plate 205 on which the detected object 210 is placed and a drive unit 204 that moves the top plate 205.
  • the control unit 208 is connected to the superconducting magnet 100 and the drive unit 204.
  • the control unit 208 drives the superconducting magnet 100 to generate a uniform magnetic field in the opening 107 of the superconducting magnet 100.
  • the control unit 208 moves the movable table 202 and causes the detected object 210 placed on the movable table 202 to enter the opening 107 of the superconducting magnet 100.
  • the control unit 208 moves the movable table 202 and causes the detected object 210 placed on the movable table 202 to exit from the opening 107 of the superconducting magnet 100.
  • Superconducting device 200 of the present embodiment includes superconducting magnet 100. Therefore, superconducting device 200 of the present embodiment can generate a strong magnetic field. Using the superconducting device 200 of the present embodiment, the detected object 210 can be imaged with high accuracy.
  • Embodiment 1-4 disclosed this time is illustrative in all respects and not restrictive.
  • the scope of the present invention is shown not by the above-described first to fourth embodiments but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
  • 1, 1b superconducting wire 10 first wire, 10e first end face, 11 first metal substrate, 12 first intermediate layer, 13 first superconducting material layer, 13s first main surface, 17 first Part 20, 20 second wire, 21 second metal substrate, 22 second intermediate layer, 23 second superconducting material layer, 23s second main surface, 27 second part, 28 third part, 30 3rd wire, 30e 2nd end face, 31 3rd metal substrate, 32 3rd intermediate layer, 33 3rd superconducting material layer, 33s 3rd main surface, 38 4th part, 40 1st Superconducting material joining layer, 42 second superconducting material joining layer, 50 first conducting member, 52 second conducting member, 70 superconducting coil, 100 superconducting magnet, 102 refrigerator, 105 cryostat, 106 heat shield, 07 opening portion, 110 superconducting coil body, 111 lower support portion, 113 cooling plate, 114 upper support portion, 115 support member, 120 connection portion, 131 second cooling head, 132 first cooling head, 133 main body portion, 134

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

This superconducting wire material is provided with a first wire material containing a first superconducting material layer, a second wire material containing a second superconducting material layer, and a first superconducting material joining layer for joining the first superconducting material layer and the second superconducting material layer. The angular deviation between a first crystal axis of the first superconducting material layer and a third crystal axis of the second superconducting material layer is no larger than 10°. The angular deviation between a second crystal axis of the first superconducting material layer and a fourth crystal axis of the second superconducting material layer is no larger than 10°.

Description

超電導線材、超電導コイル、超電導マグネット及び超電導機器Superconducting wire, superconducting coil, superconducting magnet and superconducting equipment
 本発明は、超電導線材、超電導コイル、超電導マグネット及び超電導機器に関する。本出願は、2017年5月19日に出願した日本特許出願である特願2017-099986号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present invention relates to a superconducting wire, a superconducting coil, a superconducting magnet, and a superconducting device. This application claims priority based on Japanese Patent Application No. 2017-099986, a Japanese patent application filed on May 19, 2017. All the descriptions described in the Japanese patent application are incorporated herein by reference.
 国際公開第2016/129469号(特許文献1)は、第1の超電導材料層を含む第1の線材と、第2の超電導材料層を含む第2の線材と、第1の超電導材料層と第2の超電導材料層とを接合する超電導材料接合層とを備える超電導線材を開示している。 International Publication No. 2016/129469 (Patent Document 1) includes a first wire including a first superconducting material layer, a second wire including a second superconducting material layer, a first superconducting material layer, and a first superconducting material layer. A superconducting wire provided with a superconducting material joining layer that joins two superconducting material layers is disclosed.
国際公開第2016/129469号International Publication No. 2016/129469
 本発明の一態様に係る超電導線材は、第1の超電導材料層を含む第1の線材と、第2の超電導材料層を含む第2の線材と、第1の超電導材料層と第2の超電導材料層とを接合する第1の超電導材料接合層とを備える。第1の超電導材料接合層に接触する第1の超電導材料層の第1の部分において、第1の超電導材料層は、第1の超電導材料層の厚さ方向に沿って延在する第1の結晶軸と、第1の超電導材料層の厚さ方向に直交する第1の超電導材料層の面内方向に沿って延在する第2の結晶軸とを有する。第1の超電導材料接合層に接触する第2の超電導材料層の第2の部分において、第2の超電導材料層は、第2の超電導材料層の厚さ方向に沿って延在する第3の結晶軸と、第2の超電導材料層の厚さ方向に直交する第2の超電導材料層の面内方向に沿って延在しかつ第2の結晶軸と等価である第4の結晶軸とを有する。第1の結晶軸と第3の結晶軸との間の角度ずれは10°以下である。第2の結晶軸と第4の結晶軸との間の角度ずれは10°以下である。 A superconducting wire according to an aspect of the present invention includes a first wire including a first superconducting material layer, a second wire including a second superconducting material layer, a first superconducting material layer, and a second superconducting material. A first superconducting material bonding layer for bonding the material layer. In the first portion of the first superconducting material layer in contact with the first superconducting material bonding layer, the first superconducting material layer extends along the thickness direction of the first superconducting material layer. It has a crystal axis and a second crystal axis extending along the in-plane direction of the first superconducting material layer perpendicular to the thickness direction of the first superconducting material layer. In the second part of the second superconducting material layer in contact with the first superconducting material bonding layer, the second superconducting material layer extends along the thickness direction of the second superconducting material layer. A crystal axis, and a fourth crystal axis extending along the in-plane direction of the second superconducting material layer orthogonal to the thickness direction of the second superconducting material layer and equivalent to the second crystal axis. Have. The angular deviation between the first crystal axis and the third crystal axis is 10 ° or less. The angular deviation between the second crystal axis and the fourth crystal axis is 10 ° or less.
 本発明の一態様に係る超電導コイルは、本発明の一態様に係る超電導線材を備える。超電導線材は、超電導コイルの中心軸周りに巻き回されている。 The superconducting coil according to one aspect of the present invention includes the superconducting wire according to one aspect of the present invention. The superconducting wire is wound around the central axis of the superconducting coil.
 本発明の一態様に係る超電導マグネットは、本発明の一態様に係る超電導コイルと、超電導コイルを収容するクライオスタットと、超電導コイルを冷却する冷凍機とを備える。 A superconducting magnet according to an aspect of the present invention includes a superconducting coil according to an aspect of the present invention, a cryostat that houses the superconducting coil, and a refrigerator that cools the superconducting coil.
 本発明の一態様に係る超電導機器は、本発明の一態様に係る超電導マグネットを備える。 The superconducting device according to one aspect of the present invention includes the superconducting magnet according to one aspect of the present invention.
図1は、実施の形態1に係る超電導線材の概略断面図である。1 is a schematic cross-sectional view of a superconducting wire according to Embodiment 1. FIG. 図2は、実施の形態1に係る超電導線材の、図1に示される領域IIの概略部分拡大断面図である。実施の形態2に係る超電導線材の、図8に示される領域IIの概略部分拡大断面図である。2 is a schematic partial enlarged sectional view of region II shown in FIG. 1 of the superconducting wire according to the first embodiment. FIG. 9 is a schematic partial enlarged sectional view of a region II shown in FIG. 8 of the superconducting wire according to the second embodiment. 図3は、電子線後方散乱回折(EBSD)法によって測定された、実施の形態1に係る超電導線材の第1の超電導材料接合層の近傍における、第1の超電導材料層の第1の結晶軸の配向と第2の超電導材料層の第3の結晶軸の配向とを示す図である。FIG. 3 shows the first crystal axis of the first superconducting material layer in the vicinity of the first superconducting material bonding layer of the superconducting wire according to Embodiment 1, measured by the electron beam backscatter diffraction (EBSD) method. It is a figure which shows (1) orientation and the orientation of the 3rd crystal axis of a 2nd superconducting material layer. 図4は、電子線後方散乱回折(EBSD)法によって測定された、実施の形態1に係る超電導線材の第1の超電導材料接合層の近傍における、第1の超電導材料層の第2の結晶軸の配向と第2の超電導材料層の第4の結晶軸の配向とを示す図である。FIG. 4 shows the second crystal axis of the first superconducting material layer in the vicinity of the first superconducting material bonding layer of the superconducting wire according to Embodiment 1, measured by an electron beam backscatter diffraction (EBSD) method. It is a figure which shows the orientation of and the orientation of the 4th crystal axis of a 2nd superconducting material layer. 図5は、実施の形態1に係る超電導線材の製造方法のフローチャートを示す図である。FIG. 5 is a diagram showing a flowchart of the method of manufacturing a superconducting wire according to the first embodiment. 図6は、実施の形態1に係る超電導線材の製造方法における微結晶形成工程後の第1の超電導材料接合層の2次元X線回折像を示す図である。FIG. 6 is a diagram showing a two-dimensional X-ray diffraction image of the first superconducting material bonding layer after the microcrystal formation step in the superconducting wire manufacturing method according to Embodiment 1. 図7は、実施の形態1に係る超電導線材の製造方法における加熱加圧工程後の第1の超電導材料接合層の2次元X線回折像を示す図である。FIG. 7 is a diagram showing a two-dimensional X-ray diffraction image of the first superconducting material bonding layer after the heating and pressing step in the superconducting wire manufacturing method according to Embodiment 1. 図8は、実施の形態2に係る超電導線材の概略断面図である。FIG. 8 is a schematic cross-sectional view of the superconducting wire according to the second embodiment. 図9は、実施の形態2に係る超電導線材の、図8に示される領域IXの概略部分拡大断面図である。FIG. 9 is a schematic partial enlarged cross-sectional view of the region IX shown in FIG. 8 of the superconducting wire according to the second embodiment. 図10は、実施の形態3に係る超電導マグネットの概略断面図である。FIG. 10 is a schematic cross-sectional view of the superconducting magnet according to the third embodiment. 図11は、実施の形態4に係る超電導機器の概略側面図である。FIG. 11 is a schematic side view of the superconducting device according to the fourth embodiment.
[本開示が解決しようとする課題]
 本発明の一態様の目的は、超電導臨界電流密度が増加される超電導線材を提供することである。本発明の一態様の目的は、このような超電導線材を含む超電導コイル、超電導マグネット及び超電導機器を提供することである。
[本開示の効果]
 上記によれば、超電導線材の超電導臨界電流密度が増加する。上記によれば、超電導コイル、超電導マグネット及び超電導機器は、各々、強い磁場を発生し得る。
[Problems to be solved by this disclosure]
An object of one aspect of the present invention is to provide a superconducting wire in which the superconducting critical current density is increased. An object of one embodiment of the present invention is to provide a superconducting coil, a superconducting magnet, and a superconducting device including such a superconducting wire.
[Effects of the present disclosure]
According to the above, the superconducting critical current density of the superconducting wire increases. According to the above, the superconducting coil, the superconducting magnet, and the superconducting device can each generate a strong magnetic field.
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.
 (1)本発明の一態様に係る超電導線材1,1bは、第1の超電導材料層13を含む第1の線材10と、第2の超電導材料層23を含む第2の線材20と、第1の超電導材料層13と第2の超電導材料層23とを接合する第1の超電導材料接合層40とを備える。第1の超電導材料接合層40に接触する第1の超電導材料層13の第1の部分17において、第1の超電導材料層13は、第1の超電導材料層13の厚さ方向に沿って延在する第1の結晶軸と、第1の超電導材料層13の厚さ方向に直交する第1の超電導材料層13の面内方向に沿って延在する第2の結晶軸とを有する。第1の超電導材料接合層40に接触する第2の超電導材料層23の第2の部分27において、第2の超電導材料層23は、第2の超電導材料層23の厚さ方向に沿って延在する第3の結晶軸と、第2の超電導材料層23の厚さ方向に直交する第2の超電導材料層23の面内方向に沿って延在しかつ第2の結晶軸と等価である第4の結晶軸とを有する。第1の結晶軸と第3の結晶軸との間の角度ずれは10°以下である。第2の結晶軸と第4の結晶軸との間の角度ずれは10°以下である。 (1) Superconducting wires 1 and 1b according to an aspect of the present invention include a first wire 10 including a first superconducting material layer 13, a second wire 20 including a second superconducting material layer 23, The first superconducting material layer 13 and the first superconducting material layer 23 are joined to each other. In the first portion 17 of the first superconducting material layer 13 in contact with the first superconducting material bonding layer 40, the first superconducting material layer 13 extends along the thickness direction of the first superconducting material layer 13. The first crystal axis is present, and the second crystal axis extends along the in-plane direction of the first superconducting material layer 13 perpendicular to the thickness direction of the first superconducting material layer 13. In the second portion 27 of the second superconducting material layer 23 in contact with the first superconducting material bonding layer 40, the second superconducting material layer 23 extends along the thickness direction of the second superconducting material layer 23. The third crystal axis that exists and extends along the in-plane direction of the second superconducting material layer 23 orthogonal to the thickness direction of the second superconducting material layer 23 and is equivalent to the second crystal axis And a fourth crystal axis. The angular deviation between the first crystal axis and the third crystal axis is 10 ° or less. The angular deviation between the second crystal axis and the fourth crystal axis is 10 ° or less.
 上記(1)に係る超電導線材1,1bでは、第1の超電導材料層13と第2の超電導材料層23とは、低減された結晶格子の歪と低減された結晶構造の乱れで、第1の超電導材料接合層40を介して、互いに接合される。そのため、第1の超電導材料接合層40を介した第1の超電導材料層13と第2の超電導材料層23との間の超電導接合部における超電導臨界電流密度Jcが増加する。超電導線材1,1bの超電導臨界電流密度Jcが増加する。 In the superconducting wires 1 and 1b according to the above (1), the first superconducting material layer 13 and the second superconducting material layer 23 are formed by reducing the distortion of the crystal lattice and the disordered crystal structure. The superconductive material bonding layers 40 are bonded to each other. Therefore, the superconducting critical current density J c in the superconducting joint between the first superconductive material layer 13 and the second superconducting material layer 23 through the first superconducting material bonding layer 40 is increased. Superconducting critical current density J c of the superconducting wire 1,1b increases.
 (2)上記(1)に係る超電導線材1,1bでは、第1の超電導材料層13は、RE11Ba2Cu3y1(6.0≦y1≦8.0、RE1は希土類元素を表す)により構成されている。第2の超電導材料層23は、RE21Ba2Cu3y2(6.0≦y2≦8.0、RE2は希土類元素を表す)により構成されている。第1の超電導材料接合層40は、RE31Ba2Cu3y3(6.0≦y3≦8.0、RE3は希土類元素を表す)により構成されている。 (2) In the superconducting wires 1 and 1b according to the above (1), the first superconducting material layer 13 has RE1 1 Ba 2 Cu 3 O y1 (6.0 ≦ y1 ≦ 8.0, RE1 represents a rare earth element. ). The second superconducting material layer 23 is composed of RE2 1 Ba 2 Cu 3 O y2 (6.0 ≦ y2 ≦ 8.0, where RE2 represents a rare earth element). The first superconducting material bonding layer 40 is composed of RE3 1 Ba 2 Cu 3 O y3 (6.0 ≦ y3 ≦ 8.0, where RE3 represents a rare earth element).
 上記(2)に係る超電導線材1,1bでは、第1の超電導材料層13、第2の超電導材料層23及び第1の超電導材料接合層40は、同じ結晶構造を有している。第1の超電導材料層13と第2の超電導材料層23とは、低減された結晶格子の歪と低減された結晶構造の乱れで、第1の超電導材料接合層40を介して、互いに接合される。上記(2)に係る超電導線材1,1bによれば、第1の超電導材料接合層40を介した第1の超電導材料層13と第2の超電導材料層23との間の超電導接合部における超電導臨界電流密度Jcが増加する。超電導線材1,1bの超電導臨界電流密度Jcが増加する。 In the superconducting wires 1 and 1b according to the above (2), the first superconducting material layer 13, the second superconducting material layer 23, and the first superconducting material bonding layer 40 have the same crystal structure. The first superconducting material layer 13 and the second superconducting material layer 23 are bonded to each other through the first superconducting material bonding layer 40 with reduced crystal lattice distortion and reduced crystal structure disturbance. The According to the superconducting wires 1 and 1b according to the above (2), the superconductivity at the superconducting junction between the first superconducting material layer 13 and the second superconducting material layer 23 via the first superconducting material joining layer 40. The critical current density Jc increases. Superconducting critical current density J c of the superconducting wire 1,1b increases.
 (3)上記(1)または(2)に係る超電導線材1bは、第3の超電導材料層33を含む第3の線材30と、第2の超電導材料層23と第3の超電導材料層33とを接合する第2の超電導材料接合層42とをさらに備える。第2の線材20の長手方向における第2の線材20の第2の長さは、第1の線材10の長手方向における第1の線材10の第1の長さ及び第3の線材30の長手方向における第3の線材30の第3の長さよりも短い。第2の超電導材料接合層42に接触する第2の超電導材料層23の第3の部分28において、第2の超電導材料層23は、第3の結晶軸と、第4の結晶軸とを有する。第2の超電導材料接合層42に接触する第3の超電導材料層33の第4の部分38において、第3の超電導材料層33は、第3の超電導材料層33の厚さ方向に沿って延在する第5の結晶軸と、第3の超電導材料層33の厚さ方向に直交する第3の超電導材料層33の面内方向に沿って延在しかつ第4の結晶軸と等価である第6の結晶軸とを有する。第3の結晶軸と第5の結晶軸との間の角度ずれは10°以下である。第4の結晶軸と第6の結晶軸との間の角度ずれは10°以下である。 (3) The superconducting wire 1b according to the above (1) or (2) includes a third wire 30 including a third superconducting material layer 33, a second superconducting material layer 23, a third superconducting material layer 33, And a second superconducting material bonding layer 42 for bonding the two. The second length of the second wire 20 in the longitudinal direction of the second wire 20 is the first length of the first wire 10 and the length of the third wire 30 in the longitudinal direction of the first wire 10. Shorter than the third length of the third wire 30 in the direction. In the third portion 28 of the second superconducting material layer 23 that is in contact with the second superconducting material bonding layer 42, the second superconducting material layer 23 has a third crystal axis and a fourth crystal axis. . In the fourth portion 38 of the third superconducting material layer 33 in contact with the second superconducting material bonding layer 42, the third superconducting material layer 33 extends along the thickness direction of the third superconducting material layer 33. The fifth crystal axis that exists and extends along the in-plane direction of the third superconducting material layer 33 perpendicular to the thickness direction of the third superconducting material layer 33 and is equivalent to the fourth crystal axis. And a sixth crystal axis. The angular deviation between the third crystal axis and the fifth crystal axis is 10 ° or less. The angular deviation between the fourth crystal axis and the sixth crystal axis is 10 ° or less.
 上記(3)に係る超電導線材1bでは、第2の超電導材料層23と第3の超電導材料層33とは、低減された結晶格子の歪と低減された結晶構造の乱れで、第2の超電導材料接合層42を介して、互いに接合される。そのため、第2の超電導材料接合層42を介した第2の超電導材料層23と第3の超電導材料層33との間の超電導接合部における超電導臨界電流密度Jcが増加する。超電導線材1bの超電導臨界電流密度Jcが増加する。 In the superconducting wire 1b according to the above (3), the second superconducting material layer 23 and the third superconducting material layer 33 are formed by reducing the distortion of the crystal lattice and the disorder of the crystal structure. They are bonded to each other via the material bonding layer 42. Therefore, the superconducting critical current density J c in the superconducting junction between the second superconducting material layer 23 through the second superconducting material bonding layer 42 and the third superconductive material layer 33 is increased. Superconducting critical current density J c of the superconducting wire 1b is increased.
 (4)上記(3)に係る超電導線材1bでは、第2の超電導材料層23は、RE21Ba2Cu3y2(6.0≦y2≦8.0、RE2は希土類元素を表す)により構成されている。第3の超電導材料層33は、RE41Ba2Cu3y4(6.0≦y4≦8.0、RE4は希土類元素を表す)により構成されている。第2の超電導材料接合層42は、RE51Ba2Cu3y5(6.0≦y5≦8.0、RE5は希土類元素を表す)により構成されている。 (4) In the superconducting wire 1b according to the above (3), the second superconducting material layer 23 is made of RE2 1 Ba 2 Cu 3 O y2 (6.0 ≦ y2 ≦ 8.0, where RE2 represents a rare earth element). It is configured. The third superconducting material layer 33 is composed of RE4 1 Ba 2 Cu 3 O y4 (6.0 ≦ y4 ≦ 8.0, where RE4 represents a rare earth element). The second superconducting material bonding layer 42 is composed of RE5 1 Ba 2 Cu 3 O y5 (6.0 ≦ y5 ≦ 8.0, where RE5 represents a rare earth element).
 上記(4)に係る超電導線材1bでは、第2の超電導材料層23と第3の超電導材料層33とは、低減された結晶格子の歪と低減された結晶構造の乱れで、第2の超電導材料接合層42を介して、互いに接合される。上記(4)に係る超電導線材1bによれば、第2の超電導材料接合層42を介した第2の超電導材料層23と第3の超電導材料層33との間の超電導接合部における超電導臨界電流密度Jcが増加する。超電導線材1bの超電導臨界電流密度Jcが増加する。 In the superconducting wire 1b according to the above (4), the second superconducting material layer 23 and the third superconducting material layer 33 are formed by the second superconducting material layer 23 due to reduced crystal lattice distortion and reduced crystal structure disturbance. They are bonded to each other via the material bonding layer 42. According to the superconducting wire 1b according to the above (4), the superconducting critical current in the superconducting junction between the second superconducting material layer 23 and the third superconducting material layer 33 via the second superconducting material joining layer 42. The density Jc increases. Superconducting critical current density J c of the superconducting wire 1b is increased.
 (5)本発明の一態様に係る超電導コイル70は、上記(1)から(4)に係る超電導線材1,1bのいずれかを備え、超電導線材1,1bのいずれかは、超電導コイル70の中心軸周りに巻き回されている。上記(5)に係る超電導コイル70は、強い磁場を発生し得る。 (5) A superconducting coil 70 according to an aspect of the present invention includes any one of the superconducting wires 1 and 1b according to the above (1) to (4), and any of the superconducting wires 1 and 1b includes the superconducting coil 70. It is wound around the central axis. The superconducting coil 70 according to the above (5) can generate a strong magnetic field.
 (6)本発明の一態様に係る超電導マグネット100は、上記(5)に係る超電導コイル70と、超電導コイル70を収容するクライオスタット105と、超電導コイル70を冷却する冷凍機102とを備える。上記(6)に係る超電導マグネット100は、強い磁場を発生し得る。 (6) The superconducting magnet 100 according to an aspect of the present invention includes the superconducting coil 70 according to the above (5), a cryostat 105 that houses the superconducting coil 70, and a refrigerator 102 that cools the superconducting coil 70. The superconducting magnet 100 according to the above (6) can generate a strong magnetic field.
 (7)本発明の一態様に係る超電導機器200は、上記(6)に係る超電導マグネット100を備える。上記(7)に係る超電導機器200は、強い磁場を発生し得る。 (7) A superconducting device 200 according to an aspect of the present invention includes the superconducting magnet 100 according to (6) above. The superconducting device 200 according to the above (7) can generate a strong magnetic field.
 [本発明の実施形態の詳細]
 次に、図面に基づいて本発明の実施の形態の詳細について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。以下に記載する実施の形態の少なくとも一部の構成を任意に組み合わせてもよい。
[Details of the embodiment of the present invention]
Next, details of embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated. You may combine arbitrarily the structure of at least one part of embodiment described below.
 (実施の形態1)
 図1及び図2に示されるように、本実施の形態の超電導線材1は、第1の線材10と、第2の線材20と、第1の超電導材料接合層40とを主に備える。本実施の形態に係る超電導線材1は、第1の導電部材50をさらに備えてもよい。
(Embodiment 1)
As shown in FIGS. 1 and 2, the superconducting wire 1 according to the present embodiment mainly includes a first wire 10, a second wire 20, and a first superconducting material bonding layer 40. Superconducting wire 1 according to the present embodiment may further include a first conductive member 50.
 第1の線材10は、第1の主面13sを有する第1の超電導材料層13を含む。特定的には、第1の線材10は、第1の金属基板11と、第1の金属基板11上に設けられた第1の中間層12と、第1の中間層12上に設けられた第1の超電導材料層13とを含んでもよい。 The first wire 10 includes a first superconducting material layer 13 having a first main surface 13s. Specifically, the first wire 10 is provided on the first metal substrate 11, the first intermediate layer 12 provided on the first metal substrate 11, and the first intermediate layer 12. The first superconducting material layer 13 may be included.
 第2の線材20は、第2の主面23sを有する第2の超電導材料層23を含む。特定的には、第2の線材20は、第2の金属基板21と、第2の金属基板21上に設けられた第2の中間層22と、第2の中間層22上に設けられた第2の超電導材料層23とを含んでもよい。第2の線材20は、第1の線材10と同様に構成されてもよい。本実施の形態の超電導線材1では、第1の線材10と第2の線材20とは共通の線材であってもよい。例えば、第1の線材10の第1の部分17が1本の線材の一方端部を構成し、かつ、第2の線材20の第2の部分27が1本の線材の他方端部を構成してもよい。 The second wire 20 includes a second superconducting material layer 23 having a second main surface 23s. Specifically, the second wire 20 is provided on the second metal substrate 21, the second intermediate layer 22 provided on the second metal substrate 21, and the second intermediate layer 22. The second superconducting material layer 23 may be included. The second wire 20 may be configured in the same manner as the first wire 10. In the superconducting wire 1 of the present embodiment, the first wire 10 and the second wire 20 may be a common wire. For example, the first portion 17 of the first wire 10 constitutes one end of one wire, and the second portion 27 of the second wire 20 constitutes the other end of one wire. May be.
 第1の金属基板11及び第2の金属基板21は、各々、配向金属基板であってもよい。配向金属基板は、金属基板の表面において、結晶方位が揃っている金属基板を意味する。配向金属基板は、例えば、SUSまたはハステロイ(登録商標)のベース金属基板上にニッケル層及び銅層などが配置されたクラッドタイプの金属基板であってもよい。 The first metal substrate 11 and the second metal substrate 21 may each be an oriented metal substrate. An oriented metal substrate means a metal substrate having a uniform crystal orientation on the surface of the metal substrate. The oriented metal substrate may be, for example, a clad type metal substrate in which a nickel layer, a copper layer, and the like are arranged on a SUS or Hastelloy (registered trademark) base metal substrate.
 第1の中間層12は、第1の超電導材料層13との反応性が極めて低く、第1の超電導材料層13の超電導特性を低下させないような材料を用いることができる。第2の中間層22は、第2の超電導材料層23との反応性が極めて低く、第2の超電導材料層23の超電導特性を低下させないような材料を用いることができる。第1の中間層12及び第2の中間層22は、各々、例えば、YSZ(イットリア安定化ジルコニア)、CeO(酸化セリウム)、MgO(酸化マグネシウム)、Y(酸化イットリウム)、Al(酸化アルミニウム)、LaMnO(酸化ランタンマンガン)、Gd2Zr27(ジルコン酸ガドリニウム)およびSrTiO(チタン酸ストロンチウム)の少なくとも一つから構成されてもよい。 The first intermediate layer 12 may be made of a material that has extremely low reactivity with the first superconducting material layer 13 and does not deteriorate the superconducting characteristics of the first superconducting material layer 13. The second intermediate layer 22 may be made of a material that has extremely low reactivity with the second superconducting material layer 23 and does not deteriorate the superconducting characteristics of the second superconducting material layer 23. The first intermediate layer 12 and the second intermediate layer 22 are, for example, YSZ (yttria stabilized zirconia), CeO 2 (cerium oxide), MgO (magnesium oxide), Y 2 O 3 (yttrium oxide), Al, respectively. It may be composed of at least one of 2 O 3 (aluminum oxide), LaMnO 3 (lanthanum manganese oxide), Gd 2 Zr 2 O 7 (gadolinium zirconate) and SrTiO 3 (strontium titanate).
 第1の中間層12及び第2の中間層22は、各々、複数の層により構成されてもよい。第1の金属基板11及び第2の金属基板21としてSUS基板またはハステロイ基板が用いられる場合、第1の中間層12及び第2の中間層22は、例えば、IBAD(Ion Beam Assisted Deposition)法にて形成された結晶配向層であってもよい。第1の金属基板11がその表面に結晶配向性を有するとき、第1の中間層12は、第1の金属基板11と第1の超電導材料層13との結晶配向性の差を緩和してもよい。第2の金属基板21がその表面に結晶配向性を有するとき、第2の中間層22は、第2の金属基板21と第2の超電導材料層23との結晶配向性の差を緩和してもよい。 The first intermediate layer 12 and the second intermediate layer 22 may each be composed of a plurality of layers. When a SUS substrate or a Hastelloy substrate is used as the first metal substrate 11 and the second metal substrate 21, the first intermediate layer 12 and the second intermediate layer 22 are formed by, for example, an IBAD (Ion Beam Assisted Deposition) method. It may be a crystal orientation layer formed in the above manner. When the first metal substrate 11 has crystal orientation on its surface, the first intermediate layer 12 reduces the difference in crystal orientation between the first metal substrate 11 and the first superconducting material layer 13. Also good. When the second metal substrate 21 has crystal orientation on its surface, the second intermediate layer 22 reduces the difference in crystal orientation between the second metal substrate 21 and the second superconducting material layer 23. Also good.
 第1の超電導材料層13は、第1の線材10のうち、超電導電流が流れる部分である。第2の超電導材料層23は、第2の線材20のうち、超電導電流が流れる部分である。第1の超電導材料層13及び第2の超電導材料層23は、特に限定されないが、酸化物超電導材料で構成されてもよい。特定的には、第1の超電導材料層13は、RE11Ba2Cu3y1(6.0≦y1≦8.0、RE1は希土類元素を表す)により構成されてもよい。第2の超電導材料層23は、RE21Ba2Cu3y2(6.0≦y2≦8.0、RE2は希土類元素を表す)により構成されてもよい。RE2は、RE1と同じであってもよいし、異なってもよい。さらに特定的には、RE1及びRE2は、各々、イットリウム(Y)、ガドリニウム(Gd)、ジスプロシウム(Dy)、ユウロピウム(Eu)、サマリウム(Sm)、ランタン(La)、ネオジム(Nd)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)またはホルミウム(Ho)であってもよい。さらに特定的には、y1及びy2は、各々、6.8以上7.0以下であってもよい。 The first superconducting material layer 13 is a portion of the first wire 10 through which a superconducting current flows. The second superconducting material layer 23 is a portion of the second wire 20 through which a superconducting current flows. The first superconducting material layer 13 and the second superconducting material layer 23 are not particularly limited, but may be composed of an oxide superconducting material. Specifically, the first superconducting material layer 13 may be made of RE1 1 Ba 2 Cu 3 O y1 (6.0 ≦ y1 ≦ 8.0, where RE1 represents a rare earth element). The second superconducting material layer 23 may be made of RE2 1 Ba 2 Cu 3 O y2 (6.0 ≦ y2 ≦ 8.0, where RE2 represents a rare earth element). RE2 may be the same as or different from RE1. More specifically, RE1 and RE2 are respectively yttrium (Y), gadolinium (Gd), dysprosium (Dy), europium (Eu), samarium (Sm), lanthanum (La), neodymium (Nd), erbium ( Er), thulium (Tm), ytterbium (Yb), lutetium (Lu) or holmium (Ho). More specifically, y1 and y2 may be 6.8 or more and 7.0 or less, respectively.
 第1の超電導材料接合層40は、第1の超電導材料層13の第1の主面13sの第1の部分17と第2の超電導材料層23の第2の主面23sの第2の部分27とを接合する。第1の部分17は、第1の線材10の第1の端部(17)に位置してもよい。第2の部分27は、第2の線材20の第2の端部(27)に位置してもよい。第1の超電導材料接合層40は、特に限定されないが、酸化物超電導材料で構成されてもよい。特定的には、第1の超電導材料接合層40は、RE31Ba2Cu3y3(6.0≦y3≦8.0、RE3は希土類元素を表す)により構成されてもよい。RE3は、RE1と同じであってもよいし、異なってもよい。RE3は、RE2と同じであってもよいし、異なってもよい。さらに特定的には、RE3は、イットリウム(Y)、ガドリニウム(Gd)、ジスプロシウム(Dy)、ユウロピウム(Eu)、サマリウム(Sm)、ランタン(La)、ネオジム(Nd)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)またはホルミウム(Ho)であってもよい。さらに特定的には、y3は、6.8以上7.0以下であってもよい。 The first superconducting material bonding layer 40 includes a first portion 17 of the first main surface 13 s of the first superconducting material layer 13 and a second portion of the second main surface 23 s of the second superconducting material layer 23. 27 is joined. The first portion 17 may be located at the first end (17) of the first wire 10. The second portion 27 may be located at the second end (27) of the second wire 20. The first superconducting material bonding layer 40 is not particularly limited, but may be composed of an oxide superconducting material. Specifically, the first superconducting material bonding layer 40 may be made of RE3 1 Ba 2 Cu 3 O y3 (6.0 ≦ y3 ≦ 8.0, where RE3 represents a rare earth element). RE3 may be the same as or different from RE1. RE3 may be the same as or different from RE2. More specifically, RE3 is yttrium (Y), gadolinium (Gd), dysprosium (Dy), europium (Eu), samarium (Sm), lanthanum (La), neodymium (Nd), erbium (Er), thulium. (Tm), ytterbium (Yb), lutetium (Lu), or holmium (Ho). More specifically, y3 may be 6.8 or more and 7.0 or less.
 第1の超電導材料接合層40に接触する第1の超電導材料層13の第1の部分17において、第1の超電導材料層13は、第1の超電導材料層13の厚さ方向に沿って延在する第1の結晶軸と、第1の超電導材料層13の厚さ方向に直交する第1の超電導材料層13の面内方向に沿って延在する第2の結晶軸とを有する。例えば、第1の超電導材料層13がRE11Ba2Cu3y1により構成される場合、第1の結晶軸はRE11Ba2Cu3y1のc軸であり、第2の結晶軸はRE11Ba2Cu3y1のa軸である。 In the first portion 17 of the first superconducting material layer 13 in contact with the first superconducting material bonding layer 40, the first superconducting material layer 13 extends along the thickness direction of the first superconducting material layer 13. The first crystal axis is present, and the second crystal axis extends along the in-plane direction of the first superconducting material layer 13 perpendicular to the thickness direction of the first superconducting material layer 13. For example, when the first superconducting material layer 13 is composed of RE1 1 Ba 2 Cu 3 O y1 , the first crystal axis is the c axis of RE1 1 Ba 2 Cu 3 O y1 , and the second crystal axis is This is the a-axis of RE1 1 Ba 2 Cu 3 O y1 .
 第1の超電導材料接合層40に接触する第2の超電導材料層23の第2の部分27において、第2の超電導材料層23は、第2の超電導材料層23の厚さ方向に沿って延在する第3の結晶軸と、第2の超電導材料層23の厚さ方向に直交する第2の超電導材料層23の面内方向に沿って延在しかつ第2の結晶軸と等価である第4の結晶軸とを有する。例えば、第2の超電導材料層23がRE21Ba2Cu3y2により構成される場合、第3の結晶軸はRE21Ba2Cu3y2のc軸であり、第4の結晶軸はRE21Ba2Cu3y2のa軸である。 In the second portion 27 of the second superconducting material layer 23 in contact with the first superconducting material bonding layer 40, the second superconducting material layer 23 extends along the thickness direction of the second superconducting material layer 23. The third crystal axis that exists and extends along the in-plane direction of the second superconducting material layer 23 orthogonal to the thickness direction of the second superconducting material layer 23 and is equivalent to the second crystal axis And a fourth crystal axis. For example, when the second superconducting material layer 23 is composed of RE2 1 Ba 2 Cu 3 O y2 , the third crystal axis is the c axis of RE2 1 Ba 2 Cu 3 O y2 , and the fourth crystal axis is This is the a-axis of RE2 1 Ba 2 Cu 3 O y2 .
 第1の結晶軸と第3の結晶軸との間の角度ずれは10°以下である。第1の結晶軸と第3の結晶軸との間の角度ずれは、5°以下であってもよく、2°以下であってもよい。第2の結晶軸と第4の結晶軸との間の角度ずれは10°以下である。第2の結晶軸と第4の結晶軸との間の角度ずれは、5°以下であってもよく、2°以下であってもよい。第1の結晶軸と第3の結晶軸との間の角度ずれと、第2の結晶軸と第4の結晶軸との間の角度ずれとは、以下のように測定される。 The angular deviation between the first crystal axis and the third crystal axis is 10 ° or less. The angular deviation between the first crystal axis and the third crystal axis may be 5 ° or less, or 2 ° or less. The angular deviation between the second crystal axis and the fourth crystal axis is 10 ° or less. The angular deviation between the second crystal axis and the fourth crystal axis may be 5 ° or less, or 2 ° or less. The angular deviation between the first crystal axis and the third crystal axis and the angular deviation between the second crystal axis and the fourth crystal axis are measured as follows.
 電子線後方散乱回折(EBSD)法によって、第1の超電導材料層13及び第2の超電導材料層23に含まれる複数の結晶粒の結晶軸の向きが測定される。第1の超電導材料層13に含まれる複数の結晶粒の結晶軸の平均的な方向を算出して、第1の超電導材料層13の第1の結晶軸(例えば、c軸)の向きと第2の結晶軸(例えば、a軸)の向きとを決定する。第2の超電導材料層23に含まれる複数の結晶粒の結晶軸の平均的な方向を算出して、第2の超電導材料層23の第3の結晶軸(例えば、c軸)の向きと第4の結晶軸(例えば、a軸)の向きとを決定する。第1の超電導材料層13の第1の結晶軸の向きと第2の超電導材料層23の第3の結晶軸の向きとの差から、第1の結晶軸と第3の結晶軸との間の角度ずれが算出される。第1の超電導材料層13の第2の結晶軸の向きと第2の超電導材料層23の第4の結晶軸の向きとの差から、第2の結晶軸と第4の結晶軸との間の角度ずれが算出される。 The orientation of crystal axes of a plurality of crystal grains included in the first superconducting material layer 13 and the second superconducting material layer 23 is measured by an electron beam backscatter diffraction (EBSD) method. The average direction of the crystal axes of the plurality of crystal grains included in the first superconducting material layer 13 is calculated, and the direction of the first crystal axis (for example, c-axis) of the first superconducting material layer 13 and the first direction The direction of two crystal axes (for example, a axis) is determined. The average direction of the crystal axes of the plurality of crystal grains included in the second superconducting material layer 23 is calculated, and the direction of the third crystal axis (for example, c-axis) of the second superconducting material layer 23 and the first direction 4 crystal axis (for example, a axis) direction is determined. From the difference between the direction of the first crystal axis of the first superconducting material layer 13 and the direction of the third crystal axis of the second superconducting material layer 23, it is between the first crystal axis and the third crystal axis. Is calculated. From the difference between the direction of the second crystal axis of the first superconducting material layer 13 and the direction of the fourth crystal axis of the second superconducting material layer 23, it is between the second crystal axis and the fourth crystal axis. Is calculated.
 電子線後方散乱回折(EBSD)法によって測定された、第1の超電導材料接合層40の近傍における、第1の超電導材料層13内における結晶粒の第1の結晶軸(c軸)の配向と、第2の超電導材料層23内における結晶粒の第3の結晶軸(c軸)の配向とが、図3に示される。図3から、第1の結晶軸と第3の結晶軸との間の角度ずれは10°以下であることが算出される。電子線後方散乱回折(EBSD)法によって測定された、第1の超電導材料接合層40の近傍における、第1の超電導材料層13内における結晶粒の第2の結晶軸(a軸)の配向と、第2の超電導材料層23内における結晶粒の第4の結晶軸(a軸)の配向とが、図4に示される。図4から、第2の結晶軸と第4の結晶軸との間の角度ずれは10°以下であることが算出される。 The orientation of the first crystal axis (c-axis) of the crystal grains in the first superconducting material layer 13 in the vicinity of the first superconducting material bonding layer 40 measured by the electron beam backscatter diffraction (EBSD) method FIG. 3 shows the orientation of the third crystal axis (c-axis) of the crystal grains in the second superconducting material layer 23. From FIG. 3, it is calculated that the angular deviation between the first crystal axis and the third crystal axis is 10 ° or less. The orientation of the second crystal axis (a-axis) of the crystal grains in the first superconducting material layer 13 in the vicinity of the first superconducting material bonding layer 40 measured by the electron beam backscatter diffraction (EBSD) method The orientation of the fourth crystal axis (a-axis) of the crystal grains in the second superconducting material layer 23 is shown in FIG. From FIG. 4, it is calculated that the angular deviation between the second crystal axis and the fourth crystal axis is 10 ° or less.
 本実施の形態の超電導線材1では、第1の結晶軸と第3の結晶軸との間の角度ずれは10°以下であり、かつ、第2の結晶軸と第4の結晶軸との間の角度ずれは10°以下である。そのため、第1の超電導材料層13と第2の超電導材料層23とは、低減された結晶格子の歪と低減された結晶構造の乱れで、第1の超電導材料接合層40を介して、互いに接合される。そのため、第1の超電導材料接合層40を介した第1の超電導材料層13と第2の超電導材料層23との間の超電導接合部における超電導臨界電流密度Jcが増加する。超電導接合部における超電導臨界電流密度Jcは、超電導臨界電流Icを超電導接合部の接合面積で割った値として定義される。超電導接合部の接合面積は、第1の主面13sの法線方向からの平面視における、第1の超電導材料接合層40を介した第1の超電導材料層13と第2の超電導材料層23との間の接合面積として定義される。 In the superconducting wire 1 according to the present embodiment, the angle deviation between the first crystal axis and the third crystal axis is 10 ° or less, and between the second crystal axis and the fourth crystal axis. The angle deviation is 10 ° or less. Therefore, the first superconducting material layer 13 and the second superconducting material layer 23 are connected to each other via the first superconducting material bonding layer 40 due to reduced crystal lattice distortion and reduced crystal structure disturbance. Be joined. Therefore, the superconducting critical current density J c in the superconducting joint between the first superconductive material layer 13 and the second superconducting material layer 23 through the first superconducting material bonding layer 40 is increased. The superconducting critical current density J c in the superconducting junction is defined as a value obtained by dividing the superconducting critical current I c by the junction area of the superconducting junction. The junction area of the superconducting junction is the first superconducting material layer 13 and the second superconducting material layer 23 via the first superconducting material joining layer 40 in plan view from the normal direction of the first main surface 13s. Is defined as the junction area between.
 表1を参照して、本実施の形態の実施例1-4の超電導接合部における超電導臨界電流密度Jcと比較例の超電導接合部における超電導臨界電流密度Jcとを示す。実施例1-4では、それぞれ、第2の結晶軸と第4の結晶軸との間の角度ずれ(a軸の角度ずれ)は2°、5°、9°、10であり、超電導接合部における超電導臨界電流密度Jcは500A/cm2、450A/cm2、330A/cm2、240A/cm2である。比較例では、第2の結晶軸と第4の結晶軸との間の角度ずれは11°であり、超電導接合部における超電導臨界電流密度Jcは70A/cm2である。実施例1-4及び比較例において、第1の結晶軸と第3の結晶軸との間の角度ずれ(c軸の角度ずれ)は、第2の結晶軸と第4の結晶軸との間の角度ずれ(a軸の角度ずれ)に比べて無視し得る程度に小さい。実施例1-4の超電導接合部における超電導臨界電流密度Jcは100A/cm2以上であるのに対し、比較例の超電導接合部における超電導臨界電流密度Jcは100A/cm2未満である。そのため、第1の結晶軸と第3の結晶軸との間の角度ずれは10°以下とし、かつ、第2の結晶軸と第4の結晶軸との間の角度ずれは10°以下とすることによって、第1の超電導材料接合層40を介した第1の超電導材料層13と第2の超電導材料層23との間の超電導接合部における超電導臨界電流密度Jcは増加する。 Referring to Table 1, showing the superconducting critical current density J c in the superconducting junction of comparative example superconducting critical current density J c in the superconducting junction of Example 1-4 of the present embodiment. In Examples 1-4, the angular deviation between the second crystal axis and the fourth crystal axis (the angular deviation of the a-axis) is 2 °, 5 °, 9 °, and 10, respectively. superconducting critical current density J c in is 500A / cm 2, 450A / cm 2, 330A / cm 2, 240A / cm 2. In the comparative example, the angular deviation between the second crystal axis and the fourth crystal axis is 11 °, and the superconducting critical current density J c at the superconducting junction is 70 A / cm 2 . In Example 1-4 and the comparative example, the angular deviation between the first crystal axis and the third crystal axis (the angular deviation of the c axis) is between the second crystal axis and the fourth crystal axis. Is small enough to be ignored compared to the angle deviation (angle deviation of the a-axis). The superconducting critical current density J c in the superconducting junction of Example 1-4 is 100 A / cm 2 or more, whereas the superconducting critical current density J c in the superconducting junction of the comparative example is less than 100 A / cm 2 . Therefore, the angle deviation between the first crystal axis and the third crystal axis is 10 ° or less, and the angle deviation between the second crystal axis and the fourth crystal axis is 10 ° or less. As a result, the superconducting critical current density J c at the superconducting junction between the first superconducting material layer 13 and the second superconducting material layer 23 via the first superconducting material joining layer 40 increases.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図5を参照して、本実施の形態の超電導線材1の製造方法について説明する。
 本実施の形態の超電導線材1の製造方法は、第1の線材10に含まれる第1の超電導材料層13及び第2の線材20に含まれる第2の超電導材料層23の少なくとも1つの上に、第1の超電導材料接合層40を構成する酸化物超電導材料の微結晶を形成すること(S10)を備える。
With reference to FIG. 5, the manufacturing method of the superconducting wire 1 of this Embodiment is demonstrated.
The manufacturing method of the superconducting wire 1 of the present embodiment is performed on at least one of the first superconducting material layer 13 included in the first wire 10 and the second superconducting material layer 23 included in the second wire 20. Forming a microcrystal of the oxide superconducting material constituting the first superconducting material bonding layer 40 (S10).
 微結晶を形成すること(S10)は、第1の超電導材料層13の第1の部分17及び第2の超電導材料層23の第2の部分27の少なくとも1つの上に、第1の超電導材料接合層40を構成する元素の有機化合物を含む膜を形成すること(S11)を含む。一例では、第1の超電導材料接合層40を構成する元素の有機化合物を含む溶液が、第1の超電導材料層13の第1の部分17及び第2の超電導材料層23の第2の部分27の少なくとも1つの上に塗布される。この溶液として、具体的には、MOD法における原料溶液、すなわち、第1の超電導材料接合層40の材料であるRE31Ba2Cu3y3を構成する元素の有機化合物(例えば、有機金属化合物または有機金属錯体)を有機溶媒に溶解した溶液が用いられる。有機化合物は、フッ素を含まない有機化合物であってもよい。 Forming microcrystals (S10) includes forming the first superconducting material on at least one of the first portion 17 of the first superconducting material layer 13 and the second portion 27 of the second superconducting material layer 23. Forming a film containing an organic compound of an element constituting the bonding layer 40 (S11). In one example, a solution containing an organic compound of an element constituting the first superconducting material bonding layer 40 is used as the first portion 17 of the first superconducting material layer 13 and the second portion 27 of the second superconducting material layer 23. On at least one of the coatings. Specifically, as this solution, a raw material solution in the MOD method, that is, an organic compound of an element constituting RE3 1 Ba 2 Cu 3 O y3 which is a material of the first superconducting material bonding layer 40 (for example, an organometallic compound) Alternatively, a solution in which an organometallic complex) is dissolved in an organic solvent is used. The organic compound may be an organic compound not containing fluorine.
 微結晶を形成すること(S10)は、第1の超電導材料接合層40を構成する元素の有機化合物を含む膜を仮焼成すること(S12)を含む。具体的には、この膜は、第1の温度で仮焼成される。第1の温度は、上記の有機化合物の分解温度以上、かつ、第1の超電導材料接合層40を構成する酸化物超電導材料が生成される温度以下である。これにより、この膜に含まれている有機化合物は熱分解されて、酸化物超電導材料の前駆体となる(以下、この前駆体を含む膜を仮焼成膜という)。酸化物超電導材料の前駆体は、例えば、Baの炭素化合物であるBaCO3、希土類元素(RE3)の酸化物、及び、CuOを含む。仮焼成工程(S12)は、例えば、約500℃の温度のような第1の温度で、かつ、20%以上の酸素濃度の雰囲気下で行われてもよい。 Forming microcrystals (S10) includes pre-baking (S12) a film containing an organic compound of an element constituting the first superconducting material bonding layer 40. Specifically, this film is temporarily fired at a first temperature. The first temperature is equal to or higher than the decomposition temperature of the organic compound and equal to or lower than the temperature at which the oxide superconducting material constituting the first superconducting material bonding layer 40 is generated. Thereby, the organic compound contained in this film is thermally decomposed to become a precursor of the oxide superconducting material (hereinafter, a film containing this precursor is referred to as a pre-baked film). The precursor of the oxide superconducting material includes, for example, BaCO 3 which is a carbon compound of Ba, an oxide of a rare earth element (RE3), and CuO. The provisional baking step (S12) may be performed at a first temperature such as a temperature of about 500 ° C. and in an atmosphere having an oxygen concentration of 20% or more.
 微結晶を形成すること(S10)は、第1の温度よりも高い第2の温度で仮焼成膜を加熱して、仮焼成膜に含まれる炭素化合物を熱分解させること(S13)を含む。第2の温度は、例えば、650℃以上800℃以下であってもよい。仮焼成膜に含まれる炭素化合物が熱分解されて、第1の超電導材料接合層40を構成する酸化物超電導材料が得られる。仮焼成膜に含まれる炭素化合物を熱分解させる工程(S13)は、第1の酸素濃度の雰囲気下で行われる。第1の酸素濃度は、1%以上100%以下(酸素分圧1atm)である。そのため、微結晶が成長して微結晶の平均粒径が300nmより大きくなることが抑制される。こうして、第1の超電導材料層13の第1の部分17及び第2の超電導材料層23の第2の部分27の少なくとも1つの上に、第1の超電導材料接合層40を構成する酸化物超電導材料の微結晶が形成される。 Forming microcrystals (S10) includes heating the temporarily fired film at a second temperature higher than the first temperature to thermally decompose the carbon compound contained in the temporarily fired film (S13). The second temperature may be, for example, 650 ° C. or higher and 800 ° C. or lower. The carbon compound contained in the temporarily fired film is thermally decomposed, and the oxide superconducting material constituting the first superconducting material bonding layer 40 is obtained. The step (S13) of thermally decomposing the carbon compound contained in the temporarily fired film is performed in an atmosphere having a first oxygen concentration. The first oxygen concentration is 1% to 100% (oxygen partial pressure 1 atm). Therefore, it is suppressed that the microcrystal grows and the average grain size of the microcrystal becomes larger than 300 nm. Thus, the oxide superconductivity constituting the first superconducting material bonding layer 40 on at least one of the first portion 17 of the first superconducting material layer 13 and the second portion 27 of the second superconducting material layer 23. A crystallite of material is formed.
 図6に示される、微結晶生成工程(S10)後、すなわち、仮焼成膜に含まれる炭素化合物を熱分解させる工程(S13)後の第1の超電導材料接合層40(RE3=Gd)の2次元X線回折像から明らかなように、仮焼成膜に含まれる炭素化合物を熱分解させる(S13)工程後には、仮焼成膜中に含まれていたBaCO3のような炭素化合物が熱分解されて、RE31Ba2Cu3y3(RE3=Gd)が生成されている。ランダム配向の微結晶を示すRE31Ba2Cu3y3(103)のリング状の回折パターンも観測されている。さらに、微結晶生成工程(S10)後には、小さな粒径を有する微結晶が生成されている。そのため、仮焼成膜に含まれる炭素化合物を熱分解させる(S13)工程によって、仮焼成膜中に含まれていたBaCO3のような炭素化合物が熱分解されて、RE31Ba2Cu3y3(RE3=Gd)により構成されるランダム配向の微結晶が生成されていることが分かる。 6 of the first superconducting material bonding layer 40 (RE3 = Gd) after the microcrystal generation step (S10) shown in FIG. As apparent from the dimensional X-ray diffraction image, after the step of thermally decomposing the carbon compound contained in the temporarily fired film (S13), the carbon compound such as BaCO 3 contained in the temporarily fired film is thermally decomposed. Thus, RE3 1 Ba 2 Cu 3 O y3 (RE3 = Gd) is generated. A ring-like diffraction pattern of RE3 1 Ba 2 Cu 3 O y3 (103) showing randomly oriented microcrystals is also observed. Furthermore, microcrystals having a small particle size are generated after the microcrystal generation step (S10). Therefore, in the step of thermally decomposing the carbon compound contained in the temporarily fired film (S13), the carbon compound such as BaCO 3 contained in the temporarily fired film is thermally decomposed, and RE3 1 Ba 2 Cu 3 O y3. It can be seen that randomly oriented microcrystals composed of (RE3 = Gd) are generated.
 本実施の形態の超電導線材1の製造方法は、第1の結晶軸と第3の結晶軸との間の角度ずれは10°以下となり、かつ、第2の結晶軸と第4の結晶軸との間の角度ずれは10°以下となるように、第1の線材10と第2の線材20とを互いにアライメントすること(S20)を備える。例えば、2次元X線回折法により、第1の超電導材料層13の厚さ方向に対する第1の結晶軸(例えば、c軸)の向きと第1の超電導材料層13の長手方向に対する第2の結晶軸(例えば、a軸)の向きとが測定される。さらに、2次元X線回折法により、第2の超電導材料層23の厚さ方向に対する第3の結晶軸(例えば、c軸)の向きと第2の超電導材料層23の長手方向に対する第4の結晶軸(例えば、a軸)の向きとが測定される。第1の結晶軸と第3の結晶軸との間の角度ずれは10°以下となり、かつ、第2の結晶軸と第4の結晶軸との間の角度ずれは10°以下となるように、アライメント治具を用いて、第1の線材10と第2の線材20とを互いにアライメントする。 In the manufacturing method of the superconducting wire 1 according to the present embodiment, the angular deviation between the first crystal axis and the third crystal axis is 10 ° or less, and the second crystal axis and the fourth crystal axis are The first wire rod 10 and the second wire rod 20 are aligned with each other (S20) so that the angle deviation between them is 10 ° or less. For example, the direction of the first crystal axis (for example, c-axis) with respect to the thickness direction of the first superconducting material layer 13 and the second direction with respect to the longitudinal direction of the first superconducting material layer 13 are determined by two-dimensional X-ray diffraction. The orientation of the crystal axis (for example, the a axis) is measured. Further, by a two-dimensional X-ray diffraction method, a fourth crystal axis (for example, c-axis) direction with respect to the thickness direction of the second superconducting material layer 23 and a fourth direction with respect to the longitudinal direction of the second superconducting material layer 23 are used. The orientation of the crystal axis (for example, the a axis) is measured. The angular deviation between the first crystal axis and the third crystal axis is 10 ° or less, and the angular deviation between the second crystal axis and the fourth crystal axis is 10 ° or less. The first wire 10 and the second wire 20 are aligned with each other using an alignment jig.
 本実施の形態の超電導線材1の製造方法は、微結晶を介して、第1の線材10の第1の部分17上に第2の線材20の第2の部分27を載置することを備える(S30)。 The manufacturing method of the superconducting wire 1 according to the present embodiment includes placing the second portion 27 of the second wire 20 on the first portion 17 of the first wire 10 via microcrystals. (S30).
 本実施の形態の超電導線材1の製造方法は、第1の線材10と微結晶と第2の線材20とに圧力を加えながら熱を加えて、微結晶から第1の超電導材料接合層40を生成することを備える(S40)。具体的には、押圧治具を用いて、第1の線材10と第2の線材20とを互いに押し付けることによって、第1の線材10と微結晶と第2の線材20とに1MPa以上の圧力を加える。第1の線材10と微結晶と第2の線材20とに圧力を加えながら、第1の線材10と微結晶と第2の線材20とを、第3の温度で、かつ、第2の酸素濃度の雰囲気下で加熱する。第3の温度は、第2の温度以上であり、かつ、第1の超電導材料接合層40を構成する酸化物超電導材料が生成される温度以上である。第2の酸素濃度は、第1の酸素濃度よりも低い。第2の酸素濃度は、例えば、100ppmであってもよい。 In the manufacturing method of the superconducting wire 1 of the present embodiment, heat is applied to the first wire 10, the microcrystal, and the second wire 20 while applying pressure to form the first superconducting material bonding layer 40 from the microcrystal. Generating (S40). Specifically, a pressure of 1 MPa or more is applied to the first wire 10, the microcrystal, and the second wire 20 by pressing the first wire 10 and the second wire 20 together using a pressing jig. Add While applying pressure to the first wire 10, the microcrystal, and the second wire 20, the first wire 10, the microcrystal, and the second wire 20 are brought to the third temperature and the second oxygen. Heat in an atmosphere of concentration. The third temperature is equal to or higher than the second temperature and equal to or higher than the temperature at which the oxide superconducting material constituting the first superconducting material bonding layer 40 is generated. The second oxygen concentration is lower than the first oxygen concentration. The second oxygen concentration may be 100 ppm, for example.
 この加熱加圧工程(S40)では、仮焼成膜熱分解工程(S13)において生成された微結晶が成長して、大きな粒径を有する結晶により構成される第1の超電導材料接合層40が生成される。膜形成工程(S11)において膜が形成されていた第1の超電導材料層13及び第2の超電導材料層23の少なくとも1つの結晶方位に沿って微結晶は成長して、第1の超電導材料接合層40になる。こうして、第1の超電導材料接合層40を介して、第1の線材10の第1の超電導材料層13と第2の線材20の第2の超電導材料層23とは互いに接合される。 In this heating and pressurizing step (S40), the microcrystals generated in the pre-baked film pyrolysis step (S13) grow to form the first superconducting material bonding layer 40 composed of crystals having a large particle size. Is done. The microcrystal grows along at least one crystal orientation of the first superconducting material layer 13 and the second superconducting material layer 23 on which the film is formed in the film forming step (S11), and the first superconducting material junction is formed. It becomes layer 40. Thus, the first superconducting material layer 13 of the first wire 10 and the second superconducting material layer 23 of the second wire 20 are joined to each other via the first superconducting material joining layer 40.
 図7に示される、加熱加圧工程(S40)後の第1の超電導材料接合層40(RE3=Gd)の2次元X線回折像では、ランダム配向の微結晶を示すRE31Ba2Cu3y3(103)のリング状の回折パターンは観測されていない。さらに、加熱加圧工程(S40)後には、第1の超電導材料接合層40に大きな粒径を有する結晶が生成されている。そのため、加熱加圧工程(S40)によって、ランダム配向の微結晶が成長して、配向された第1の超電導材料接合層40が形成されていることが分かる。 In the two-dimensional X-ray diffraction image of the first superconducting material bonding layer 40 (RE3 = Gd) after the heating and pressurizing step (S40) shown in FIG. 7, RE3 1 Ba 2 Cu 3 showing randomly oriented microcrystals. A ring-shaped diffraction pattern of O y3 (103) is not observed. Furthermore, crystals having a large particle size are generated in the first superconducting material bonding layer 40 after the heating and pressing step (S40). Therefore, it can be seen that, by the heating and pressing step (S40), randomly oriented microcrystals grow and the aligned first superconducting material bonding layer 40 is formed.
 本実施の形態の超電導線材1の製造方法は、第1の超電導材料層13と第1の超電導材料接合層40と第2の超電導材料層23とを酸素アニールすること(S50)をさらに備えてもよい。酸素アニール工程(S50)は、第4の温度で、かつ、第3の酸素濃度の雰囲気下で行われる。第4の温度は、第3の温度以下である。第4の温度は、200℃以上500℃以下であってもよい。第3の酸素濃度は、第2の酸素濃度よりも高い。第3の酸素濃度は、例えば、100%(酸素分圧1atm)であってもよい。酸素アニール工程(S50)において、第1の超電導材料層13、第1の超電導材料接合層40及び第2の超電導材料層23に、酸素が十分に供給され得る。以上の工程によって、本実施の形態の超電導線材1は製造され得る。 The method of manufacturing the superconducting wire 1 of the present embodiment further includes oxygen annealing (S50) the first superconducting material layer 13, the first superconducting material bonding layer 40, and the second superconducting material layer 23. Also good. The oxygen annealing step (S50) is performed at the fourth temperature and in the atmosphere of the third oxygen concentration. The fourth temperature is equal to or lower than the third temperature. The fourth temperature may be 200 ° C. or higher and 500 ° C. or lower. The third oxygen concentration is higher than the second oxygen concentration. The third oxygen concentration may be, for example, 100% (oxygen partial pressure 1 atm). In the oxygen annealing step (S50), oxygen can be sufficiently supplied to the first superconducting material layer 13, the first superconducting material bonding layer 40, and the second superconducting material layer. The superconducting wire 1 of the present embodiment can be manufactured through the above steps.
 本実施の形態の超電導線材1の効果について説明する。
 本実施の形態の超電導線材1は、第1の超電導材料層13を含む第1の線材10と、第2の超電導材料層23を含む第2の線材20と、第1の超電導材料層13と第2の超電導材料層23とを接合する第1の超電導材料接合層40とを備える。第1の超電導材料接合層40に接触する第1の超電導材料層13の第1の部分17において、第1の超電導材料層13は、第1の超電導材料層13の厚さ方向に沿って延在する第1の結晶軸と、第1の超電導材料層13の厚さ方向に直交する第1の超電導材料層13の面内方向に沿って延在する第2の結晶軸とを有する。第1の超電導材料接合層40に接触する第2の超電導材料層23の第2の部分27において、第2の超電導材料層23は、第2の超電導材料層23の厚さ方向に沿って延在する第3の結晶軸と、第2の超電導材料層23の厚さ方向に直交する第2の超電導材料層23の面内方向に沿って延在しかつ第2の結晶軸と等価である第4の結晶軸とを有する。第1の結晶軸と第3の結晶軸との間の角度ずれは10°以下である。第2の結晶軸と第4の結晶軸との間の角度ずれは10°以下である。
The effect of the superconducting wire 1 of the present embodiment will be described.
The superconducting wire 1 of the present embodiment includes a first wire 10 including a first superconducting material layer 13, a second wire 20 including a second superconducting material layer 23, a first superconducting material layer 13, and the like. A first superconducting material joining layer 40 for joining the second superconducting material layer 23. In the first portion 17 of the first superconducting material layer 13 in contact with the first superconducting material bonding layer 40, the first superconducting material layer 13 extends along the thickness direction of the first superconducting material layer 13. The first crystal axis is present, and the second crystal axis extends along the in-plane direction of the first superconducting material layer 13 perpendicular to the thickness direction of the first superconducting material layer 13. In the second portion 27 of the second superconducting material layer 23 in contact with the first superconducting material bonding layer 40, the second superconducting material layer 23 extends along the thickness direction of the second superconducting material layer 23. The third crystal axis that exists and extends along the in-plane direction of the second superconducting material layer 23 orthogonal to the thickness direction of the second superconducting material layer 23 and is equivalent to the second crystal axis And a fourth crystal axis. The angular deviation between the first crystal axis and the third crystal axis is 10 ° or less. The angular deviation between the second crystal axis and the fourth crystal axis is 10 ° or less.
 そのため、第1の超電導材料層13と第2の超電導材料層23とは、低減された結晶格子の歪と低減された結晶構造の乱れで、第1の超電導材料接合層40を介して、互いに接合される。第1の超電導材料接合層40を介した第1の超電導材料層13と第2の超電導材料層23との間の超電導接合部における超電導臨界電流密度Jcが増加する。超電導線材1の超電導臨界電流密度Jcが増加する。 Therefore, the first superconducting material layer 13 and the second superconducting material layer 23 are connected to each other via the first superconducting material bonding layer 40 due to reduced crystal lattice distortion and reduced crystal structure disturbance. Be joined. Superconducting critical current density J c in the superconducting joint between the first superconductive material layer 13 and the second superconducting material layer 23 through the first superconducting material bonding layer 40 is increased. Superconducting critical current density J c of the superconducting wire 1 is increased.
 本実施の形態の超電導線材1では、第1の超電導材料層13は、RE11Ba2Cu3y1(6.0≦y1≦8.0、RE1は希土類元素を表す)により構成されている。第2の超電導材料層23は、RE21Ba2Cu3y2(6.0≦y2≦8.0、RE2は希土類元素を表す)により構成されている。第1の超電導材料接合層40は、RE31Ba2Cu3y3(6.0≦y3≦8.0、RE3は希土類元素を表す)により構成されている。そのため、第1の超電導材料層13、第2の超電導材料層23及び第1の超電導材料接合層40は、同じ結晶構造を有している。第1の超電導材料層13と第2の超電導材料層23とは、低減された結晶格子の歪と低減された結晶構造の乱れで、第1の超電導材料接合層40を介して、互いに接合される。本実施の形態の超電導線材1によれば、第1の超電導材料接合層40を介した第1の超電導材料層13と第2の超電導材料層23との間の超電導接合部における超電導臨界電流密度Jcが増加する。超電導線材1の超電導臨界電流密度Jcが増加する。 In the superconducting wire 1 of the present embodiment, the first superconducting material layer 13 is composed of RE1 1 Ba 2 Cu 3 O y1 (6.0 ≦ y1 ≦ 8.0, where RE1 represents a rare earth element). . The second superconducting material layer 23 is composed of RE2 1 Ba 2 Cu 3 O y2 (6.0 ≦ y2 ≦ 8.0, where RE2 represents a rare earth element). The first superconducting material bonding layer 40 is composed of RE3 1 Ba 2 Cu 3 O y3 (6.0 ≦ y3 ≦ 8.0, where RE3 represents a rare earth element). Therefore, the first superconducting material layer 13, the second superconducting material layer 23, and the first superconducting material bonding layer 40 have the same crystal structure. The first superconducting material layer 13 and the second superconducting material layer 23 are bonded to each other through the first superconducting material bonding layer 40 with reduced crystal lattice distortion and reduced crystal structure disturbance. The According to the superconducting wire 1 of the present embodiment, the superconducting critical current density at the superconducting junction between the first superconducting material layer 13 and the second superconducting material layer 23 via the first superconducting material joining layer 40. J c increases. Superconducting critical current density J c of the superconducting wire 1 is increased.
 (実施の形態2)
 図2、図8及び図9を参照して、実施の形態2の超電導線材1bについて説明する。本実施の形態の超電導線材1bは、実施の形態1の超電導線材1と同様の構成を備えるが、以下の点で主に異なる。
(Embodiment 2)
The superconducting wire 1b according to the second embodiment will be described with reference to FIGS. The superconducting wire 1b of the present embodiment has the same configuration as the superconducting wire 1 of the first embodiment, but is mainly different in the following points.
 本実施の形態の超電導線材1bは、第3の線材30と、第2の超電導材料接合層42とをさらに備える。本実施の形態の超電導線材1bは、第2の導電部材52をさらに備えてもよい。 The superconducting wire 1b of the present embodiment further includes a third wire 30 and a second superconducting material bonding layer 42. Superconducting wire 1b of the present embodiment may further include a second conductive member 52.
 第3の線材30は、第3の主面33sを有する第3の超電導材料層33を含む。特定的には、第3の線材30は、第3の金属基板31と、第3の金属基板31上に設けられた第3の中間層32と、第3の中間層32上に設けられた第3の超電導材料層33とを含んでもよい。第3の線材30は、第1の線材10と同様に構成されてもよい。本実施の形態の超電導線材1bでは、第1の線材10と第3の線材30とは共通の線材であってもよい。例えば、第1の線材10の第1の部分17が1本の線材の一方端部を構成し、かつ、第3の線材30の第4の部分38が1本の線材の他方端部を構成してもよい。 The third wire 30 includes a third superconducting material layer 33 having a third main surface 33s. Specifically, the third wire 30 is provided on the third metal substrate 31, the third intermediate layer 32 provided on the third metal substrate 31, and the third intermediate layer 32. The third superconducting material layer 33 may be included. The third wire 30 may be configured in the same manner as the first wire 10. In the superconducting wire 1b of the present embodiment, the first wire 10 and the third wire 30 may be a common wire. For example, the first portion 17 of the first wire 10 constitutes one end of one wire, and the fourth portion 38 of the third wire 30 constitutes the other end of one wire. May be.
 第3の金属基板31は、配向金属基板であってもよい。配向金属基板は、金属基板の表面において、結晶方位が揃っている金属基板を意味する。配向金属基板は、例えば、SUSまたはハステロイ(登録商標)のベース金属基板上にニッケル層及び銅層などが配置されたクラッドタイプの金属基板であってもよい。 The third metal substrate 31 may be an oriented metal substrate. An oriented metal substrate means a metal substrate having a uniform crystal orientation on the surface of the metal substrate. The oriented metal substrate may be, for example, a clad type metal substrate in which a nickel layer, a copper layer, and the like are arranged on a SUS or Hastelloy (registered trademark) base metal substrate.
 第3の中間層32は、第3の超電導材料層33との反応性が極めて低く、第3の超電導材料層33の超電導特性を低下させないような材料を用いることができる。第3の中間層32は、例えば、YSZ(イットリア安定化ジルコニア)、CeO(酸化セリウム)、MgO(酸化マグネシウム)、Y(酸化イットリウム)、Al(酸化アルミニウム)、LaMnO(酸化ランタンマンガン)、Gd2Zr27(ジルコン酸ガドリニウム)およびSrTiO(チタン酸ストロンチウム)の少なくとも一つから構成されてもよい。 The third intermediate layer 32 may be made of a material that has extremely low reactivity with the third superconducting material layer 33 and does not deteriorate the superconducting characteristics of the third superconducting material layer 33. The third intermediate layer 32 includes, for example, YSZ (yttria stabilized zirconia), CeO 2 (cerium oxide), MgO (magnesium oxide), Y 2 O 3 (yttrium oxide), Al 2 O 3 (aluminum oxide), LaMnO. 3 (lanthanum manganese oxide), Gd 2 Zr 2 O 7 (gadolinium zirconate), and SrTiO 3 (strontium titanate).
 第3の中間層32は、複数の層により構成されていてもよい。第3の金属基板31としてSUS基板またはハステロイ基板が用いられる場合、第3の中間層32は、例えば、IBAD(Ion Beam Assisted Deposition)法にて形成された結晶配向層であってもよい。第3の金属基板31がその表面に結晶配向性を有するとき、第3の中間層32は、第3の金属基板31と第3の超電導材料層33との結晶配向性の差を緩和してもよい。 The third intermediate layer 32 may be composed of a plurality of layers. When a SUS substrate or a Hastelloy substrate is used as the third metal substrate 31, the third intermediate layer 32 may be a crystal orientation layer formed by, for example, an IBAD (Ion Beam Assisted Deposition) method. When the third metal substrate 31 has crystal orientation on its surface, the third intermediate layer 32 reduces the difference in crystal orientation between the third metal substrate 31 and the third superconducting material layer 33. Also good.
 第3の超電導材料層33は、第3の線材30のうち、超電導電流が流れる部分である。第3の超電導材料層33は、特に限定されないが、酸化物超電導材料で構成されてもよい。特定的には、第3の超電導材料層33は、RE41Ba2Cu3y4(6.0≦y4≦8.0、RE4は希土類元素を表す)により構成されてもよい。RE4は、RE1と同じであってもよいし、異なってもよい。RE4は、RE2と同じであってもよいし、異なってもよい。さらに特定的には、RE4は、イットリウム(Y)、ガドリニウム(Gd)、ジスプロシウム(Dy)、ユウロピウム(Eu)、サマリウム(Sm)、ランタン(La)、ネオジム(Nd)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)またはホルミウム(Ho)であってもよい。さらに特定的には、y4は、6.8以上7.0以下であってもよい。 The third superconducting material layer 33 is a portion of the third wire 30 through which the superconducting current flows. The third superconducting material layer 33 is not particularly limited, but may be composed of an oxide superconducting material. In particular, the third superconducting material layers 33, RE4 1 Ba 2 Cu 3 O y4 (6.0 ≦ y4 ≦ 8.0, RE4 represents a rare earth element) may be configured with. RE4 may be the same as or different from RE1. RE4 may be the same as or different from RE2. More specifically, RE4 is yttrium (Y), gadolinium (Gd), dysprosium (Dy), europium (Eu), samarium (Sm), lanthanum (La), neodymium (Nd), erbium (Er), thulium. (Tm), ytterbium (Yb), lutetium (Lu), or holmium (Ho). More specifically, y4 may be 6.8 or more and 7.0 or less.
 第2の線材20の長手方向における第2の線材20の第2の長さは、第1の線材10の長手方向における第1の線材10の第1の長さ及び第3の線材30の長手方向における第3の線材30の第3の長さよりも短い。 The second length of the second wire 20 in the longitudinal direction of the second wire 20 is the first length of the first wire 10 and the length of the third wire 30 in the longitudinal direction of the first wire 10. Shorter than the third length of the third wire 30 in the direction.
 第1の線材10は、第1の端面10eを有する。第3の線材30は、第2の端面30eを有する。第2の端面30eは、第1の端面10eとの間に間隔を空けて、第1の端面10eに対向している。第1の超電導材料層13の第1の主面13sと第2の超電導材料層23の第2の主面23sとは、第1の超電導材料接合層40を介して、互いに接合されている。第2の超電導材料層23の第2の主面23sと第3の超電導材料層33の第3の主面33sとは、第2の超電導材料接合層42を介して、互いに接合されている。第2の線材20は、第1の線材10の第1の端面10eと第3の線材30の第2の端面30eとを跨いでいる。第2の超電導材料層23は、第1の超電導材料層13と第3の超電導材料層33とを橋渡ししている。 The first wire 10 has a first end face 10e. The third wire 30 has a second end face 30e. The second end surface 30e is opposed to the first end surface 10e with a space between the second end surface 30e and the first end surface 10e. The first main surface 13 s of the first superconducting material layer 13 and the second main surface 23 s of the second superconducting material layer 23 are bonded to each other through the first superconducting material bonding layer 40. The second main surface 23 s of the second superconducting material layer 23 and the third main surface 33 s of the third superconducting material layer 33 are joined to each other via the second superconducting material joining layer 42. The second wire 20 straddles the first end surface 10 e of the first wire 10 and the second end surface 30 e of the third wire 30. The second superconducting material layer 23 bridges the first superconducting material layer 13 and the third superconducting material layer 33.
 第2の超電導材料接合層42は、第2の超電導材料層23の第2の主面23sの第3の部分28と第3の超電導材料層33の第3の主面33sの第4の部分38とを接合する。第3の部分28は、第2の部分27とは異なる。第3の部分28は、第2の線材20の第3の端部(28)に位置してもよい。第4の部分38は、第3の線材30の第3の端部(38)に位置してもよい。第2の超電導材料接合層42は、特に限定されないが、酸化物超電導材料で構成されてもよい。特定的には、第2の超電導材料接合層42は、RE51Ba2Cu3y5(6.0≦y5≦8.0、RE5は希土類元素を表す)により構成されてもよい。RE5は、RE2と同じであってもよいし、異なってもよい。RE5は、RE3と同じであってもよいし、異なってもよい。RE5は、RE4と同じであってもよいし、異なってもよい。さらに特定的には、RE5は、イットリウム(Y)、ガドリニウム(Gd)、ジスプロシウム(Dy)、ユウロピウム(Eu)、サマリウム(Sm)、ランタン(La)、ネオジム(Nd)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)またはホルミウム(Ho)であってもよい。さらに特定的には、y5は、6.8以上7.0以下であってもよい。 The second superconducting material bonding layer 42 includes a third portion 28 of the second main surface 23 s of the second superconducting material layer 23 and a fourth portion of the third main surface 33 s of the third superconducting material layer 33. 38 is joined. The third portion 28 is different from the second portion 27. The third portion 28 may be located at the third end (28) of the second wire 20. The fourth portion 38 may be located at the third end (38) of the third wire 30. The second superconducting material bonding layer 42 is not particularly limited, but may be composed of an oxide superconducting material. Specifically, the second superconducting material bonding layer 42 may be composed of RE5 1 Ba 2 Cu 3 O y5 (6.0 ≦ y5 ≦ 8.0, where RE5 represents a rare earth element). RE5 may be the same as RE2, or may be different. RE5 may be the same as RE3 or different. RE5 may be the same as RE4 or different. More specifically, RE5 is yttrium (Y), gadolinium (Gd), dysprosium (Dy), europium (Eu), samarium (Sm), lanthanum (La), neodymium (Nd), erbium (Er), thulium. (Tm), ytterbium (Yb), lutetium (Lu), or holmium (Ho). More specifically, y5 may be 6.8 or more and 7.0 or less.
 第2の超電導材料接合層42に接触する第2の超電導材料層23の第3の部分28において、第2の超電導材料層23は、第2の超電導材料層23の厚さ方向に沿って延在する第3の結晶軸と、第2の超電導材料層23の厚さ方向に直交する第2の超電導材料層23の面内方向に沿って延在する第4の結晶軸とを有する。例えば、第2の超電導材料層23がRE21Ba2Cu3y2により構成される場合、第3の結晶軸はRE21Ba2Cu3y2のc軸であり、第4の結晶軸はRE21Ba2Cu3y2のa軸である。 In the third portion 28 of the second superconducting material layer 23 in contact with the second superconducting material bonding layer 42, the second superconducting material layer 23 extends along the thickness direction of the second superconducting material layer 23. And a fourth crystal axis extending along the in-plane direction of the second superconducting material layer 23 perpendicular to the thickness direction of the second superconducting material layer 23. For example, when the second superconducting material layer 23 is composed of RE2 1 Ba 2 Cu 3 O y2 , the third crystal axis is the c axis of RE2 1 Ba 2 Cu 3 O y2 , and the fourth crystal axis is This is the a-axis of RE2 1 Ba 2 Cu 3 O y2 .
 第2の超電導材料接合層42に接触する第3の超電導材料層33の第4の部分38において、第3の超電導材料層33は、第3の超電導材料層33の厚さ方向に沿って延在する第5の結晶軸と、第3の超電導材料層33の厚さ方向に直交する第3の超電導材料層33の面内方向に沿って延在しかつ第4の結晶軸と等価である第6の結晶軸とを有する。例えば、第3の超電導材料層33がRE41Ba2Cu3y4により構成される場合、第5の結晶軸はRE41Ba2Cu3y4のc軸であり、第6の結晶軸はRE41Ba2Cu3y4のa軸である。 In the fourth portion 38 of the third superconducting material layer 33 in contact with the second superconducting material bonding layer 42, the third superconducting material layer 33 extends along the thickness direction of the third superconducting material layer 33. The fifth crystal axis that exists and extends along the in-plane direction of the third superconducting material layer 33 perpendicular to the thickness direction of the third superconducting material layer 33 and is equivalent to the fourth crystal axis. And a sixth crystal axis. For example, when the third superconducting material layer 33 is composed of RE4 1 Ba 2 Cu 3 O y4 , the fifth crystal axis is the c axis of RE4 1 Ba 2 Cu 3 O y4 , and the sixth crystal axis is This is the a-axis of RE4 1 Ba 2 Cu 3 O y4 .
 第3の結晶軸と第5の結晶軸との間の角度ずれは10°以下である。第3の結晶軸と第5の結晶軸との間の角度ずれは、5°以下であってもよく、2°以下であってもよい。第4の結晶軸と第6の結晶軸との間の角度ずれは10°以下である。第4の結晶軸と第6の結晶軸との間の角度ずれは、5°以下であってもよく、2°以下であってもよい。第4の結晶軸と第6の結晶軸との間の角度ずれは、実施の形態1における、第1の結晶軸と第3の結晶軸との間の角度ずれ及び第2の結晶軸と第4の結晶軸との間の角度ずれと同様に、電子線後方散乱回折(EBSD)法を用いて測定される。 The angular deviation between the third crystal axis and the fifth crystal axis is 10 ° or less. The angular deviation between the third crystal axis and the fifth crystal axis may be 5 ° or less, or 2 ° or less. The angular deviation between the fourth crystal axis and the sixth crystal axis is 10 ° or less. The angular deviation between the fourth crystal axis and the sixth crystal axis may be 5 ° or less, or 2 ° or less. The angular deviation between the fourth crystal axis and the sixth crystal axis is the same as the angular deviation between the first crystal axis and the third crystal axis and the second crystal axis in the first embodiment. Similar to the angular misalignment between the four crystal axes, the electron beam backscatter diffraction (EBSD) method is used.
 本実施の形態の超電導線材1bでは、第3の結晶軸と第5の結晶軸との間の角度ずれは10°以下であり、かつ、第4の結晶軸と第6の結晶軸との間の角度ずれは10°以下である。そのため、第2の超電導材料層23と第3の超電導材料層33とは、低減された結晶格子の歪と低減された結晶構造の乱れで、第2の超電導材料接合層42を介して、互いに接合される。そのため、第2の超電導材料接合層42を介した第2の超電導材料層23と第3の超電導材料層33との間の超電導接合部における超電導臨界電流密度Jcが増加する。超電導線材1bの超電導臨界電流密度Jcが増加する。 In the superconducting wire 1b of the present embodiment, the angular deviation between the third crystal axis and the fifth crystal axis is 10 ° or less, and between the fourth crystal axis and the sixth crystal axis. The angle deviation is 10 ° or less. Therefore, the second superconducting material layer 23 and the third superconducting material layer 33 are connected to each other through the second superconducting material bonding layer 42 due to reduced crystal lattice distortion and reduced disorder of the crystal structure. Be joined. Therefore, the superconducting critical current density J c in the superconducting junction between the second superconducting material layer 23 through the second superconducting material bonding layer 42 and the third superconductive material layer 33 is increased. Superconducting critical current density J c of the superconducting wire 1b is increased.
 第2の超電導材料接合層42を介して第2の超電導材料層23と第3の超電導材料層33とを接合する方法は、実施の形態1における第1の超電導材料接合層40を介して第1の超電導材料層13と第2の超電導材料層23とを接合する方法(図5を参照)と同様である。 The method of joining the second superconducting material layer 23 and the third superconducting material layer 33 through the second superconducting material joining layer 42 is the same as that of the first superconducting material joining layer 40 in the first embodiment. This is the same as the method of joining the first superconducting material layer 13 and the second superconducting material layer 23 (see FIG. 5).
 本実施の形態の超電導線材1bは、以下のように、実施の形態1の超電導線材1の効果に加えて、以下の効果を奏する。 The superconducting wire 1b of the present embodiment has the following effects in addition to the effects of the superconducting wire 1 of the first embodiment as follows.
 本実施の形態の超電導線材1bは、第3の超電導材料層33を含む第3の線材30と、第2の超電導材料層23と第3の超電導材料層33とを接合する第2の超電導材料接合層42とをさらに備える。第2の線材20の長手方向における第2の線材20の第2の長さは、第1の線材10の長手方向における第1の線材10の第1の長さ及び第3の線材30の長手方向における第3の線材30の第3の長さよりも短い。第2の超電導材料接合層42に接触する第2の超電導材料層23の第3の部分28において、第2の超電導材料層23は、第3の結晶軸と、第4の結晶軸とを有する。第2の超電導材料接合層42に接触する第3の超電導材料層33の第4の部分38において、第3の超電導材料層33は、第3の超電導材料層33の厚さ方向に沿って延在する第5の結晶軸と、第3の超電導材料層33の厚さ方向に直交する第3の超電導材料層33の面内方向に沿って延在しかつ第4の結晶軸と等価である第6の結晶軸とを有する。第3の結晶軸と第5の結晶軸との間の角度ずれは10°以下である。第4の結晶軸と第6の結晶軸との間の角度ずれは10°以下である。 The superconducting wire 1b of the present embodiment includes a second superconducting material that joins the third wire 30 including the third superconducting material layer 33, the second superconducting material layer 23, and the third superconducting material layer 33. And a bonding layer 42. The second length of the second wire 20 in the longitudinal direction of the second wire 20 is the first length of the first wire 10 and the length of the third wire 30 in the longitudinal direction of the first wire 10. Shorter than the third length of the third wire 30 in the direction. In the third portion 28 of the second superconducting material layer 23 that is in contact with the second superconducting material bonding layer 42, the second superconducting material layer 23 has a third crystal axis and a fourth crystal axis. . In the fourth portion 38 of the third superconducting material layer 33 in contact with the second superconducting material bonding layer 42, the third superconducting material layer 33 extends along the thickness direction of the third superconducting material layer 33. The fifth crystal axis that exists and extends along the in-plane direction of the third superconducting material layer 33 perpendicular to the thickness direction of the third superconducting material layer 33 and is equivalent to the fourth crystal axis. And a sixth crystal axis. The angular deviation between the third crystal axis and the fifth crystal axis is 10 ° or less. The angular deviation between the fourth crystal axis and the sixth crystal axis is 10 ° or less.
 そのため、第2の超電導材料層23と第3の超電導材料層33とは、低減された結晶格子の歪と低減された結晶構造の乱れで、第2の超電導材料接合層42を介して、互いに接合される。第2の超電導材料接合層42を介した第2の超電導材料層23と第3の超電導材料層33との間の超電導接合部における超電導臨界電流密度Jcが増加する。超電導線材1bの超電導臨界電流密度Jcが増加する。 Therefore, the second superconducting material layer 23 and the third superconducting material layer 33 are connected to each other through the second superconducting material bonding layer 42 due to reduced crystal lattice distortion and reduced disorder of the crystal structure. Be joined. Superconducting critical current density J c in the superconducting junction between the second superconducting material layer 23 and the third superconductive material layer 33 through the second superconducting material bonding layer 42 is increased. Superconducting critical current density J c of the superconducting wire 1b is increased.
 本実施の形態の超電導線材1bでは、第2の超電導材料層23は、RE21Ba2Cu3y2(6.0≦y2≦8.0、RE2は希土類元素を表す)により構成されている。第3の超電導材料層33は、RE41Ba2Cu3y4(6.0≦y4≦8.0、RE4は希土類元素を表す)により構成されている。第2の超電導材料接合層42は、RE51Ba2Cu3y5(6.0≦y5≦8.0、RE5は希土類元素を表す)により構成されている。そのため、第2の超電導材料層23、第3の超電導材料層33及び第2の超電導材料接合層42は、同じ結晶構造を有している。第2の超電導材料層23と第3の超電導材料層33とは、低減された結晶格子の歪と低減された結晶構造の乱れで、第2の超電導材料接合層42を介して、互いに接合される。本実施の形態の超電導線材1bによれば、第2の超電導材料接合層42を介した第2の超電導材料層23と第3の超電導材料層33との間の超電導接合部における超電導臨界電流密度Jcが増加する。超電導線材1bの超電導接合部における超電導臨界電流密度Jcが増加する。 In the superconducting wire 1b of the present embodiment, the second superconducting material layer 23 is composed of RE2 1 Ba 2 Cu 3 O y2 (6.0 ≦ y2 ≦ 8.0, where RE2 represents a rare earth element). . The third superconducting material layer 33 is composed of RE4 1 Ba 2 Cu 3 O y4 (6.0 ≦ y4 ≦ 8.0, where RE4 represents a rare earth element). The second superconducting material bonding layer 42 is composed of RE5 1 Ba 2 Cu 3 O y5 (6.0 ≦ y5 ≦ 8.0, where RE5 represents a rare earth element). Therefore, the second superconducting material layer 23, the third superconducting material layer 33, and the second superconducting material bonding layer 42 have the same crystal structure. The second superconducting material layer 23 and the third superconducting material layer 33 are bonded to each other via the second superconducting material bonding layer 42 with reduced crystal lattice distortion and reduced crystal structure disturbance. The According to the superconducting wire 1b of the present embodiment, the superconducting critical current density in the superconducting junction between the second superconducting material layer 23 and the third superconducting material layer 33 through the second superconducting material joining layer 42 is used. J c increases. Superconducting critical current density J c is increased at the superconducting junction of the superconducting wire 1b.
 (実施の形態3)
 図10を参照して、実施の形態3の超電導マグネット100について説明する。
(Embodiment 3)
With reference to FIG. 10, superconducting magnet 100 of the third embodiment will be described.
 本実施の形態の超電導マグネット100は、実施の形態1から実施の形態2の超電導線材1,1bのいずれかを含む超電導コイル70と、超電導コイル70を収容するクライオスタット105と、超電導コイル70を冷却する冷凍機102とを主に備える。特定的には、超電導マグネット100は、クライオスタット105の内部に保持された熱シールド106と、磁性体シールド140とをさらに備えてもよい。 The superconducting magnet 100 of the present embodiment cools the superconducting coil 70 including any of the superconducting wires 1 and 1b of the first to second embodiments, the cryostat 105 that houses the superconducting coil 70, and the superconducting coil 70. The refrigerator 102 is mainly provided. Specifically, the superconducting magnet 100 may further include a heat shield 106 held inside the cryostat 105 and a magnetic shield 140.
 超電導コイル70では、超電導線材1,1bのいずれかが、超電導コイル70の中心軸周りに巻き回されている。超電導コイル70を含む超電導コイル体110は、クライオスタット105内に収容されている。超電導コイル体110は、熱シールド106の内部に保持されている。超電導コイル体110は、複数の超電導コイル70と、上方支持部114と、下方支持部111とを含む。複数の超電導コイル70は積層されている。積層された超電導コイル70の上端面および下端面を上方支持部114と下方支持部111とが挟むように配置されている。 In the superconducting coil 70, one of the superconducting wires 1 and 1b is wound around the central axis of the superconducting coil 70. Superconducting coil body 110 including superconducting coil 70 is housed in cryostat 105. Superconducting coil body 110 is held inside heat shield 106. Superconducting coil body 110 includes a plurality of superconducting coils 70, an upper support portion 114, and a lower support portion 111. A plurality of superconducting coils 70 are stacked. The upper and lower end surfaces of the superconducting coils 70 stacked are arranged so that the upper support portion 114 and the lower support portion 111 sandwich the upper end surface and the lower end surface.
 積層された超電導コイル70の上端面上と、積層された超電導コイル70の下端面上とに冷却板113が配置されている。互いに隣接する超電導コイル70の間にも冷却板(図示せず)が配置されている。冷却板113は、一方端が冷凍機102の第2冷却ヘッド131に接続されている。互いに隣接する超電導コイル70の間に配置された冷却板(図示せず)も、その一方端が第2冷却ヘッド131に接続されている。冷凍機102の第1冷却ヘッド132は熱シールド106の壁部に接続されてもよい。そのため、冷凍機102によって熱シールド106の壁部も冷却され得る。 A cooling plate 113 is disposed on the upper end surface of the superconducting coil 70 that is laminated and on the lower end surface of the superconducting coil 70 that is laminated. A cooling plate (not shown) is also disposed between the superconducting coils 70 adjacent to each other. One end of the cooling plate 113 is connected to the second cooling head 131 of the refrigerator 102. A cooling plate (not shown) disposed between the superconducting coils 70 adjacent to each other is also connected to the second cooling head 131 at one end thereof. The first cooling head 132 of the refrigerator 102 may be connected to the wall portion of the heat shield 106. Therefore, the wall portion of the heat shield 106 can also be cooled by the refrigerator 102.
 超電導コイル体110の下方支持部111は、超電導コイル70の平面形状より大きいサイズを有する。下方支持部111は、複数の支持部材115によって熱シールド106に固定されている。複数の支持部材115は、棒状の部材であって、熱シールド106の上壁と下方支持部111の外周部とを接続している。複数の支持部材115が超電導コイル体110の外周部に配置されている。支持部材115は、互いに同じ間隔を隔てて超電導コイル70を囲むように配置されている。 The lower support part 111 of the superconducting coil body 110 has a size larger than the planar shape of the superconducting coil 70. The lower support portion 111 is fixed to the heat shield 106 by a plurality of support members 115. The plurality of support members 115 are rod-shaped members, and connect the upper wall of the heat shield 106 and the outer peripheral portion of the lower support portion 111. A plurality of support members 115 are arranged on the outer periphery of the superconducting coil body 110. Support members 115 are arranged to surround superconducting coil 70 at the same interval.
 超電導コイル体110を保持する熱シールド106は、接続部120によってクライオスタット105に接続されている。接続部120は、超電導コイル体110の中心軸を囲むように、超電導コイル体110の外周部に沿って等間隔で配置されている。接続部120は、クライオスタット105の蓋体135と熱シールド106の上壁とを接続している。 The heat shield 106 that holds the superconducting coil body 110 is connected to the cryostat 105 by the connecting portion 120. The connecting portions 120 are arranged at equal intervals along the outer peripheral portion of the superconducting coil body 110 so as to surround the central axis of the superconducting coil body 110. The connection part 120 connects the lid body 135 of the cryostat 105 and the upper wall of the heat shield 106.
 クライオスタット105の蓋体135の上部から熱シールド106の内部まで延在するように冷凍機102が配置されている。冷凍機102は、超電導コイル体110を冷却する。具体的には、蓋体135の上部表面の上方に冷凍機102の本体部133およびモータ134が配置される。本体部133から熱シールド106の内部にまで到達するように冷凍機102が配置されている。 The refrigerator 102 is arranged so as to extend from the upper part of the lid 135 of the cryostat 105 to the inside of the heat shield 106. The refrigerator 102 cools the superconducting coil body 110. Specifically, the main body 133 and the motor 134 of the refrigerator 102 are disposed above the upper surface of the lid 135. The refrigerator 102 is arranged so as to reach the inside of the heat shield 106 from the main body 133.
 冷凍機102は、たとえばギフォード・マクマホン式冷凍機であってもよい。冷凍機102は、配管137を通じて、冷媒を圧縮するコンプレッサ(図示せず)に接続されている。コンプレッサで高圧に圧縮された冷媒(たとえば、ヘリウムガス)は冷凍機102に供給される。この冷媒がモータ134により駆動されるディスプレーサにより膨張されることにより、冷凍機102に内設された蓄冷材が冷却される。膨張することにより低圧となった冷媒はコンプレッサに戻されて再び高圧化される。 The refrigerator 102 may be, for example, a Gifford McMahon refrigerator. The refrigerator 102 is connected through a pipe 137 to a compressor (not shown) that compresses the refrigerant. The refrigerant (for example, helium gas) compressed to a high pressure by the compressor is supplied to the refrigerator 102. The refrigerant is expanded by a displacer driven by a motor 134, whereby the regenerator material provided in the refrigerator 102 is cooled. The refrigerant, which has become low pressure due to expansion, is returned to the compressor and is increased in pressure again.
 冷凍機102の第1冷却ヘッド132が熱シールド106を冷却することによって外部の熱が熱シールド106内に侵入することが防止される。冷凍機102の第2冷却ヘッド131が冷却板113を介して超電導コイル70を冷却する。こうして、超電導コイル70は超電導状態となる。 The first cooling head 132 of the refrigerator 102 cools the heat shield 106 to prevent external heat from entering the heat shield 106. The second cooling head 131 of the refrigerator 102 cools the superconducting coil 70 via the cooling plate 113. Thus, the superconducting coil 70 is in a superconducting state.
 クライオスタット105は、クライオスタット本体部136と蓋体135とを含む。本体部133およびモータ134の周囲は、磁性体シールド140によって囲まれている。磁性体シールド140は、超電導コイル体110から発生した磁場の一部がモータ134に侵入することを防止し得る。 The cryostat 105 includes a cryostat main body 136 and a lid body 135. The periphery of the main body 133 and the motor 134 is surrounded by a magnetic shield 140. The magnetic shield 140 can prevent a part of the magnetic field generated from the superconducting coil body 110 from entering the motor 134.
 超電導マグネット100には、クライオスタット105および熱シールド106を貫通し、クライオスタット105の蓋体135からクライオスタット本体部136の底壁まで到達する開口部107が形成されている。開口部107は、超電導コイル体110の超電導コイル70の中央部を貫通するように配置されている。被検知体210(図11を参照)が開口部107の内部に配置されて、被検知体210に超電導コイル体110から発生した磁場が印加され得る。 The superconducting magnet 100 is formed with an opening 107 that penetrates the cryostat 105 and the heat shield 106 and reaches the bottom wall of the cryostat main body 136 from the lid body 135 of the cryostat 105. The opening 107 is disposed so as to penetrate the central portion of the superconducting coil 70 of the superconducting coil body 110. A detected object 210 (see FIG. 11) is disposed inside the opening 107, and a magnetic field generated from the superconducting coil body 110 can be applied to the detected object 210.
 本実施の形態の超電導コイル70の効果について説明する。本実施の形態の超電導コイル70は、超電導線材1,1bのいずれかを含む超電導コイル70を備える。超電導線材1,1bのいずれかは、超電導コイルの中心軸周りに巻き回されている。そのため、本実施の形態の超電導コイル70は、強い磁場を発生し得る。 The effect of the superconducting coil 70 of the present embodiment will be described. Superconducting coil 70 of the present embodiment includes superconducting coil 70 including any one of superconducting wires 1 and 1b. One of the superconducting wires 1 and 1b is wound around the central axis of the superconducting coil. Therefore, the superconducting coil 70 of the present embodiment can generate a strong magnetic field.
 本実施の形態の超電導マグネット100の効果について説明する。本実施の形態の超電導マグネット100は、超電導線材1,1bのいずれかを含む超電導コイル70と、超電導コイル70を収容するクライオスタット105と、超電導コイル70を冷却する冷凍機102とを備える。そのため、本実施の形態の超電導マグネット100は、強い磁場を発生し得る。 The effect of the superconducting magnet 100 of this embodiment will be described. The superconducting magnet 100 of the present embodiment includes a superconducting coil 70 including any of the superconducting wires 1 and 1b, a cryostat 105 that accommodates the superconducting coil 70, and a refrigerator 102 that cools the superconducting coil 70. Therefore, the superconducting magnet 100 of the present embodiment can generate a strong magnetic field.
 (実施の形態4)
 図11を参照して、実施の形態4の超電導機器200について説明する。本実施の形態の超電導機器200は、例えば、磁気共鳴イメージング(MRI)装置であってもよい。
(Embodiment 4)
With reference to FIG. 11, superconducting device 200 of the fourth embodiment will be described. Superconducting device 200 of the present embodiment may be, for example, a magnetic resonance imaging (MRI) apparatus.
 本実施の形態の超電導機器200は、実施の形態3の超電導マグネット100を主に備える。本実施の形態の超電導機器200は、可動台202と制御部208とをさらに備えてもよい。可動台202は、被検知体210が載置される天板205と、天板205を移動させる駆動部204とを含む。制御部208は、超電導マグネット100と、駆動部204とに接続されている。 The superconducting device 200 of the present embodiment mainly includes the superconducting magnet 100 of the third embodiment. Superconducting device 200 of the present embodiment may further include a movable table 202 and a control unit 208. The movable table 202 includes a top plate 205 on which the detected object 210 is placed and a drive unit 204 that moves the top plate 205. The control unit 208 is connected to the superconducting magnet 100 and the drive unit 204.
 制御部208は、超電導マグネット100を駆動して、超電導マグネット100の開口部107内に均一な磁場を発生させる。制御部208は、可動台202を移動させて、可動台202上に載置された被検知体210を超電導マグネット100の開口部107内に進入させる。被検知体210の撮像を終えると、制御部208は可動台202を移動させて、可動台202上に載置された被検知体210を超電導マグネット100の開口部107から退出させる。 The control unit 208 drives the superconducting magnet 100 to generate a uniform magnetic field in the opening 107 of the superconducting magnet 100. The control unit 208 moves the movable table 202 and causes the detected object 210 placed on the movable table 202 to enter the opening 107 of the superconducting magnet 100. When the imaging of the detected object 210 is completed, the control unit 208 moves the movable table 202 and causes the detected object 210 placed on the movable table 202 to exit from the opening 107 of the superconducting magnet 100.
 本実施の形態の超電導機器200の効果について説明する。本実施の形態の超電導機器200は、超電導マグネット100を備える。そのため、本実施の形態の超電導機器200は、強い磁場を発生し得る。本実施の形態の超電導機器200を用いて、被検知体210は精度よく撮像され得る。 The effect of the superconducting device 200 of the present embodiment will be described. Superconducting device 200 of the present embodiment includes superconducting magnet 100. Therefore, superconducting device 200 of the present embodiment can generate a strong magnetic field. Using the superconducting device 200 of the present embodiment, the detected object 210 can be imaged with high accuracy.
 今回開示された実施の形態1-4はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態1-4ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be considered that Embodiment 1-4 disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is shown not by the above-described first to fourth embodiments but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
 1,1b 超電導線材、10 第1の線材、10e 第1の端面、11 第1の金属基板、12 第1の中間層、13 第1の超電導材料層、13s 第1の主面、17 第1の部分、20 第2の線材、21 第2の金属基板、22 第2の中間層、23 第2の超電導材料層、23s 第2の主面、27 第2の部分、28 第3の部分、30 第3の線材、30e 第2の端面、31 第3の金属基板、32 第3の中間層、33 第3の超電導材料層、33s 第3の主面、38 第4の部分、40 第1の超電導材料接合層、42 第2の超電導材料接合層、50 第1の導電部材、52 第2の導電部材、70 超電導コイル、100 超電導マグネット、102 冷凍機、105 クライオスタット、106 熱シールド、107 開口部、110 超電導コイル体、111 下方支持部、113 冷却板、114 上方支持部、115 支持部材、120 接続部、131 第2冷却ヘッド、132 第1冷却ヘッド、133 本体部、134 モータ、135 蓋体、136 クライオスタット本体部、137 配管、140 磁性体シールド、200 超電導機器、202 可動台、204 駆動部、205 天板、208 制御部、210 被検知体。 1, 1b superconducting wire, 10 first wire, 10e first end face, 11 first metal substrate, 12 first intermediate layer, 13 first superconducting material layer, 13s first main surface, 17 first Part 20, 20 second wire, 21 second metal substrate, 22 second intermediate layer, 23 second superconducting material layer, 23s second main surface, 27 second part, 28 third part, 30 3rd wire, 30e 2nd end face, 31 3rd metal substrate, 32 3rd intermediate layer, 33 3rd superconducting material layer, 33s 3rd main surface, 38 4th part, 40 1st Superconducting material joining layer, 42 second superconducting material joining layer, 50 first conducting member, 52 second conducting member, 70 superconducting coil, 100 superconducting magnet, 102 refrigerator, 105 cryostat, 106 heat shield, 07 opening portion, 110 superconducting coil body, 111 lower support portion, 113 cooling plate, 114 upper support portion, 115 support member, 120 connection portion, 131 second cooling head, 132 first cooling head, 133 main body portion, 134 motor, 135 lid body, 136 cryostat main body part, 137 piping, 140 magnetic shield, 200 superconducting equipment, 202 movable base, 204 drive part, 205 top plate, 208 control part, 210 object to be detected.

Claims (7)

  1.  第1の超電導材料層を含む第1の線材と、
     第2の超電導材料層を含む第2の線材と、
     前記第1の超電導材料層と前記第2の超電導材料層とを接合する第1の超電導材料接合層とを備え、
     前記第1の超電導材料接合層に接触する前記第1の超電導材料層の第1の部分において、前記第1の超電導材料層は、前記第1の超電導材料層の厚さ方向に沿って延在する第1の結晶軸と、前記第1の超電導材料層の前記厚さ方向に直交する前記第1の超電導材料層の面内方向に沿って延在する第2の結晶軸とを有し、
     前記第1の超電導材料接合層に接触する前記第2の超電導材料層の第2の部分において、前記第2の超電導材料層は、前記第2の超電導材料層の厚さ方向に沿って延在する第3の結晶軸と、前記第2の超電導材料層の前記厚さ方向に直交する前記第2の超電導材料層の面内方向に沿って延在しかつ前記第2の結晶軸と等価である第4の結晶軸とを有し、
     前記第1の結晶軸と前記第3の結晶軸との間の角度ずれは10°以下であり、
     前記第2の結晶軸と前記第4の結晶軸との間の角度ずれは10°以下である、超電導線材。
    A first wire including a first superconducting material layer;
    A second wire including a second superconducting material layer;
    A first superconducting material joining layer joining the first superconducting material layer and the second superconducting material layer;
    In the first portion of the first superconducting material layer in contact with the first superconducting material bonding layer, the first superconducting material layer extends along the thickness direction of the first superconducting material layer. And a second crystal axis extending along an in-plane direction of the first superconducting material layer perpendicular to the thickness direction of the first superconducting material layer,
    In the second portion of the second superconducting material layer in contact with the first superconducting material bonding layer, the second superconducting material layer extends along the thickness direction of the second superconducting material layer. A third crystal axis that extends along an in-plane direction of the second superconducting material layer perpendicular to the thickness direction of the second superconducting material layer, and is equivalent to the second crystal axis. Having a fourth crystal axis,
    The angular deviation between the first crystal axis and the third crystal axis is 10 ° or less,
    The superconducting wire, wherein the angular deviation between the second crystal axis and the fourth crystal axis is 10 ° or less.
  2.  前記第1の超電導材料層は、RE11Ba2Cu3y1(6.0≦y1≦8.0、RE1は希土類元素を表す)により構成されており、
     前記第2の超電導材料層は、RE21Ba2Cu3y2(6.0≦y2≦8.0、RE2は希土類元素を表す)により構成されており、
     前記第1の超電導材料接合層は、RE31Ba2Cu3y3(6.0≦y3≦8.0、RE3は希土類元素を表す)により構成されている、請求項1に記載の超電導線材。
    The first superconducting material layer is composed of RE1 1 Ba 2 Cu 3 O y1 (6.0 ≦ y1 ≦ 8.0, where RE1 represents a rare earth element),
    The second superconducting material layer is composed of RE2 1 Ba 2 Cu 3 O y2 (6.0 ≦ y2 ≦ 8.0, where RE2 represents a rare earth element),
    2. The superconducting wire according to claim 1, wherein the first superconducting material bonding layer is made of RE3 1 Ba 2 Cu 3 O y3 (6.0 ≦ y3 ≦ 8.0, where RE3 represents a rare earth element). .
  3.  第3の超電導材料層を含む第3の線材と、
     前記第2の超電導材料層と前記第3の超電導材料層とを接合する第2の超電導材料接合層とをさらに備え、
     前記第2の線材の長手方向における前記第2の線材の第2の長さは、前記第1の線材の長手方向における前記第1の線材の第1の長さ及び前記第3の線材の長手方向における前記第3の線材の第3の長さよりも短く、
     前記第2の超電導材料接合層に接触する前記第2の超電導材料層の第3の部分において、前記第2の超電導材料層は、前記第3の結晶軸と、前記第4の結晶軸とを有し、
     前記第2の超電導材料接合層に接触する前記第3の超電導材料層の第4の部分において、前記第3の超電導材料層は、前記第3の超電導材料層の厚さ方向に沿って延在する第5の結晶軸と、前記第3の超電導材料層の前記厚さ方向に直交する前記第3の超電導材料層の面内方向に沿って延在しかつ前記第4の結晶軸と等価である第6の結晶軸とを有し、
     前記第3の結晶軸と前記第5の結晶軸との間の角度ずれは10°以下であり、
     前記第4の結晶軸と前記第6の結晶軸との間の角度ずれは10°以下である、請求項1または請求項2に記載の超電導線材。
    A third wire including a third superconducting material layer;
    A second superconducting material joining layer that joins the second superconducting material layer and the third superconducting material layer;
    The second length of the second wire rod in the longitudinal direction of the second wire rod is the first length of the first wire rod and the length of the third wire rod in the longitudinal direction of the first wire rod. Shorter than the third length of the third wire in the direction,
    In the third portion of the second superconducting material layer in contact with the second superconducting material bonding layer, the second superconducting material layer has the third crystal axis and the fourth crystal axis. Have
    In the fourth portion of the third superconducting material layer in contact with the second superconducting material bonding layer, the third superconducting material layer extends along the thickness direction of the third superconducting material layer. Extending along the in-plane direction of the third superconducting material layer perpendicular to the thickness direction of the third superconducting material layer and equivalent to the fourth crystal axis. A sixth crystal axis,
    The angular deviation between the third crystal axis and the fifth crystal axis is 10 ° or less,
    The superconducting wire according to claim 1 or 2, wherein an angular deviation between the fourth crystal axis and the sixth crystal axis is 10 ° or less.
  4.  前記第2の超電導材料層は、RE21Ba2Cu3y2(6.0≦y2≦8.0、RE2は希土類元素を表す)により構成されており、
     前記第3の超電導材料層は、RE41Ba2Cu3y4(6.0≦y4≦8.0、RE4は希土類元素を表す)により構成されており、
     前記第2の超電導材料接合層は、RE51Ba2Cu3y5(6.0≦y5≦8.0、RE5は希土類元素を表す)により構成されている、請求項3に記載の超電導線材。
    The second superconducting material layer is composed of RE2 1 Ba 2 Cu 3 O y2 (6.0 ≦ y2 ≦ 8.0, where RE2 represents a rare earth element),
    The third superconducting material layer is composed of RE4 1 Ba 2 Cu 3 O y4 (6.0 ≦ y4 ≦ 8.0, where RE4 represents a rare earth element),
    4. The superconducting wire according to claim 3, wherein the second superconducting material bonding layer is made of RE5 1 Ba 2 Cu 3 O y5 (6.0 ≦ y5 ≦ 8.0, where RE5 represents a rare earth element). .
  5.  中心軸を有する超電導コイルであって、
     請求項1から請求項4のいずれか1項に記載の前記超電導線材を備え、
     前記超電導線材は、前記中心軸周りに巻き回されている、超電導コイル。
    A superconducting coil having a central axis,
    The superconducting wire according to any one of claims 1 to 4, comprising:
    The superconducting wire is a superconducting coil wound around the central axis.
  6.  請求項5に記載の前記超電導コイルと、
     前記超電導コイルを収容するクライオスタットと、
     前記超電導コイルを冷却する冷凍機とを備える、超電導マグネット。
    The superconducting coil according to claim 5,
    A cryostat that houses the superconducting coil;
    A superconducting magnet comprising a refrigerator for cooling the superconducting coil.
  7.  請求項6に記載の前記超電導マグネットを備える、超電導機器。 A superconducting device comprising the superconducting magnet according to claim 6.
PCT/JP2018/006509 2017-05-19 2018-02-22 Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device WO2018211765A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017099986 2017-05-19
JP2017-099986 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018211765A1 true WO2018211765A1 (en) 2018-11-22

Family

ID=64273674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006509 WO2018211765A1 (en) 2017-05-19 2018-02-22 Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device

Country Status (1)

Country Link
WO (1) WO2018211765A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640775A (en) * 1992-04-03 1994-02-15 Nippon Steel Corp Joined body of oxide superconducting material and its production
JP2014150223A (en) * 2013-02-04 2014-08-21 Sumitomo Electric Ind Ltd Superconducting coil and superconducting coil device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640775A (en) * 1992-04-03 1994-02-15 Nippon Steel Corp Joined body of oxide superconducting material and its production
JP2014150223A (en) * 2013-02-04 2014-08-21 Sumitomo Electric Ind Ltd Superconducting coil and superconducting coil device

Similar Documents

Publication Publication Date Title
JP6804050B2 (en) Manufacturing method of superconducting wire and members for joining superconducting wire
JP2008066399A (en) Connection structure of superconducting wire rod, superconducting coil, and connecting method of superconducting wire rod
CN108028106B (en) Connection structure of superconducting wire
WO2018211766A1 (en) Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device
JP2008210600A (en) Rare earth system tape-shape oxide superconductor and composite substrate used for it
JP4653555B2 (en) Oxide superconducting magnet material and oxide superconducting magnet system
JPWO2017145401A1 (en) Oxide superconductor and manufacturing method thereof
WO2018211699A1 (en) Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device
JP5736603B2 (en) REBCO oxide superconducting thin film and manufacturing method thereof
JP2011165568A (en) Oxide superconductive wire rod and manufacturing method for the same
WO2018211702A1 (en) Superconducting wire material and production method therefor, superconducting coil, superconducting magnet, and superconducting device
WO2018211764A1 (en) Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device
JP2011008949A (en) Superconductive wire rod and its manufacturing method
WO2018211765A1 (en) Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device
KR102222201B1 (en) Superconducting wire, superconducting coil, superconducting magnet and superconducting device
JP2012064495A (en) Method of producing coated superconducting wire rod, electrodeposition method of superconducting wire rod, and coated superconducting wire rod
JP2010044969A (en) Tape-shaped oxide superconductor, and board used for the same
JP5614831B2 (en) Oxide superconducting current lead
JP2013235765A (en) Oxide superconducting wire material and method for manufacturing the same
JP7330152B2 (en) Oxide superconductor and its manufacturing method
JP2013030317A (en) Oxide superconducting laminated body, oxide superconducting wire material, and manufacturing method of oxide superconducting wire material
JP2012181963A (en) Oxide superconducting wire manufacturing method
JP2010123448A (en) Oxide superconducting wire rod and its manufacturing method
JP2016143516A (en) Oxide superconducting wire and manufacturing method therefor
JP2022169922A (en) Connection structure of high-temperature superconducting wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP