WO2018209891A1 - 虹膜镜头 - Google Patents

虹膜镜头 Download PDF

Info

Publication number
WO2018209891A1
WO2018209891A1 PCT/CN2017/107328 CN2017107328W WO2018209891A1 WO 2018209891 A1 WO2018209891 A1 WO 2018209891A1 CN 2017107328 W CN2017107328 W CN 2017107328W WO 2018209891 A1 WO2018209891 A1 WO 2018209891A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
iris
iris lens
image side
optical axis
Prior art date
Application number
PCT/CN2017/107328
Other languages
English (en)
French (fr)
Inventor
黄林
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201720545624.0U external-priority patent/CN206757162U/zh
Priority claimed from CN201710346737.2A external-priority patent/CN106932886B/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US15/780,111 priority Critical patent/US20210173178A1/en
Publication of WO2018209891A1 publication Critical patent/WO2018209891A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/003Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only
    • G02B9/10Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only one + and one - component
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/19Sensors therefor

Definitions

  • the present invention relates to an iris lens, and more particularly to an iris lens comprising two lenses.
  • the photosensitive element of a commonly used imaging lens is generally a CCD (Charge-Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor).
  • CCD Charge-Coupled Device
  • CMOS Complementary Metal-Oxide Semiconductor
  • the requirements for lenses with iris recognition are getting higher and higher. It is not only necessary to ensure the compactness of the lens structure, but also to improve the brightness and resolution of the lens to improve the recognition accuracy of the lens.
  • an iris lens that sequentially includes a first lens and a second lens from an object side to an image side along an optical axis.
  • the first lens has a positive power
  • the object side is a convex surface
  • the image side is a concave surface
  • the second lens has a negative power
  • the first lens and the second lens are spaced apart from each other on the optical axis by a distance T12 and the first lens
  • the present application employs a plurality of (for example, two) lenses.
  • the system By properly distributing the power and shape of each lens of the optical lens, the system has the advantages of high contrast and high resolution in simplifying the lens structure.
  • an iris lens that sequentially includes a first lens and a second lens from an object side to an image side along an optical axis.
  • the first lens has positive refractive power
  • the object side is convex
  • the image side is concave
  • the second lens has negative power
  • the effective radius DT11 of the object side of the first lens and the effective radius of the image side of the second lens 0.7 ⁇ DT11/DT22 ⁇ 1 can be satisfied between DT22.
  • the maximum thickness ET1max of the first lens in a direction parallel to the optical axis and the minimum thickness ET1min of the first lens in a direction parallel to the optical axis may satisfy 1 ⁇ ET1max/ET1min ⁇ 1.45.
  • the iris lens further includes an electronic photosensitive element disposed on the imaging surface, wherein a maximum incident angle CRAmax of the chief ray incident on the electronic photosensitive element can satisfy CRAmax ⁇ 30°.
  • the edge thickness ET1 of the first lens and the center thickness CT1 of the first lens on the optical axis may satisfy 0.5 ⁇ ET1/CT1 ⁇ 1.
  • the iris lens further includes a filter disposed between the second lens and the imaging surface, the filter being an IR infrared filter.
  • the bandpass wavelength band of the IR IR filter may be from about 785 nm to about 835 nm.
  • the distance from the object side of the first lens to the imaging surface of the iris lens on the optical axis TTL, the imaging surface of the iris lens, the diagonal length of the effective pixel area of the electronic photosensitive element, ImgH, and the total of the iris lens can satisfy 0.4mm -1 ⁇ TTL/(ImgH*f) ⁇ 0.7mm -1 .
  • 0.7 ⁇ DT12/DT22 ⁇ 1 may be satisfied between the effective radius DT12 of the image side of the first lens and the effective radius DT22 of the image side of the second lens.
  • the effective radius DT22 of the image side of the second lens may satisfy 0.5 ⁇ DT22/ImgH ⁇ 1 between half of the diagonal length ImgH of the effective pixel area of the electronic photosensitive element on the imaging surface of the iris lens.
  • the iris lens further includes an aperture stop disposed between the object side and the first lens, and the radius of curvature R4 of the image side of the second lens and the total effective focal length f of the iris lens satisfy
  • the iris lens further includes an aperture stop disposed between the first lens and the second lens, and a radius of curvature R2 of the image side of the first lens and an effective focal length f1 of the first lens may satisfy 0.5 ⁇ R2/f1 ⁇ 0.9.
  • the iris lens configured as described above, it is possible to further have at least one advantageous effect such as high recognition accuracy, effective correction of aberrations, effective correction of field curvature, and shortening of the total length of the system.
  • FIG. 1 is a schematic structural view of an iris lens according to Embodiment 1 of the present application.
  • FIG. 2A shows an axial chromatic aberration curve of the iris lens of Embodiment 1;
  • 2D shows a magnification chromatic aberration curve of the iris lens of Embodiment 1;
  • FIG. 3 is a schematic structural view of an iris lens according to Embodiment 2 of the present application.
  • FIG. 4A shows an axial chromatic aberration curve of the iris lens of Embodiment 2;
  • 4D shows a magnification chromatic aberration curve of the iris lens of Embodiment 2;
  • FIG. 5 is a schematic structural view of an iris lens according to Embodiment 3 of the present application.
  • 6A shows an axial chromatic aberration curve of the iris lens of Embodiment 3.
  • 6B shows an astigmatism curve of the iris lens of Embodiment 3.
  • 6C shows a distortion curve of the iris lens of Embodiment 3.
  • 6D shows a magnification chromatic aberration curve of the iris lens of Embodiment 3.
  • 6E shows a phase contrast curve of the iris lens of Embodiment 3.
  • FIG. 7 is a schematic structural view of an iris lens according to Embodiment 4 of the present application.
  • FIG. 9 is a schematic structural view of an iris lens according to Embodiment 5 of the present application.
  • FIG. 10A shows an axial chromatic aberration curve of the iris lens of Embodiment 5;
  • FIG. 10B shows an astigmatism curve of the iris lens of Embodiment 5;
  • FIG. 10C shows a distortion curve of the iris lens of Embodiment 5.
  • FIG. 10D shows a magnification chromatic aberration curve of the iris lens of Embodiment 5;
  • FIG. 10E shows a phase contrast curve of the iris lens of Embodiment 5.
  • FIG. 11 is a schematic structural view of an iris lens according to Embodiment 6 of the present application.
  • Fig. 12E shows a phase contrast curve of the iris lens of Example 6.
  • first, second, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • the paraxial region refers to a region near the optical axis.
  • the surface closest to the object in each lens is referred to as the object side
  • the surface of each lens closest to the image plane is referred to as the image side.
  • An iris lens according to an exemplary embodiment of the present application includes, for example, two lenses, that is, a first lens and a second lens.
  • the first lens and the second lens are sequentially arranged from the object side to the image side along the optical axis arrangement.
  • the first lens may have positive power, the object side is convex, the image side is concave; and the second lens may have negative power.
  • the iris lens may further include a filter disposed between the second lens and the imaging surface.
  • the filter can be an IR IR filter, and the IR IR filter can be used to filter visible light noise for high performance recognition of the lens.
  • the bandpass band of the filter can range from about 785 nm to about 835 nm to ensure that irises of different human eye colors are correctly identified.
  • the on-axis distance T12 between the first lens and the second lens and the on-axis distance TTL of the object side of the first lens to the imaging surface of the iris lens may satisfy T12/TTL>0.32, more specifically Ground, T12 and TTL can further satisfy 0.33 ⁇ T12 / TTL ⁇ 0.43.
  • Reasonably arranging the on-axis distance T12 between the first lens and the second lens and the on-axis distance TTL of the object side of the first lens to the imaging surface of the iris lens can reduce the incident angle of the light and reduce the optical aberration, thereby improving the resolution of the lens. .
  • the effective radius of each mirror can be optimized.
  • the effective radius DT11 of the object side of the first lens and the effective radius DT22 of the image side of the second lens may satisfy 0.7 ⁇ DT11/DT22 ⁇ 1, and more specifically, DT11 and DT22 may further satisfy 0.80 ⁇ DT11/DT22. ⁇ 0.99.
  • 0.7 ⁇ DT12/DT22 ⁇ 1 may be satisfied between the effective radius DT12 of the image side of the first lens and the effective radius DT22 of the image side of the second lens, and more specifically, DT12 and DT22 may further satisfy 0.72 ⁇ DT12/ DT22 ⁇ 0.86.
  • the effective radius DT22 of the image side of the second lens and the half of the diagonal length of the effective pixel area of the electronic photosensitive element on the imaging surface of the iris lens may be ImgH.
  • 0.5 ⁇ DT22/ImgH ⁇ 1 may be satisfied between DT22 and ImgH, and more specifically, DT22 and ImgH may further satisfy 0.56 ⁇ DT22/ImgH ⁇ 0.79.
  • the maximum thickness ET1max of the first lens in a direction parallel to the optical axis and the minimum thickness ET1min of the first lens in a direction parallel to the optical axis may satisfy 1 ⁇ ET1max/ET1min ⁇ 1.45, More specifically, ET1max and ET1min can further satisfy 1.10 ⁇ ET1max / ET1min ⁇ 1.40 to ensure the power of the first lens, thereby ensuring the recognition accuracy of the iris lens.
  • the edge thickness ET1 of the first lens and the center thickness CT1 of the first lens on the optical axis may satisfy 0.5 ⁇ ET1/CT1 ⁇ 1, and more specifically, ET1 and CT1 may further satisfy 0.53 ⁇ . ET1/CT1 ⁇ 0.74 to ensure that the overall power of the first lens from the center to the edge is positive, thus ensuring the recognition accuracy of the iris lens.
  • the film system bandwidth is reduced, thereby reducing the interference effect. It is also possible to optimize the maximum incident angle of the main light incident on the electronic photosensitive element.
  • the maximum incident angle CRAmax of the chief ray incident on the electronic photosensitive element can satisfy CRAmax ⁇ 30°, and more specifically, CRAmax can further satisfy 24.14° ⁇ CRAmax ⁇ 29.03°. Such a configuration can also effectively enhance the light-sensing efficiency of light entering the chip, thereby improving the recognition effect of the iris lens.
  • the axial distance TTL of the object side of the first lens to the imaging surface of the iris lens, the imaging surface of the iris lens, the half of the diagonal length of the effective pixel area of the electronic photosensitive element, ImgH, and the total effective focal length of the iris lens can satisfy 0.4 mm. -1 ⁇ TTL / (ImgH * f) ⁇ 0.7 mm -1 , more specifically, TTL, ImgH and f further satisfy 0.61 mm -1 ⁇ TTL / (ImgH * f) ⁇ 0.67 mm -1 . To ensure that the iris lens has sufficient recognition accuracy while ensuring that the lens size is as small as possible.
  • an aperture stop for limiting the beam may be disposed between the object side and the first lens to improve the imaging quality of the lens.
  • the radius of curvature R4 of the image side of the second lens and the total effective focal length f of the iris lens may satisfy
  • an aperture stop for limiting the beam may be disposed between the first lens and the second lens to improve the imaging quality of the lens.
  • 0.5 ⁇ R2/f1 ⁇ 0.9, more specifically, 0.73 ⁇ R2/f1 ⁇ 0.81 may be satisfied to reduce the influence of coma. Improve the resolution of the lens.
  • the iris lens according to the above embodiment of the present application can employ a plurality of lenses, and the lens structure can be effectively compacted by appropriately distributing the power, the surface shape, the center thickness of each lens, and the on-axis spacing between the lenses. To ensure the miniaturization of the lens, the iris lens is more advantageous for production processing and can be applied to portable electronic products.
  • at least one of the mirror faces of each lens is an aspherical mirror. Aspheric lens The characteristic is that the curvature changes continuously from the center of the lens to the periphery.
  • the aspherical lens Unlike a spherical lens having a constant curvature from the center of the lens to the periphery, the aspherical lens has better curvature radius characteristics, and has the advantages of improving distortion and improving astigmatic aberration. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality.
  • the iris lens is not limited to including two lenses.
  • the iris lens can also include other numbers of lenses if desired.
  • FIG. 1 is a schematic view showing the structure of an iris lens according to Embodiment 1 of the present application.
  • the iris lens includes two lenses L1 and L2 which are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens L1 has an object side surface S1 and an image side surface S2, and a second lens L2 having an object side surface S3 and an image side surface S4.
  • the iris lens may further include a filter L3 having an object side S5 and an image side S6.
  • the filter L3 may be an IR infrared filter having a band pass band of from about 785 nm to about 835 nm.
  • an aperture STO for restricting the light beam may be disposed between the object side and the first lens L1 to improve image quality. Light from the object sequentially passes through the respective surfaces S1 to S6 and is finally imaged on the imaging plane S7.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the iris lens in Example 1, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • each lens is taken as an example.
  • the total length of the lens is effectively shortened, the relative contrast of the lens and the recognition accuracy of the lens are improved, and various aberrations are corrected to improve the resolution of the lens.
  • Degree and imaging quality are defined by the following formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1 above);
  • Ai is the correction coefficient of the a-th order of the aspheric surface.
  • Table 2 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for the respective aspherical mirror faces S1 - S4 in the embodiment 1.
  • Table 3 gives the total effective focal length f of the iris lens of Embodiment 1, the effective focal length f1 of the first lens L1, the effective focal length f2 of the second lens L2, and the optical total length TTL of the iris lens (i.e., the first lens L1)
  • the distance from the object side S1 to the imaging plane S7 of the iris lens on the optical axis) and the imaging surface S7 of the iris lens are half the length of the diagonal of the effective pixel area of the electronic photosensitive element, ImgH.
  • the total optical length TTL of the iris lens satisfies TTL/(ImgH*f) between half of the diagonal length ImgH of the effective pixel area of the electronic photosensitive element on the imaging surface S7 and the total effective focal length f of the iris lens. 0.67mm -1 .
  • 1.30;
  • 1.30;
  • the first lens L1 is parallel to the optical axis
  • 2A shows an axial chromatic aberration curve of the iris lens of Embodiment 1, which indicates that light rays of different wavelengths are deviated from a focus point after passing through the iris lens.
  • 2B shows an astigmatism curve of the iris lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2C shows a distortion curve of the iris lens of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • 2D shows a magnification chromatic aberration curve of the iris lens of Embodiment 1, which shows a deviation of different image heights on the imaging plane after the light passes through the iris lens.
  • 2E shows a phase contrast curve of the iris lens of Embodiment 1, which shows the relative illuminance corresponding to different image heights on the imaging surface.
  • the iris lens given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a schematic view showing the structure of an iris lens according to Embodiment 2 of the present application.
  • the iris lens includes two lenses L1 and L2 which are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens L1 has an object side surface S1 and an image side surface S2, and a second lens L2 having an object side surface S3 and an image side surface S4.
  • the iris lens may further include a filter L3 having an object side S5 and an image side S6.
  • the filter L3 may be an IR infrared filter having a band pass band of from about 785 nm to about 835 nm.
  • an aperture STO for restricting the light beam may be disposed between the object side and the first lens L1 to improve image quality. Light from the object sequentially passes through the respective surfaces S1 to S6 and is finally imaged on the imaging plane S7.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the iris lens in Example 2, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 5 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for the respective aspherical mirrors in the embodiment 2.
  • Table 6 shows the total effective focal length f of the iris lens of Embodiment 2, the effective focal length f1 of the first lens L1, the effective focal length f2 of the second lens L2, the optical total length TTL of the iris lens, and the imaging surface S7 of the iris lens.
  • the upper electronic photosensitive element has an effective pixel area half of the diagonal length ImgH.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • 4A shows an axial chromatic aberration curve of the iris lens of Embodiment 2, which shows that light rays of different wavelengths are deviated from a focus point after passing through the iris lens.
  • 4B shows an astigmatism curve of the iris lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 4C shows a distortion curve of the iris lens of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • 4D shows a magnification chromatic aberration curve of the iris lens of Embodiment 2, which shows deviations of different image heights on the imaging plane after the light passes through the iris lens.
  • 4E shows a phase contrast curve of the iris lens of Embodiment 2, which shows the relative illuminance corresponding to different image heights on the imaging surface. 4A to 4E, the iris lens given in Embodiment 2 can achieve good image quality.
  • FIG. 5 is a schematic view showing the structure of an iris lens according to Embodiment 3 of the present application.
  • the iris lens includes two lenses L1 and L2 which are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens L1 has an object side surface S1 and an image side surface S2, and a second lens L2 having an object side surface S3 and an image side surface S4.
  • the iris lens may further include a filter L3 having an object side S5 and an image side S6.
  • the filter L3 may be an IR infrared filter having a band pass band of from about 785 nm to about 835 nm.
  • an aperture STO for restricting the light beam may be disposed between the object side and the first lens L1 to improve image quality. Light from the object sequentially passes through the respective surfaces S1 to S6 and is finally imaged on the imaging plane S7.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the iris lens in Example 3, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 8 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for the respective aspherical mirrors in the embodiment 3.
  • Table 9 shows the total effective focal length f of the iris lens of Embodiment 3, the effective focal length f1 of the first lens L1, the effective focal length f2 of the second lens L2, the optical total length TTL of the iris lens, and the imaging surface S7 of the iris lens.
  • the upper electronic photosensitive element has an effective pixel area half of the diagonal length ImgH.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 6A shows an axial chromatic aberration curve of the iris lens of Embodiment 3, which shows that light rays of different wavelengths are deviated from the focus point after passing through the iris lens.
  • Fig. 6B shows an astigmatism curve of the iris lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a distortion curve of the iris lens of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 6D shows a magnification chromatic aberration curve of the iris lens of Embodiment 3, which shows deviations of different image heights on the imaging plane after the light rays pass through the iris lens.
  • 6E shows a phase contrast curve of the iris lens of Embodiment 3, which shows different image heights on the imaging surface. Corresponding phase contrast. 6A to 6E, the iris lens given in Embodiment 3 can achieve good image quality.
  • FIG. 7 is a schematic view showing the structure of an iris lens according to Embodiment 4 of the present application.
  • the iris lens includes two lenses L1 and L2 which are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens L1 has an object side surface S1 and an image side surface S2, and a second lens L2 having an object side surface S3 and an image side surface S4.
  • the iris lens may further include a filter L3 having an object side S5 and an image side S6.
  • the filter L3 may be an IR infrared filter having a band pass band of from about 785 nm to about 835 nm.
  • an aperture STO for restricting the light beam may be disposed between the object side and the first lens L1 to improve image quality. Light from the object sequentially passes through the respective surfaces S1 to S6 and is finally imaged on the imaging plane S7.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the iris lens in Example 4, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 11 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for the respective aspherical mirrors in the embodiment 4.
  • Table 12 shows the total effective focal length f of the iris lens of Example 4, the effective focal length f1 of the first lens L1, the effective focal length f2 of the second lens L2, the optical total length TTL of the iris lens, and the imaging surface S7 of the iris lens.
  • the upper electronic photosensitive element has an effective pixel area half of the diagonal length ImgH.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 8A shows an axial chromatic aberration curve of the iris lens of Embodiment 4, which shows that light rays of different wavelengths are deviated from the focus point after passing through the iris lens.
  • Fig. 8B shows an astigmatism curve of the iris lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a distortion curve of the iris lens of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 8D shows a magnification chromatic aberration curve of the iris lens of Embodiment 4, which shows deviations of different image heights on the imaging plane after the light rays pass through the iris lens.
  • Fig. 8E shows a phase contrast curve of the iris lens of Embodiment 4, which shows the relative illuminance corresponding to different image heights on the imaging surface. 8A to 8E, the iris lens given in Embodiment 4 can achieve good
  • FIG. 9 is a schematic view showing the structure of an iris lens according to Embodiment 4 of the present application.
  • the iris lens includes two lenses L1 and L2 which are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens L1 has an object side surface S1 and an image side surface S2, and a second lens L2 having an object side surface S3 and an image side surface S4.
  • the iris lens may further include a filter L3 having an object side S5 and an image side S6.
  • the filter L3 may be an IR infrared filter having a band pass band of from about 785 nm to about 835 nm.
  • an aperture STO for limiting the light beam may be disposed between the first lens L1 and the second lens L2 to improve image quality. Light from the object sequentially passes through the surfaces S1 to S6 and most The final image is on the imaging plane S7.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the iris lens in Example 5, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 14 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for the respective aspherical mirrors in the embodiment 5.
  • Table 15 gives the total effective focal length f of the iris lens of Example 5, the effective focal length f1 of the first lens L1, the effective focal length f2 of the second lens L2, the optical total length TTL of the iris lens, and the imaging surface S7 of the iris lens.
  • the upper electronic photosensitive element has an effective pixel area half of the diagonal length ImgH.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 10A shows an axial chromatic aberration curve of the iris lens of Embodiment 5, which shows that light rays of different wavelengths are deviated from the focus point after passing through the iris lens.
  • Fig. 10B shows an astigmatism curve of the iris lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Figure 10C The distortion curve of the iris lens of Embodiment 5 is shown, which represents the distortion magnitude value in the case of different viewing angles.
  • Fig. 10D shows a magnification chromatic aberration curve of the iris lens of Embodiment 5, which shows deviations of different image heights on the imaging plane after the light rays pass through the iris lens.
  • Fig. 10E shows a phase contrast curve of the iris lens of Embodiment 5, which shows the degree of contrast corresponding to different image heights on the imaging surface. 10A to 10E, the iris lens given in Embodiment 5 can achieve good image quality
  • FIG. 11 is a view showing the structure of an iris lens according to Embodiment 4 of the present application.
  • the iris lens includes two lenses L1 and L2 which are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens L1 has an object side surface S1 and an image side surface S2, and a second lens L2 having an object side surface S3 and an image side surface S4.
  • the iris lens may further include a filter L3 having an object side S5 and an image side S6.
  • the filter L3 may be an IR infrared filter having a band pass band of from about 785 nm to about 835 nm.
  • an aperture STO for limiting the light beam may be disposed between the first lens L1 and the second lens L2 to improve image quality. Light from the object sequentially passes through the respective surfaces S1 to S6 and is finally imaged on the imaging plane S7.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the iris lens in Example 6, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 17 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for the respective aspherical mirrors in the embodiment 6.
  • Table 18 shows the total effective focal length f of the iris lens of Example 6, the effective focal length f1 of the first lens L1, the effective focal length f2 of the second lens L2, the optical total length TTL of the iris lens, and the imaging surface S7 of the iris lens.
  • the upper electronic photosensitive element has an effective pixel area half of the diagonal length ImgH.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 12A shows an axial chromatic aberration curve of the iris lens of Example 6, which shows that the light of different wavelengths is deviated from the focus point after passing through the iris lens.
  • Fig. 12B shows an astigmatism curve of the iris lens of Example 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 12C shows a distortion curve of the iris lens of Embodiment 6, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 12D shows a magnification chromatic aberration curve of the iris lens of Example 6, which shows the deviation of the different image heights on the imaging plane after the light rays pass through the iris lens.
  • Fig. 12E shows a phase contrast curve of the iris lens of Example 6, which shows the relative illuminance corresponding to different image heights on the imaging surface. 12A to 12E, the iris lens given in Embodiment 6 can achieve good image quality.
  • Embodiments 1 to 6 respectively satisfy the relationships shown in Table 19 below.
  • the present application also provides an image pickup device whose photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the camera device may be an independent camera device such as a digital camera, or may be a camera module integrated on a mobile electronic device such as a mobile phone.
  • the camera device is equipped with the iris lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Human Computer Interaction (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)

Abstract

一种虹膜镜头,该虹膜镜头沿光轴由物侧至像侧依序包括第一透镜(L1)和第二透镜(L2)。其中,第一透镜(L1)具有正光焦度,其物侧面(S1)为凸面,像侧面(S2)为凹面;第二透镜(L2)具有负光焦度,第一透镜(L1)和第二透镜(L2)在光轴上的间隔距离T12与第一透镜(L1)的物侧面(S1)至虹膜镜头的成像面(S7)在光轴上的距离TTL满足T12/TTL>0.32。

Description

虹膜镜头
相关申请的交叉引用
本申请要求于2017年5月17日提交于中国国家知识产权局(SIPO)的、专利申请号为201710346737.2的中国专利申请以及于2017年5月17日提交至SIPO的、专利申请号为201720545624.0的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本发明涉及一种虹膜镜头,更具体地,本发明涉及一种包括两片透镜的虹膜镜头。
背景技术
近年来,随着科学技术的发展,便携式电子产品逐步兴起,具有摄像功能的便携式电子产品得到人们更多的青睐,因此市场对适用于便携式电子产品的摄像镜头的需求逐渐增大。目前常用的摄像镜头的感光元件一般为CCD(Charge-Coupled Device,感光耦合元件)或CMOS(Complementary Metal-Oxide Semiconductor,互补性氧化金属半导体元件)。随着半导体制程技术的精进,光学系统趋向于更高像素,芯片的像素尺寸越来越小,对相配套使用的镜头的高成像品质及小型化均提出了更高的要求。
特别是在安防领域,对带有虹膜识别的镜头的要求也越来越高,不仅需要保证镜头结构的紧凑,还需要提高镜头的光亮度和解像力,以提升镜头的识别精度。
因此,需要提供一种高亮度、高解像力、结构简单的紧凑型虹膜镜头。
发明内容
本申请提供的技术方案至少部分地解决了以上所述的技术问题。
根据本申请的一个方面提供了这样一种虹膜镜头,该虹膜镜头沿光轴由物侧至像侧依序包括第一透镜和第二透镜。其中,第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;第二透镜具有负光焦度,第一透镜和第二透镜在光轴上的间隔距离T12与第一透镜的物侧面至虹膜镜头的成像面在光轴上的距离TTL之间可满足T12/TTL>0.32。
本申请采用了多片(例如,两片)透镜,通过合理分配光学镜头的各镜片的光焦度及面型,在简化镜头结构的过程中,使系统具有相对照度高以及解像力高的优势。
根据本申请的另一个方面还提供了这样一种虹膜镜头,该虹膜镜头沿光轴由物侧至像侧依序包括第一透镜和第二透镜。其中,第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;第二透镜具有负光焦度,第一透镜的物侧面的有效半径DT11与第二透镜的像侧面的有效半径DT22之间可满足0.7<DT11/DT22<1。
在一个实施方式中,第一透镜在平行于光轴的方向上的最大厚度ET1max与第一透镜在平行于光轴的方向上的最小厚度ET1min之间可满足1<ET1max/ET1min<1.45。
在一个实施方式中,虹膜镜头还包括设置在成像面上的电子感光元件,其中,主光线入射电子感光元件的最大入射角度CRAmax可满足CRAmax<30°。
在一个实施方式中,第一透镜的边缘厚度ET1与第一透镜于光轴上的中心厚度CT1之间可满足0.5<ET1/CT1<1。
在一个实施方式中,虹膜镜头还包括设置在第二透镜与成像面之间的滤光片,该滤光片为IR红外滤光片。
在一个实施方式中,上述IR红外滤光片的带通波段可为约785nm至约835nm。
在一个实施方式中,第一透镜的物侧面至虹膜镜头的成像面在光轴上的距离TTL、虹膜镜头的成像面上电子感光元件有效像素区域对角线长的一半ImgH与虹膜镜头的总有效焦距之间可满足0.4mm-1<TTL/(ImgH*f)<0.7mm-1
在一个实施方式中,第一透镜的像侧面的有效半径DT12和第二透镜的像侧面的有效半径DT22之间可满足0.7<DT12/DT22<1。
在一个实施方式中,第二透镜的像侧面的有效半径DT22与虹膜镜头的成像面上电子感光元件有效像素区域对角线长的一半ImgH之间可满足0.5<DT22/ImgH<1。
在一个实施方式中,虹膜镜头还包括设置在物侧与第一透镜之间的孔径光阑,第二透镜的像侧面的曲率半径R4与虹膜镜头的总有效焦距f之间可满足|R4/f|<3。
在一个实施方式中,虹膜镜头还包括设置在第一透镜与第二透镜之间的孔径光阑,第一透镜的像侧面的曲率半径R2与第一透镜的有效焦距f1之间可满足0.5<R2/f1<0.9。
通过上述配置的虹膜镜头,还可以进一步具有例如高识别精度、有效矫正像差、有效矫正场曲、缩短系统总长度等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本发明的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的虹膜镜头的结构示意图;
图2A示出了实施例1的虹膜镜头的轴上色差曲线;
图2B示出了实施例1的虹膜镜头的象散曲线;
图2C示出了实施例1的虹膜镜头的畸变曲线;
图2D示出了实施例1的虹膜镜头的倍率色差曲线;
图2E示出了实施例1的虹膜镜头的相对照度曲线;
图3示出了根据本申请实施例2的虹膜镜头的结构示意图;
图4A示出了实施例2的虹膜镜头的轴上色差曲线;
图4B示出了实施例2的虹膜镜头的象散曲线;
图4C示出了实施例2的虹膜镜头的畸变曲线;
图4D示出了实施例2的虹膜镜头的倍率色差曲线;
图4E示出了实施例2的虹膜镜头的相对照度曲线;
图5示出了根据本申请实施例3的虹膜镜头的结构示意图;
图6A示出了实施例3的虹膜镜头的轴上色差曲线;
图6B示出了实施例3的虹膜镜头的象散曲线;
图6C示出了实施例3的虹膜镜头的畸变曲线;
图6D示出了实施例3的虹膜镜头的倍率色差曲线;
图6E示出了实施例3的虹膜镜头的相对照度曲线;
图7示出了根据本申请实施例4的虹膜镜头的结构示意图;
图8A示出了实施例4的虹膜镜头的轴上色差曲线;
图8B示出了实施例4的虹膜镜头的象散曲线;
图8C示出了实施例4的虹膜镜头的畸变曲线;
图8D示出了实施例4的虹膜镜头的倍率色差曲线;
图8E示出了实施例4的虹膜镜头的相对照度曲线;
图9示出了根据本申请实施例5的虹膜镜头的结构示意图;
图10A示出了实施例5的虹膜镜头的轴上色差曲线;
图10B示出了实施例5的虹膜镜头的象散曲线;
图10C示出了实施例5的虹膜镜头的畸变曲线;
图10D示出了实施例5的虹膜镜头的倍率色差曲线;
图10E示出了实施例5的虹膜镜头的相对照度曲线;
图11示出了根据本申请实施例6的虹膜镜头的结构示意图;
图12A示出了实施例6的虹膜镜头的轴上色差曲线;
图12B示出了实施例6的虹膜镜头的象散曲线;
图12C示出了实施例6的虹膜镜头的畸变曲线;
图12D示出了实施例6的虹膜镜头的倍率色差曲线;
图12E示出了实施例6的虹膜镜头的相对照度曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
此外,近轴区域是指光轴附近的区域。在本文中,每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的虹膜镜头包括例如两个透镜,即第一透镜和第二透镜。第一透镜和第二透镜沿着光轴从物侧至像侧依序 排列。
在示例性实施方式中,第一透镜可具有正光焦度,其物侧面为凸面,像侧面为凹面;以及第二透镜可具有负光焦度。
可选地,虹膜镜头还可包括设置在第二透镜与成像面之间的滤光片。该滤光片可为IR红外滤光片,IR红外滤光片可用于过滤可见光杂讯,从而实现镜头的高性能识别效果。该滤光片的带通波段可为约785nm至约835nm,以确保不同人种眼球颜色的虹膜都能够正确识别。
在示例性实施方式中,第一透镜和第二透镜的轴上间隔距离T12与第一透镜的物侧面至虹膜镜头的成像面的轴上距离TTL之间可满足T12/TTL>0.32,更具体地,T12和TTL进一步可满足0.33≤T12/TTL≤0.43。合理配置第一透镜和第二透镜的轴上间隔距离T12和第一透镜的物侧面至虹膜镜头的成像面的轴上距离TTL可降低光线入射角度、减小光学像差,从而提升镜头的解像力。
为了实现镜头的小型化,可对各镜面的有效半径进行优化。例如,第一透镜的物侧面的有效半径DT11与第二透镜的像侧面的有效半径DT22之间可满足0.7<DT11/DT22<1,更具体地,DT11和DT22进一步可满足0.80≤DT11/DT22≤0.99。又例如,第一透镜的像侧面的有效半径DT12和第二透镜的像侧面的有效半径DT22之间可满足0.7<DT12/DT22<1,更具体地,DT12和DT22进一步可满足0.72≤DT12/DT22≤0.86。
另外,为了在实现镜头尺寸小型化的同时实现与芯片的良好匹配,可对第二透镜的像侧面的有效半径DT22和虹膜镜头的成像面上电子感光元件有效像素区域对角线长的一半ImgH进行合理配置。DT22与ImgH之间可满足0.5<DT22/ImgH<1,更具体地,DT22和ImgH进一步可满足0.56≤DT22/ImgH≤0.79。
在示例性实施方式中,第一透镜在平行于光轴的方向上的最大厚度ET1max与第一透镜在平行于光轴的方向上的最小厚度ET1min之间可满足1<ET1max/ET1min<1.45,更具体地,ET1max和ET1min进一步可满足1.10≤ET1max/ET1min≤1.40,以保证第一透镜的光焦度,从而确保虹膜镜头的识别精度。
在示例性实施方式中,第一透镜的边缘厚度ET1与第一透镜于光轴上的中心厚度CT1之间可满足0.5<ET1/CT1<1,更具体地,ET1和CT1进一步可满足0.53≤ET1/CT1≤0.74,以保证第一透镜从中心到边缘的整体光焦度均为正,从而确保虹膜镜头的识别精度。
为了有效减小周边视场入射角度下的膜系漂移,减小膜系带宽,从而降低干扰的作用。还可对主光线入射电子感光元件的最大入射角度进行优化。主光线入射电子感光元件的最大入射角度CRAmax可满足CRAmax<30°,更具体地,CRAmax进一步可满足24.14°≤CRAmax≤29.03°。这样的配置还能够有效地提升光线进入芯片的感光效率,从而提升虹膜镜头的识别效果。
第一透镜的物侧面至虹膜镜头的成像面的轴上距离TTL、虹膜镜头的成像面上电子感光元件有效像素区域对角线长的一半ImgH与虹膜镜头的总有效焦距之间可满足0.4mm-1<TTL/(ImgH*f)<0.7mm-1,更具体地,TTL、ImgH和f进一步可满足0.61mm-1≤TTL/(ImgH*f)≤0.67mm-1。以确保在保证镜头尺寸尽可能小的同时,使得虹膜镜头具有足够的识别精度。
在一些实施方式中,可在物侧与第一透镜之间设置用于限制光束的孔径光阑,以提升镜头的成像品质。此时,第二透镜的像侧面的曲率半径R4与虹膜镜头的总有效焦距f之间可满足|R4/f|<3,更具体地,R4和f进一步可满足0.65≤|R4/f|≤2.98,以实现虹膜镜头的高亮度和高解像力。
在另一些实施方式中,可在第一透镜与第二透镜之间设置用于限制光束的孔径光阑,以提升镜头的成像品质。此时,第一透镜的像侧面的曲率半径R2与第一透镜的有效焦距f1之间可满足0.5<R2/f1<0.9,更具体地,0.73≤R2/f1≤0.81,以降低慧差影响,提升镜头的解像力。
根据本申请的上述实施方式的虹膜镜头可采用多片镜片,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效紧凑镜头结构、保证镜头的小型化,从而使得虹膜镜头更有利于生产加工并且可适用于便携式电子产品。在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜 的特点是:曲率从透镜中心到周边是连续变化的。与从透镜中心到周边有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以两个透镜为例进行了描述,但是该虹膜镜头不限于包括两个透镜。如果需要,该虹膜镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的虹膜镜头的具体实施例。
实施例1
以下参照图1至图2E描述根据本申请实施例1的虹膜镜头。图1示出了根据本申请实施例1的虹膜镜头的结构示意图。
如图1所示,虹膜镜头沿着光轴包括从物侧至成像侧依序排列的两个透镜L1和L2。第一透镜L1,具有物侧面S1和像侧面S2;以及第二透镜L2,具有物侧面S3和像侧面S4。可选地,虹膜镜头还可包括具有物侧面S5和像侧面S6的滤光片L3。滤光片L3可为IR红外滤光片,其带通波段为约785nm至约835nm。在本实施例的虹膜镜头中,还可在物侧与第一透镜L1之间设置用于限制光束的光圈STO,以提高成像质量。来自物体的光依序穿过各表面S1至S6并最终成像在成像面S7上。
表1示出了实施例1中虹膜镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2017107328-appb-000001
Figure PCTCN2017107328-appb-000002
表1
本实施例采用了两片透镜作为示例,通过合理分配各镜片的焦距与面型,有效缩短镜头总长度,提升镜头的相对照度和镜头的识别精度;同时校正各类像差,提高镜头的解析度与成像品质。各非球面面型x由以下公式限定:
Figure PCTCN2017107328-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在上表1中已给出);Ai是非球面第i-th阶的修正系数。下表2示出了可用于实施例1中各非球面镜面S1-S4的高次项系数A4、A6、A8、A10、A12、A14和A16
面号 A4 A6 A8 A10 A12 A14 A16
S1 -2.7825E-02 -2.3370E-02 4.0932E-02 -1.3584E-01 1.5653E-01 -8.2473E-02 0.0000E+00
S2 4.1007E-02 1.2926E-01 -4.3835E-01 1.1608E+00 -1.4200E+00 7.5082E-01 0.0000E+00
S3 -3.0579E-01 -7.7277E-01 4.4362E+00 -1.5260E+01 2.8847E+01 -2.9261E+01 1.2011E+01
S4 -2.2537E-01 -4.8696E-02 3.7403E-01 -8.0992E-01 8.8518E-01 -5.0706E-01 1.1906E-01
表2
表3给出了实施例1的虹膜镜头的总有效焦距f、第一透镜L1的有效焦距f1、第二透镜L2的有效焦距f2、虹膜镜头的光学总长度TTL(即,第一透镜L1的物侧面S1至虹膜镜头的成像面S7在光轴上的距离)、以及虹膜镜头的成像面S7上电子感光元件有效像素区域对角线长的一半ImgH。
参数 f(mm) f1(mm) f2(mm) TTL(mm) ImgH(mm)
数值 4.30 3.50 -4.35 4.12 1.43
表3
由表3可得,虹膜镜头的光学总长度TTL与成像面S7上电子感光元件有效像素区域对角线长的一半ImgH以及虹膜镜头的总有效焦距f之间满足TTL/(ImgH*f)=0.67mm-1。结合表1和表3可得,第二透镜L2的像侧面S4的曲率半径R4与虹膜镜头的总有效焦距f之间满足|R4/f|=1.30;第一透镜L1和第二透镜L2在光轴上的间隔距离T12与虹膜镜头的光学总长度TTL之间满足T12/TTL=0.43。
在该实施例中,第一透镜L1的边缘厚度ET1与第一透镜L1在光轴上的中心厚度CT1之间满足ET1/CT1=0.74;第一透镜L1的物侧面S1的有效半径DT11与第二透镜的像侧面S4的有效半径DT22之间满足DT11/DT22=0.80;第一透镜L1的像侧面S2的有效半径DT12与第二透镜的像侧面S4的有效半径DT22之间满足DT12/DT22=0.72;第二透镜的像侧面S4的有效半径DT22与成像面S7上电子感光元件有效像素区域对角线长的一半ImgH之间满足DT22/ImgH=0.79;第一透镜L1在平行于光轴的方向上的最大厚度ET1max与第一透镜L1在平行于光轴的方向上的最小厚度ET1min之间满足ET1max/ET1min=1.20;主光线入射电子感光元件的最大入射角度CRAmax=24.14°。
图2A示出了实施例1的虹膜镜头的轴上色差曲线,其表示不同波长的光线经由虹膜镜头后的会聚焦点偏离。图2B示出了实施例1的虹膜镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的虹膜镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的虹膜镜头的倍率色差曲线,其表示光线经由虹膜镜头后在成像面上的不同的像高的偏差。图2E示出了实施例1的虹膜镜头的相对照度曲线,其表示成像面上不同像高所对应的相对照度。根据图2A至图2E可知,实施例1所给出的虹膜镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4E描述了根据本申请实施例2的虹膜镜头。 在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的虹膜镜头的结构示意图。
如图3所示,虹膜镜头沿着光轴包括从物侧至成像侧依序排列的两个透镜L1和L2。第一透镜L1,具有物侧面S1和像侧面S2;以及第二透镜L2,具有物侧面S3和像侧面S4。可选地,虹膜镜头还可包括具有物侧面S5和像侧面S6的滤光片L3。滤光片L3可为IR红外滤光片,其带通波段为约785nm至约835nm。在本实施例的虹膜镜头中,还可在物侧与第一透镜L1之间设置用于限制光束的光圈STO,以提高成像质量。来自物体的光依序穿过各表面S1至S6并最终成像在成像面S7上。
表4示出了实施例2中虹膜镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表5示出了可用于实施例2中各非球面镜面的高次项系数A4、A6、A8、A10、A12、A14和A16。表6给出了实施例2的虹膜镜头的总有效焦距f、第一透镜L1的有效焦距f1、第二透镜L2的有效焦距f2、虹膜镜头的光学总长度TTL、以及虹膜镜头的成像面S7上电子感光元件有效像素区域对角线长的一半ImgH。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017107328-appb-000004
表4
面号 A4 A6 A8 A10 A12 A14 A16
S1 -2.6160E-02 -9.8112E-02 3.2590E-01 -7.3463E-01 7.5777E-01 -3.2925E-01 0.0000E+00
S2 2.6250E-01 -5.4990E-01 1.2654E+00 -1.7467E+00 1.3458E+00 -3.6374E-01 0.0000E+00
S3 -3.3351E-01 -2.7563E-01 4.8402E-01 -4.3714E-01 -1.9811E+00 3.7155E+00 -2.4914E+00
S4 -2.0495E-01 -7.0167E-02 2.8496E-01 -4.8863E-01 4.2976E-01 -2.0449E-01 4.1370E-02
表5
参数 f(mm) f1(mm) f2(mm) TTL(mm) ImgH(mm)
数值 4.30 3.42 -4.98 4.07 1.43
表6
图4A示出了实施例2的虹膜镜头的轴上色差曲线,其表示不同波长的光线经由虹膜镜头后的会聚焦点偏离。图4B示出了实施例2的虹膜镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的虹膜镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的虹膜镜头的倍率色差曲线,其表示光线经由虹膜镜头后在成像面上的不同的像高的偏差。图4E示出了实施例2的虹膜镜头的相对照度曲线,其表示成像面上不同像高所对应的相对照度。根据图4A至图4E可知,实施例2所给出的虹膜镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6E描述了根据本申请实施例3的虹膜镜头。图5示出了根据本申请实施例3的虹膜镜头的结构示意图。
如图5所示,虹膜镜头沿着光轴包括从物侧至成像侧依序排列的两个透镜L1和L2。第一透镜L1,具有物侧面S1和像侧面S2;以及第二透镜L2,具有物侧面S3和像侧面S4。可选地,虹膜镜头还可包括具有物侧面S5和像侧面S6的滤光片L3。滤光片L3可为IR红外滤光片,其带通波段为约785nm至约835nm。在本实施例的虹膜镜头中,还可在物侧与第一透镜L1之间设置用于限制光束的光圈STO,以提高成像质量。来自物体的光依序穿过各表面S1至S6并最终成像在成像面S7上。
表7示出了实施例3中虹膜镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表8示出了可用于实施例3中各非球面镜面的高次项系数A4、A6、A8、 A10、A12、A14和A16。表9给出了实施例3的虹膜镜头的总有效焦距f、第一透镜L1的有效焦距f1、第二透镜L2的有效焦距f2、虹膜镜头的光学总长度TTL、以及虹膜镜头的成像面S7上电子感光元件有效像素区域对角线长的一半ImgH。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017107328-appb-000005
表7
面号 A4 A6 A8 A10 A12 A14 A16
S1 -4.7633E-02 -1.5765E-01 9.3141E-01 -4.1530E+00 9.2021E+00 -1.0447E+01 4.5212E+00
S2 6.1085E-01 -2.3867E+00 9.6314E+00 -2.8191E+01 5.7935E+01 -7.1768E+01 4.0952E+01
S3 -1.5086E+00 2.0247E+00 1.7414E-01 -4.1911E+01 1.6557E+02 -2.9444E+02 1.9063E+02
S4 -4.4143E-01 -1.6215E-01 2.5326E+00 -9.6285E+00 1.8539E+01 -1.8475E+01 7.5187E+00
表8
参数 f(mm) f1(mm) f2(mm) TTL(mm) ImgH(mm)
数值 4.30 2.90 -3.35 3.66 1.40
表9
图6A示出了实施例3的虹膜镜头的轴上色差曲线,其表示不同波长的光线经由虹膜镜头后的会聚焦点偏离。图6B示出了实施例3的虹膜镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的虹膜镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的虹膜镜头的倍率色差曲线,其表示光线经由虹膜镜头后在成像面上的不同的像高的偏差。图6E示出了实施例3的虹膜镜头的相对照度曲线,其表示成像面上不同像高所 对应的相对照度。根据图6A至图6E可知,实施例3所给出的虹膜镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8E描述了根据本申请实施例4的虹膜镜头。图7示出了根据本申请实施例4的虹膜镜头的结构示意图。
如图7所示,虹膜镜头沿着光轴包括从物侧至成像侧依序排列的两个透镜L1和L2。第一透镜L1,具有物侧面S1和像侧面S2;以及第二透镜L2,具有物侧面S3和像侧面S4。可选地,虹膜镜头还可包括具有物侧面S5和像侧面S6的滤光片L3。滤光片L3可为IR红外滤光片,其带通波段为约785nm至约835nm。在本实施例的虹膜镜头中,还可在物侧与第一透镜L1之间设置用于限制光束的光圈STO,以提高成像质量。来自物体的光依序穿过各表面S1至S6并最终成像在成像面S7上。
表10示出了实施例4中虹膜镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表11示出了可用于实施例4中各非球面镜面的高次项系数A4、A6、A8、A10、A12、A14和A16。表12给出了实施例4的虹膜镜头的总有效焦距f、第一透镜L1的有效焦距f1、第二透镜L2的有效焦距f2、虹膜镜头的光学总长度TTL、以及虹膜镜头的成像面S7上电子感光元件有效像素区域对角线长的一半ImgH。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017107328-appb-000006
表10
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.2370E-02 -4.5618E-01 2.8196E+00 -9.8281E+00 1.9081E+01 -1.9479E+01 8.1856E+00
S2 2.2084E+00 -1.8264E+01 1.2729E+02 -5.7248E+02 1.5904E+03 -2.4535E+03 1.6269E+03
S3 -4.9117E-01 -2.3555E+00 1.9208E+01 -9.0295E+01 2.3731E+02 -3.3491E+02 1.9467E+02
S4 -4.1747E-01 4.1254E-02 9.9817E-01 -4.0704E+00 7.8205E+00 -7.7140E+00 3.1000E+00
表11
参数 f(mm) f1(mm) f2(mm) TTL(mm) ImgH(mm)
数值 4.30 3.29 -4.58 3.68 1.40
表12
图8A示出了实施例4的虹膜镜头的轴上色差曲线,其表示不同波长的光线经由虹膜镜头后的会聚焦点偏离。图8B示出了实施例4的虹膜镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的虹膜镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的虹膜镜头的倍率色差曲线,其表示光线经由虹膜镜头后在成像面上的不同的像高的偏差。图8E示出了实施例4的虹膜镜头的相对照度曲线,其表示成像面上不同像高所对应的相对照度。根据图8A至图8E可知,实施例4所给出的虹膜镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10E描述了根据本申请实施例5的虹膜镜头。图9示出了根据本申请实施例4的虹膜镜头的结构示意图。
如图9所示,虹膜镜头沿着光轴包括从物侧至成像侧依序排列的两个透镜L1和L2。第一透镜L1,具有物侧面S1和像侧面S2;以及第二透镜L2,具有物侧面S3和像侧面S4。可选地,虹膜镜头还可包括具有物侧面S5和像侧面S6的滤光片L3。滤光片L3可为IR红外滤光片,其带通波段为约785nm至约835nm。在本实施例的虹膜镜头中,还可在第一透镜L1与第二透镜L2之间设置用于限制光束的光圈STO,以提高成像质量。来自物体的光依序穿过各表面S1至S6并最 终成像在成像面S7上。
表13示出了实施例5中虹膜镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表14示出了可用于实施例5中各非球面镜面的高次项系数A4、A6、A8、A10、A12、A14和A16。表15给出了实施例5的虹膜镜头的总有效焦距f、第一透镜L1的有效焦距f1、第二透镜L2的有效焦距f2、虹膜镜头的光学总长度TTL、以及虹膜镜头的成像面S7上电子感光元件有效像素区域对角线长的一半ImgH。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017107328-appb-000007
表13
面号 A4 A6 A8 A10 A12 A14 A16
S1 -2.2534E-02 -3.8220E-02 1.0513E-01 -2.5572E-01 2.6669E-01 -1.2275E-01 0.0000E+00
S2 5.2950E-02 2.1007E-01 -8.5353E-01 3.3212E+00 -5.9250E+00 4.7546E+00 0.0000E+00
S3 -3.8866E-01 -3.1806E+00 2.6058E+01 -1.2681E+02 3.4131E+02 -4.8881E+02 2.8285E+02
S4 -3.5154E-01 -1.3362E-01 1.4914E+00 -4.9150E+00 8.1112E+00 -6.9308E+00 2.4034E+00
表14
参数 f(mm) f1(mm) f2(mm) TTL(mm) ImgH(mm)
数值 4.13 3.12 -4.40 3.73 1.43
表15
图10A示出了实施例5的虹膜镜头的轴上色差曲线,其表示不同波长的光线经由虹膜镜头后的会聚焦点偏离。图10B示出了实施例5的虹膜镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C 示出了实施例5的虹膜镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的虹膜镜头的倍率色差曲线,其表示光线经由虹膜镜头后在成像面上的不同的像高的偏差。图10E示出了实施例5的虹膜镜头的相对照度曲线,其表示成像面上不同像高所对应的相对照度。根据图10A至图10E可知,实施例5所给出的虹膜镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12E描述了根据本申请实施例6的虹膜镜头。图11示出了根据本申请实施例4的虹膜镜头的结构示意图。
如图11所示,虹膜镜头沿着光轴包括从物侧至成像侧依序排列的两个透镜L1和L2。第一透镜L1,具有物侧面S1和像侧面S2;以及第二透镜L2,具有物侧面S3和像侧面S4。可选地,虹膜镜头还可包括具有物侧面S5和像侧面S6的滤光片L3。滤光片L3可为IR红外滤光片,其带通波段为约785nm至约835nm。在本实施例的虹膜镜头中,还可在第一透镜L1与第二透镜L2之间设置用于限制光束的光圈STO,以提高成像质量。来自物体的光依序穿过各表面S1至S6并最终成像在成像面S7上。
表16示出了实施例6中虹膜镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表17示出了可用于实施例6中各非球面镜面的高次项系数A4、A6、A8、A10、A12、A14和A16。表18给出了实施例6的虹膜镜头的总有效焦距f、第一透镜L1的有效焦距f1、第二透镜L2的有效焦距f2、虹膜镜头的光学总长度TTL、以及虹膜镜头的成像面S7上电子感光元件有效像素区域对角线长的一半ImgH。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017107328-appb-000008
Figure PCTCN2017107328-appb-000009
表16
面号 A4 A6 A8 A10 A12 A14 A16
S1 -1.9164E-02 -2.7257E-02 7.4036E-02 -1.8945E-01 2.0138E-01 -9.5530E-02 0.0000E+00
S2 6.8147E-02 1.6641E-01 -4.4392E-01 1.9723E+00 -3.7066E+00 3.6909E+00 0.0000E+00
S3 -3.5832E-01 -2.7831E+00 2.1916E+01 -1.0353E+02 2.6915E+02 -3.7250E+02 2.0669E+02
S4 -3.2472E-01 -2.1106E-01 1.6033E+00 -4.9099E+00 7.7491E+00 -6.4143E+00 2.1613E+00
表17
参数 f(mm) f1(mm) f2(mm) TTL(mm) ImgH(mm)
数值 4.06 3.16 -5.07 3.73 1.43
表18
图12A示出了实施例6的虹膜镜头的轴上色差曲线,其表示不同波长的光线经由虹膜镜头后的会聚焦点偏离。图12B示出了实施例6的虹膜镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的虹膜镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的虹膜镜头的倍率色差曲线,其表示光线经由虹膜镜头后在成像面上的不同的像高的偏差。图12E示出了实施例6的虹膜镜头的相对照度曲线,其表示成像面上不同像高所对应的相对照度。根据图12A至图12E可知,实施例6所给出的虹膜镜头能够实现良好的成像品质。
综上,实施例1至实施例6分别满足以下表19所示的关系。
条件式\实施例 1 2 3 4 5 6
T12/TTL 0.43 0.39 0.37 0.35 0.35 0.33
DT11/DT22 0.80 0.86 0.95 0.91 0.99 0.97
ET1max/ET1min 1.20 1.27 1.40 1.10 1.20 1.13
CRAmax(°) 24.14 24.31 27.92 28.84 29.03 28.93
ET1/CT1 0.74 0.67 0.58 0.67 0.53 0.60
TTL/(ImgH*f)(mm-1) 0.67 0.66 0.61 0.61 0.63 0.64
DT12/DT22 0.72 0.77 0.86 0.75 0.78 0.73
DT22/ImgH 0.79 0.76 0.56 0.58 0.65 0.64
|R4/f| 1.30 2.68 2.98 0.65 14.38 30.29
R2/f1 1.25 1.09 0.91 0.52 0.81 0.73
表19
本申请还提供一种摄像装置,其感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。摄像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的摄像模块。该摄像装置装配有以上描述的虹膜镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (24)

  1. 虹膜镜头,沿光轴由物侧至像侧依序包括第一透镜和第二透镜,
    其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有负光焦度,
    所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12与所述第一透镜的物侧面至所述虹膜镜头的成像面在所述光轴上的距离TTL满足T12/TTL>0.32。
  2. 根据权利要求1所述的虹膜镜头,其特征在于,所述第一透镜的物侧面的有效半径DT11与所述第二透镜的像侧面的有效半径DT22满足0.7<DT11/DT22<1。
  3. 根据权利要求1所述的虹膜镜头,其特征在于,所述第一透镜在平行于所述光轴的方向上的最大厚度ET1max与所述第一透镜在平行于所述光轴的方向上的最小厚度ET1min满足1<ET1max/ET1min<1.45。
  4. 根据权利要求1所述的虹膜镜头,还包括设置在所述虹膜镜头的成像面上的电子感光元件,其特征在于,
    主光线入射所述电子感光元件的最大入射角度CRAmax满足CRAmax<30°。
  5. 根据权利要求1所述的虹膜镜头,其特征在于,所述第一透镜的边缘厚度ET1与所述第一透镜于所述光轴上的中心厚度CT1满足0.5<ET1/CT1<1。
  6. 根据权利要求1所述的虹膜镜头,其特征在于,所述虹膜镜头 还包括设置在所述第二透镜与所述虹膜镜头的成像面之间的IR红外滤光片。
  7. 根据权利要求6所述的虹膜镜头,其特征在于,所述IR红外滤光片的带通波段为785nm至835nm。
  8. 根据权利要求1所述的虹膜镜头,其特征在于,0.4mm-1<TTL/(ImgH*f)<0.7mm-1
    其中,TTL为所述第一透镜的物侧面至所述虹膜镜头的成像面在所述光轴上的距离;
    ImgH为所述虹膜镜头的成像面上电子感光元件有效像素区域对角线长的一半;
    f为所述虹膜镜头的总有效焦距。
  9. 根据权利要求1所述的虹膜镜头,其特征在于,所述第一透镜的像侧面的有效半径DT12和所述第二透镜的像侧面的有效半径DT22满足0.7<DT12/DT22<1。
  10. 根据权利要求1所述的虹膜镜头,其特征在于,所述第二透镜的像侧面的有效半径DT22与所述虹膜镜头的成像面上电子感光元件有效像素区域对角线长的一半ImgH满足0.5<DT22/ImgH<1。
  11. 根据权利要求1至10中任一项所述的虹膜镜头,其特征在于,所述虹膜镜头还包括设置在所述物侧与所述第一透镜之间的孔径光阑,
    所述第二透镜的像侧面的曲率半径R4与所述虹膜镜头的总有效焦距f满足|R4/f|<3。
  12. 根据权利要求1至10中任一项所述的虹膜镜头,其特征在于,所述虹膜镜头还包括设置在所述第一透镜与所述第二透镜之间的孔径 光阑,
    所述第一透镜的像侧面的曲率半径R2与所述第一透镜的有效焦距f1满足0.5<R2/f1<0.9。
  13. 虹膜镜头,沿光轴由物侧至像侧依序包括第一透镜和第二透镜,
    其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有负光焦度,
    所述第一透镜的物侧面的有效半径DT11与所述第二透镜的像侧面的有效半径DT22满足0.7<DT11/DT22<1。
  14. 根据权利要求13所述的虹膜镜头,其特征在于,所述第一透镜在平行于所述光轴的方向上的最大厚度ET1max与所述第一透镜在平行于所述光轴的方向上的最小厚度ET1min满足1<ET1max/ET1min<1.45。
  15. 根据权利要求13或14所述的虹膜镜头,其特征在于,所述第一透镜的像侧面的有效半径DT12和所述第二透镜的像侧面的有效半径DT22满足0.7<DT12/DT22<1。
  16. 根据权利要求13或14所述的虹膜镜头,其特征在于,所述第二透镜的像侧面的有效半径DT22与所述虹膜镜头的成像面上电子感光元件有效像素区域对角线长的一半ImgH满足0.5<DT22/ImgH<1。
  17. 根据权利要求13或14所述的虹膜镜头,其特征在于,所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12与所述第一透镜的物侧面至所述虹膜镜头的成像面在所述光轴上的距离TTL满足T12/TTL>0.32。
  18. 根据权利要求13或14所述的虹膜镜头,其特征在于,所述第一透镜的边缘厚度ET1与所述第一透镜于所述光轴上的中心厚度CT1满足0.5<ET1/CT1<1。
  19. 根据权利要求13或14所述的虹膜镜头,还包括设置在所述虹膜镜头的成像面上的电子感光元件,其特征在于,主光线入射所述电子感光元件的最大入射角度CRAmax满足CRAmax<30°。
  20. 根据权利要求13或14所述的虹膜镜头,其特征在于,所述虹膜镜头还包括设置在所述第二透镜与所述虹膜镜头的成像面之间的IR红外滤光片。
  21. 根据权利要求20所述的虹膜镜头,其特征在于,所述IR红外滤光片的带通波段为785nm至835nm。
  22. 根据权利要求13或14所述的虹膜镜头,其特征在于,0.4mm-1<TTL/(ImgH*f)<0.7mm-1
    其中,TTL为所述第一透镜的物侧面至所述虹膜镜头的成像面在所述光轴上的距离;
    ImgH为所述虹膜镜头的成像面上电子感光元件有效像素区域对角线长的一半;
    f为所述虹膜镜头的总有效焦距。
  23. 根据权利要求13或14所述的虹膜镜头,其特征在于,所述虹膜镜头还包括设置在所述物侧与所述第一透镜之间的孔径光阑,
    所述第二透镜的像侧面的曲率半径R4与所述虹膜镜头的总有效焦距f满足|R4/f|<3。
  24. 根据权利要求13或14所述的虹膜镜头,其特征在于,所述虹膜镜头还包括设置在所述第一透镜与所述第二透镜之间的孔径光 阑,
    所述第一透镜的像侧面的曲率半径R2与所述第一透镜的有效焦距f1满足0.5<R2/f1<0.9。
PCT/CN2017/107328 2017-05-17 2017-10-23 虹膜镜头 WO2018209891A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/780,111 US20210173178A1 (en) 2017-05-17 2017-10-23 Iris lens assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710346737.2 2017-05-17
CN201720545624.0U CN206757162U (zh) 2017-05-17 2017-05-17 虹膜镜头
CN201710346737.2A CN106932886B (zh) 2017-05-17 2017-05-17 虹膜镜头
CN201720545624.0 2017-05-17

Publications (1)

Publication Number Publication Date
WO2018209891A1 true WO2018209891A1 (zh) 2018-11-22

Family

ID=64273296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107328 WO2018209891A1 (zh) 2017-05-17 2017-10-23 虹膜镜头

Country Status (2)

Country Link
US (1) US20210173178A1 (zh)
WO (1) WO2018209891A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415726A (zh) * 2020-12-02 2021-02-26 山东理工大学 仅由两片非球面透镜组成的虹膜图像采集镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090161069A1 (en) * 2005-09-30 2009-06-25 Matsushita Electric Industrial Co., Ltd. Iris imaging lens
CN101813819A (zh) * 2009-02-23 2010-08-25 大立光电股份有限公司 薄型摄影光学镜组
CN102033292A (zh) * 2009-09-29 2011-04-27 大立光电股份有限公司 二片式摄影光学镜组
US20150085383A1 (en) * 2013-09-24 2015-03-26 Sekonix Co., Ltd. Wide-angle photographic lens system enabling correction of distortion
CN105700133A (zh) * 2014-12-11 2016-06-22 禾伸堂企业股份有限公司 短距离虹膜辨识用光学系统
CN105866923A (zh) * 2015-09-18 2016-08-17 瑞声科技(新加坡)有限公司 摄像镜头
CN106932886A (zh) * 2017-05-17 2017-07-07 浙江舜宇光学有限公司 虹膜镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090161069A1 (en) * 2005-09-30 2009-06-25 Matsushita Electric Industrial Co., Ltd. Iris imaging lens
CN101813819A (zh) * 2009-02-23 2010-08-25 大立光电股份有限公司 薄型摄影光学镜组
CN102033292A (zh) * 2009-09-29 2011-04-27 大立光电股份有限公司 二片式摄影光学镜组
US20150085383A1 (en) * 2013-09-24 2015-03-26 Sekonix Co., Ltd. Wide-angle photographic lens system enabling correction of distortion
CN105700133A (zh) * 2014-12-11 2016-06-22 禾伸堂企业股份有限公司 短距离虹膜辨识用光学系统
CN105866923A (zh) * 2015-09-18 2016-08-17 瑞声科技(新加坡)有限公司 摄像镜头
CN106932886A (zh) * 2017-05-17 2017-07-07 浙江舜宇光学有限公司 虹膜镜头

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415726A (zh) * 2020-12-02 2021-02-26 山东理工大学 仅由两片非球面透镜组成的虹膜图像采集镜头

Also Published As

Publication number Publication date
US20210173178A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
CN108594407B (zh) 摄像镜头
WO2019169853A1 (zh) 光学成像镜头
WO2019091170A1 (zh) 摄像透镜组
CN114779443B (zh) 摄像镜头
WO2018153012A1 (zh) 摄像镜头
WO2018192126A1 (zh) 摄像镜头
WO2017166475A1 (zh) 摄像镜头
WO2018214349A1 (zh) 摄像镜头
CN110045488B (zh) 光学成像镜头
WO2019169856A1 (zh) 摄像镜头组
WO2019052220A1 (zh) 光学成像镜头
WO2019033756A1 (zh) 光学成像镜头
WO2020134027A1 (zh) 光学成像镜头
WO2018209855A1 (zh) 光学成像系统
CN106990512B (zh) 虹膜镜头
WO2019019626A1 (zh) 成像镜头
WO2019037420A1 (zh) 摄像透镜组
WO2019047505A1 (zh) 光学成像镜头
WO2019056775A1 (zh) 摄像透镜组
CN106932886B (zh) 虹膜镜头
WO2019024490A1 (zh) 光学成像镜头
WO2019174364A1 (zh) 光学成像系统
CN107015350B (zh) 虹膜镜头
CN106896482B (zh) 虹膜镜头
WO2019019530A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909911

Country of ref document: EP

Kind code of ref document: A1