WO2018207774A1 - 全芳香族ポリエステル及びポリエステル樹脂組成物 - Google Patents

全芳香族ポリエステル及びポリエステル樹脂組成物 Download PDF

Info

Publication number
WO2018207774A1
WO2018207774A1 PCT/JP2018/017770 JP2018017770W WO2018207774A1 WO 2018207774 A1 WO2018207774 A1 WO 2018207774A1 JP 2018017770 W JP2018017770 W JP 2018017770W WO 2018207774 A1 WO2018207774 A1 WO 2018207774A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic polyester
wholly aromatic
mol
polyester
temperature
Prior art date
Application number
PCT/JP2018/017770
Other languages
English (en)
French (fr)
Inventor
俊明 横田
俊紀 川原
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to JP2018541448A priority Critical patent/JP6411706B1/ja
Priority to CN201880030335.4A priority patent/CN110603278B/zh
Priority to KR1020197028250A priority patent/KR102085262B1/ko
Publication of WO2018207774A1 publication Critical patent/WO2018207774A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a wholly aromatic polyester having high heat stability and good hydrolysis resistance, and a polyester resin composition containing this wholly aromatic polyester.
  • Liquid crystalline polymers represented by liquid crystalline polyester resins have excellent fluidity, mechanical strength, heat resistance, chemical resistance, electrical properties, etc. in a well-balanced manner, and are therefore widely used as high-performance engineering plastics. Yes.
  • Patent Document 1 discloses an improved method for producing a heat-stable thermotropic liquid crystalline polyester having a predetermined chain length.
  • thermal stability is improved by adding a small amount of 1,4-phenylenedicarboxylic acid to liquid crystalline polyester.
  • this liquid crystalline polyester is based on 4-hydroxybenzoic acid, there is a problem that there are many decomposition gases.
  • Patent Document 2 also discloses a method for producing a heat-stable thermotropic liquid crystalline polyester having a predetermined chain length.
  • thermal stability is improved by incorporating a small amount of 2,6-dihydroxynaphthalene or 4,4'-dihydroxybiphenyl into a liquid crystalline polyester.
  • this liquid crystalline polyester is also based on 4-hydroxybenzoic acid, there is a problem that there are many decomposition gases.
  • Patent Document 3 discloses a liquid crystalline aromatic polyester for insulating material and a resin composition thereof.
  • a low dielectric loss tangent is achieved by adding a large amount of 6-hydroxy-2-naphthoic acid to a liquid crystalline aromatic polyester.
  • this liquid crystalline aromatic polyester has a problem that it has only a highly reactive hydroxycarboxylic acid composition, has poor thermal stability, and has a large amount of decomposition gas.
  • liquid crystalline polyesters are not necessarily sufficient in terms of hydrolysis resistance, and when a polyester molded product obtained by molding a polyester resin composition is used in a humid heat environment such as high temperature and high humidity, hydrolysis is not possible. There is a problem that heat resistance and mechanical strength are remarkably lowered.
  • the present invention has been made in order to solve the above-mentioned problems, and is a wholly aromatic polyester having high heat stability, low generation gas having good hydrolysis resistance, high heat stability, and this wholly aroma. It is an object to provide a polyester resin composition containing a group polyester.
  • 6-hydroxy-2-naphthoic acid is 60 to 85 mol%
  • 4-hydroxybenzoic acid is 12 to 40 mol%
  • 1,3-phenylenedicarboxylic acid is 0.1%.
  • the present inventors have found that the above-mentioned problems can be solved by using a wholly aromatic polyester comprising ⁇ 3 mol%, and the present inventors have completed the present invention. More specifically, the present invention provides the following.
  • the content of the structural unit (I) is 60 to 85 mol% with respect to all the structural units
  • the content of the structural unit (II) is 12 to 40 mol% with respect to all the structural units
  • the content of the structural unit (III) is 0.1 to 3 mol% with respect to all the structural units
  • the total content of the structural units (I), (II), and (III) is 100 mol% with respect to all the structural units.
  • the wholly aromatic polyester according to the present invention comprises the following constituent units (I), (II), and (III) as essential constituent components, and the content of the constituent unit (I) is 60 with respect to all constituent units. Is 85 mol%, the content of the structural unit (II) is 12 to 40 mol% with respect to all the structural units, and the content of the structural unit (III) is 0.1 to 3 with respect to the total structural units. The total content of the structural units (I), (II), and (III) is 100 mol% with respect to all the structural units.
  • the structural unit (I) is derived from 6-hydroxy-2-naphthoic acid (hereinafter also referred to as “HNA”).
  • the wholly aromatic polyester of the present invention contains 60 to 85 mol% of the structural unit (I) with respect to all the structural units.
  • the content of the structural unit (I) is 60 mol% or more, the melting point is not lowered and the heat resistance is not insufficient.
  • the content of the structural unit (I) is 85 mol% or less, solidification does not occur during polymerization and a polymer is obtained.
  • the content of the structural unit (I) is preferably 63 to 85 mol%, more preferably 63 to 83 mol%, still more preferably 65 to 83 mol%, still more preferably 65 to 80 mol%, and most preferably 68. ⁇ 80 mol%.
  • the structural unit (II) is derived from 4-hydroxybenzoic acid (hereinafter also referred to as “HBA”).
  • the wholly aromatic polyester of the present invention contains 12 to 40 mol% of the structural unit (II) with respect to the total structural units.
  • the content of the structural unit (II) is 12 mol% or more, the polymer does not solidify in the polymerization vessel during production, and the polymer can be discharged.
  • the content of the structural unit (II) is 40 mol% or less, the melting point is not lowered and the heat resistance is not insufficient.
  • the content of the structural unit (II) is preferably 15 to 40 mol%, more preferably 15 to 35 mol%, still more preferably 18 to 35 mol%, still more preferably 18 to 30 mol%, most preferably 20-30 mol%.
  • the structural unit (III) is derived from 1,3-phenylenedicarboxylic acid (hereinafter also referred to as “IA”).
  • the wholly aromatic polyester of the present invention contains 0.1 to 3 mol% of the structural unit (III) with respect to all the structural units. Thermal stability does not fall that content of structural unit (III) is 0.1 mol% or less. When the content of the structural unit (III) is 3 mol% or less, the molecular weight (melt viscosity) increases. From the viewpoint of thermal stability and molecular weight, the content of the structural unit (III) is preferably 0.2 to 3 mol%, more preferably 0.2 to 2.5 mol%, still more preferably 0.3 to 2. It is 5 mol%, more preferably 0.3 to 2.0 mol%, and most preferably 0.4 to 2.0 mol%.
  • the wholly aromatic polyester of the present invention contains a specific amount of specific structural units (I) to (III) with respect to all the structural units, and therefore generates less gas and has a high thermal stability. In addition to being high, hydrolysis resistance is good.
  • the wholly aromatic polyester of the present invention contains 100 mol% of the structural units (I) to (III) in total with respect to all the structural units.
  • the wholly aromatic polyester of the present invention exhibits optical anisotropy when melted.
  • An optical anisotropy when melted means that the wholly aromatic polyester of the present invention is a liquid crystalline polymer.
  • the fact that the wholly aromatic polyester is a liquid crystalline polymer is an indispensable element when the wholly aromatic polyester has both thermal stability and easy processability.
  • the wholly aromatic polyester composed of the structural units (I) to (III) may not form an anisotropic melt phase depending on the constituent components and the sequence distribution in the polymer. Limited to wholly aromatic polyesters that exhibit optical anisotropy when melted.
  • melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the melting anisotropy can be confirmed by melting a sample placed on a hot stage manufactured by Linkham Co., Ltd. using a polarizing microscope manufactured by Olympus and observing it at a magnification of 150 times in a nitrogen atmosphere.
  • the liquid crystalline polymer is optically anisotropic and transmits light when inserted between crossed polarizers. If the sample is optically anisotropic, for example, polarized light is transmitted even in a molten stationary liquid state.
  • a nematic liquid crystalline polymer causes a significant decrease in viscosity at a melting point or higher, generally exhibiting liquid crystallinity at a melting point or higher is an index of workability.
  • the melting point is preferably as high as possible from the viewpoint of heat resistance, but it is preferably 380 ° C. or lower in consideration of thermal deterioration during the melt processing of the polymer, the heating ability of the molding machine, and the like.
  • the melting point is more preferably 260 to 370 ° C., further preferably 270 to 370 ° C., still more preferably 270 to 350 ° C., and most preferably 290 to 350 ° C.
  • melt viscosity of the wholly aromatic polyester at a temperature 10 to 30 ° C. higher than the melting point of the wholly aromatic polyester of the present invention and a shear rate of 1000 / sec is preferably 1000 Pa ⁇ s or less, more preferably 4 to 500 Pa. ⁇ S, more preferably 4 to 250 Pa ⁇ s.
  • melt viscosity means the melt viscosity measured based on ISO11443.
  • the total crystallization heat amount of the wholly aromatic polyester of the present invention is preferably 2.3 J / g or more, and more preferably 2.3 to 4.5 J / g.
  • the crystallization heat quantity of the polymer determined by differential calorimetry indicating the crystallization state of the polymer is 2.3 J / g or more, the crystallinity is increased and the hydrolysis resistance is improved. Further, it is preferable that the heat of crystallization is 4.5 J / g or less because the toughness is increased.
  • the heat of crystallization is 2 at a temperature of (Tm1 + 40) ° C. after observing the endothermic peak temperature (Tm1) observed when the polymer is measured at room temperature from 20 ° C./min. It refers to the calorific value of the exothermic peak obtained from the peak of the exothermic peak temperature that is observed when the temperature is measured for 20 ° C./min.
  • the value of [melting point ⁇ crystallization temperature] which is a value obtained by subtracting the crystallization temperature from the melting point, is preferably 40 ° C. or more, and preferably 40 to 90 ° C. More preferred.
  • the value of [melting point ⁇ crystallization temperature] is within the above range, the wholly aromatic polyester itself or the composition containing the wholly aromatic polyester is easy to ensure fluidity at the time of molding, Filling pressure is unlikely to be excessive.
  • the wholly aromatic polyester of the present invention is polymerized using a direct polymerization method or a transesterification method.
  • a melt polymerization method, a solution polymerization method, a slurry polymerization method, a solid phase polymerization method, etc., or a combination of two or more of these are used, and a melt polymerization method or a combination of a melt polymerization method and a solid phase polymerization method is used. Is preferably used.
  • an acylating agent for the polymerization monomer or a monomer having an activated terminal as an acid chloride derivative can be used.
  • the acylating agent include fatty acid anhydrides such as acetic anhydride.
  • various catalysts can be used. Typical examples include potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, tris (2 , 4-pentandionato) cobalt (III) and the like, and organic compound catalysts such as N-methylimidazole and 4-dimethylaminopyridine.
  • the amount of the catalyst used is generally about 0.001 to 1% by weight, particularly about 0.003 to 0.2% by weight, based on the total weight of the monomers.
  • the inorganic filler to be blended in the polyester resin composition of the present invention includes fibrous, granular and plate-like ones.
  • Silica such as glass fiber, asbestos fiber, silica fiber, silica / alumina fiber, alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, wollastonite as fibrous inorganic filler
  • Inorganic fibrous materials such as fibers, magnesium sulfate fibers, aluminum borate fibers, and metal fibrous materials such as stainless steel, aluminum, titanium, copper, and brass.
  • a particularly typical fibrous filler is glass fiber.
  • the granular inorganic filler carbon black, graphite, silica, quartz powder, glass beads, milled glass fiber, glass balloon, glass powder, calcium oxalate, aluminum oxalate, kaolin, clay, diatomaceous earth, wollast Silicates such as knight, iron oxide, titanium oxide, zinc oxide, antimony trioxide, metal oxides such as alumina, metal carbonates such as calcium carbonate and magnesium carbonate, metal sulfates such as calcium sulfate and barium sulfate Examples thereof include salts, other ferrites, silicon carbide, silicon nitride, boron nitride, and various metal powders.
  • examples of the plate-like inorganic filler include mica, glass flakes, talc, and various metal foils.
  • organic fillers blended in the polyester resin composition of the present invention include heat-resistant high-strength synthetic fibers such as aromatic polyester fibers, liquid crystalline polymer fibers, aromatic polyamides, and polyimide fibers.
  • the fibrous inorganic filler is glass fiber
  • the platy filler is mica and talc.
  • the blending amount thereof is 120 parts by mass or less, preferably 20 to 80 parts by mass with respect to 100 parts by mass of the wholly aromatic polyester. It is.
  • the polyester resin composition is particularly prominent in improving the heat distortion temperature and mechanical properties.
  • a sizing agent or a surface treatment agent can be used if necessary.
  • the polyester resin composition of the present invention contains the wholly aromatic polyester of the present invention and, if necessary, an inorganic or organic filler as essential components, as long as the effects of the present invention are not impaired.
  • Other components may be included.
  • the other component may be any component, and examples thereof include other resins, antioxidants, stabilizers, pigments, crystal nucleating agents and the like.
  • the method for producing the polyester resin composition of the present invention is not particularly limited, and the polyester resin composition can be prepared by a conventionally known method.
  • the polyester molded article of the present invention is formed by molding the wholly aromatic polyester or polyester resin composition of the present invention.
  • the molding method is not particularly limited, and a general molding method can be employed. Examples of general molding methods include injection molding, extrusion molding, compression molding, blow molding, vacuum molding, foam molding, rotational molding, gas injection molding, inflation molding, and the like.
  • the polyester molded product formed by molding the wholly aromatic polyester of the present invention is excellent in heat resistance. Moreover, since the polyester molded product formed by shape
  • the wholly aromatic polyester and polyester resin composition of the present invention are excellent in moldability and can be processed into various three-dimensional molded products, fibers, films and the like.
  • Preferred applications of the polyester molded product of the present invention having the above properties include connectors, CPU sockets, relay switch parts, bobbins, actuators, noise reduction filter cases, electronic circuit boards, or heat fixing rolls for OA equipment. It is done.
  • Example 1 A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a decompression / outflow line was charged with the following raw material monomers, fatty acid metal salt catalyst, and acylating agent, and nitrogen substitution was started.
  • melt viscosity ISO 11443 using a capilograph manufactured by Toyo Seiki Seisakusho Co., Ltd., using an orifice having an inner diameter of 0.5 mm and a length of 30 mm at a temperature 10 to 30 ° C. higher than the melting point of the wholly aromatic polyester and a shear rate of 1000 / sec. The melt viscosity of the wholly aromatic polyester was measured.
  • Example 2 A polymer was obtained in the same manner as in Example 1 except that the type of raw material monomer and the charging ratio (mol%) were as shown in Table 1. The obtained polymer was heated from room temperature to 290 ° C. over 20 minutes in a nitrogen atmosphere, held for 3 hours, and then allowed to cool to obtain a further polymer. Moreover, the same evaluation as Example 1 was performed. The evaluation results are shown in Table 1.
  • Example 1 A polymer was obtained in the same manner as in Example 1 except that the type of raw material monomer and the charging ratio (mol%) were as shown in Tables 1 and 2. Moreover, the same evaluation as Example 1 was performed. The evaluation results are shown in Tables 1 and 2. In Comparative Example 4, the polymer was solidified in the polymerization vessel during production, and the polymer could not be discharged. TA shown in Table 2 represents terephthalic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

【課題】熱安定性の高い、耐加水分解性が良好な全芳香族ポリエステル、及びこの全芳香族ポリエステルを含有するポリエステル樹脂組成物を提供する。 【解決手段】6-ヒドロキシ-2-ナフトエ酸が60~85モル%、4-ヒドロキシ安息香酸が12~40モル%、1,3-フェニレンジカルボン酸が0.1~3モル%からなる全芳香族ポリエステルを用いることにより、上記課題を解決する。

Description

全芳香族ポリエステル及びポリエステル樹脂組成物
 本発明は、熱安定性の高い、耐加水分解性が良好な全芳香族ポリエステル、及びこの全芳香族ポリエステルを含有するポリエステル樹脂組成物に関する。
 液晶性ポリエステル樹脂に代表される液晶性ポリマーは、優れた流動性、機械強度、耐熱性、耐薬品性、電気的性質等をバランス良く有するため、高機能エンジニアリングプラスチックスとして好適に広く利用されている。
 特許文献1には、所定鎖長の熱安定性サーモトロピツク液晶性ポリエステルの改良製造法が開示されている。この文献では、液晶性ポリエステルに少量の1,4-フェニレンジカルボン酸を含有させることで熱安定性を向上させている。しかしながらこの液晶性ポリエステルは、4-ヒドロキシ安息香酸をベースとしているため、分解ガスが多いという問題がある。
 特許文献2にもまた、所定鎖長の熱安定性サーモトロピツク液晶性ポリエステルの製造法が開示されている。この文献では、液晶性ポリエステルに少量の2,6-ジヒドロキシナフタレンまたは4,4’-ジヒドロキシビフェニルを含有させることで熱安定性を向上させている。しかしながらこの液晶性ポリエステルも、4-ヒドロキシ安息香酸をベースとしているため、分解ガスが多いという問題がある。
 特許文献3には、絶縁材料用液晶性芳香族ポリエステルおよびその樹脂組成物が開示されている。この文献では、液晶性芳香族ポリエステルに多量の6-ヒドロキシ-2-ナフトエ酸を含有させることで、低誘電正接を達成させている。しかしながらこの液晶性芳香族ポリエステルは、反応性の高いヒドロキシカルボン酸のみの組成であり、熱安定性が悪く、分解ガスが多いという問題がある。
 また、これらの液晶性ポリエステルは耐加水分解性という点でも必ずしも十分ではなく、ポリエステル樹脂組成物を成形して得られるポリエステル成形品を、高温多湿下などの湿熱環境下で使用すると、加水分解が促進され、耐熱性や機械強度が著しく低下するという問題があった。
特開昭60-040127号公報 特開昭60-245631号公報 特開2004-250620号公報
 本発明は、上記の問題を解決するためになされたものであり、熱安定性の高い、耐加水分解性が良好な発生ガスが少ない、熱安定性の高い全芳香族ポリエステル、及びこの全芳香族ポリエステルを含有するポリエステル樹脂組成物を提供することを課題とする。
 本発明者らは鋭意検討を重ねた結果、6-ヒドロキシ-2-ナフトエ酸が60~85モル%、4-ヒドロキシ安息香酸が12~40モル%、1,3-フェニレンジカルボン酸が0.1~3モル%からなる全芳香族ポリエステルを用いることにより、上記の課題を解決できることを見出し、本発明者らは本発明を完成させるに至った。より具体的には、本発明は以下のものを提供する。
(1)必須の構成成分として、下記構成単位(I)、(II)、及び(III)からなり、
 全構成単位に対して構成単位(I)の含有量は60~85モル%であり、
 全構成単位に対して構成単位(II)の含有量は12~40モル%であり、
 全構成単位に対して構成単位(III)の含有量は0.1~3モル%であり、
 全構成単位に対して構成単位(I)、(II)、及び(III)の合計の含有量は100モル%である、
 全芳香族ポリエステル。
Figure JPOXMLDOC01-appb-C000002
(2)全芳香族ポリエステルの融点よりも10~30℃高い温度における溶融粘度が1000Pa・s以下である、(1)に記載の全芳香族ポリエステル。
(3)全芳香族ポリエステルの融点よりも10~30℃高い温度における溶融粘度が4~500Pa・sである、(1)または(2)に記載の全芳香族ポリエステル。
(4)融点が380℃以下である、(1)から(3)のいずれか一項に記載の全芳香族ポリエステル。
(5)融点が260~370℃である、(1)から(4)のいずれか一項に記載の全芳香族ポリエステル。
(6)結晶化熱量が2.3J/g以上である、(1)から(5)のいずれか一項に記載の全芳香族ポリエステル。
(7)[融点-結晶化温度]の値が40℃以上である、(1)から(6)のいずれか一項に記載の全芳香族ポリエステル。
(8)(1)から(7)のいずれか一項に記載の全芳香族ポリエステルを含有するポリエステル樹脂組成物。
(9)(1)から(8)のいずれか一項に記載の全芳香族ポリエステルまたはポリエステル樹脂組成物を成形して得られるポリエステル成形品。
 本発明によれば、熱安定性の高い、耐加水分解性が良好な全芳香族ポリエステル、及びこのポリエステル樹脂組成物を提供することができる。
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。
[全芳香族ポリエステル]
 本発明に係る全芳香族ポリエステルは、必須の構成成分として、下記構成単位(I)、(II)、及び(III)からなり、全構成単位に対して構成単位(I)の含有量は60~85モル%であり、全構成単位に対して構成単位(II)の含有量は12~40モル%であり、全構成単位に対して構成単位(III)の含有量は0.1~3モル%であり、全構成単位に対して構成単位(I)、(II)、及び(III)の合計の含有量は100モル%である。
Figure JPOXMLDOC01-appb-C000003
 構成単位(I)は、6-ヒドロキシ-2-ナフトエ酸(以下、「HNA」ともいう。)から誘導される。本発明の全芳香族ポリエステルは、全構成単位に対して構成単位(I)を60~85モル%含む。構成単位(I)の含有量が60モル%以上であると、融点が低下せず、耐熱性が不足しない。構成単位(I)の含有量が85モル%を以下であると、重合時に固化が発生せず、ポリマーが得られる。構成単位(I)の含有量は、好ましくは63~85モル%、より好ましくは63~83モル%、更に好ましくは65~83モル%、より更に好ましくは65~80モル%、最も好ましくは68~80モル%である。
 構成単位(II)は、4-ヒドロキシ安息香酸(以下、「HBA」ともいう。)から誘導される。本発明の全芳香族ポリエステルは、全構成単位に対して構成単位(II)を12~40モル%含む。構成単位(II)の含有量が12モル%以上であると、製造時にポリマーが重合容器内で固化せず、ポリマーを排出することができる。構成単位(II)の含有量が40モル%以下であると、融点が低下せず、耐熱性が不足しない。融点と重合性の観点から、構成単位(II)の含有量は、好ましくは15~40モル%、より好ましくは15~35モル%、更に好ましくは18~35モル%、より更に好ましくは18~30モル%、最も好ましくは20~30モル%である。
 構成単位(III)は、1,3-フェニレンジカルボン酸(以下、「IA」ともいう。)から誘導される。本発明の全芳香族ポリエステルは、全構成単位に対して構成単位(III)を0.1~3モル%含む。構成単位(III)の含有量が0.1モル%以下であると、熱安定性が低下しない。構成単位(III)の含有量が3モル%を以下であると、分子量(溶融粘度)が上昇する。熱安定性と分子量の観点から、構成単位(III)の含有量は、好ましくは0.2~3モル%、より好ましく0.2~2.5モル%、更に好ましくは0.3~2.5モル%、より更に好ましくは0.3~2.0モル%、最も好ましくは0.4~2.0モル%である。
 以上の通り、本発明の全芳香族ポリエステルは、特定の構成単位である(I)~(III)を、全構成単位に対して特定の量含有するため、発生ガスが少なく、熱安定性が高い上、耐加水分解性が良好である。なお、本発明の全芳香族ポリエステルは、全構成単位に対して構成単位(I)~(III)を合計で100モル%含む。
 次いで、全芳香族ポリエステルの性質について説明する。本発明の全芳香族ポリエステルは、溶融時に光学的異方性を示す。溶融時に光学的異方性を示すことは、本発明の全芳香族ポリエステルが液晶性ポリマーであることを意味する。
 本発明において、全芳香族ポリエステルが液晶性ポリマーであることは、全芳香族ポリエステルが熱安定性と易加工性を併せ持つ上で不可欠な要素である。上記構成単位(I)~(III)から構成される全芳香族ポリエステルは、構成成分及びポリマー中のシーケンス分布によっては、異方性溶融相を形成しないものも存在するが、本発明のポリマーは溶融時に光学的異方性を示す全芳香族ポリエステルに限られる。
 溶融異方性の性質は直交偏光子を利用した慣用の偏光検査方法により確認することができる。より具体的には溶融異方性の確認は、オリンパス社製偏光顕微鏡を使用しリンカム社製ホットステージにのせた試料を溶融し、窒素雰囲気下で150倍の倍率で観察することにより実施できる。液晶性ポリマーは光学的に異方性であり、直交偏光子間に挿入したとき光を透過させる。試料が光学的に異方性であると、例えば溶融静止液状態であっても偏光は透過する。
 ネマチックな液晶性ポリマーは融点以上で著しく粘性低下を生じるので、一般的に融点又はそれ以上の温度で液晶性を示すことが加工性の指標となる。融点は、でき得る限り高い方が耐熱性の観点からは好ましいが、ポリマーの溶融加工時の熱劣化や成形機の加熱能力等を考慮すると、380℃以下であることが好ましい目安となる。なお、融点はより好ましくは260~370℃であり、更に好ましくは270~370℃であり、より更に好ましくは270~350℃であり、最も好ましくは290~350℃である。
 本発明の全芳香族ポリエステルの融点より10~30℃高い温度、かつ、剪断速度1000/秒における前記全芳香族ポリエステルの溶融粘度は、好ましくは1000Pa・s以下であり、より好ましくは4~500Pa・sであり、更に好ましくは4~250Pa・sである。上記溶融粘度が上記範囲内であると、前記全芳香族ポリエステルそのもの、又は、前記全芳香族ポリエステルを含有する組成物は、その成形時において、流動性が確保されやすく、充填圧力が過度になりにくい。なお、本明細書において、溶融粘度とは、ISO11443に準拠して測定した溶融粘度をいう。
 本発明の全芳香族ポリエステルの結晶化熱量は、好ましくは2.3J/g以上であり、より好ましくは2.3~4.5J/gである。ポリマーの結晶化状態を示す示差熱量測定により求められるポリマーの結晶化熱量が2.3J/g以上であると、結晶性が高くなり、耐加水分解性が向上する。また、結晶化熱量が4.5J/g以下であると、靱性が高くなり、好ましい。
 なお、結晶化熱量とは示差熱量測定において、ポリマーを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピーク温度のピークより求められる発熱ピークの熱量を指す。
 また、本発明における全芳香族ポリエステルは、融点から結晶化温度を引いた値である、[融点-結晶化温度]の値が40℃以上であることが好ましく、40~90℃であることがより好ましい。[融点-結晶化温度]の値が上記範囲内であると、前記全芳香族ポリエステルそのもの、又は、前記全芳香族ポリエステルを含有する組成物は、その成形時において、流動性が確保されやすく、充填圧力が過度になりにくい。
 次いで、本発明の全芳香族ポリエステルの製造方法について説明する。本発明の全芳香族ポリエステルは、直接重合法やエステル交換法等を用いて重合される。重合に際しては、溶融重合法、溶液重合法、スラリー重合法、固相重合法等、又はこれらの2種以上の組み合わせが用いられ、溶融重合法、又は溶融重合法と固相重合法との組み合わせが好ましく用いられる。
 本発明では、重合に際し、重合モノマーに対するアシル化剤や、酸塩化物誘導体として末端を活性化したモノマーを使用できる。アシル化剤としては、無水酢酸等の脂肪酸無水物等が挙げられる。
 これらの重合に際しては種々の触媒の使用が可能であり、代表的なものとしては、酢酸カリウム、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、三酸化アンチモン、トリス(2,4-ペンタンジオナト)コバルト(III)等の金属塩系触媒、N-メチルイミダゾール、4-ジメチルアミノピリジン等の有機化合物系触媒を挙げることができる。触媒の使用量は一般にはモノマーの全質量に基づいて約0.001~1質量%、特に約0.003~0.2質量%が好ましい。
[ポリエステル樹脂組成物]
 上記の本発明の全芳香族ポリエステルには、使用目的に応じて各種の繊維状、粉粒状、板状の無機及び有機の充填剤を配合することができる。
 本発明のポリエステル樹脂組成物に配合される、無機充填剤としては、繊維状、粒状、板状のものがある。
 繊維状無機充填剤としてはガラス繊維、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリ繊維、ウォラストナイトの如き珪酸塩の繊維、硫酸マグネシウム繊維、ホウ酸アルミニウム繊維、更にステンレス、アルミニウム、チタン、銅、真鍮等の金属の繊維状物等の無機質繊維状物質が挙げられる。特に代表的な繊維状充填剤はガラス繊維である。
 また、粉粒状無機充填剤としてはカーボンブラック、黒鉛、シリカ、石英粉末、ガラスビーズ、ミルドガラスファイバー、ガラスバルーン、ガラス粉、硅酸カルシウム、硅酸アルミニウム、カオリン、クレー、硅藻土、ウォラストナイトの如き硅酸塩、酸化鉄、酸化チタン、酸化亜鉛、三酸化アンチモン、アルミナの如き金属の酸化物、炭酸カルシウム、炭酸マグネシウムの如き金属の炭酸塩、硫酸カルシウム、硫酸バリウムの如き金属の硫酸塩、その他フェライト、炭化硅素、窒化硅素、窒化硼素、各種金属粉末等が挙げられる。
 また、板状無機充填剤としてはマイカ、ガラスフレーク、タルク、各種の金属箔等が挙げられる。
 本発明のポリエステル樹脂組成物に配合される、有機充填剤の例を示せば、芳香族ポリエステル繊維、液晶性ポリマー繊維、芳香族ポリアミド、ポリイミド繊維等の耐熱性高強度合成繊維等である。
 これらの無機及び有機充填剤は一種又は二種以上を併用することができる。繊維状無機充填剤と粒状又は板状無機充填剤との併用は、機械的強度と寸法精度、電気的性質等を兼備する上で好ましい組み合わせである。特に好ましくは、繊維状充填剤としてガラス繊維、板状充填剤としてマイカ及びタルクであり、その配合量は、全芳香族ポリエステル100質量部に対して120質量部以下、好ましくは20~80質量部である。ガラス繊維をマイカ又はタルクと組み合わせることで、ポリエステル樹脂組成物は、熱変形温度、機械的物性等の向上が特に顕著である。
 これらの充填剤の使用にあたっては必要ならば収束剤又は表面処理剤を使用することができる。
 本発明のポリエステル樹脂組成物は、上述の通り、必須成分として、本発明の全芳香族ポリエステル、及び必要に応じて無機又は有機充填剤を含むが、本発明の効果を害さない範囲であれば、その他の成分が含まれていてもよい。ここで、その他の成分とは、どのような成分であってもよく、例えば、その他の樹脂、酸化防止剤、安定剤、顔料、結晶核剤等の添加剤を挙げることができる。
 また、本発明のポリエステル樹脂組成物の製造方法は特に限定されず、従来公知の方法で、ポリエステル樹脂組成物を調製することができる。
[ポリエステル成形品]
 本発明のポリエステル成形品は、本発明の全芳香族ポリエステル又はポリエステル樹脂組成物を成形してなる。成形方法としては、特に限定されず一般的な成形方法を採用することができる。一般的な成形方法としては、射出成形、押出成形、圧縮成形、ブロー成形、真空成形、発泡成形、回転成形、ガスインジェクション成形、インフレーション成形等の方法を例示することができる。
 本発明の全芳香族ポリエステル等を成形してなるポリエステル成形品は、耐熱性に優れる。また、本発明のポリエステル樹脂組成物を成形してなるポリエステル成形品は、耐熱性に優れるとともに、必要に応じて無機又は有機充填剤を含むため、機械的強度等が更に改善される。
 また、本発明の全芳香族ポリエステル、ポリエステル樹脂組成物は、成形性に優れるため、種々の立体成形品、繊維、フィルム等に加工できる。
 以上のような性質を有する本発明のポリエステル成形品の好ましい用途としては、コネクター、CPUソケット、リレースイッチ部品、ボビン、アクチュエータ、ノイズ低減フィルターケース、電子回路基板又はOA機器の加熱定着ロール等が挙げられる。
 以下に実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
<実施例1>
 撹拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、脂肪酸金属塩触媒、アシル化剤を仕込み、窒素置換を開始した。
(I)6-ヒドロキシ-2-ナフトエ酸1.44モル(76モル%)(HNA)
(II)4-ヒドロキシ安息香酸0.44モル(23.3モル%)(HBA)
(III)イソフタル酸0.1モル(0.7モル%)(IA)
酢酸カリウム触媒22.5mg
無水酢酸196g(HNAとHBAの合計の水酸基当量の1.02倍)
 原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で2時間反応させた。その後、更に340℃まで4.1時間かけて昇温し、そこから15分かけて10Torr(即ち1330Pa)まで減圧して、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら重縮合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出した。
<評価>
 実施例1の全芳香族ポリエステルについて、融点、結晶化温度、結晶化熱量、溶融粘度、熱安定性、及び耐加水分解性の評価を以下の方法で行った。評価結果を表1に示す。
[融点]
 示差走査熱量計(DSC、パーキンエルマー社製)にて、全芳香族ポリエステルを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で室温まで一旦冷却した後、再度、20℃/分の昇温条件で測定した際に観測される吸熱ピークの温度を測定した。
[結晶化温度]
 示差走査熱量計(DSC、パーキンエルマー社製)にて、全芳香族ポリエステルを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピーク温度を測定した。
[結晶化熱量]
 示差走査熱量計(DSC、パーキンエルマー社製)にて、全芳香族ポリエステルを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピーク温度のピークより求められる発熱ピークの熱量を測定した。
[溶融粘度]
 (株)東洋精機製作所製キャピログラフを使用し、全芳香族ポリエステルの融点よりも10~30℃高い温度で、内径0.5mm、長さ30mmのオリフィスを用いて、剪断速度1000/秒で、ISO11443に準拠して、全芳香族ポリエステルの溶融粘度を測定した。
[熱安定性]
 示差熱熱重量同時測定装置(TG/DTA、セイコーインスツル(株)製)を使用し、全芳香族ポリエステル10mgを窒素気流下にて、370℃で、30分保持した際の重量減少を発生ガス量として測定した。なお、発生ガス量が15000ppm未満であれば良好と判断した。
[耐加水分解性]
 全芳香族ポリエステルについて121℃、湿度100%、2気圧条件下でプレッシャークッカーテストを100時間行い、その全芳香族ポリエステルについて溶融粘度の測定を行い、初期値に対する保持率を求めた。なお、初期値に対する保持率が88%以上であれば良好と判断した。
<実施例2>
 原料モノマーの種類、仕込み比率(モル%)を表1に示す通りとした以外は、実施例1と同様にしてポリマーを得た。得られたポリマーを、窒素雰囲気下で室温から290℃まで20分かけて昇温し、3時間保持した後、放冷し、更なるポリマーを得た。また、実施例1と同様の評価を行った。評価結果を表1に示す。
<実施例3~7、比較例1~8、参考例1>
 原料モノマーの種類、仕込み比率(モル%)を表1及び表2に示す通りとした以外は、実施例1と同様にしてポリマーを得た。また、実施例1と同様の評価を行った。評価結果を表1及び表2に示す。なお、比較例4については、製造時にポリマーが重合容器内で固化し、ポリマーを排出できなかった。なお、表2に記載のTAはテレフタル酸を示す。
Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005

Claims (9)

  1.  必須の構成成分として、下記構成単位(I)、(II)、及び(III)からなり、
     全構成単位に対して構成単位(I)の含有量は60~85モル%であり、
     全構成単位に対して構成単位(II)の含有量は12~40モル%であり、
     全構成単位に対して構成単位(III)の含有量は0.1~3モル%であり、
     全構成単位に対して構成単位(I)、(II)、及び(III)の合計の含有量は100モル%である、
     全芳香族ポリエステル。
    Figure JPOXMLDOC01-appb-C000001
  2.  全芳香族ポリエステルの融点よりも10~30℃高い温度における溶融粘度が1000Pa・s以下である、請求項1に記載の全芳香族ポリエステル。
  3.  全芳香族ポリエステルの融点よりも10~30℃高い温度における溶融粘度が4~500Pa・sである、請求項1または2に記載の全芳香族ポリエステル。
  4.  融点が380℃以下である、請求項1から3のいずれか一項に記載の全芳香族ポリエステル。
  5.  融点が260~370℃である、請求項1から4のいずれか一項に記載の全芳香族ポリエステル。
  6.  結晶化熱量が2.3J/g以上である、請求項1から5のいずれか一項に記載の全芳香族ポリエステル。
  7.  [融点-結晶化温度]の値が40℃以上である、請求項1から6のいずれか一項に記載の全芳香族ポリエステル。
  8.  請求項1から7のいずれか一項に記載の全芳香族ポリエステルを含有するポリエステル樹脂組成物。
  9.  請求項1から8のいずれか一項に記載の全芳香族ポリエステルまたはポリエステル樹脂組成物を成形して得られるポリエステル成形品。
PCT/JP2018/017770 2017-05-10 2018-05-08 全芳香族ポリエステル及びポリエステル樹脂組成物 WO2018207774A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018541448A JP6411706B1 (ja) 2017-05-10 2018-05-08 全芳香族ポリエステル及びポリエステル樹脂組成物
CN201880030335.4A CN110603278B (zh) 2017-05-10 2018-05-08 全芳香族聚酯和聚酯树脂组合物
KR1020197028250A KR102085262B1 (ko) 2017-05-10 2018-05-08 전방향족 폴리에스테르 및 폴리에스테르 수지 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-093528 2017-05-10
JP2017093528 2017-05-10

Publications (1)

Publication Number Publication Date
WO2018207774A1 true WO2018207774A1 (ja) 2018-11-15

Family

ID=64104767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017770 WO2018207774A1 (ja) 2017-05-10 2018-05-08 全芳香族ポリエステル及びポリエステル樹脂組成物

Country Status (4)

Country Link
KR (1) KR102085262B1 (ja)
CN (1) CN110603278B (ja)
TW (1) TWI743358B (ja)
WO (1) WO2018207774A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113767134A (zh) * 2019-04-03 2021-12-07 宝理塑料株式会社 全芳香族聚酯和聚酯树脂组合物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11912817B2 (en) 2019-09-10 2024-02-27 Ticona Llc Polymer composition for laser direct structuring
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275653A (ja) * 1988-09-12 1990-03-15 Polyplastics Co 液晶性ポリエステル樹脂組成物
JP2006335813A (ja) * 2005-05-31 2006-12-14 Sumitomo Chemical Co Ltd 液晶ポリエステル、液晶ポリエステル溶液、液晶ポリエステルの溶解性向上方法並びに液晶ポリエステルフィルム及びその製造方法。
JP2007238915A (ja) * 2006-02-07 2007-09-20 Sumitomo Chemical Co Ltd 液晶ポリエステルおよびその溶液組成物
JP2016027133A (ja) * 2014-06-30 2016-02-18 新日鉄住金化学株式会社 芳香族ポリエステル含有硬化性樹脂組成物、硬化物、電気・電子部品及び回路基板
JP2016132248A (ja) * 2015-01-22 2016-07-25 上野製薬株式会社 積層体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4393191A (en) * 1982-03-08 1983-07-12 Celanese Corporation Preparation of aromatic polyesters by direct self-condensation of aromatic hydroxy acids
US4539386A (en) 1983-07-27 1985-09-03 Celanese Corporation Process for forming thermally stable thermotropic liquid crystalline polyesters of predetermined chain length
US4567247A (en) 1984-05-17 1986-01-28 Celanese Corporation Process for forming thermally stable thermotropic liquid crystalline polyesters of predetermined chain length utilizing aromatic hydroxyl monomer and/or aromatic amine monomer
US6528164B1 (en) * 1999-09-03 2003-03-04 Sumitomo Chemical Company, Limited Process for producing aromatic liquid crystalline polyester and film thereof
TWI289573B (en) * 2000-09-22 2007-11-11 Polyplastics Co Whole aromatic polyester and polyester resin composition
JP4363057B2 (ja) 2003-02-21 2009-11-11 住友化学株式会社 絶縁材料用液晶性芳香族ポリエステルおよびその樹脂組成物
KR101783483B1 (ko) * 2011-06-07 2017-10-10 심천 워트 어드밴스드 머티리얼즈 주식회사 광케이블용 피복재 및 이를 포함하는 광케이블
JP6109651B2 (ja) * 2013-06-06 2017-04-05 ポリプラスチックス株式会社 複合樹脂組成物及び当該複合樹脂組成物から成形された平面状コネクター
KR102338614B1 (ko) * 2014-06-30 2021-12-13 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 방향족 폴리에스테르 함유 경화성 수지 조성물, 경화물, 전기·전자 부품 및 회로 기판
CN105837803B (zh) * 2016-02-01 2017-05-31 金发科技股份有限公司 一种液晶聚酯以及由其组成的模塑组合物和其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275653A (ja) * 1988-09-12 1990-03-15 Polyplastics Co 液晶性ポリエステル樹脂組成物
JP2006335813A (ja) * 2005-05-31 2006-12-14 Sumitomo Chemical Co Ltd 液晶ポリエステル、液晶ポリエステル溶液、液晶ポリエステルの溶解性向上方法並びに液晶ポリエステルフィルム及びその製造方法。
JP2007238915A (ja) * 2006-02-07 2007-09-20 Sumitomo Chemical Co Ltd 液晶ポリエステルおよびその溶液組成物
JP2016027133A (ja) * 2014-06-30 2016-02-18 新日鉄住金化学株式会社 芳香族ポリエステル含有硬化性樹脂組成物、硬化物、電気・電子部品及び回路基板
JP2016132248A (ja) * 2015-01-22 2016-07-25 上野製薬株式会社 積層体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113767134A (zh) * 2019-04-03 2021-12-07 宝理塑料株式会社 全芳香族聚酯和聚酯树脂组合物
CN113767134B (zh) * 2019-04-03 2024-02-09 宝理塑料株式会社 全芳香族聚酯和聚酯树脂组合物

Also Published As

Publication number Publication date
CN110603278A (zh) 2019-12-20
KR102085262B1 (ko) 2020-03-05
CN110603278B (zh) 2021-02-09
TWI743358B (zh) 2021-10-21
KR20190115101A (ko) 2019-10-10
TW201900719A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
JP6412296B1 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
JP6157778B1 (ja) 全芳香族ポリエステル及びその製造方法
JP6837189B1 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
JP6852233B2 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
JP6157779B1 (ja) 全芳香族ポリエステルアミド及びその製造方法
WO2018207774A1 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
JP6388749B1 (ja) 全芳香族ポリエステルアミド及びその製造方法
JP6133000B1 (ja) 全芳香族ポリエステルアミド及びその製造方法
JP7136636B2 (ja) 全芳香族ポリエステル
JP6411706B1 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
JP7393587B2 (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
JP7332285B2 (ja) 全芳香族ポリエステルアミド、ポリエステルアミド樹脂組成物及びポリエステルアミド成形品
JP6345373B1 (ja) 全芳香族ポリエステルアミド及びその製造方法
JP6189750B2 (ja) 全芳香族ポリエステル、ポリエステル樹脂組成物、及びポリエステル成形品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018541448

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197028250

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798736

Country of ref document: EP

Kind code of ref document: A1