WO2018207646A1 - Flaskless mold machine - Google Patents

Flaskless mold machine Download PDF

Info

Publication number
WO2018207646A1
WO2018207646A1 PCT/JP2018/017056 JP2018017056W WO2018207646A1 WO 2018207646 A1 WO2018207646 A1 WO 2018207646A1 JP 2018017056 W JP2018017056 W JP 2018017056W WO 2018207646 A1 WO2018207646 A1 WO 2018207646A1
Authority
WO
WIPO (PCT)
Prior art keywords
sand tank
frame
pressure detector
pressure
supply chamber
Prior art date
Application number
PCT/JP2018/017056
Other languages
French (fr)
Japanese (ja)
Inventor
斗紀也 寺部
功一 坂口
豊 波多野
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to JP2019517561A priority Critical patent/JP6973481B2/en
Priority to MX2019013052A priority patent/MX2019013052A/en
Priority to CN201880030326.5A priority patent/CN110603110A/en
Priority to EP18799321.7A priority patent/EP3586997A4/en
Priority to US16/609,831 priority patent/US20200061696A1/en
Priority to KR1020197036382A priority patent/KR20200007002A/en
Priority to BR112019019063A priority patent/BR112019019063A2/en
Publication of WO2018207646A1 publication Critical patent/WO2018207646A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C19/00Components or accessories for moulding machines
    • B22C19/04Controlling devices specially designed for moulding machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/23Compacting by gas pressure or vacuum
    • B22C15/24Compacting by gas pressure or vacuum involving blowing devices in which the mould material is supplied in the form of loose particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/02Compacting by pressing devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/23Compacting by gas pressure or vacuum
    • B22C15/26Compacting by gas pressure or vacuum involving propulsion devices in which the mould material is supplied in the shape of a compacted column or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/28Compacting by different means acting simultaneously or successively, e.g. preliminary blowing and finally pressing

Definitions

  • This disclosure relates to a frame making machine.
  • Patent Document 1 discloses a frame making machine that forms a frameless mold without a casting frame.
  • This molding machine includes a pair of upper and lower casting frames that sandwich a match plate on which a model is installed, a supply mechanism that supplies mold sand, and a squeeze mechanism that compresses mold sand.
  • the molding machine brings the lower casting frame closer to the upper casting frame and sandwiches the match plate between the upper casting frame and the lower casting frame.
  • the molding machine operates the supply mechanism to supply the molding sand to the upper and lower molding spaces formed by the upper casting frame and the lower casting frame.
  • the molding machine compresses the molding sand in the upper and lower molding spaces by operating a squeeze mechanism.
  • the supply mechanism of this molding machine supplies the molding sand to the upper and lower molding spaces using compressed air.
  • the supply mechanism includes an upper sand tank that communicates with a compressed air source and stores mold sand, and an upper blow head that is disposed above the upper casting frame and is statically connected to the upper sand tank.
  • the compressed air blown from the compressed air source supplies the mold sand stored in the upper sand tank to the upper blow head, and supplies the mold sand of the upper blow head to the upper molding space defined by the upper casting frame.
  • the supply mechanism communicates with a compressed air source, and is arranged in a lower sand tank for storing mold sand, and a lower blow tank that is disposed at the lower part of the lower casting frame, moves up and down, and is connected to the lower sand tank at a predetermined position. And a head.
  • the compressed air blown from the compressed air source supplies the mold sand stored in the lower sand tank to the lower blow head, and supplies the mold sand of the lower blow head to the lower casting frame.
  • the squeeze mechanism of this frame making machine is equipped with an upper squeeze cylinder and a lower squeeze cylinder that face each other vertically.
  • the upper squeeze cylinder applies downward pressure to the molding sand in the upper molding space
  • the lower squeeze cylinder applies upward pressure to the molding sand in the lower molding space. This increases the hardness of the sand mold.
  • a blank frame molding machine is a blank frame molding machine that molds an upper mold and a lower mold of a non-cast frame, and is disposed below the upper cast frame and the upper cast frame. And a lower casting frame that can hold the match plate, an upper sand tank that is disposed above the upper casting frame, connected to a compressed air source, has a lower end opened, and stores mold sand therein. An upper plate attached to the lower end of the sand tank and formed with at least one supply port communicating from the upper sand tank into the upper casting frame, is connected to a compressed air source, and mold sand is stored therein.
  • a first lower sand tank having a first connection port for discharging the molded sand, and a first lower sand tank disposed below the lower casting frame, having an upper end opened and connectable to the first connection port of the first lower sand tank. It has two connection ports and is supplied from the first lower sand tank into the lower casting frame.
  • a second lower sand tank for storing mold sand to be fed; and a lower bottom tank attached to an upper end of the second lower sand tank and having at least one supply port communicating from the second lower sand tank into the lower casting frame.
  • a plate at least one pressure detector for detecting the pressure of at least one of the upper sand tank, the first lower sand tank and the second lower sand tank; and at least one pressure detection connected to the pressure detector And a control unit for acquiring the detection result of the vessel.
  • the pressure of at least one of the upper sand tank, the first lower sand tank and the second lower sand tank is detected by at least one pressure detector. Then, the detection result of at least one pressure detector is acquired by the control unit.
  • the frame making machine moves the second lower sand tank in the vertical direction to drive the upper plate and the lower plate to squeeze, and the adjustment drive moves the first lower sand tank in the vertical direction. May be provided.
  • the state in a sand tank is grasped
  • the upper sand tank may include a storage chamber for storing the mold sand and at least one supply chamber provided on a side of the storage chamber and connected to a compressed air source.
  • the at least one pressure detector may detect the pressure in at least one supply chamber of the upper sand tank.
  • the device can utilize a supply chamber for supplying compressed air for the placement of the pressure detector.
  • the at least one supply chamber of the upper sand tank includes a first supply chamber located on the upper end side of the center of the upper sand tank and a second supply chamber located on the lower end side of the center of the upper sand tank. And may be included.
  • the at least one pressure detector may include a first pressure detector that detects the pressure in the first supply chamber and a second pressure detector that detects the pressure in the second supply chamber.
  • the storage chamber of the upper sand tank may have a first permeable member having a plurality of holes through which compressed air can circulate.
  • the at least one supply chamber of the upper sand tank may communicate with the storage chamber of the upper sand tank via the first transmission member. When configured in this manner, this apparatus can detect clogging of the first transmission member.
  • the first lower sand tank may include a storage chamber that stores the mold sand, and at least one supply chamber that is provided on a side of the storage chamber and connected to a compressed air source.
  • the at least one pressure detector may detect a pressure in at least one supply chamber of the first lower sand tank. When configured in this way, the device can utilize a supply chamber for supplying compressed air for the placement of the pressure detector.
  • the at least one supply chamber of the first lower sand tank includes a third supply chamber located at the center of the first lower sand tank and a fourth position located on the upper end side of the center of the first lower sand tank.
  • You may include a supply chamber and the 5th supply chamber located in the lower end side rather than the center of a 1st lower sand tank.
  • the at least one pressure detector detects a pressure in the third supply chamber, a fourth pressure detector for detecting the pressure in the fourth supply chamber, and a pressure in the fifth supply chamber. And a fifth pressure detector.
  • the upper and lower pressures of the first lower sand tank that is, the entire pressure of the first lower sand tank is detected. For this reason, this apparatus can grasp
  • the storage chamber of the first lower sand tank may have a second permeable member having a plurality of holes through which compressed air can circulate.
  • the third supply chamber and the fourth supply chamber may communicate with the storage chamber of the first lower sand tank via the second transmission member. When configured in this manner, this apparatus can detect clogging of the second transmission member.
  • the fifth supply chamber may be provided at the bent lower end of the first lower sand tank, and may communicate with the storage chamber of the first lower sand tank through a plurality of vent holes.
  • this apparatus can detect pressure at the lower end of the first lower sand tank, which tends to cause clogging of the transmission member.
  • the wear of the transmission member arranged in the storage chamber tends to be larger than other arrangement positions because of its shape.
  • This apparatus uses a plurality of vent holes instead of the permeable member in the storage chamber at the bent lower end of the first lower sand tank. For this reason, this apparatus can avoid generation
  • the second lower sand tank may include a storage chamber for storing the mold sand, and at least one supply chamber provided at the bottom of the storage chamber and connected to a compressed air source.
  • the at least one pressure detector may detect the pressure of at least one supply chamber of the second lower sand tank.
  • the device can utilize a supply chamber for supplying compressed air for the placement of the pressure detector.
  • At least one supply chamber of the second lower sand tank may communicate with the storage chamber of the second lower sand tank through a plurality of vent holes.
  • the mold sand flows from the bottom to the top and is supplied into the lower casting frame.
  • the wear of the transmission member disposed in the storage chamber tends to be larger than that of other tanks.
  • This apparatus uses a plurality of vent holes instead of the permeable member in the storage chamber of the second lower sand tank. For this reason, this apparatus can avoid generation
  • the frame making machine may include a display unit that is connected to the control unit and displays a detection result of at least one pressure detector.
  • this apparatus can notify the operator of the detection result of the pressure detector.
  • control unit may cause the display unit to display a graph indicating the relationship between pressure and time as a detection result.
  • this apparatus can notify the operator of the pressure time dependency.
  • control unit may cause the display unit to display a setting screen for setting the aeration set pressure and time.
  • this apparatus can support a setting operation by an operator.
  • the frame making machine may include a storage unit that stores a detection result of at least one pressure detector.
  • the control unit may cause the display unit to display the detection result stored in the storage unit and the detected current detection result in a comparable manner.
  • this device can notify the operator of the difference between the previous detection result and the current detection result.
  • control unit may include a communication unit that transmits a detection result of at least one pressure detector via a communication network.
  • this apparatus can transmit the detection result of the pressure detector to an external computer or the like without using a physical storage medium.
  • the frame making machine may include a display unit that is connected to the control unit and displays a detection result of at least one pressure detector. Then, the control unit may cause the display unit to display a detection result of at least one pressure detector of the upper sand tank and a preset threshold value in a comparable manner. In this case, this apparatus can make the operator predict clogging of the first transmission member.
  • the frame making machine may include a display unit that is connected to the control unit and displays a detection result of at least one pressure detector.
  • the control unit may cause the display unit to display the pressure detected by the third pressure detector or the fourth pressure detector and a preset threshold value in a comparable manner. In this case, this apparatus can make the operator predict clogging of the second transmission member.
  • At least one control valve that can be opened and closed according to a control signal may be provided between the upper sand tank, the first lower sand tank, the second lower sand tank, and the compressed air source.
  • a control part may output a control signal to at least one control valve based on a detection result of at least one pressure detector.
  • control unit when the control unit exhausts the upper sand tank, the first lower sand tank, and the second lower sand tank, the control unit opens at least one control valve based on a detection result of the at least one pressure detector.
  • the control signal may be output so that When configured in this manner, this apparatus can prevent the casting sand from flowing backward from the storage chamber to the supply chamber.
  • the control unit when the control unit exhausts the upper sand tank, the first lower sand tank, and the second lower sand tank, the pressure detected by the at least one pressure detector does not become a predetermined threshold value or less. May output alarm information.
  • this device can warn an operator that there is a problem with the exhaust system.
  • control valve corresponding to the upper sand tank may be disposed on the side of the upper sand tank, and the control valve corresponding to the first lower sand tank is disposed on the side of the first lower sand tank. May be. In such a configuration, since the distance from the tank to the corresponding control valve is shortened, this apparatus can improve the responsiveness of the supply of compressed air.
  • control unit may extend the aeration time when the maximum pressure detected by the pressure detector within a predetermined aeration time does not reach a predetermined threshold during the aeration process. And a control part may output warning information, when the maximum pressure detected by the at least 1 pressure detector after extending does not reach a predetermined threshold value.
  • the device can automatically perform additional aeration when the maximum pressure does not reach a predetermined threshold. In addition, the device can alert an operator when additional aeration does not improve the situation.
  • a frame making machine for forming an excellent mold or cast product is provided.
  • FIG. 1 is a perspective view of a front side of a frame making machine according to an embodiment.
  • the blank frame molding machine 1 is a molding machine that molds an upper mold and a lower mold of a non-cast frame.
  • the frame making machine 1 includes a molding unit A1 and a transport unit A2.
  • the molding part A1 a box-shaped upper casting frame and a lower casting frame that are operable in the vertical direction (Z-axis direction) are arranged.
  • the transport unit A2 introduces the match plate on which the model is arranged into the molding unit A1.
  • the upper casting frame and the lower casting frame of the molding part A1 move so as to be close to each other and sandwich the match plate.
  • Mold sand is filled in the upper and lower casting frames.
  • the molding sand filled in the upper casting frame and the lower casting frame is pressurized from above and below by the squeeze mechanism provided in the molding part A1, and the upper casting mold and the lower casting mold are formed simultaneously. Thereafter, the upper mold is extracted from the upper casting frame, and the lower mold is extracted from the lower casting frame, and is carried out of the apparatus.
  • the frame making machine 1 molds the upper mold and the lower mold of the non-cast frame.
  • FIG. 2 is a front view of the frame making machine according to one embodiment.
  • FIG. 3 is a schematic view of the left side of the frame making machine according to one embodiment.
  • the frame making machine 1 includes an upper frame 10, a lower frame 11, and four guides 12 that connect the upper frame 10 and the lower frame 11.
  • the guide 12 has an upper end connected to the upper frame 10 and a lower end connected to the lower frame 11.
  • the upper frame 10, the lower frame 11, and the four guides 12 constitute the frame of the molding part A1 described above.
  • the support frame 13 (FIG. 2) of the transport unit A2 is disposed on the side of the frame of the molding unit A1 (the negative direction of the X axis). Further, a support frame 14 (FIG. 3) extending in the vertical direction is disposed on the side of the frame of the molding part A1 (positive direction of the Y axis).
  • the support frame 14 supports a first lower sand tank described later.
  • the frame making machine 1 includes an upper casting frame 15.
  • the upper casting frame 15 is a box-shaped frame having an upper end and a lower end opened.
  • the upper casting frame 15 is movably attached to the four guides 12.
  • the upper casting frame 15 is supported by an upper casting frame cylinder 16 attached to the upper frame 10, and moves up and down along the guide 12 according to the operation of the upper casting frame cylinder 16.
  • the blank frame molding machine 1 includes a lower casting frame 17 disposed below the upper casting frame 15.
  • the lower casting frame 17 is a box-shaped frame having an upper end portion and a lower end portion opened.
  • the lower casting frame 17 is movably attached to the four guides 12.
  • the lower casting frame 17 is supported by two lower casting frame cylinders 18 (FIG. 2) attached to the upper frame 10, and moves up and down along the guide 12 according to the operation of the lower casting frame cylinder 18.
  • the region surrounded by the guide 12 is also referred to as a modeling position.
  • the match plate 19 is a plate-like member in which models are arranged on both sides thereof, and moves forward and backward between the upper casting frame 15 and the lower casting frame 17.
  • the support frame 13 of the transport unit A2 includes a rail toward the modeling position, a transport plate 20 with a roller disposed on the rail, and a transport cylinder 21 that operates the transport plate 20.
  • the match plate 19 is disposed on the transport plate 20, and is disposed between the upper casting frame 15 and the lower casting frame 17 at the modeling position by the operation of the transport cylinder 21.
  • the upper casting frame 15 and the lower casting frame 17 can hold the arranged match plate 19 in the vertical direction. Below, the area
  • the blank frame molding machine 1 includes an upper sand tank 22 disposed above the upper casting frame 15.
  • the upper sand tank 22 is attached to the upper frame 10. More specifically, the upper sand tank 22 is statically fixed to the upper frame 10.
  • the upper sand tank 22 has a storage chamber S ⁇ b> 1 for storing mold sand to be supplied to the upper casting frame 15.
  • the upper sand tank 22 has an upper end and a lower end opened.
  • a slide gate 23 is provided at the upper end of the upper sand tank 22 to slide the plate-shaped shielding member in the horizontal direction (the positive and negative directions of the X axis). By the operation of the slide gate 23, the upper end portion of the upper sand tank 22 is configured to be openable and closable.
  • a mold sand injection chute 24 for supplying mold sand is fixed above the upper sand tank 22.
  • the mold sand charging chute 24 will be described later.
  • the slide gate 23 When the slide gate 23 is in the open state, the mold sand is supplied to the upper sand tank 22 through the mold sand charging chute 24.
  • the upper plate 25 (FIG. 3) is attached to the opening at the lower end.
  • the upper plate 25 is a plate-like member and has at least one supply port that communicates from the upper sand tank 22 into the upper casting frame 15. Mold sand in the upper sand tank 22 is supplied into the upper casting frame 15 through a supply port of the upper plate 25.
  • the upper plate 25 has substantially the same size as the opening of the upper casting frame 15. As the upper casting frame 15 moves upward, the upper plate 25 enters the upper casting frame 15. As the upper casting frame 15 moves downward, the upper plate 25 moves out of the upper casting frame 15.
  • the upper plate 25 is configured to be able to advance and retract within the upper casting frame 15. Details of the upper plate 25 will be described later.
  • the upper sand tank 22 is connected to a compressed air source (not shown).
  • the upper sand tank 22 is connected to piping 80 to 83 (FIGS. 2 and 5 to 7) for supplying compressed air, and is connected to a compressed air source via the piping 80 to 83. is doing.
  • the pipes 80 to 83 are provided with electro-pneumatic proportional valves 90 to 93 (an example of a control valve, FIGS. 2 and 5 to 7).
  • the electropneumatic proportional valve 92 not only switches the supply and stop of compressed air, but also automatically adjusts the valve opening according to the pressure on the output side. For this reason, compressed air having a predetermined pressure is supplied to the upper sand tank 22.
  • Compressed air is sent into the upper sand tank 22 when the slide gate 23 is closed.
  • the mold sand in the upper sand tank 22 is supplied into the upper casting frame 15 through the supply port of the upper plate 25 together with the compressed air. Details of the compressed air supply mechanism will be described later.
  • the storage chamber S1 of the upper sand tank 22 has a first transmission member 22a (FIG. 3) having a plurality of holes through which compressed air can circulate.
  • the first transmission member 22a may be formed of a porous material.
  • the upper sand tank 22 is connected to a pipe 29 (FIG. 2) for exhausting compressed air.
  • the compressed air passes through the first permeable member 22 a when being exhausted from the pipe 29. Since this 1st permeation
  • the frame making machine 1 includes a lower sand tank that stores mold sand supplied in the lower casting frame 17.
  • the lower sand tank is divided into a first lower sand tank 30 (FIG. 3) and a second lower sand tank 31 (FIG. 3).
  • the first lower sand tank 30 is disposed on the side of the upper sand tank 22.
  • the first lower sand tank 30 has a storage chamber S ⁇ b> 2 for storing mold sand to be supplied to the lower casting frame 17.
  • the first lower sand tank 30 is supported by the support frame 14 and is movably attached to a vertically extending guide 12A (FIG. 1) provided on the support frame 14. More specifically, the first lower sand tank 30 is supported by a lower tank cylinder (adjustment drive unit) 32 (FIG. 3) attached to the upper frame 10, and is guided to the guide 12 ⁇ / b> A according to the operation of the lower tank cylinder 32. Move up and down along.
  • the upper end of the first lower sand tank 30 is opened.
  • a slide gate 33 (FIG. 3) is provided for sliding a plate-shaped shielding member in the horizontal direction (the positive and negative directions of the X axis).
  • the upper end portion of the first lower sand tank 30 is configured to be openable and closable.
  • a hopper 34 (FIG. 3) for charging mold sand is fixedly disposed above the first lower sand tank 30. The connection relationship between the hopper 34 and the sand casting chute 24 will be described later.
  • the lower end of the first lower sand tank 30 is bent in the horizontal direction (the negative direction of the Y axis), and a first connection port 35 (FIG. 3) for discharging the stored mold sand is formed at the tip. ing.
  • the first connection port 35 is configured to be connectable to a second connection port of a second lower sand tank 31 described later at a predetermined height (connection position).
  • the molding sand is supplied to the second lower sand tank 31 through the first connection port 35.
  • a first closing plate 36 (FIG. 3) extending in the vertical direction is provided at the tip of the first lower sand tank 30.
  • a second connection port of a second lower sand tank 31 to be described later is shielded by the first closing plate 36 when not located at the connection position.
  • the first lower sand tank 30 is connected to a compressed air source (not shown).
  • the first lower sand tank 30 is connected to pipes 84 to 87 (FIG. 9) for supplying compressed air, and is connected to a compressed air source via the pipes 84 to 87.
  • the pipes 84 to 87 are provided with electropneumatic proportional valves 94 to 97 (FIG. 9).
  • compressed air having a predetermined pressure is supplied to the first lower sand tank 30.
  • Compressed air is supplied into the first lower sand tank 30 when the slide gate 33 is in a closed state and a second connection port of a second lower sand tank 31 described later is in the connection position. Mold sand in the first lower sand tank 30 is supplied into the second lower sand tank 31 through the first connection port 35 together with the compressed air. Details of the compressed air supply mechanism will be described later.
  • the storage chamber S2 of the first lower sand tank 30 has a second transmission member 30a (FIG. 3) having a plurality of holes through which compressed air can flow on the inner surface.
  • the second transmission member 30a may be formed of a porous material.
  • a pipe (not shown) for exhausting compressed air is connected to the side of the first lower sand tank 30. The compressed air passes through the second transmission member 30a when being exhausted from the pipe. Since this 2nd permeation
  • the second lower sand tank 31 is disposed below the lower casting frame 17.
  • the second lower sand tank 31 has a storage chamber S3 for storing mold sand to be supplied to the lower casting frame 17 therein.
  • the second lower sand tank 31 is movably attached to the four guides 12 and is supported by a squeeze cylinder (drive unit) 37 extending in the vertical direction so as to be movable up and down.
  • a second connection port 38 (FIG. 3) that can be connected to the first connection port 35 of the first lower sand tank is formed on the side of the second lower sand tank 31.
  • the second connection port 38 is configured to be connectable to the first connection port 35 of the first lower sand tank 30 at a predetermined height (connection position).
  • the connection position is a height at which the first connection port 35 and the second connection port 38 are connected.
  • the connection position is a position where the first connection port 35 and the second connection port 38 are arranged coaxially. .
  • the 1st connection port 35 and the 2nd connection port 38 are connected by the connection surface along the up-down direction.
  • the first lower sand tank 30 and the second lower sand tank 31 are in communication with each other when the first connection port 35 and the second connection port 38 are connected at a predetermined connection position. Mold sand is supplied from the first lower sand tank 30 to the second lower sand tank 31 via the first connection port 35 and the second connection port 38.
  • a second closing plate 39 (FIG. 3) extending in the vertical direction is provided at the second connection port 38 of the second lower sand tank 31.
  • Guide rails (not shown) for guiding the second closing plate 39 are provided on both sides of the first connection port 35 of the first lower sand tank 30. Since the second closing plate 39 is guided by the guide rail, the first connection port 35 and the second connection port 38 are guided to the connection position without being inclined with respect to each other.
  • the first connection port 35 of the first lower sand tank 30 is shielded by the second closing plate 39 when not located at the connection position.
  • the frame making machine 1 may include a sealing mechanism that hermetically seals the connection surfaces of the first connection port 35 and the second connection port 38.
  • the sealing mechanism is provided on the first connection port 35 side.
  • the upper end of the second lower sand tank 31 is opened, and the lower plate 40 (FIG. 3) is attached to the opening of the upper end.
  • the lower plate 40 is a plate-like member and has at least one supply port that communicates from the second lower sand tank 31 into the lower casting frame 17.
  • the molding sand in the second lower sand tank 31 is supplied into the lower casting frame 17 through a supply port of the lower plate 40 and a lower frame described later.
  • the blank frame molding machine 1 includes a lower frame 41 as an example.
  • the underlay frame 41 is disposed below the lower casting frame 17.
  • the underlay frame 41 is a box-shaped frame having an upper end portion and a lower end portion opened.
  • the opening at the upper end of the lower frame 41 is connected to the opening at the lower end of the lower casting frame 17.
  • the lower frame 41 is configured to accommodate the second lower sand tank 31 therein.
  • the lower frame 41 is supported by a lower frame cylinder 42 fixed to the second lower sand tank 31 so as to be movable up and down.
  • the lower plate 40 has substantially the same size as the openings of the lower frame 41 and the lower casting frame 17.
  • the position where the 2nd lower sand tank 31 and the lower plate 40 were accommodated in the inside of the lower filling frame 41 which can move up and down is an original position (initial position), and becomes a descending end.
  • the lower plate 40 moves out from the lower frame 41 by moving the lower frame 41 upward.
  • the lower plate 40 moves into the lower frame 41 as the lower frame 41 moved upward moves downward.
  • the lower plate 40 is configured to be able to advance and retreat (can enter and exit) within the lower frame 41. Since this frame making machine 1 can shorten the stroke of the lower casting frame 17 by providing the lower frame 41, the frame making machine has a lower apparatus height than the case where the lower frame 41 is not provided. It can be. Moreover, since this blank frame molding machine 1 can shorten the stroke of the lower casting frame 17 by providing the lower frame 41, the molding time of a pair of upper mold and lower mold can be shortened.
  • the frame making machine 1 does not have to include the underlay frame 41.
  • the lower plate 40 is configured to be able to advance and retreat (can enter and exit) in the lower casting frame 17.
  • the lower casting frame 17 that can move up and down has its lower end at its original position (initial position). That is, the lower plate 40 moves into the lower casting frame 17 by moving upward relative to the lower casting frame 17 that moves upward.
  • the lower plate 40 moves out of the lower casting frame 17 by moving downward relative to the lower casting frame 17.
  • a molding space for the upper mold is formed by the upper plate 25, the upper casting frame 15, and the match plate 19.
  • a molding space for the lower mold is formed by the lower plate 40, the lower casting frame 17, and the match plate 19.
  • the upper casting frame 15 and the lower casting frame 17 hold the match plate at a predetermined height. Formed.
  • the lower mold space may be formed by the lower plate 40, the lower casting frame 17, the lower frame 41, and the match plate 19.
  • FIG. 4 is a schematic diagram of the left side of the frame making machine during the aeration process. As shown in FIG. 4, when the upper casting frame 15 and the lower casting frame 17 hold the match plate 19 at a predetermined height, the molding sand is supplied to the molding space by the compressed air.
  • the CB of the mold sand filled in the upper molding space and the lower molding space can be set in the range of 30% to 42%. Further, the compressive strength of the mold sand filled in the upper molding space and the lower molding space can be set in the range of 8 N / cm 2 to 15 N / cm 2 .
  • the target height of the second lower sand tank 31 is changed according to the casting thickness. That is, the height of the second connection port 38 of the second lower sand tank 31 changes.
  • the height of the first connection port 35 of the first lower sand tank 30 is adjusted to the connection position of the second connection port 38 of the second lower sand tank 31 by the lower tank cylinder 32.
  • Such adjustment can be realized by a control device 50 (FIG. 3) described later.
  • the squeeze cylinder 37 squeezes the upper plate 25 and the lower plate 40 by moving the second lower sand tank 31 upward in a state where the upper molding space and the lower molding space are filled with mold sand. As a result, pressure is applied to the molding sand in the upper molding space to form the upper casting mold. At the same time, pressure is applied to the molding sand in the lower molding space to form the lower casting mold.
  • the casting sand injection chute 24 has an upper end opened and a lower end branched into two.
  • a switching damper 43 is provided at the upper end.
  • the switching damper 43 changes the inclination direction so that the mold sand falls on one of the branched lower ends.
  • one lower end portion of the mold sand charging chute 24 is fixed to the upper portion of the upper sand tank 22, and the other lower end portion of the mold sand charging chute 24 is accommodated in the hopper 34 and is not fixed.
  • the lower tank cylinder 32 makes the height of the first connection port 35 of the first lower sand tank 30 independent of the upper sand tank 22. Can be controlled.
  • Each of the upper sand tank 22, the first lower sand tank 30, and the second lower sand tank 31 has at least one supply chamber connected to a compressed air source. “Connected” means that gas is in fluid communication.
  • the supply chamber may be arranged so as to surround the storage chamber. The storage chamber and the supply chamber communicate with each other through a through hole. Compressed air is sent from the compressed air source to the supply chamber, and compressed air is sent from the supply chamber to the storage chamber through the permeable member or the plurality of vent holes.
  • FIG. 5 is a schematic diagram of the left side of the compressed air supply structure for the upper sand tank.
  • FIG. 6 is a schematic diagram of the back side of the compressed air supply structure for the upper sand tank.
  • FIG. 7 is a schematic diagram of the upper surface side of the compressed air supply structure for the upper sand tank.
  • the upper sand tank 22 includes, as an example, a first supply chamber S4 located on the upper end side with respect to the center of the upper sand tank 22 and a lower end with respect to the center of the upper sand tank 22. It has 2nd supply chamber S5 located in the side.
  • the center of the upper sand tank 22 is the center of the upper sand tank 22 in the axial direction.
  • the first supply chamber S4 and the second supply chamber S5 are provided on the side of the storage chamber S1.
  • the first supply chamber S4 and the second supply chamber S5 are spaces provided so as to surround the storage chamber S1.
  • the first supply chamber S4 is defined between the side wall 22b of the storage chamber S1 and a piping member 22c provided outside the side wall 22b of the storage chamber S1.
  • the second supply chamber S5 is defined between the side wall 22b of the storage chamber S1 and a piping member 22d provided outside the side wall 22b of the storage chamber S1.
  • Pipes 80 and 83 are connected to the first supply chamber S4.
  • the pipes 80 and 83 are connected to positions facing each other of the pipe member 22c.
  • the pipes 80 and 83 are connected to a main pipe 100 connected to a compressed air source.
  • the piping 80 is provided with an electropneumatic proportional valve 90.
  • the pipe 83 is provided with an electropneumatic proportional valve 93.
  • the electropneumatic proportional valves 90 and 93 are arranged on the side of the upper sand tank 22.
  • the electropneumatic proportional valve is connected to a control device 50 described later, and is a valve that opens and closes based on a control signal from the control device 50.
  • the first supply chamber S4 communicates with the storage chamber S1 through a through hole (not shown).
  • the compressed air flows from the main pipe 100 through the pipes 80 and 83 and is supplied to the first supply chamber S4. Then, the compressed air is sent from the first supply chamber S4 to the storage chamber S1 through the through hole and the first transmission member 22a.
  • a plurality of through holes may be formed in the side wall 22b of the storage chamber S1.
  • the plurality of through holes may be formed so as to surround the storage chamber S1. In this case, the compressed air can be uniformly fed from the circumferential direction toward the storage chamber S1.
  • Pipes 81 and 82 are connected to the second supply chamber S5.
  • the pipes 81 and 82 are connected to one side surface of the pipe member 22d.
  • the pipes 81 and 82 are connected to a main pipe 100 connected to a compressed air source.
  • the pipe 81 is provided with an electropneumatic proportional valve 91.
  • the pipe 82 is provided with an electropneumatic proportional valve 92.
  • the electropneumatic proportional valves 91 and 92 are disposed on the side of the upper sand tank 22.
  • the second supply chamber S5 communicates with the storage chamber S1 through a through hole (not shown). When the electropneumatic proportional valves 91 and 92 are opened, the compressed air flows from the main pipe 100 through the pipes 81 and 82 and is supplied to the second supply chamber S5.
  • a plurality of through holes may be formed in the side wall 22b of the storage chamber S1.
  • the plurality of through holes may be formed so as to surround the storage chamber S1. In this case, the compressed air can be uniformly fed from the circumferential direction toward the storage chamber S1.
  • FIG. 8 is a schematic diagram of the left side of the compressed air supply structure relating to the first lower sand tank and the second lower sand tank.
  • FIG. 9 is a schematic diagram of the back side of the compressed air supply structure relating to the first lower sand tank and the second lower sand tank.
  • FIG. 10 is a partially enlarged view of the lower part of the apparatus of FIG.
  • the first lower sand tank 30 is, as an example, a third supply chamber S6 located at the center of the first lower sand tank 30, and the upper end side from the center of the first lower sand tank 30. And a fifth supply chamber S8 located on the lower end side of the center of the first lower sand tank 30.
  • the center of the first lower sand tank 30 is the center of the first lower sand tank 30 in the axial direction.
  • the third supply chamber S6 and the fourth supply chamber S7 are provided on the side of the storage chamber S2.
  • the fifth supply chamber S8 is provided at the bent lower end of the first lower sand tank 30.
  • the third supply chamber S6 and the fourth supply chamber S7 are spaces provided so as to surround the storage chamber S2.
  • the third supply chamber S6 is defined between the side wall 30c of the storage chamber S2 and a piping member 30d provided outside the side wall 30c of the storage chamber S2.
  • the fourth supply chamber S7 is defined between the side wall 30c of the storage chamber S2 and a piping member 30g provided outside the side wall 30c of the storage chamber S2.
  • a pipe 84a is connected to the third supply chamber S6.
  • the pipe 84a is connected to one side surface of the pipe member 30d.
  • the pipe 84a is connected to the main pipe 100 connected to the compressed air source via the pipe 84.
  • the pipe 84 is provided with an electropneumatic proportional valve 94.
  • the electropneumatic proportional valve 94 is disposed on the side of the first lower sand tank 30.
  • the third supply chamber S6 communicates with the storage chamber S2 through a through hole (not shown). When the electropneumatic proportional valve 94 is opened, the compressed air flows from the main pipe 100 through the pipes 84 and 84a and is supplied to the third supply chamber S6.
  • a plurality of through holes may be formed in the side wall 30c of the storage chamber S2.
  • the plurality of through holes may be formed so as to surround the storage chamber S2. In this case, the compressed air can be uniformly fed from the circumferential direction toward the storage chamber S2.
  • a pipe 84b is connected to the fourth supply chamber S7.
  • the pipe 84b is connected to one side surface of the pipe member 30g.
  • the pipe 84b is connected to the main pipe 100 connected to the compressed air source via the pipe 84.
  • the pipe 84 is provided with an electropneumatic proportional valve 94. That is, the electropneumatic proportional valve 94 controls the flow rates of both the pipes 84a and 84b.
  • the electropneumatic proportional valve 94 is disposed on the side of the first lower sand tank 30.
  • the fourth supply chamber S7 communicates with the storage chamber S2 through a through hole (not shown).
  • a plurality of through holes may be formed in the side wall 30c of the storage chamber S2.
  • the plurality of through holes may be formed so as to surround the storage chamber S2. In this case, the compressed air can be uniformly fed from the circumferential direction toward the storage chamber S2.
  • the fifth supply chamber S8 is formed inside the inspection door 70.
  • the inspection door 70 is a door that is opened and closed during maintenance of the first lower sand tank 30.
  • FIG. 11 is a cross-sectional view of the inspection door. As shown in FIG. 11, the inspection door 70 is a hollow member, and a fifth supply chamber S8 is defined therein.
  • a supply port 70 b connected to a pipe 85 that supplies compressed air is formed on the outer surface 70 a of the inspection door 70.
  • a through hole 70d for supplying compressed air to the storage chamber S2 is formed in the inner side surface 70c of the inspection door 70.
  • One through hole 70d may be formed, or a plurality of through holes 70d may be formed.
  • a vent hole 70e in which a slit is formed is fitted in the through hole 70d.
  • a pipe 85 is connected to the fifth supply chamber S8.
  • the pipe 85 is connected to the supply port 70b.
  • the pipe 85 is connected to the main pipe 100 connected to the compressed air source.
  • the piping 85 is provided with an electropneumatic proportional valve 95.
  • the electropneumatic proportional valve 95 is disposed on the side of the first lower sand tank 30.
  • the fifth supply chamber S8 communicates with the storage chamber S2 through a plurality of vent holes 70e. When the electropneumatic proportional valve 95 is opened, the compressed air flows from the main pipe 100 through the pipe 85 and is supplied to the fifth supply chamber S8. Then, the compressed air is sent from the fifth supply chamber S8 to the storage chamber S2 through the plurality of vent holes 70e.
  • the second transmission member 30a is not interposed in the flow path sent from the fifth supply chamber S8 to the storage chamber S2.
  • the wear of the transmission member arranged in the storage chamber S2 tends to be larger than other arrangement positions because of the shape thereof.
  • a plurality of vent holes 70e are used instead of the second transmission member 30a.
  • the second lower sand tank 31 has a sixth supply chamber S9 and a seventh supply chamber S10 located at the bottom of the storage chamber S3.
  • the sixth supply chamber S ⁇ b> 9 is defined inside the piping member 71.
  • the piping member 71 is disposed at the bottom near the second connection port 38 of the second lower sand tank 31.
  • the piping member 71 is provided with a supply port 71a connected to a piping for supplying compressed air, and a through hole 71b for supplying compressed air to the storage chamber S3.
  • One through hole 71b may be formed, or a plurality of through holes 71b may be formed.
  • a vent hole (not shown) in which a slit is formed is fitted in the through hole 71b.
  • the piping member 72 is provided with a supply port 72a connected to a piping for supplying compressed air, and a through hole 72b for supplying compressed air to the storage chamber S3.
  • a supply port 72a connected to a piping for supplying compressed air
  • a through hole 72b for supplying compressed air to the storage chamber S3.
  • One through hole 72b may be formed, or a plurality of through holes 72b may be formed.
  • a vent hole (not shown) in which a slit is formed is fitted in the through hole 72b.
  • a pipe 86 is connected to the sixth supply chamber S9.
  • the pipe 86 is connected to the supply port 71a.
  • the pipe 86 is connected to the main pipe 100 connected to the compressed air source.
  • An electro-pneumatic proportional valve 96 is provided in the pipe 86.
  • the sixth supply chamber S9 communicates with the storage chamber S3 through a plurality of vent holes. When the electropneumatic proportional valve 96 is opened, the compressed air flows from the main pipe 100 through the pipe 86 and is supplied to the sixth supply chamber S9. Then, the compressed air is sent from the sixth supply chamber S9 to the storage chamber S3 through a plurality of vent holes.
  • a pipe 87 is connected to the seventh supply chamber S10.
  • the pipe 87 is connected to the supply port 72a.
  • the pipe 87 is connected to the main pipe 100 connected to the compressed air source.
  • the piping 87 is provided with an electropneumatic proportional valve 97.
  • the seventh supply chamber S10 communicates with the storage chamber S3 through a plurality of vent holes. When the electropneumatic proportional valve 97 is opened, the compressed air flows from the main pipe 100 through the pipe 87 and is supplied to the seventh supply chamber S10. Then, the compressed air is sent from the seventh supply chamber S10 to the storage chamber S3 through a plurality of vent holes.
  • the transmission member is not interposed in the flow path sent from the sixth supply chamber S9 and the seventh supply chamber S10 to the storage chamber S2.
  • the wear of the transmission member arranged in the storage chamber tends to be larger than that of other tanks.
  • a plurality of vent holes are used instead of the transmission member.
  • the frame making machine 1 may include at least one pressure detector.
  • the at least one pressure detector detects the pressure of at least one of the upper sand tank 22, the first lower sand tank 30, and the second lower sand tank 31.
  • the pressure detector includes a main body, a diaphragm that is accommodated in the main body and deforms due to pressure, and a strain gauge that outputs a signal corresponding to the deformation of the diaphragm.
  • the pressure detector may include a display (for example, an LED (Light Emitting Diode) display) in the main body.
  • Various methods can be adopted as a method of attaching the pressure detector. For example, you may attach to the side wall of a storage chamber, and you may attach to the side wall of the space connected to the storage chamber.
  • the upper sand tank 22 is provided with a first pressure detector 61 and a second pressure detector 62.
  • the first pressure detector 61 detects the pressure in the first supply chamber S4.
  • the second pressure detector 62 detects the pressure in the second supply chamber S5.
  • the first lower sand tank 30 is provided with a third pressure detector 63, a fourth pressure detector 64, and a fifth pressure detector 65.
  • the third pressure detector 63 detects the pressures in the third supply chamber S6 and the fourth supply chamber S7.
  • the fourth pressure detector 64 detects the pressure in the storage chamber S2.
  • the fifth pressure detector 65 detects the pressure in the fifth supply chamber S8.
  • the pressure outside the storage chamber S2 that directly detects the pressure of the storage chamber S2 and communicates with the storage chamber S2 via the second transmission member 30a (third supply).
  • the pressure in the chamber S6, the fourth supply chamber S7, the fifth supply chamber S8) is detected.
  • the pressure in the storage chamber S2 detected by the fourth pressure detector 64 is used as a reference pressure for preventing backflow during exhaust, which will be described later.
  • the second lower sand tank 31 is provided with a sixth pressure detector 66.
  • the sixth pressure detector 66 detects the pressure in the storage chamber S3.
  • the sixth pressure detector 66 may detect the pressure in the space outside the storage chamber S3 that communicates with the storage chamber S3 via a vent or the like.
  • FIG. 12 is an example of connection of the third pressure detector.
  • a second transmission member 30a is attached to the inside of the side wall 30c of the first lower sand tank 30 via a rubber member 30f.
  • a through hole 30e is formed in the side wall 30c.
  • a piping member 30d that defines the third supply chamber S6 is attached to the outside of the side wall 30c at a position corresponding to the through hole 30e.
  • the third supply chamber S6 communicates with the storage chamber S2 through the through hole 30e and the second transmission member 30a.
  • the third supply chamber S6 is provided with a connection port (not shown) through which compressed air is supplied.
  • the compressed air supplied from the connection port passes through the through hole 30e and the second transmission member 30a, and is supplied to the inside of the storage chamber S2 of the first lower sand tank 30.
  • the first pressure detector 61 to the third pressure detector 63 and the fifth pressure detector 65 detect the pressure in the space outside the storage chamber that communicates with the storage chamber via the transmission member.
  • the frame making machine 1 may include a control device 50 (an example of a control unit).
  • the control device 50 is a computer including a control unit such as a processor, a storage unit such as a memory, an input / output unit such as an input device and a display device, a communication unit such as a network card, and the like. Control mold sand supply system, compressed air supply system, drive system and power supply system.
  • a control program for controlling various processes executed by the frame making machine 1 by the processor and each component of the frame forming machine 1 according to molding conditions are processed. Stores a program to be executed.
  • the control device 50 is connected to the first pressure detector 61 to the sixth pressure detector 66 and acquires the detection result of at least one pressure detector. Control based on the pressure detection result will be described later.
  • FIG. 13 is a flowchart for explaining a molding process of the frame making machine according to the embodiment.
  • the molding process shown in FIG. 13 is a process for molding a pair of upper mold and lower mold.
  • the molding process shown in FIG. 13 is automatically started on the condition that the posture of the frame making machine 1 is the original position (initial position). If the frame making machine 1 is not in the original position, it is manually moved to the original position.
  • the automatic start button is pressed in the posture (original position) of the frame making machine 1 shown in FIG. 3, the molding process shown in FIG. 13 is started.
  • the shuttle-in process (S12) is first performed.
  • the transport cylinder 21 moves the transport plate 20 on which the match plate 19 is placed to the molding position.
  • frame setting processing (S14) is performed.
  • the upper casting frame cylinder 16, the lower casting frame cylinder 18 (FIG. 2), the lower filling frame cylinder 42, and the squeeze cylinder 37 expand and contract according to the thickness of the mold to be formed.
  • the upper casting frame 15 moves to a predetermined position
  • the lower casting frame 17 comes into contact with the match plate 19, and then the lower casting frame 17 on which the match plate 19 is placed moves to a predetermined position.
  • the match plate 19 is sandwiched between the frame 15 and the lower casting frame 17.
  • the second lower sand tank 31 and the lower frame 41 are raised, and the lower frame 41 comes into contact with the lower casting frame 17.
  • the lower tank cylinder 32 expands and contracts, and the first lower sand tank 30 is moved in the vertical direction, so that the height of the first connection port 35 of the first lower sand tank 30 is the second of the second lower sand tank 31.
  • the state coincides with the height of the connection port 38.
  • the upper molding space and the lower molding space are in a state (height) determined by the control device 50.
  • an aeration process (S16) is performed.
  • the sealing mechanism seals the first connection port 35 of the first lower sand tank 30 and the second connection port 38 of the second lower sand tank 31.
  • the slide gate 23 of the upper sand tank 22 and the slide gate 33 of the first lower sand tank 30 are closed, and the upper sand tank 22 and the first lower sand tank are driven by the compressed air source and the electropneumatic proportional valves 90 to 97.
  • Compressed air is supplied into 30 and the second lower sand tank 31.
  • the mold sand is filled into the upper molding space and the lower molding space while flowing the molding sand.
  • the aeration process ends.
  • the exhaust process in the upper sand tank 22, the first lower sand tank 30, and the second lower sand tank 31 is performed.
  • a squeeze process (S18) is performed.
  • the sealing mechanism operated in the aeration process (S16) releases the seal, and the squeeze cylinder 37 further expands, whereby the second lower sand tank 31 is further raised.
  • the lower plate 40 attached to the second lower sand tank 31 enters the lower filling frame 41, compresses the molding sand in the lower molding space, and the upper plate 25 enters the upper casting frame 15. Compress the molding sand in the upper molding space.
  • the squeeze cylinder 37 is controlled by the hydraulic circuit, for example, when it can be determined that the hydraulic pressure of the hydraulic circuit is equal to the set hydraulic pressure, the squeeze process is terminated.
  • each cylinder is set to a free circuit. As a result, each cylinder contracts against the squeeze force.
  • a die cutting process (S20) is performed.
  • the lower frame cylinder 42 contracts to lower the lower frame 41.
  • the squeeze cylinder 37 contracts, the second lower sand tank 31 is lowered, and subsequently, the lower casting frame 17 on which the match plate 19 and the transport plate 20 are placed is lowered.
  • the model is removed from the upper casting frame 15.
  • the match plate 19 and the transport plate 20 are supported by the fixed portion. Thereby, the model is removed from the lower casting frame 17.
  • a shuttle-out process (S22) is performed.
  • the transport plate 21 is moved to the retracted position when the transport cylinder 21 contracts. If necessary, the core is arranged on the upper casting frame 15 or the lower casting frame 17.
  • a frame alignment process (S24) is performed.
  • the lower casting frame cylinder 18 contracts and the squeeze cylinder 37 extends to raise the lower casting frame 17 and the second lower sand tank 31 to align the frames.
  • a blanking process (S26) is performed.
  • the upper casting frame cylinder 16 and the lower casting frame cylinder 18 are contracted to raise the upper casting frame 15 and the lower casting frame 17 to the rising end, thereby performing the blanking.
  • the first frame separation process (S28) is performed.
  • the squeeze cylinder 37 contracts with the mold placed on the lower plate 40 of the second lower sand tank 31, and the second lower sand tank 31 is lowered.
  • the lower casting frame cylinder 18 extends to lower the lower casting frame 17 and stop at a position that does not interfere when the mold is carried out.
  • a mold extrusion process (S30) is performed.
  • the upper cylinder 48 and the lower mold are carried out of the apparatus (for example, a molding line) by extending the extrusion cylinder 48 (see FIG. 2).
  • the second frame separation process (S32) is performed.
  • the lower casting frame cylinder 18 extends to return the lower casting frame 17 to the original position.
  • FIG. 14 is a functional block diagram of a frame making machine according to an embodiment.
  • the frame making machine 1 includes a first pressure detector 61 to a sixth pressure detector 66, a control device 50, a display unit 67, and electropneumatic proportional valves 90 to 97.
  • the control device 50 is connected to the first pressure detector 61 to the sixth pressure detector 66 and can acquire the detection result.
  • the detection result is information on the pressure output from at least one of the first pressure detector 61 to the sixth pressure detector 66.
  • the control device 50 includes a calculation unit 51, a communication unit 52, and a storage unit 53.
  • the calculation unit 51 is a component that performs various calculations related to pressure control, and is realized by a processor, a memory, and the like.
  • the communication unit 52 is a component that transmits information to the outside of the apparatus, and is realized by a network card or the like.
  • the communication unit 52 processes the data in accordance with the communication standard based on the command of the calculation unit 51 and outputs the processed data to the communication network 68.
  • the communication network 68 may be wireless communication or wired communication.
  • the storage unit 53 is a component that stores data, and is realized by a memory or the like.
  • the display unit 67 is a device that can display information in a visible state.
  • the display unit 67 is a display device as an example.
  • the display unit 67 may be fixed to the device or may be separate from the device.
  • the display unit 67 displays the detection result of at least one pressure detector based on the control signal from the control device 50.
  • the display unit 67 may display alarm information based on a control signal from the control device 50.
  • the display unit 67 may be configured by a touch panel that accepts an input operation by an operator.
  • the display unit 67 may output an input operation by an operator to the control device 50.
  • the first data display process is a process for causing the display unit 67 to display the results detected by the first pressure detector 61 to the sixth pressure detector 66 during the execution of the molding process of FIG.
  • the display timing may be during the molding process or after the molding process.
  • the calculation unit 51 of the control device 50 causes the display unit 67 to display a graph showing the relationship between pressure and time as the detection results of the first pressure detector 61 to the sixth pressure detector 66.
  • the calculation unit 51 may cause the display unit 67 to display control information of the electropneumatic proportional valves 90 to 97 according to the detection result.
  • the control information is information related to the control signal of the electropneumatic proportional valve.
  • the control signal of the electropneumatic proportional valve is a signal obtained by converting the control signal into pressure based on a predetermined calculation formula. Such conversion is executed by the calculation unit 51.
  • the calculation unit 51 of the control device 50 causes the display unit 67 to display the control information and the detection result in a manner that allows comparison.
  • the calculation unit 51 of the control device 50 displays the control information and the detection result on the screen at the same timing.
  • the calculation unit 51 displays the target data to be compared on the same graph.
  • the calculation unit 51 may display the target data to be compared side by side as individual graphs in the same screen.
  • the aspect which can be compared is not limited to when the object data to be compared is displayed on the screen at the same timing, and the object data to be compared may be alternately displayed on the screen.
  • FIG. 15 is an example of a graph showing the control signal of the electropneumatic proportional valve and the detection result of the pressure detector.
  • the graph shown in FIG. 15 is a detection result in the upper sand tank 22, the horizontal axis is time, and the vertical axis is pressure.
  • the control signal of the electropneumatic proportional valve is converted into pressure and is indicated by a broken line. That is, the broken line in the figure is the target pressure.
  • the time from the rise to the fall of the dashed waveform is the aeration time T1.
  • the detection result is shown by a solid line.
  • the thick solid line is the detection result of the first pressure detector 61
  • the thin solid line is the detection result of the second pressure detector 62.
  • the pressure in the upper sand tank 22 increases at the initial stage of the aeration time T1.
  • the pressure increase is temporarily terminated.
  • the end of the increase in pressure is considered to have occurred because the mold sand in the upper sand tank 22 is flowing.
  • the pressure starts to rise again. It is considered that the re-rise in pressure occurs because the filling of the mold sand is completed.
  • the pressure slightly increases and becomes a constant value.
  • An operator or the like can set the length of the aeration time T1 on a setting screen described later. For example, an operator or the like may adjust the aeration time T1 so that the end timing of the aeration time T1 approaches the timing E2. An operator or the like may adjust the aeration time T1 so that the end timing of the aeration time T1 approaches the timing when the margin time T2 has elapsed from the timing E2.
  • the margin time T2 is a value determined based on actual measurement.
  • the margin time T2 may be a value appropriately set by an operator or the like. By such adjustment, the cycle time can be shortened and the amount of air consumed can be optimized.
  • the second data display process is a process of causing the display unit 67 to display the results detected by the first pressure detector 61 to the sixth pressure detector 66.
  • the display timing is when checking for clogging of the first transmission member 22a or the second transmission member 30a, for example, during maintenance.
  • the calculation unit 51 of the control device 50 displays a graph showing the relationship between pressure and time on the display unit 67 as a detection result of at least one of the first pressure detector 61 to the third pressure detector 63. Let Since the first pressure detector 61 to the third pressure detector 63 communicate with the storage chamber via the first transmission member 22a or the second transmission member 30a, the first pressure detector 61 to the third pressure detector. The clogging of the first transmission member 22a or the second transmission member 30a can be detected based on the 63 pressure detection result.
  • a threshold value may be displayed together with the pressure detection result in order to help a worker or the like.
  • the calculation unit 51 of the control device 50 compares the detection result of at least one pressure detector (the first pressure detector 61 and the second pressure detector 62) of the upper sand tank 22 with a preset threshold value. It is displayed on the display unit 67 in a possible manner.
  • the calculation unit 51 may cause the display unit 67 to display the pressure detected by the third pressure detector 63 of the first lower sand tank 30 and a preset threshold value in a comparable manner.
  • the preset threshold value may be stored in the storage unit 53.
  • a value obtained by subtracting a predetermined value from the observed abnormal value may be set as the threshold value and stored in the storage unit 53.
  • the control device 50 may acquire a threshold value via a touch panel or the like and store it in the storage unit 53.
  • the calculation unit 51 may cause the display unit 67 to display control information of the electropneumatic proportional valves 90 to 94 in accordance with the detection result.
  • the control information is information related to the control signal of the electropneumatic proportional valve.
  • the control signal of the electropneumatic proportional valve is a signal obtained by converting the control signal into pressure based on a predetermined calculation formula. Such conversion is executed by the calculation unit 51.
  • FIG. 16 is an example of a graph showing the detection result of the pressure detector and the threshold value.
  • the graph shown in FIG. 16 is a detection result in the upper sand tank 22, the horizontal axis is time, and the vertical axis is pressure.
  • a thick solid line is an abnormal value
  • a broken line is a threshold value
  • a thin solid line is a detection result of the pressure detector.
  • the third data display process is a process for causing the display unit 67 to display the results detected by the first pressure detector 61 to the sixth pressure detector 66 during the molding process shown in FIG.
  • the display timing may be during the molding process or after the molding process.
  • the calculation unit 51 of the control device 50 causes the display unit 67 to display a graph showing the relationship between pressure and time as the detection results of the first pressure detector 61 to the sixth pressure detector 66.
  • the calculation unit 51 may cause the display unit 67 to display control information of the electropneumatic proportional valves 90 to 97 according to the detection result.
  • the control information is information related to the control signal of the electropneumatic proportional valve.
  • the control signal of the electropneumatic proportional valve is a signal obtained by converting the control signal into pressure based on a predetermined calculation formula. Such conversion is executed by the calculation unit 51.
  • the calculation unit 51 of the control device 50 stores the detection results of the first pressure detector 61 to the sixth pressure detector 66 in the storage unit 53 at a predetermined timing. And the calculating part 51 displays the memorize
  • the computing unit 51 refers to the storage unit 53 and acquires the detection results stored in advance, and acquires the current detection results from the first pressure detector 61 to the sixth pressure detector 66. Then, the calculation unit 51 displays the detection result stored in advance and the current detection result on the screen at the same timing.
  • the calculation unit 51 displays the target data to be compared on the same graph.
  • the calculation unit 51 may display the target data to be compared side by side as individual graphs in the same screen.
  • the aspect which can be compared is not limited to when the object data to be compared is displayed on the screen at the same timing, and the object data to be compared may be alternately displayed on the screen.
  • FIG. 17 is an example in which the detection result stored in advance and the current detection result are compared.
  • the graph shown in FIG. 17 is the detection result in the upper sand tank 22, the horizontal axis is time, and the vertical axis is pressure.
  • the screen example (A) is a screen displaying a graph G1 of detection results stored in advance.
  • the screen example (B) is a screen in which a detection result graph G1 stored in advance and a current detection result graph G2 are displayed in an overlapping manner. An operator or the like can confirm whether there is a difference from the previous process based on the graph shown in FIG.
  • the calculation unit 51 displays a setting screen on the display unit 67 as an example of the setting process.
  • the setting screen is a screen for setting the aeration setting pressure and time.
  • the calculating part 51 sets aeration setting pressure and time based on the input information of the operator received via the input part (not shown) etc.
  • the calculation unit 51 sets aeration time, pressure, threshold value, and the like.
  • the setting is, for example, stored in the storage unit 53 as a target value.
  • FIG. 18 is a screen example displayed by the display unit.
  • Screen example (A) is an example of a setting screen for setting the aeration time.
  • an icon IC1 for receiving an input operation for changing a page is displayed.
  • an icon IC2 for receiving an input operation for calling an application or various functions is displayed.
  • An example of the setting target is an electropneumatic proportional valve.
  • the electropneumatic proportional valves 90 and 93 and the electropneumatic proportional valves 90 and 93 are displayed as objects OB1 and OB2.
  • An example of setting items is aeration time and pressure.
  • the aeration time and pressure are displayed as objects OB3 to OB5.
  • Objects OB3 to OB5 are items that can be input by an operator or the like.
  • examples of setting items are aeration time and pressure during additional processing.
  • the additional process is not executed when the aeration process is normal.
  • the additional process is a process that is executed to extend the aeration time before it is determined that the aeration process is abnormal. Details of the addition process will be described later.
  • the aeration time and the pressure during the additional processing are displayed as an object OB6.
  • the object OB6 is an item that can be input by an operator or the like.
  • the setting items accepted in the object OB6 are set values for additional aeration. An operator or the like can make settings related to aeration by inputting values into the objects OB3 to OB6.
  • the control device 50 issues an alarm when an abnormality is detected.
  • An alarm means notifying an operator or the like of an abnormality.
  • the control device 50 displays a screen related to an alarm on the display unit 67 as an example of alarm processing.
  • the control device 50 may output an alarm from a speaker (not shown) instead of the alarm by display or together with the alarm by display.
  • the blow-out abnormality is “a phenomenon in which a portion where mold sand does not exist due to partial clogging of each supply port of the lower plate 40 occurs and the portion becomes a passage for compressed air”. Since there is little air resistance in the place where the mold sand does not exist, the compressed air blows through only the place. For this reason, when a blow-through abnormality occurs, the pressure does not increase.
  • the control device 50 extends the aeration time when it is determined that the casting sand is not normally filled during the aeration process (additional process).
  • the control device 50 outputs a control signal to at least one electropneumatic proportional valve based on the detection results of the first pressure detector 61 to the sixth pressure detector 66.
  • the control device 50 can perform normal filling of the mold sand when the maximum pressure detected by the pressure detector within the aeration time T1 does not reach a predetermined threshold during the aeration process. Judge that it is not.
  • the predetermined threshold is stored in the storage unit 53, for example.
  • the control apparatus 50 outputs a control signal to an electropneumatic proportional valve based on the value set using the screen example (A) of FIG. 18, for example (addition process which extends aeration time).
  • the control device 50 When the blow-through abnormality is eliminated by the additional process, that is, when the maximum pressure detected by the pressure detector reaches the predetermined threshold value within the additional aeration time, the control device 50 performs the mold sand filling process normally. It is determined that there is, and no alarm is given. On the other hand, the control device 50 outputs alarm information when the maximum pressure detected by the pressure detector within the additional aeration time does not reach a predetermined threshold value.
  • the alarm information is data relating to an alarm, and is screen data when output to the display unit 67, or alarm data when output to a speaker or the like.
  • the control device 50 may stop the operation of the frame making machine 1 together with the output of the alarm information.
  • the screen example (B) in FIG. 18 is an example of an alarm.
  • the control device 50 causes the display unit 67 to display the content of the abnormality, the operating state of the frame making machine 1, the treatment (coping method), the return (return method), and the like.
  • the control device 50 performs exhaust processing when the aeration time T1 ends.
  • the compressed air in the upper sand tank 22 is exhausted, and the pressure decreases.
  • the exhaust mechanism is clogged with sand, for example, as shown in the graph G3 of the screen example (B) in FIG. 17, the decrease in pressure becomes dull at the exhaust processing time T3.
  • the control device 50 evacuates the upper sand tank 22, the first lower sand tank 30, and the second lower sand tank 31, the pressure detected by the at least one pressure detector is a predetermined threshold value after a predetermined time has elapsed. If it is not below, alarm information is output. Thereby, an operator or the like can recognize an abnormality in exhaust.
  • the control device 50 may output a control signal so that at least one electropneumatic proportional valve is opened based on the detection result of the at least one pressure detector during the exhaust process.
  • the control device 50 outputs a control signal so that the electropneumatic proportional valves 95 to 97 are opened based on the pressure detected by the fourth pressure detector 64 serving as a reference at the time of exhaust processing.
  • the control device 50 may open the electropneumatic proportional valves 95 to 97 so that the pressure is higher than the pressure detected by the fourth pressure detector 64 by a predetermined value (feedback processing).
  • the pressures of the upper sand tank 22, the first lower sand tank 30, and the second lower sand tank 31 are detected by the first pressure detector 61 to the sixth pressure detector 66. Is done. Then, the control device 50 acquires the detection results of the first pressure detector 61 to the sixth pressure detector 66.
  • the frame making machine 1 since the situation in the sand tank is grasped by acquiring the pressure in the tank, an excellent mold and cast product can be obtained as a result.
  • the frame making machine 1 when the squeeze process is performed by moving the second lower sand tank in the vertical direction, the situation in the sand tank can be properly grasped.
  • the supply chambers S4 to S10 for supplying compressed air can be used for the arrangement of the first pressure detector 61 to the sixth pressure detector 66. Further, the frame making machine 1 does not need to provide a through hole for pressure detection in the storage chambers S1 to S3 for storing the mold sand. For this reason, according to the frame making machine 1, the influence of the arrangement of the first pressure detector 61 to the sixth pressure detector 66 on the molding process can be reduced.
  • the punch frame molding machine 1 since the upper and lower pressures of the upper sand tank 22, that is, the entire pressure of the upper sand tank 22, are detected, it is possible to grasp the pressure deviation depending on the detection position of the upper sand tank 22. it can. According to the frame making machine 1, since the upper and lower pressures of the first lower sand tank 30, that is, the entire pressure of the first lower sand tank 30 is detected, the pressure depending on the detection position of the first lower sand tank 30. The deviation can be grasped.
  • clogging of the first transmission member 22a and the second transmission member 30a can be detected. Further, in the frame making machine 1, a plurality of vent holes are used instead of the transmitting member in the storage chamber S2 at the bent lower end of the first lower sand tank 30 or in the second lower sand tank 31. For this reason, according to the frame making machine 1, it is possible to avoid the occurrence of clogging of the transmission member at a location where the clogging of the transmission member is likely to occur.
  • the detection results of the first pressure detector 61 to the sixth pressure detector 66 can be notified to the operator.
  • the punch frame molding machine 1 it is possible to notify the operator of the time dependency of the pressure.
  • the setting operation by the operator can be supported by displaying the setting screen on the display unit 67.
  • the operator can be notified of the difference between the detection result stored in advance and the current detection result.
  • the detection results of the first pressure detector 61 to the sixth pressure detector 66 can be transmitted to an external computer or the like without using a physical storage medium.
  • the detection result of the pressure detector and a preset threshold value can be displayed on the display unit in a manner that can be compared.
  • the operator can predict clogging of the first transmission member 22a or the second transmission member 30a.
  • a control signal can be output to the electropneumatic proportional valve based on the detection result of the pressure detector, for example, feedback control can be performed.
  • a control signal is output so that the electropneumatic proportional valves 95 to 97 are opened.
  • the flow of the molding sand in the tank can be appropriately controlled. More specifically, the frame making machine 1 can prevent the mold sand from flowing backward from the storage chambers S2 and S3 to the supply chambers S8 to S10.
  • the frame making machine 1 it is possible to warn the operator that there is a problem with the exhaust system.
  • the punch frame molding machine 1 since the electropneumatic proportional valves 90 to 97 are arranged on the side of the sand tank, it is possible to improve the responsiveness of the supply of compressed air.
  • additional aeration can be automatically performed when the maximum pressure does not reach a predetermined threshold value. Furthermore, according to the frame making machine 1, an operator can be warned when the situation is not improved by additional aeration.
  • the embodiment described above shows an example of a frame making machine according to the present disclosure.
  • the frame making machine 1 according to the present disclosure is not limited to the frame making machine 1 according to the embodiment, and the frame forming machine 1 according to the embodiment is modified without changing the gist described in each claim. Or may be applied to other things.
  • the upper sand tank 22 may be configured to be movable.
  • the sand tank of a molding machine does not need to be three, and may be one and may be two, or four or more.
  • calculation unit 52 ... Communication unit, 53 ... Storage unit, 61 ... First pressure detector, 62 ... Second pressure detector, 63 ... Third pressure detector, 64 ... Fourth pressure detector, 65 ... Fifth pressure detector, 67 ... display unit, 68 ... communication network, 90-97 ... electro-pneumatic proportional valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Devices For Molds (AREA)

Abstract

A flaskless mold machine according to the present invention includes: an upper flask; a lower flask; an upper sand tank; an upper plate attached to the lower end of the upper sand tank; a first lower sand tank; a second lower sand tank that accommodates molding sand supplied from the first lower sand tank; a lower plate that is attached to the upper end of the second lower sand tank and that has at least one supply port communicating between the second lower sand tank and the interior of the lower flask; at least one pressure detector that detects the pressure in at least one of the upper sand tank, the first lower sand tank, and the second lower sand tank; and a control unit that is connected to the pressure detector and acquires the detection result from the at least one pressure detector.

Description

抜枠造型機Frame making machine
 本開示は、抜枠造型機に関する。 This disclosure relates to a frame making machine.
 特許文献1は、鋳枠を有しない無枠式の鋳型を造型する抜枠造型機を開示する。この造型機は、模型が設置されるマッチプレートを狭持する一組の上鋳枠及び下鋳枠と、鋳型砂を供給する供給機構と、鋳型砂を圧縮するスクイズ機構とを備える。造型機は、下鋳枠を上鋳枠へ近づけ、上鋳枠及び下鋳枠でマッチプレートを挟み込ませる。この状態で、造型機は、供給機構を動作させることにより、上鋳枠及び下鋳枠により形成された上下の造型空間へ鋳型砂を供給させる。造型機は、スクイズ機構を動作させることにより、上下の造型空間の鋳型砂を圧縮させる。上記工程を経て、上鋳型及び下鋳型が同時に造型される。 Patent Document 1 discloses a frame making machine that forms a frameless mold without a casting frame. This molding machine includes a pair of upper and lower casting frames that sandwich a match plate on which a model is installed, a supply mechanism that supplies mold sand, and a squeeze mechanism that compresses mold sand. The molding machine brings the lower casting frame closer to the upper casting frame and sandwiches the match plate between the upper casting frame and the lower casting frame. In this state, the molding machine operates the supply mechanism to supply the molding sand to the upper and lower molding spaces formed by the upper casting frame and the lower casting frame. The molding machine compresses the molding sand in the upper and lower molding spaces by operating a squeeze mechanism. Through the above steps, an upper mold and a lower mold are formed simultaneously.
 この造型機の供給機構は、圧縮空気を用いて上下の造型空間に鋳型砂を供給する。供給機構は、圧縮空気源に連通し、鋳型砂を貯留する上サンドタンクと、上鋳枠の上部に配置され、上サンドタンクに静的に接続された上ブローヘッドとを有する。圧縮空気源から吹き込まれた圧縮空気は、上サンドタンクに貯留された鋳型砂を上ブローヘッドへ供給し、上ブローヘッドの鋳型砂を上鋳枠により画成された上造型空間へ供給する。同様に、供給機構は、圧縮空気源に連通し、鋳型砂を貯留する下サンドタンクと、下鋳枠の下部に配置され、上下に移動し、所定位置で下サンドタンクに接続される下ブローヘッドとを有する。圧縮空気源から吹き込まれた圧縮空気は、下サンドタンクに貯留された鋳型砂を下ブローヘッドへ供給し、下ブローヘッドの鋳型砂を下鋳枠へ供給する。 The supply mechanism of this molding machine supplies the molding sand to the upper and lower molding spaces using compressed air. The supply mechanism includes an upper sand tank that communicates with a compressed air source and stores mold sand, and an upper blow head that is disposed above the upper casting frame and is statically connected to the upper sand tank. The compressed air blown from the compressed air source supplies the mold sand stored in the upper sand tank to the upper blow head, and supplies the mold sand of the upper blow head to the upper molding space defined by the upper casting frame. Similarly, the supply mechanism communicates with a compressed air source, and is arranged in a lower sand tank for storing mold sand, and a lower blow tank that is disposed at the lower part of the lower casting frame, moves up and down, and is connected to the lower sand tank at a predetermined position. And a head. The compressed air blown from the compressed air source supplies the mold sand stored in the lower sand tank to the lower blow head, and supplies the mold sand of the lower blow head to the lower casting frame.
 この抜枠造型機のスクイズ機構は、上下に向き合った上スクイズシリンダ及び下スクイズシリンダを備える。上スクイズシリンダが上造型空間の鋳型砂に下向きの圧力を加え、下スクイズシリンダが下造型空間の鋳型砂に上向きの圧力を加える。これにより、鋳型砂の硬度が高まる。 The squeeze mechanism of this frame making machine is equipped with an upper squeeze cylinder and a lower squeeze cylinder that face each other vertically. The upper squeeze cylinder applies downward pressure to the molding sand in the upper molding space, and the lower squeeze cylinder applies upward pressure to the molding sand in the lower molding space. This increases the hardness of the sand mold.
特開昭54-51930号公報JP 54-51930 A
 特許文献1記載の抜枠造型機のように、圧縮空気を用いて造型空間に鋳型砂を供給する装置では、サンドタンク内で砂詰まりが発生するおそれがある。しかしながら、特許文献1記載の抜枠造型機は、サンドタンク内の状況を把握することができない。このような砂詰まりは、鋳型の造型性や鋳物製品の品質に影響を与える。本技術分野では、優れた鋳型又は鋳物製品を造型する抜枠造型機が望まれている。 In an apparatus for supplying mold sand to a molding space using compressed air, such as a frame making machine described in Patent Document 1, sand clogging may occur in the sand tank. However, the frame making machine described in Patent Document 1 cannot grasp the situation in the sand tank. Such sand clogging affects the moldability of the mold and the quality of the cast product. In this technical field, there is a demand for a frame making machine for making excellent molds or cast products.
 本開示の一側面に係る抜枠造型機は、無鋳枠の上鋳型及び下鋳型を造型する抜枠造型機であって、上鋳枠と、上鋳枠の下方に配置され、上鋳枠とともにマッチプレートを狭持可能な下鋳枠と、上鋳枠の上方に配置され、圧縮空気源に接続され、その下端部が開口され、その内部に鋳型砂を貯留する上サンドタンクと、上サンドタンクの下端部に取り付けられ、上サンドタンクから上鋳枠内へ連通する少なくとも1つの供給口が形成された上プレートと、圧縮空気源に接続され、その内部に鋳型砂を貯留し、貯留した鋳型砂を排出する第1接続口を有する第1下サンドタンクと、下鋳枠の下方に配置され、その上端部が開口され、第1下サンドタンクの第1接続口に接続可能な第2接続口を有し、第1下サンドタンクから供給され下鋳枠内へ供給される鋳型砂を貯留する第2下サンドタンクと、第2下サンドタンクの上端部に取り付けられ、第2下サンドタンクから下鋳枠内へ連通する少なくとも1つの供給口が形成された下プレートと、上サンドタンク、第1下サンドタンク及び第2下サンドタンクのうちの少なくとも1つのタンクの圧力を検出する少なくとも1つの圧力検出器と、圧力検出器に接続され、少なくとも1つの圧力検出器の検出結果を取得する制御部と、を備える。 A blank frame molding machine according to one aspect of the present disclosure is a blank frame molding machine that molds an upper mold and a lower mold of a non-cast frame, and is disposed below the upper cast frame and the upper cast frame. And a lower casting frame that can hold the match plate, an upper sand tank that is disposed above the upper casting frame, connected to a compressed air source, has a lower end opened, and stores mold sand therein. An upper plate attached to the lower end of the sand tank and formed with at least one supply port communicating from the upper sand tank into the upper casting frame, is connected to a compressed air source, and mold sand is stored therein. A first lower sand tank having a first connection port for discharging the molded sand, and a first lower sand tank disposed below the lower casting frame, having an upper end opened and connectable to the first connection port of the first lower sand tank. It has two connection ports and is supplied from the first lower sand tank into the lower casting frame. A second lower sand tank for storing mold sand to be fed; and a lower bottom tank attached to an upper end of the second lower sand tank and having at least one supply port communicating from the second lower sand tank into the lower casting frame. A plate, at least one pressure detector for detecting the pressure of at least one of the upper sand tank, the first lower sand tank and the second lower sand tank; and at least one pressure detection connected to the pressure detector And a control unit for acquiring the detection result of the vessel.
 この抜枠造型機では、上サンドタンク、第1下サンドタンク及び第2下サンドタンクのうちの少なくとも1つのタンクの圧力が少なくとも1つの圧力検出器により検出される。そして、制御部により、少なくとも1つの圧力検出器の検出結果が取得される。このように、タンク内の圧力が取得されることによりサンドタンク内の状況が把握されるため、この装置によれば、結果として優れた鋳型及び鋳物製品を得ることができる。 In this frame making machine, the pressure of at least one of the upper sand tank, the first lower sand tank and the second lower sand tank is detected by at least one pressure detector. Then, the detection result of at least one pressure detector is acquired by the control unit. Thus, since the situation in the sand tank is grasped by acquiring the pressure in the tank, according to this apparatus, an excellent mold and casting product can be obtained as a result.
 一実施形態において、抜枠造型機は、第2下サンドタンクを上下方向に移動させて、上プレート及び下プレートでスクイズを行う駆動部と、第1下サンドタンクを上下方向に移動させる調整駆動部と、を備えてもよい。このように構成した場合、第2下サンドタンクが上下方向に移動することによってスクイズ処理が行われる装置において、サンドタンク内の状況が把握される。 In one embodiment, the frame making machine moves the second lower sand tank in the vertical direction to drive the upper plate and the lower plate to squeeze, and the adjustment drive moves the first lower sand tank in the vertical direction. May be provided. When comprised in this way, the state in a sand tank is grasped | ascertained in the apparatus in which a squeeze process is performed by a 2nd lower sand tank moving to an up-down direction.
 一実施形態において、上サンドタンクは、鋳型砂を貯留する貯留室と、貯留室の側方に設けられ、圧縮空気源に接続された少なくとも1つの供給室とを有してもよい。そして、少なくとも1つの圧力検出器は、上サンドタンクの少なくとも1つの供給室の圧力を検出してもよい。このように構成した場合、この装置は、圧力検出器の配置のために、圧縮空気を供給するための供給室を利用することができる。 In one embodiment, the upper sand tank may include a storage chamber for storing the mold sand and at least one supply chamber provided on a side of the storage chamber and connected to a compressed air source. The at least one pressure detector may detect the pressure in at least one supply chamber of the upper sand tank. When configured in this way, the device can utilize a supply chamber for supplying compressed air for the placement of the pressure detector.
 一実施形態において、上サンドタンクの少なくとも1つの供給室は、上サンドタンクの中央よりも上端側に位置する第1供給室と、上サンドタンクの中央よりも下端側に位置する第2供給室とを含んでもよい。そして、少なくとも1つの圧力検出器は、第1供給室の圧力を検出する第1圧力検出器と、第2供給室の圧力を検出する第2圧力検出器とを含んでもよい。このように構成した場合、上サンドタンクの上下の圧力、つまり上サンドタンクの全体の圧力が検出される。このため、この装置は、上サンドタンクの検出位置に依存した圧力偏差を把握することができる。 In one embodiment, the at least one supply chamber of the upper sand tank includes a first supply chamber located on the upper end side of the center of the upper sand tank and a second supply chamber located on the lower end side of the center of the upper sand tank. And may be included. The at least one pressure detector may include a first pressure detector that detects the pressure in the first supply chamber and a second pressure detector that detects the pressure in the second supply chamber. When configured in this manner, the upper and lower pressures of the upper sand tank, that is, the pressure of the entire upper sand tank is detected. For this reason, this apparatus can grasp the pressure deviation depending on the detection position of the upper sand tank.
 一実施形態において、上サンドタンクの貯留室は、その内面に圧縮空気が流通可能な複数の孔を有する第1透過部材を有してもよい。そして、上サンドタンクの少なくとも1つの供給室は、第1透過部材を介して上サンドタンクの貯留室と連通してもよい。このように構成した場合、この装置は、第1透過部材の目詰まりを検出することができる。 In one embodiment, the storage chamber of the upper sand tank may have a first permeable member having a plurality of holes through which compressed air can circulate. The at least one supply chamber of the upper sand tank may communicate with the storage chamber of the upper sand tank via the first transmission member. When configured in this manner, this apparatus can detect clogging of the first transmission member.
 一実施形態において、第1下サンドタンクは、鋳型砂を貯留する貯留室と、貯留室の側方に設けられ、圧縮空気源に接続された少なくとも1つの供給室とを有してもよい。そして、少なくとも1つの圧力検出器は、第1下サンドタンクの少なくとも1つの供給室の圧力を検出してもよい。このように構成した場合、この装置は、圧力検出器の配置のために、圧縮空気を供給するための供給室を利用することができる。 In one embodiment, the first lower sand tank may include a storage chamber that stores the mold sand, and at least one supply chamber that is provided on a side of the storage chamber and connected to a compressed air source. The at least one pressure detector may detect a pressure in at least one supply chamber of the first lower sand tank. When configured in this way, the device can utilize a supply chamber for supplying compressed air for the placement of the pressure detector.
 一実施形態において、第1下サンドタンクの少なくとも1つの供給室は、第1下サンドタンクの中央に位置する第3供給室と、第1下サンドタンクの中央よりも上端側に位置する第4供給室と、第1下サンドタンクの中央よりも下端側に位置する第5供給室と、を含んでもよい。そして、少なくとも1つの圧力検出器は、第3供給室の圧力を検出する第3圧力検出器と、第4供給室の圧力を検出する第4圧力検出器と、第5供給室の圧力を検出する第5圧力検出器と、を含んでもよい。このように構成した場合、第1下サンドタンクの上下の圧力、つまり第1下サンドタンクの全体の圧力が検出される。このため、この装置は、第1下サンドタンクの検出位置に依存した圧力偏差を把握することができる。 In one embodiment, the at least one supply chamber of the first lower sand tank includes a third supply chamber located at the center of the first lower sand tank and a fourth position located on the upper end side of the center of the first lower sand tank. You may include a supply chamber and the 5th supply chamber located in the lower end side rather than the center of a 1st lower sand tank. The at least one pressure detector detects a pressure in the third supply chamber, a fourth pressure detector for detecting the pressure in the fourth supply chamber, and a pressure in the fifth supply chamber. And a fifth pressure detector. When configured in this manner, the upper and lower pressures of the first lower sand tank, that is, the entire pressure of the first lower sand tank is detected. For this reason, this apparatus can grasp | ascertain the pressure deviation depending on the detection position of a 1st lower sand tank.
 一実施形態において、第1下サンドタンクの貯留室は、その内面に圧縮空気が流通可能な複数の孔を有する第2透過部材を有してもよい。そして、第3供給室及び第4供給室は、第2透過部材を介して第1下サンドタンクの貯留室と連通してもよい。このように構成した場合、この装置は、第2透過部材の目詰まりを検出することができる。 In one embodiment, the storage chamber of the first lower sand tank may have a second permeable member having a plurality of holes through which compressed air can circulate. The third supply chamber and the fourth supply chamber may communicate with the storage chamber of the first lower sand tank via the second transmission member. When configured in this manner, this apparatus can detect clogging of the second transmission member.
 一実施形態において、第5供給室は、第1下サンドタンクの屈曲した下端部に設けられ、複数のベントホールを介して第1下サンドタンクの貯留室と連通してもよい。このように構成した場合、この装置は、透過部材の目詰まりが発生しやすい傾向にある第1下サンドタンクの下端部において、圧力を検出することができる。また、第1下サンドタンクの屈曲した下端部においては、その形状が故に、貯留室内に配置される透過部材の摩耗が他の配置位置に比べて大きくなる傾向にある。この装置は、第1下サンドタンクの屈曲した下端部の貯留室内においては、透過部材の代わりに複数のベントホールを用いる。このため、この装置は、第1下サンドタンクの屈曲した下端部において、透過部材の目詰まりの発生を回避することができる。 In one embodiment, the fifth supply chamber may be provided at the bent lower end of the first lower sand tank, and may communicate with the storage chamber of the first lower sand tank through a plurality of vent holes. When configured in this manner, this apparatus can detect pressure at the lower end of the first lower sand tank, which tends to cause clogging of the transmission member. Further, at the bent lower end portion of the first lower sand tank, the wear of the transmission member arranged in the storage chamber tends to be larger than other arrangement positions because of its shape. This apparatus uses a plurality of vent holes instead of the permeable member in the storage chamber at the bent lower end of the first lower sand tank. For this reason, this apparatus can avoid generation | occurrence | production of the clogging of a permeation | transmission member in the bent lower end part of a 1st lower sand tank.
 一実施形態において、第2下サンドタンクは、鋳型砂を貯留する貯留室と、貯留室の底部に設けられ、圧縮空気源に接続された少なくとも1つの供給室とを有してもよい。そして、少なくとも1つの圧力検出器は、第2下サンドタンクの少なくとも1つの供給室の圧力を検出してもよい。このように構成した場合、この装置は、圧力検出器の配置のために、圧縮空気を供給するための供給室を利用することができる。 In one embodiment, the second lower sand tank may include a storage chamber for storing the mold sand, and at least one supply chamber provided at the bottom of the storage chamber and connected to a compressed air source. The at least one pressure detector may detect the pressure of at least one supply chamber of the second lower sand tank. When configured in this way, the device can utilize a supply chamber for supplying compressed air for the placement of the pressure detector.
 一実施形態において、第2下サンドタンクの少なくとも1つの供給室は、複数のベントホールを介して第2下サンドタンクの貯留室と連通してもよい。第2下サンドタンクにおいては、鋳型砂は下から上へ流れて下鋳枠内へ供給される。このため、第2下サンドタンクは、貯留室内に配置される透過部材の摩耗が他のタンクに比べて大きくなる傾向にある。この装置は、第2下サンドタンクの貯留室内においては、透過部材の代わりに複数のベントホールを用いる。このため、この装置は、第2下サンドタンクにおいて、透過部材の目詰まりの発生を回避することができる。 In one embodiment, at least one supply chamber of the second lower sand tank may communicate with the storage chamber of the second lower sand tank through a plurality of vent holes. In the second lower sand tank, the mold sand flows from the bottom to the top and is supplied into the lower casting frame. For this reason, in the second lower sand tank, the wear of the transmission member disposed in the storage chamber tends to be larger than that of other tanks. This apparatus uses a plurality of vent holes instead of the permeable member in the storage chamber of the second lower sand tank. For this reason, this apparatus can avoid generation | occurrence | production of the clogging of a permeation | transmission member in a 2nd lower sand tank.
 一実施形態において、抜枠造型機は、制御部に接続され、少なくとも1つの圧力検出器の検出結果を表示する表示部を備えてもよい。このように構成した場合、この装置は、圧力検出器の検出結果を操作員に報知することができる。 In one embodiment, the frame making machine may include a display unit that is connected to the control unit and displays a detection result of at least one pressure detector. When configured in this way, this apparatus can notify the operator of the detection result of the pressure detector.
 一実施形態において、制御部は、検出結果として圧力と時間との関係を示すグラフを表示部に表示させてもよい。このように構成した場合、この装置は、圧力の時間依存性を操作員に報知することができる。 In one embodiment, the control unit may cause the display unit to display a graph indicating the relationship between pressure and time as a detection result. When configured in this manner, this apparatus can notify the operator of the pressure time dependency.
 一実施形態において、制御部は、エアレーション設定圧力と時間とを設定するための設定画面を表示部に表示させてもよい。このように構成した場合、この装置は、操作員による設定操作を支援することができる。 In one embodiment, the control unit may cause the display unit to display a setting screen for setting the aeration set pressure and time. When configured in this manner, this apparatus can support a setting operation by an operator.
 一実施形態において、抜枠造型機は、少なくとも1つの圧力検出器の検出結果を記憶する記憶部を備えてもよい。制御部は、記憶部に記憶された検出結果と、検出された今回の検出結果とを、比較可能な態様で表示部に表示させてもよい。このように構成した場合、この装置は、操作員に対して、以前の検出結果と今回の検出結果との差分を報知することができる。 In one embodiment, the frame making machine may include a storage unit that stores a detection result of at least one pressure detector. The control unit may cause the display unit to display the detection result stored in the storage unit and the detected current detection result in a comparable manner. When configured in this way, this device can notify the operator of the difference between the previous detection result and the current detection result.
 一実施形態において、制御部は、少なくとも1つの圧力検出器の検出結果を、通信ネットワークを介して送信する通信部を有してもよい。このように構成した場合、この装置は、圧力検出器の検出結果を、物理記憶媒体を介することなく外部のコンピュータなどに送信することができる。 In one embodiment, the control unit may include a communication unit that transmits a detection result of at least one pressure detector via a communication network. When configured in this manner, this apparatus can transmit the detection result of the pressure detector to an external computer or the like without using a physical storage medium.
 一実施形態において、抜枠造型機は、制御部に接続され、少なくとも1つの圧力検出器の検出結果を表示する表示部を備えてもよい。そして、制御部は、上サンドタンクの少なくとも1つの圧力検出器の検出結果と、予め設定された閾値とを比較可能な態様で表示部に表示させてもよい。この場合、この装置は、操作員に対して、第1透過部材の目詰まりを予測させることができる。 In one embodiment, the frame making machine may include a display unit that is connected to the control unit and displays a detection result of at least one pressure detector. Then, the control unit may cause the display unit to display a detection result of at least one pressure detector of the upper sand tank and a preset threshold value in a comparable manner. In this case, this apparatus can make the operator predict clogging of the first transmission member.
 一実施形態において、抜枠造型機は、制御部に接続され、少なくとも1つの圧力検出器の検出結果を表示する表示部を備えてもよい。そして、制御部は、第3圧力検出器又は第4圧力検出器により検出された圧力と、予め設定された閾値とを比較可能な態様で表示部に表示させてもよい。この場合、この装置は、操作員に対して、第2透過部材の目詰まりを予測させることができる。 In one embodiment, the frame making machine may include a display unit that is connected to the control unit and displays a detection result of at least one pressure detector. The control unit may cause the display unit to display the pressure detected by the third pressure detector or the fourth pressure detector and a preset threshold value in a comparable manner. In this case, this apparatus can make the operator predict clogging of the second transmission member.
 一実施形態において、上サンドタンク、第1下サンドタンク及び第2下サンドタンクそれぞれと、圧縮空気源との間には、制御信号に応じて開閉可能な少なくとも1つの制御弁が設けられもよい。そして、制御部は、少なくとも1つの圧力検出器の検出結果に基づいて少なくとも1つの制御弁に制御信号を出力してもよい。このように構成した場合、この装置は、圧力に関して例えばフィードバック制御をすることができるので、タンク内の鋳型砂の流動を適切に制御することができる。 In one embodiment, at least one control valve that can be opened and closed according to a control signal may be provided between the upper sand tank, the first lower sand tank, the second lower sand tank, and the compressed air source. . And a control part may output a control signal to at least one control valve based on a detection result of at least one pressure detector. When configured in this manner, this apparatus can perform, for example, feedback control on the pressure, so that the flow of the mold sand in the tank can be appropriately controlled.
 一実施形態において、制御部は、上サンドタンク、第1下サンドタンク及び第2下サンドタンクを排気する際に、少なくとも1つの圧力検出器の検出結果に基づいて少なくとも1つの制御弁が開となるように制御信号を出力してもよい。このように構成した場合、この装置は、貯留室から供給室へ鋳型砂が逆流することを防ぐことができる。 In one embodiment, when the control unit exhausts the upper sand tank, the first lower sand tank, and the second lower sand tank, the control unit opens at least one control valve based on a detection result of the at least one pressure detector. The control signal may be output so that When configured in this manner, this apparatus can prevent the casting sand from flowing backward from the storage chamber to the supply chamber.
 一実施形態において、制御部は、上サンドタンク、第1下サンドタンク及び第2下サンドタンクを排気する際に、少なくとも1つの圧力検出器により検出された圧力が所定の閾値以下とならない場合には警報情報を出力してもよい。このように構成することで、この装置は、排気系統に不具合があることを操作員に警告することができる。 In one embodiment, when the control unit exhausts the upper sand tank, the first lower sand tank, and the second lower sand tank, the pressure detected by the at least one pressure detector does not become a predetermined threshold value or less. May output alarm information. With this configuration, this device can warn an operator that there is a problem with the exhaust system.
 一実施形態において、上サンドタンクに対応する制御弁は、上サンドタンクの側方に配置されてもよく、第1下サンドタンクに対応する制御弁は、第1下サンドタンクの側方に配置されてもよい。このように構成した場合、タンクから対応する制御弁までの距離が短くなるので、この装置は、圧縮空気の供給の応答性を向上させることができる。 In one embodiment, the control valve corresponding to the upper sand tank may be disposed on the side of the upper sand tank, and the control valve corresponding to the first lower sand tank is disposed on the side of the first lower sand tank. May be. In such a configuration, since the distance from the tank to the corresponding control valve is shortened, this apparatus can improve the responsiveness of the supply of compressed air.
 一実施形態において、制御部は、エアレーション処理時において、所定のエアレーション時間内に圧力検出器により検出された最大圧力が所定の閾値に達しない場合には、エアレーション時間を延長してもよい。そして、制御部は、延長した後において少なくとも1つの圧力検出器により検出された最大圧力が所定の閾値に達しない場合には、警報情報を出力してもよい。このように構成した場合、この装置は、最大圧力が所定の閾値に達しないときに追加的なエアレーションを自動で行うことができる。さらに、この装置は、追加的なエアレーションによっても状況が改善されないときには、操作員に警報することができる。 In one embodiment, the control unit may extend the aeration time when the maximum pressure detected by the pressure detector within a predetermined aeration time does not reach a predetermined threshold during the aeration process. And a control part may output warning information, when the maximum pressure detected by the at least 1 pressure detector after extending does not reach a predetermined threshold value. When configured in this manner, the device can automatically perform additional aeration when the maximum pressure does not reach a predetermined threshold. In addition, the device can alert an operator when additional aeration does not improve the situation.
 本開示の種々の側面及び実施形態によれば、優れた鋳型又は鋳物製品を造型する抜枠造型機が提供される。 According to various aspects and embodiments of the present disclosure, a frame making machine for forming an excellent mold or cast product is provided.
一実施形態に係る抜枠造型機の正面側の斜視図である。It is a perspective view of the front side of the frame making machine which concerns on one Embodiment. 一実施形態に係る抜枠造型機の正面図である。It is a front view of the frame making machine concerning one embodiment. 一実施形態に係る抜枠造型機の左側面側の概要図である。It is a schematic diagram by the side of the left side of a frame making machine concerning one embodiment. エアレーション処理時における抜枠造型機の左側面側の概要図である。It is a schematic diagram by the side of the left side of a frame making machine at the time of aeration processing. 上サンドタンクに関する圧縮空気の供給構造の左側面側の概要図である。It is a schematic diagram of the left side of the compressed air supply structure for the upper sand tank. 上サンドタンクに関する圧縮空気の供給構造の背面側の概要図である。It is a schematic diagram of the back side of the supply structure of compressed air regarding an upper sand tank. 上サンドタンクに関する圧縮空気の供給構造の上面側の概要図である。It is a schematic diagram of the upper surface side of the compressed air supply structure regarding the upper sand tank. 第1下サンドタンク及び第2下サンドタンクに関する圧縮空気の供給構造の左側面側の概要図である。It is a schematic diagram of the left side of the compressed air supply structure for the first lower sand tank and the second lower sand tank. 第1下サンドタンク及び第2下サンドタンクに関する圧縮空気の供給構造の背面側の概要図である。It is a schematic diagram of the back side of the supply structure of compressed air about the 1st lower sand tank and the 2nd lower sand tank. 図8の装置下部の部分拡大図である。It is the elements on larger scale of the apparatus lower part of FIG. 点検扉の断面図である。It is sectional drawing of an inspection door. 第3圧力検出器の接続の一例である。It is an example of the connection of a 3rd pressure detector. 一実施形態に係る抜枠造型機の造型処理を説明するフローチャートである。It is a flowchart explaining the molding process of the frame making machine which concerns on one Embodiment. 一実施形態に係る抜枠造型機の機能ブロック図である。It is a functional block diagram of the frame making machine which concerns on one Embodiment. 電空比例弁の制御信号及び圧力検出器の検出結果を示すグラフの一例である。It is an example of the graph which shows the control signal of an electropneumatic proportional valve, and the detection result of a pressure detector. 圧力検出器の検出結果と閾値とを示すグラフの一例である。It is an example of the graph which shows the detection result and threshold value of a pressure detector. 事前に記憶された検出結果と今回の検出結果とを比較した一例である。It is an example which compared the detection result memorize | stored beforehand and this detection result. 表示部により表示される画面例である。It is an example of a screen displayed by a display part.
 以下、添付図面を参照して実施形態について説明する。なお、各図において同一又は相当部分には同一の符号を付し、重複する説明を省略する。以下では、水平方向をX軸及びY軸の方向とし、鉛直方向(上下方向)をZ軸の方向とする。 Hereinafter, embodiments will be described with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted. Hereinafter, the horizontal direction is defined as the X-axis and Y-axis directions, and the vertical direction (vertical direction) is defined as the Z-axis direction.
[抜枠造型機の概要]
 図1は、一実施形態に係る抜枠造型機の正面側の斜視図である。抜枠造型機1は、無鋳枠の上鋳型及び下鋳型を造型する造型機である。図1に示されるように、抜枠造型機1は、造型部A1及び搬送部A2を備えている。造型部A1は、上下方向(Z軸方向)に動作可能な箱形状の上鋳枠及び下鋳枠が配置されている。搬送部A2は、模型が配置されたマッチプレートを造型部A1へ導入する。造型部A1の上鋳枠及び下鋳枠は、互いに近接するように移動して、マッチプレートを狭持する。上鋳枠内及び下鋳枠内には、鋳型砂が充填される。上鋳枠内及び下鋳枠内に充填された鋳型砂は、造型部A1に備わるスクイズ機構によって上下方向から加圧されて上鋳型及び下鋳型が同時に形成される。その後、上鋳枠から上鋳型が、下鋳枠から下鋳型がそれぞれ抜き取られ、装置外へ搬出される。このように、抜枠造型機1は、無鋳枠の上鋳型及び下鋳型を造型する。
[Outline of punching machine]
FIG. 1 is a perspective view of a front side of a frame making machine according to an embodiment. The blank frame molding machine 1 is a molding machine that molds an upper mold and a lower mold of a non-cast frame. As shown in FIG. 1, the frame making machine 1 includes a molding unit A1 and a transport unit A2. In the molding part A1, a box-shaped upper casting frame and a lower casting frame that are operable in the vertical direction (Z-axis direction) are arranged. The transport unit A2 introduces the match plate on which the model is arranged into the molding unit A1. The upper casting frame and the lower casting frame of the molding part A1 move so as to be close to each other and sandwich the match plate. Mold sand is filled in the upper and lower casting frames. The molding sand filled in the upper casting frame and the lower casting frame is pressurized from above and below by the squeeze mechanism provided in the molding part A1, and the upper casting mold and the lower casting mold are formed simultaneously. Thereafter, the upper mold is extracted from the upper casting frame, and the lower mold is extracted from the lower casting frame, and is carried out of the apparatus. Thus, the frame making machine 1 molds the upper mold and the lower mold of the non-cast frame.
[フレーム構造]
 図2は、一実施形態に係る抜枠造型機の正面図である。図3は、一実施形態に係る抜枠造型機の左側面側の概要図である。図2及び図3に示されるように、抜枠造型機1は、上フレーム10、下フレーム11、及び、上フレーム10と下フレーム11とを連結する4本のガイド12を備える。ガイド12は、その上端部が上フレーム10に連結され、その下端部が下フレーム11に連結される。上フレーム10、下フレーム11、及び、4本のガイド12によって、上述した造型部A1のフレームが構成されている。
[Frame structure]
FIG. 2 is a front view of the frame making machine according to one embodiment. FIG. 3 is a schematic view of the left side of the frame making machine according to one embodiment. As shown in FIGS. 2 and 3, the frame making machine 1 includes an upper frame 10, a lower frame 11, and four guides 12 that connect the upper frame 10 and the lower frame 11. The guide 12 has an upper end connected to the upper frame 10 and a lower end connected to the lower frame 11. The upper frame 10, the lower frame 11, and the four guides 12 constitute the frame of the molding part A1 described above.
 造型部A1のフレームの側方(X軸の負の方向)には、搬送部A2の支持フレーム13(図2)が配置されている。また、造型部A1のフレームの側方(Y軸の正の方向)には、上下方向に延びる支持フレーム14(図3)が配置されている。支持フレーム14は、後述する第1下サンドタンクを支持する。 The support frame 13 (FIG. 2) of the transport unit A2 is disposed on the side of the frame of the molding unit A1 (the negative direction of the X axis). Further, a support frame 14 (FIG. 3) extending in the vertical direction is disposed on the side of the frame of the molding part A1 (positive direction of the Y axis). The support frame 14 supports a first lower sand tank described later.
[上鋳枠及び下鋳枠]
 抜枠造型機1は、上鋳枠15を備える。上鋳枠15は、上端部及び下端部が開口された箱形状の枠体である。上鋳枠15は、4本のガイド12に移動可能に取り付けられている。上鋳枠15は、上フレーム10に取り付けられた上鋳枠シリンダ16によって支持され、上鋳枠シリンダ16の動作に応じてガイド12に沿って上下動する。
[Upper and lower casting frames]
The frame making machine 1 includes an upper casting frame 15. The upper casting frame 15 is a box-shaped frame having an upper end and a lower end opened. The upper casting frame 15 is movably attached to the four guides 12. The upper casting frame 15 is supported by an upper casting frame cylinder 16 attached to the upper frame 10, and moves up and down along the guide 12 according to the operation of the upper casting frame cylinder 16.
 抜枠造型機1は、上鋳枠15の下方に配置された下鋳枠17を備える。下鋳枠17は、上端部及び下端部が開口された箱形状の枠体である。下鋳枠17は、4本のガイド12に移動可能に取り付けられている。下鋳枠17は、上フレーム10に取り付けられた2本の下鋳枠シリンダ18(図2)によって支持され、下鋳枠シリンダ18の動作に応じてガイド12に沿って上下動する。以下では、ガイド12に囲まれた領域を造形位置ともいう。 The blank frame molding machine 1 includes a lower casting frame 17 disposed below the upper casting frame 15. The lower casting frame 17 is a box-shaped frame having an upper end portion and a lower end portion opened. The lower casting frame 17 is movably attached to the four guides 12. The lower casting frame 17 is supported by two lower casting frame cylinders 18 (FIG. 2) attached to the upper frame 10, and moves up and down along the guide 12 according to the operation of the lower casting frame cylinder 18. Hereinafter, the region surrounded by the guide 12 is also referred to as a modeling position.
 上鋳枠15と下鋳枠17との間には、マッチプレート19(図2)が搬送部A2から導入される。マッチプレート19は、その両面に模型が配置された板状部材であり、上鋳枠15と下鋳枠17との間を進退する。具体的な一例として、搬送部A2の支持フレーム13には、造形位置へ向かうレールと、レール上に配置されたローラ付の搬送プレート20と、搬送プレート20を動作させる搬送シリンダ21を備えている。マッチプレート19は、搬送プレート20上に配置され、搬送シリンダ21の動作によって、造形位置であって上鋳枠15と下鋳枠17との間に配置される。上鋳枠15及び下鋳枠17は、配置されたマッチプレート19を上下方向から狭持可能である。以下では、支持フレーム13上の領域を退避位置ともいう。 Between the upper casting frame 15 and the lower casting frame 17, a match plate 19 (FIG. 2) is introduced from the transport unit A2. The match plate 19 is a plate-like member in which models are arranged on both sides thereof, and moves forward and backward between the upper casting frame 15 and the lower casting frame 17. As a specific example, the support frame 13 of the transport unit A2 includes a rail toward the modeling position, a transport plate 20 with a roller disposed on the rail, and a transport cylinder 21 that operates the transport plate 20. . The match plate 19 is disposed on the transport plate 20, and is disposed between the upper casting frame 15 and the lower casting frame 17 at the modeling position by the operation of the transport cylinder 21. The upper casting frame 15 and the lower casting frame 17 can hold the arranged match plate 19 in the vertical direction. Below, the area | region on the support frame 13 is also called retraction position.
[サンドタンク]
 抜枠造型機1は、上鋳枠15の上方に配置された上サンドタンク22を備える。上サンドタンク22は、上フレーム10に取り付けられている。より具体的には、上サンドタンク22は、上フレーム10に静的に固定されている。上サンドタンク22は、その内部に、上鋳枠15に供給するための鋳型砂を貯留する貯留室S1を有する。上サンドタンク22は、その上端部及び下端部が開口されている。上サンドタンク22の上端部には、板状の遮蔽部材を水平方向(X軸の正負の方向)にスライドさせるスライドゲート23が設けられている。スライドゲート23の動作により、上サンドタンク22の上端部は、開閉可能に構成されている。また、上サンドタンク22の上方には、鋳型砂を投入する鋳型砂投入シュート24が固定配置されている。鋳型砂投入シュート24については後述する。スライドゲート23が開状態のときに、鋳型砂は鋳型砂投入シュート24を介して上サンドタンク22へ供給される。
[Sand tank]
The blank frame molding machine 1 includes an upper sand tank 22 disposed above the upper casting frame 15. The upper sand tank 22 is attached to the upper frame 10. More specifically, the upper sand tank 22 is statically fixed to the upper frame 10. The upper sand tank 22 has a storage chamber S <b> 1 for storing mold sand to be supplied to the upper casting frame 15. The upper sand tank 22 has an upper end and a lower end opened. A slide gate 23 is provided at the upper end of the upper sand tank 22 to slide the plate-shaped shielding member in the horizontal direction (the positive and negative directions of the X axis). By the operation of the slide gate 23, the upper end portion of the upper sand tank 22 is configured to be openable and closable. A mold sand injection chute 24 for supplying mold sand is fixed above the upper sand tank 22. The mold sand charging chute 24 will be described later. When the slide gate 23 is in the open state, the mold sand is supplied to the upper sand tank 22 through the mold sand charging chute 24.
 上サンドタンク22の下端部は開口されており、下端部の開口に上プレート25(図3)が取り付けられる。上プレート25は、板状部材であり、上サンドタンク22から上鋳枠15内へ連通する少なくとも1つの供給口を有する。上サンドタンク22内の鋳型砂は、上プレート25の供給口を介して上鋳枠15内に供給される。上プレート25は、上鋳枠15の開口の大きさと略同一である。上鋳枠15が上方向に移動することにより、上プレート25は上鋳枠15内に進入する。上鋳枠15が下方向に移動することにより、上プレート25は上鋳枠15内から退出する。このように、上プレート25は、上鋳枠15内に進退可能に構成されている。上プレート25の詳細は後述する。 The lower end of the upper sand tank 22 is opened, and the upper plate 25 (FIG. 3) is attached to the opening at the lower end. The upper plate 25 is a plate-like member and has at least one supply port that communicates from the upper sand tank 22 into the upper casting frame 15. Mold sand in the upper sand tank 22 is supplied into the upper casting frame 15 through a supply port of the upper plate 25. The upper plate 25 has substantially the same size as the opening of the upper casting frame 15. As the upper casting frame 15 moves upward, the upper plate 25 enters the upper casting frame 15. As the upper casting frame 15 moves downward, the upper plate 25 moves out of the upper casting frame 15. Thus, the upper plate 25 is configured to be able to advance and retract within the upper casting frame 15. Details of the upper plate 25 will be described later.
 上サンドタンク22は、圧縮空気源(不図示)に接続されている。具体的な一例としては、上サンドタンク22は、圧縮空気を供給する配管80~83(図2、図5~7))が接続されており、配管80~83を介して圧縮空気源と接続している。配管80~83には、電空比例弁90~93(制御弁の一例、図2、図5~7))が設けられている。電空比例弁92は、圧縮空気の供給及び停止を切り替えるだけでなく、バルブ開度を出力側の圧力に応じて自動調整する。このため、所定圧力の圧縮空気が上サンドタンク22に供給される。スライドゲート23が閉状態のときに、圧縮空気が上サンドタンク22内に送り込まれる。上サンドタンク22内の鋳型砂は、圧縮空気とともに上プレート25の供給口を介して上鋳枠15内に供給される。圧縮空気の供給機構の詳細については後述する。 The upper sand tank 22 is connected to a compressed air source (not shown). As a specific example, the upper sand tank 22 is connected to piping 80 to 83 (FIGS. 2 and 5 to 7) for supplying compressed air, and is connected to a compressed air source via the piping 80 to 83. is doing. The pipes 80 to 83 are provided with electro-pneumatic proportional valves 90 to 93 (an example of a control valve, FIGS. 2 and 5 to 7). The electropneumatic proportional valve 92 not only switches the supply and stop of compressed air, but also automatically adjusts the valve opening according to the pressure on the output side. For this reason, compressed air having a predetermined pressure is supplied to the upper sand tank 22. Compressed air is sent into the upper sand tank 22 when the slide gate 23 is closed. The mold sand in the upper sand tank 22 is supplied into the upper casting frame 15 through the supply port of the upper plate 25 together with the compressed air. Details of the compressed air supply mechanism will be described later.
 また、上サンドタンク22の貯留室S1は、その内面に圧縮空気が流通可能な複数の孔を有する第1透過部材22a(図3)を有する。これにより、第1透過部材22aの全面を介して圧縮空気が貯留室S1全体に供給されるため、鋳型砂の流動性が向上する。第1透過部材22aは多孔質材料で形成されていてもよい。上サンドタンク22は、圧縮空気を排気する配管29(図2)が接続されている。圧縮空気は、配管29から排気される際に第1透過部材22aを通る。この第1透過部材22aが、鋳型砂を通過させず、圧縮空気を透過させるため、鋳型砂が上サンドタンク22外へ出ていくことを回避することができる。 Further, the storage chamber S1 of the upper sand tank 22 has a first transmission member 22a (FIG. 3) having a plurality of holes through which compressed air can circulate. Thereby, since compressed air is supplied to the whole storage chamber S1 through the whole surface of the 1st permeation | transmission member 22a, the fluidity | liquidity of casting sand improves. The first transmission member 22a may be formed of a porous material. The upper sand tank 22 is connected to a pipe 29 (FIG. 2) for exhausting compressed air. The compressed air passes through the first permeable member 22 a when being exhausted from the pipe 29. Since this 1st permeation | transmission member 22a permeate | transmits compressed air without allowing mold sand to pass through, it can avoid that mold sand goes out of the upper sand tank 22. FIG.
 抜枠造型機1は、下鋳枠17内に供給される鋳型砂を貯留する下サンドタンクを備える。下サンドタンクは、一例として第1下サンドタンク30(図3)及び第2下サンドタンク31(図3)に分割されている。第1下サンドタンク30は、上サンドタンク22の側方に配置されている。第1下サンドタンク30は、その内部に、下鋳枠17に供給するための鋳型砂を貯留する貯留室S2を有する。 The frame making machine 1 includes a lower sand tank that stores mold sand supplied in the lower casting frame 17. As an example, the lower sand tank is divided into a first lower sand tank 30 (FIG. 3) and a second lower sand tank 31 (FIG. 3). The first lower sand tank 30 is disposed on the side of the upper sand tank 22. The first lower sand tank 30 has a storage chamber S <b> 2 for storing mold sand to be supplied to the lower casting frame 17.
 第1下サンドタンク30は、支持フレーム14に支持されており、支持フレーム14に設けられた上下に延びるガイド12A(図1)に移動可能に取り付けられている。より具体的には、第1下サンドタンク30は、上フレーム10に取り付けられた下タンクシリンダ(調整駆動部)32(図3)によって支持され、下タンクシリンダ32の動作に応じてガイド12Aに沿って上下動する。 The first lower sand tank 30 is supported by the support frame 14 and is movably attached to a vertically extending guide 12A (FIG. 1) provided on the support frame 14. More specifically, the first lower sand tank 30 is supported by a lower tank cylinder (adjustment drive unit) 32 (FIG. 3) attached to the upper frame 10, and is guided to the guide 12 </ b> A according to the operation of the lower tank cylinder 32. Move up and down along.
 第1下サンドタンク30は、その上端部が開口されている。第1下サンドタンク30の上端部には、板状の遮蔽部材を水平方向(X軸の正負の方向)にスライドさせるスライドゲート33(図3)が設けられている。スライドゲート33の動作により、第1下サンドタンク30の上端部は、開閉可能に構成されている。また、第1下サンドタンク30の上方には、鋳型砂を投入するためのホッパ34(図3)が固定配置されている。ホッパ34と鋳型砂投入シュート24との接続関係については後述する。スライドゲート33が開状態のときに、鋳型砂はホッパ34を介して第1下サンドタンク30へ供給される。 The upper end of the first lower sand tank 30 is opened. At the upper end of the first lower sand tank 30, a slide gate 33 (FIG. 3) is provided for sliding a plate-shaped shielding member in the horizontal direction (the positive and negative directions of the X axis). By the operation of the slide gate 33, the upper end portion of the first lower sand tank 30 is configured to be openable and closable. In addition, a hopper 34 (FIG. 3) for charging mold sand is fixedly disposed above the first lower sand tank 30. The connection relationship between the hopper 34 and the sand casting chute 24 will be described later. When the slide gate 33 is in an open state, the mold sand is supplied to the first lower sand tank 30 via the hopper 34.
 第1下サンドタンク30の下端部は水平方向(Y軸の負の方向)に屈曲しており、先端部には、貯留した鋳型砂を排出する第1接続口35(図3)が形成されている。第1接続口35は、後述する第2下サンドタンク31の第2接続口と、所定の高さ(接続位置)で接続可能に構成されている。鋳型砂は、第1接続口35を介して第2下サンドタンク31へ供給される。また、第1下サンドタンク30の先端部には上下方向に延びる第1閉塞板36(図3)が設けられている。後述する第2下サンドタンク31の第2接続口は、接続位置に位置していないときに第1閉塞板36によって遮蔽される。 The lower end of the first lower sand tank 30 is bent in the horizontal direction (the negative direction of the Y axis), and a first connection port 35 (FIG. 3) for discharging the stored mold sand is formed at the tip. ing. The first connection port 35 is configured to be connectable to a second connection port of a second lower sand tank 31 described later at a predetermined height (connection position). The molding sand is supplied to the second lower sand tank 31 through the first connection port 35. A first closing plate 36 (FIG. 3) extending in the vertical direction is provided at the tip of the first lower sand tank 30. A second connection port of a second lower sand tank 31 to be described later is shielded by the first closing plate 36 when not located at the connection position.
 第1下サンドタンク30は、圧縮空気源(不図示)に接続されている。具体的な一例としては、第1下サンドタンク30は、圧縮空気を供給する配管84~87(図9)が接続されており、配管84~87を介して圧縮空気源と接続している。配管84~87には、電空比例弁94~97(図9)が設けられている。このため、所定圧力の圧縮空気が第1下サンドタンク30に供給される。スライドゲート33が閉状態のときであって、後述する第2下サンドタンク31の第2接続口が接続位置にある場合に、第1下サンドタンク30内に圧縮空気が供給される。第1下サンドタンク30内の鋳型砂は、圧縮空気とともに第1接続口35を介して第2下サンドタンク31内に供給される。圧縮空気の供給機構の詳細については後述する。 The first lower sand tank 30 is connected to a compressed air source (not shown). As a specific example, the first lower sand tank 30 is connected to pipes 84 to 87 (FIG. 9) for supplying compressed air, and is connected to a compressed air source via the pipes 84 to 87. The pipes 84 to 87 are provided with electropneumatic proportional valves 94 to 97 (FIG. 9). For this reason, compressed air having a predetermined pressure is supplied to the first lower sand tank 30. Compressed air is supplied into the first lower sand tank 30 when the slide gate 33 is in a closed state and a second connection port of a second lower sand tank 31 described later is in the connection position. Mold sand in the first lower sand tank 30 is supplied into the second lower sand tank 31 through the first connection port 35 together with the compressed air. Details of the compressed air supply mechanism will be described later.
 また、第1下サンドタンク30の貯留室S2は、その内面に圧縮空気が流通可能な複数の孔を有する第2透過部材30a(図3)を有する。これにより、第2透過部材30aの全面を介して圧縮空気が貯留室S2全体に供給されるため、鋳型砂の流動性が向上する。第2透過部材30aは多孔質材料で形成されていてもよい。第1下サンドタンク30は、その側部に圧縮空気を排気する配管(不図示)が接続されている。圧縮空気は、配管から排気される際に第2透過部材30aを通る。この第2透過部材30aが、鋳型砂を通過させず、圧縮空気を透過させるため、鋳型砂が第1下サンドタンク30外へ出ていくことを回避することができる。 Further, the storage chamber S2 of the first lower sand tank 30 has a second transmission member 30a (FIG. 3) having a plurality of holes through which compressed air can flow on the inner surface. Thereby, since compressed air is supplied to the whole storage chamber S2 through the whole surface of the 2nd permeation | transmission member 30a, the fluidity | liquidity of casting sand improves. The second transmission member 30a may be formed of a porous material. A pipe (not shown) for exhausting compressed air is connected to the side of the first lower sand tank 30. The compressed air passes through the second transmission member 30a when being exhausted from the pipe. Since this 2nd permeation | transmission member 30a permeate | transmits compressed air without allowing mold sand to pass through, it can avoid that mold sand goes out of the 1st lower sand tank 30. FIG.
 第2下サンドタンク31は、下鋳枠17の下方に配置される。第2下サンドタンク31は、その内部に、下鋳枠17に供給するための鋳型砂を貯留する貯留室S3を有する。第2下サンドタンク31は、4本のガイド12に移動可能に取り付けられ、上下方向に延びるスクイズシリンダ(駆動部)37によって上下動可能に支持されている。 The second lower sand tank 31 is disposed below the lower casting frame 17. The second lower sand tank 31 has a storage chamber S3 for storing mold sand to be supplied to the lower casting frame 17 therein. The second lower sand tank 31 is movably attached to the four guides 12 and is supported by a squeeze cylinder (drive unit) 37 extending in the vertical direction so as to be movable up and down.
 第2下サンドタンク31の側部には、第1下サンドタンクの第1接続口35に接続可能な第2接続口38(図3)が形成されている。第2接続口38は、第1下サンドタンク30の第1接続口35と、所定の高さ(接続位置)で接続可能に構成されている。接続位置とは、第1接続口35及び第2接続口38とが接続する高さであり、具体的には、第1接続口35及び第2接続口38が同軸に配置される位置である。第1接続口35及び第2接続口38は、上下方向に沿った接続面で接続される。 A second connection port 38 (FIG. 3) that can be connected to the first connection port 35 of the first lower sand tank is formed on the side of the second lower sand tank 31. The second connection port 38 is configured to be connectable to the first connection port 35 of the first lower sand tank 30 at a predetermined height (connection position). The connection position is a height at which the first connection port 35 and the second connection port 38 are connected. Specifically, the connection position is a position where the first connection port 35 and the second connection port 38 are arranged coaxially. . The 1st connection port 35 and the 2nd connection port 38 are connected by the connection surface along the up-down direction.
 第1下サンドタンク30及び第2下サンドタンク31は、第1接続口35と第2接続口38とが所定の接続位置で接続することにより、互いに連通した状態となる。鋳型砂は、第1接続口35及び第2接続口38を介して第1下サンドタンク30から第2下サンドタンク31へ供給される。また、第2下サンドタンク31の第2接続口38には上下方向に延びる第2閉塞板39(図3)が設けられている。第1下サンドタンク30の第1接続口35の両側部には、第2閉塞板39を案内するガイドレール(不図示)が設けられている。第2閉塞板39がガイドレールによって案内されることで、第1接続口35及び第2接続口38は、互いに傾くことなく接続位置に案内される。第1下サンドタンク30の第1接続口35は、接続位置に位置していないときに第2閉塞板39によって遮蔽される。 The first lower sand tank 30 and the second lower sand tank 31 are in communication with each other when the first connection port 35 and the second connection port 38 are connected at a predetermined connection position. Mold sand is supplied from the first lower sand tank 30 to the second lower sand tank 31 via the first connection port 35 and the second connection port 38. A second closing plate 39 (FIG. 3) extending in the vertical direction is provided at the second connection port 38 of the second lower sand tank 31. Guide rails (not shown) for guiding the second closing plate 39 are provided on both sides of the first connection port 35 of the first lower sand tank 30. Since the second closing plate 39 is guided by the guide rail, the first connection port 35 and the second connection port 38 are guided to the connection position without being inclined with respect to each other. The first connection port 35 of the first lower sand tank 30 is shielded by the second closing plate 39 when not located at the connection position.
 なお、抜枠造型機1は、第1接続口35及び第2接続口38の接続面を気密に封止する封止機構を備えてもよい。例えば、封止機構は第1接続口35側に設けられる。 The frame making machine 1 may include a sealing mechanism that hermetically seals the connection surfaces of the first connection port 35 and the second connection port 38. For example, the sealing mechanism is provided on the first connection port 35 side.
 第2下サンドタンク31の上端部は開口されており、上端部の開口に下プレート40(図3)が取り付けられる。下プレート40は、板状部材であり、第2下サンドタンク31から下鋳枠17内へ連通する少なくとも1つの供給口を有する。第2下サンドタンク31内の鋳型砂は、下プレート40の供給口及び後述する下盛枠を介して下鋳枠17内に供給される。 The upper end of the second lower sand tank 31 is opened, and the lower plate 40 (FIG. 3) is attached to the opening of the upper end. The lower plate 40 is a plate-like member and has at least one supply port that communicates from the second lower sand tank 31 into the lower casting frame 17. The molding sand in the second lower sand tank 31 is supplied into the lower casting frame 17 through a supply port of the lower plate 40 and a lower frame described later.
[下盛枠]
 抜枠造型機1は、一例として下盛枠41を備える。下盛枠41は、下鋳枠17の下方に配置される。下盛枠41は、上端部及び下端部が開口された箱形状の枠体である。下盛枠41の上端部の開口は、下鋳枠17の下端部の開口と接続する。下盛枠41は、その内部に第2下サンドタンク31を収容可能に構成されている。下盛枠41は、第2下サンドタンク31に固定された下盛枠シリンダ42によって上下動可能に支持されている。下プレート40は、下盛枠41及び下鋳枠17の開口の大きさと略同一である。なお、上下動可能な下盛枠41は、その内部に第2下サンドタンク31及び下プレート40を収容した位置が原位置(初期位置)であり、下降端となる。下盛枠41が上方向に移動することにより、下プレート40は下盛枠41内から退出する。上方向に移動した下盛枠41が下方向に移動することにより、下プレート40は下盛枠41内に進入する。このように、下プレート40は、下盛枠41内に進退可能(入出可能)に構成されている。この抜枠造型機1は、下盛枠41を備えることにより下鋳枠17のストロークを短くすることができるので、下盛枠41を備えない場合と比べて装置高さが低い抜枠造型機とすることができる。また、この抜枠造型機1は、下盛枠41を備えることにより下鋳枠17のストロークを短くすることができるので、一組の上鋳型及び下鋳型の造型時間を短縮することができる。
[Underlay frame]
The blank frame molding machine 1 includes a lower frame 41 as an example. The underlay frame 41 is disposed below the lower casting frame 17. The underlay frame 41 is a box-shaped frame having an upper end portion and a lower end portion opened. The opening at the upper end of the lower frame 41 is connected to the opening at the lower end of the lower casting frame 17. The lower frame 41 is configured to accommodate the second lower sand tank 31 therein. The lower frame 41 is supported by a lower frame cylinder 42 fixed to the second lower sand tank 31 so as to be movable up and down. The lower plate 40 has substantially the same size as the openings of the lower frame 41 and the lower casting frame 17. In addition, the position where the 2nd lower sand tank 31 and the lower plate 40 were accommodated in the inside of the lower filling frame 41 which can move up and down is an original position (initial position), and becomes a descending end. The lower plate 40 moves out from the lower frame 41 by moving the lower frame 41 upward. The lower plate 40 moves into the lower frame 41 as the lower frame 41 moved upward moves downward. Thus, the lower plate 40 is configured to be able to advance and retreat (can enter and exit) within the lower frame 41. Since this frame making machine 1 can shorten the stroke of the lower casting frame 17 by providing the lower frame 41, the frame making machine has a lower apparatus height than the case where the lower frame 41 is not provided. It can be. Moreover, since this blank frame molding machine 1 can shorten the stroke of the lower casting frame 17 by providing the lower frame 41, the molding time of a pair of upper mold and lower mold can be shortened.
 なお、抜枠造型機1は、下盛枠41を備えなくてもよい。この場合、下プレート40は下鋳枠17内に進退可能(入出可能)に構成される。上下動可能な下鋳枠17は、下降端が原位置(初期位置)である。つまり、下プレート40は、上方向に移動する下鋳枠17よりも相対的に上方向に移動することにより下鋳枠17内に進入する。下プレート40は、下鋳枠17よりも相対的に下方向に移動することにより、下鋳枠17内から退出する。 Note that the frame making machine 1 does not have to include the underlay frame 41. In this case, the lower plate 40 is configured to be able to advance and retreat (can enter and exit) in the lower casting frame 17. The lower casting frame 17 that can move up and down has its lower end at its original position (initial position). That is, the lower plate 40 moves into the lower casting frame 17 by moving upward relative to the lower casting frame 17 that moves upward. The lower plate 40 moves out of the lower casting frame 17 by moving downward relative to the lower casting frame 17.
 [造型空間及びスクイズ]
 上鋳型の造型空間(上造型空間)は、上プレート25、上鋳枠15及びマッチプレート19により形成される。下鋳型の造型空間(下造型空間)は、下プレート40、下鋳枠17及びマッチプレート19により形成される。上造型空間及び下造型空間は、上鋳枠シリンダ16、下鋳枠シリンダ18及びスクイズシリンダ37を動作させて、上鋳枠15及び下鋳枠17が所定高さでマッチプレートを狭持したときに形成される。なお、抜枠造型機1が下盛枠41を備える場合には、下造型空間は、下プレート40、下鋳枠17、下盛枠41及びマッチプレート19により形成されてもよい。
[Molding space and squeeze]
A molding space for the upper mold (upper molding space) is formed by the upper plate 25, the upper casting frame 15, and the match plate 19. A molding space for the lower mold (lower molding space) is formed by the lower plate 40, the lower casting frame 17, and the match plate 19. In the upper molding space and the lower molding space, when the upper casting frame cylinder 16, the lower casting frame cylinder 18 and the squeeze cylinder 37 are operated, the upper casting frame 15 and the lower casting frame 17 hold the match plate at a predetermined height. Formed. In the case where the blank frame molding machine 1 includes the lower frame 41, the lower mold space may be formed by the lower plate 40, the lower casting frame 17, the lower frame 41, and the match plate 19.
 上造型空間には、上プレート25を介して上サンドタンク22に貯留された鋳型砂が充填される。下造型空間には、下プレート40を介して第2下サンドタンク31に貯留された鋳型砂が充填される。充填には圧縮空気が用いられる。圧縮空気を用いて鋳型砂を流動させながら、上造型空間及び下造型空間に鋳型砂を充填させる処理をエアレーションという。図4は、エアレーション処理時における抜枠造型機の左側面側の概要図である。図4に示されるように、上鋳枠15及び下鋳枠17が所定高さでマッチプレート19を狭持したときに、圧縮空気により鋳型砂が造型空間に供給される。 The upper molding space is filled with mold sand stored in the upper sand tank 22 via the upper plate 25. The lower mold forming space is filled with mold sand stored in the second lower sand tank 31 via the lower plate 40. Compressed air is used for filling. The process of filling the upper molding space and the lower molding space with the molding sand while flowing the molding sand using compressed air is called aeration. FIG. 4 is a schematic diagram of the left side of the frame making machine during the aeration process. As shown in FIG. 4, when the upper casting frame 15 and the lower casting frame 17 hold the match plate 19 at a predetermined height, the molding sand is supplied to the molding space by the compressed air.
 上造型空間及び下造型空間に充填される鋳型砂のCBは、30%~42%の範囲で設定され得る。また、上造型空間及び下造型空間に充填される鋳型砂の圧縮強さは、8N/cm~15N/cmの範囲で設定され得る。なお、模型形状や鋳型砂のCB(Compactability)によって造型される鋳型の厚さが変化するため、第2下サンドタンク31の目標の高さが鋳型の厚さに応じて変化する。つまり、第2下サンドタンク31の第2接続口38の高さが変化する。このとき、下タンクシリンダ32により、第1下サンドタンク30の第1接続口35の高さが第2下サンドタンク31の第2接続口38の接続位置に調整される。このような調整は、後述する制御装置50(図3)によって実現され得る。 The CB of the mold sand filled in the upper molding space and the lower molding space can be set in the range of 30% to 42%. Further, the compressive strength of the mold sand filled in the upper molding space and the lower molding space can be set in the range of 8 N / cm 2 to 15 N / cm 2 . In addition, since the thickness of the casting mold is changed depending on the model shape or CB (Compactability) of the casting sand, the target height of the second lower sand tank 31 is changed according to the casting thickness. That is, the height of the second connection port 38 of the second lower sand tank 31 changes. At this time, the height of the first connection port 35 of the first lower sand tank 30 is adjusted to the connection position of the second connection port 38 of the second lower sand tank 31 by the lower tank cylinder 32. Such adjustment can be realized by a control device 50 (FIG. 3) described later.
 スクイズシリンダ37は、上造型空間及び下造型空間に鋳型砂が充填された状態で、第2下サンドタンク31を上方に移動させることで、上プレート25及び下プレート40でスクイズを行う。これにより、上造型空間の鋳型砂に圧力が加わり、上鋳型が形成される。これと同時に、下造型空間の鋳型砂に圧力が加わり、下鋳型が形成される。 The squeeze cylinder 37 squeezes the upper plate 25 and the lower plate 40 by moving the second lower sand tank 31 upward in a state where the upper molding space and the lower molding space are filled with mold sand. As a result, pressure is applied to the molding sand in the upper molding space to form the upper casting mold. At the same time, pressure is applied to the molding sand in the lower molding space to form the lower casting mold.
[鋳型砂投入シュート]
 鋳型砂投入シュート24は、上端部が開口され、下端部が2つに分岐している。上端部には、切替ダンパ43が設けられている。切替ダンパ43は、分岐された下端部の何れか一方に鋳型砂が落下するように傾斜方向が変化する。また、鋳型砂投入シュート24の一方の下端部は上サンドタンク22の上部に固定され、鋳型砂投入シュート24の他方の下端部はホッパ34内に収容され、固定されない。このように、第1下サンドタンク30側の下端部が固定されないことにより、下タンクシリンダ32は、第1下サンドタンク30の第1接続口35の高さを、上サンドタンク22とは独立に制御することができる。
[Mold sand injection chute]
The casting sand injection chute 24 has an upper end opened and a lower end branched into two. A switching damper 43 is provided at the upper end. The switching damper 43 changes the inclination direction so that the mold sand falls on one of the branched lower ends. Further, one lower end portion of the mold sand charging chute 24 is fixed to the upper portion of the upper sand tank 22, and the other lower end portion of the mold sand charging chute 24 is accommodated in the hopper 34 and is not fixed. As described above, since the lower end portion on the first lower sand tank 30 side is not fixed, the lower tank cylinder 32 makes the height of the first connection port 35 of the first lower sand tank 30 independent of the upper sand tank 22. Can be controlled.
[圧縮空気の供給構造]
 上サンドタンク22、第1下サンドタンク30及び第2下サンドタンク31のそれぞれは、圧縮空気源に接続された少なくとも1つの供給室を有する。「接続された」とは、気体が流通可能に連通されていることを意味する。供給室は、貯留室を囲むように配置されてもよい。貯留室と供給室とは貫通孔を介して連通されている。供給室には、圧縮空気源から圧縮空気が送り込まれ、透過部材又は複数のベントホールを介して供給室から貯留室に圧縮空気が送り込まれる。
[Compressed air supply structure]
Each of the upper sand tank 22, the first lower sand tank 30, and the second lower sand tank 31 has at least one supply chamber connected to a compressed air source. “Connected” means that gas is in fluid communication. The supply chamber may be arranged so as to surround the storage chamber. The storage chamber and the supply chamber communicate with each other through a through hole. Compressed air is sent from the compressed air source to the supply chamber, and compressed air is sent from the supply chamber to the storage chamber through the permeable member or the plurality of vent holes.
 以下、各タンクにおける圧縮空気の供給構造について説明する。最初に上サンドタンク22における圧縮空気の供給構造について説明する。図5は、上サンドタンクに関する圧縮空気の供給構造の左側面側の概要図である。図6は、上サンドタンクに関する圧縮空気の供給構造の背面側の概要図である。図7は、上サンドタンクに関する圧縮空気の供給構造の上面側の概要図である。 Hereinafter, the compressed air supply structure in each tank will be described. First, the compressed air supply structure in the upper sand tank 22 will be described. FIG. 5 is a schematic diagram of the left side of the compressed air supply structure for the upper sand tank. FIG. 6 is a schematic diagram of the back side of the compressed air supply structure for the upper sand tank. FIG. 7 is a schematic diagram of the upper surface side of the compressed air supply structure for the upper sand tank.
 図5~図7に示されるように、上サンドタンク22は、一例として、上サンドタンク22の中央よりも上端側に位置する第1供給室S4、及び、上サンドタンク22の中央よりも下端側に位置する第2供給室S5を有する。上サンドタンク22の中央とは、上サンドタンク22の軸線方向の中央である。第1供給室S4及び第2供給室S5は、貯留室S1の側方に設けられる。第1供給室S4及び第2供給室S5は、貯留室S1を囲むように設けられた空間である。第1供給室S4は、貯留室S1の側壁22bと、貯留室S1の側壁22bの外側に設けられた配管部材22cとの間に画成されている。第2供給室S5は、貯留室S1の側壁22bと、貯留室S1の側壁22bの外側に設けられた配管部材22dとの間に画成されている。 As shown in FIGS. 5 to 7, the upper sand tank 22 includes, as an example, a first supply chamber S4 located on the upper end side with respect to the center of the upper sand tank 22 and a lower end with respect to the center of the upper sand tank 22. It has 2nd supply chamber S5 located in the side. The center of the upper sand tank 22 is the center of the upper sand tank 22 in the axial direction. The first supply chamber S4 and the second supply chamber S5 are provided on the side of the storage chamber S1. The first supply chamber S4 and the second supply chamber S5 are spaces provided so as to surround the storage chamber S1. The first supply chamber S4 is defined between the side wall 22b of the storage chamber S1 and a piping member 22c provided outside the side wall 22b of the storage chamber S1. The second supply chamber S5 is defined between the side wall 22b of the storage chamber S1 and a piping member 22d provided outside the side wall 22b of the storage chamber S1.
 第1供給室S4には、配管80,83が接続される。配管80,83は、配管部材22cの互いに対向する位置に接続されている。配管80,83は、圧縮空気源に接続された主配管100に接続されている。配管80には、電空比例弁90が設けられている。配管83には、電空比例弁93が設けられている。電空比例弁90,93は、上サンドタンク22の側方に配置される。電空比例弁は、後述する制御装置50に接続されており、制御装置50の制御信号に基づいて開閉する弁である。第1供給室S4は、貫通孔(不図示)を介して貯留室S1と連通している。電空比例弁90,93が開とされたとき、圧縮空気は、主配管100から配管80,83を流通し、第1供給室S4へ供給される。そして、圧縮空気は、第1供給室S4から貫通孔及び第1透過部材22aを介して貯留室S1へと送り込まれる。なお、貫通孔は、貯留室S1の側壁22bに複数形成されてもよい。例えば、複数の貫通孔は、貯留室S1を囲むように形成されてもよい。この場合、貯留室S1に向けて周方向から均等に圧縮空気を送り込むことができる。 Pipes 80 and 83 are connected to the first supply chamber S4. The pipes 80 and 83 are connected to positions facing each other of the pipe member 22c. The pipes 80 and 83 are connected to a main pipe 100 connected to a compressed air source. The piping 80 is provided with an electropneumatic proportional valve 90. The pipe 83 is provided with an electropneumatic proportional valve 93. The electropneumatic proportional valves 90 and 93 are arranged on the side of the upper sand tank 22. The electropneumatic proportional valve is connected to a control device 50 described later, and is a valve that opens and closes based on a control signal from the control device 50. The first supply chamber S4 communicates with the storage chamber S1 through a through hole (not shown). When the electropneumatic proportional valves 90 and 93 are opened, the compressed air flows from the main pipe 100 through the pipes 80 and 83 and is supplied to the first supply chamber S4. Then, the compressed air is sent from the first supply chamber S4 to the storage chamber S1 through the through hole and the first transmission member 22a. A plurality of through holes may be formed in the side wall 22b of the storage chamber S1. For example, the plurality of through holes may be formed so as to surround the storage chamber S1. In this case, the compressed air can be uniformly fed from the circumferential direction toward the storage chamber S1.
 第2供給室S5には、配管81,82が接続される。配管81,82は、配管部材22dの1つの側面に接続されている。配管81,82は、圧縮空気源に接続された主配管100に接続されている。配管81には、電空比例弁91が設けられている。配管82には、電空比例弁92が設けられている。電空比例弁91,92は、上サンドタンク22の側方に配置される。第2供給室S5は、貫通孔(不図示)を介して貯留室S1と連通している。電空比例弁91,92が開とされたとき、圧縮空気は、主配管100から配管81,82を流通し、第2供給室S5へ供給される。そして、圧縮空気は、第2供給室S5から貫通孔及び第1透過部材22aを介して貯留室S1へと送り込まれる。なお、貫通孔は、貯留室S1の側壁22bに複数形成されてもよい。例えば、複数の貫通孔は、貯留室S1を囲むように形成されてもよい。この場合、貯留室S1に向けて周方向から均等に圧縮空気を送り込むことができる。 Pipes 81 and 82 are connected to the second supply chamber S5. The pipes 81 and 82 are connected to one side surface of the pipe member 22d. The pipes 81 and 82 are connected to a main pipe 100 connected to a compressed air source. The pipe 81 is provided with an electropneumatic proportional valve 91. The pipe 82 is provided with an electropneumatic proportional valve 92. The electropneumatic proportional valves 91 and 92 are disposed on the side of the upper sand tank 22. The second supply chamber S5 communicates with the storage chamber S1 through a through hole (not shown). When the electropneumatic proportional valves 91 and 92 are opened, the compressed air flows from the main pipe 100 through the pipes 81 and 82 and is supplied to the second supply chamber S5. Then, the compressed air is sent from the second supply chamber S5 to the storage chamber S1 through the through hole and the first transmission member 22a. A plurality of through holes may be formed in the side wall 22b of the storage chamber S1. For example, the plurality of through holes may be formed so as to surround the storage chamber S1. In this case, the compressed air can be uniformly fed from the circumferential direction toward the storage chamber S1.
 次に、第1下サンドタンク30及び第2下サンドタンク31における圧縮空気の供給構造について説明する。図8は、第1下サンドタンク及び第2下サンドタンクに関する圧縮空気の供給構造の左側面側の概要図である。図9は、第1下サンドタンク及び第2下サンドタンクに関する圧縮空気の供給構造の背面側の概要図である。図10は、図8の装置下部の部分拡大図である。 Next, the compressed air supply structure in the first lower sand tank 30 and the second lower sand tank 31 will be described. FIG. 8 is a schematic diagram of the left side of the compressed air supply structure relating to the first lower sand tank and the second lower sand tank. FIG. 9 is a schematic diagram of the back side of the compressed air supply structure relating to the first lower sand tank and the second lower sand tank. FIG. 10 is a partially enlarged view of the lower part of the apparatus of FIG.
 図8~10に示されるように、第1下サンドタンク30は、一例として、第1下サンドタンク30の中央に位置する第3供給室S6、第1下サンドタンク30の中央よりも上端側に位置する第4供給室S7、及び、第1下サンドタンク30の中央よりも下端側に位置する第5供給室S8を有する。第1下サンドタンク30の中央とは、第1下サンドタンク30の軸線方向の中央である。第3供給室S6及び第4供給室S7は、貯留室S2の側方に設けられる。第5供給室S8は、第1下サンドタンク30の屈曲した下端部に設けられる。 As shown in FIGS. 8 to 10, the first lower sand tank 30 is, as an example, a third supply chamber S6 located at the center of the first lower sand tank 30, and the upper end side from the center of the first lower sand tank 30. And a fifth supply chamber S8 located on the lower end side of the center of the first lower sand tank 30. The center of the first lower sand tank 30 is the center of the first lower sand tank 30 in the axial direction. The third supply chamber S6 and the fourth supply chamber S7 are provided on the side of the storage chamber S2. The fifth supply chamber S8 is provided at the bent lower end of the first lower sand tank 30.
 第3供給室S6及び第4供給室S7は、貯留室S2を囲むように設けられた空間である。第3供給室S6は、貯留室S2の側壁30cと、貯留室S2の側壁30cの外側に設けられた配管部材30dとの間に画成されている。第4供給室S7は、貯留室S2の側壁30cと、貯留室S2の側壁30cの外側に設けられた配管部材30gとの間に画成されている。 The third supply chamber S6 and the fourth supply chamber S7 are spaces provided so as to surround the storage chamber S2. The third supply chamber S6 is defined between the side wall 30c of the storage chamber S2 and a piping member 30d provided outside the side wall 30c of the storage chamber S2. The fourth supply chamber S7 is defined between the side wall 30c of the storage chamber S2 and a piping member 30g provided outside the side wall 30c of the storage chamber S2.
 第3供給室S6には、配管84aが接続される。配管84aは、配管部材30dの1つの側面に接続されている。配管84aは、圧縮空気源に接続された主配管100に配管84を介して接続されている。配管84には、電空比例弁94が設けられている。電空比例弁94は、第1下サンドタンク30の側方に配置される。第3供給室S6は、貫通孔(不図示)を介して貯留室S2と連通している。電空比例弁94が開とされたとき、圧縮空気は、主配管100から配管84,84aを流通し、第3供給室S6へ供給される。そして、圧縮空気は、第3供給室S6から貫通孔及び第2透過部材30aを介して貯留室S2へと送り込まれる。なお、貫通孔は、貯留室S2の側壁30cに複数形成されてもよい。例えば、複数の貫通孔は、貯留室S2を囲むように形成されてもよい。この場合、貯留室S2に向けて周方向から均等に圧縮空気を送り込むことができる。 A pipe 84a is connected to the third supply chamber S6. The pipe 84a is connected to one side surface of the pipe member 30d. The pipe 84a is connected to the main pipe 100 connected to the compressed air source via the pipe 84. The pipe 84 is provided with an electropneumatic proportional valve 94. The electropneumatic proportional valve 94 is disposed on the side of the first lower sand tank 30. The third supply chamber S6 communicates with the storage chamber S2 through a through hole (not shown). When the electropneumatic proportional valve 94 is opened, the compressed air flows from the main pipe 100 through the pipes 84 and 84a and is supplied to the third supply chamber S6. Then, the compressed air is sent from the third supply chamber S6 to the storage chamber S2 through the through hole and the second transmission member 30a. A plurality of through holes may be formed in the side wall 30c of the storage chamber S2. For example, the plurality of through holes may be formed so as to surround the storage chamber S2. In this case, the compressed air can be uniformly fed from the circumferential direction toward the storage chamber S2.
 第4供給室S7には、配管84bが接続される。配管84bは、配管部材30gの1つの側面に接続されている。配管84bは、圧縮空気源に接続された主配管100に配管84を介して接続されている。配管84には、電空比例弁94が設けられている。つまり、電空比例弁94は、配管84a,84bの両方の流量を制御する。電空比例弁94は、第1下サンドタンク30の側方に配置される。第4供給室S7は、貫通孔(不図示)を介して貯留室S2と連通している。電空比例弁94が開とされたとき、圧縮空気は、主配管100から配管84,84bを流通し、第4供給室S7へ供給される。そして、圧縮空気は、第4供給室S7から貫通孔及び第2透過部材30aを介して貯留室S2へと送り込まれる。なお、貫通孔は、貯留室S2の側壁30cに複数形成されてもよい。例えば、複数の貫通孔は、貯留室S2を囲むように形成されてもよい。この場合、貯留室S2に向けて周方向から均等に圧縮空気を送り込むことができる。 A pipe 84b is connected to the fourth supply chamber S7. The pipe 84b is connected to one side surface of the pipe member 30g. The pipe 84b is connected to the main pipe 100 connected to the compressed air source via the pipe 84. The pipe 84 is provided with an electropneumatic proportional valve 94. That is, the electropneumatic proportional valve 94 controls the flow rates of both the pipes 84a and 84b. The electropneumatic proportional valve 94 is disposed on the side of the first lower sand tank 30. The fourth supply chamber S7 communicates with the storage chamber S2 through a through hole (not shown). When the electropneumatic proportional valve 94 is opened, the compressed air flows from the main pipe 100 through the pipes 84 and 84b and is supplied to the fourth supply chamber S7. Then, the compressed air is sent from the fourth supply chamber S7 to the storage chamber S2 through the through hole and the second transmission member 30a. A plurality of through holes may be formed in the side wall 30c of the storage chamber S2. For example, the plurality of through holes may be formed so as to surround the storage chamber S2. In this case, the compressed air can be uniformly fed from the circumferential direction toward the storage chamber S2.
 第5供給室S8は、点検扉70の内部に形成されている。点検扉70は、第1下サンドタンク30のメンテナンス時において開閉される扉である。図11は、点検扉の断面図である。図11に示されるように、点検扉70は、中空部材であり、その内部に第5供給室S8が画成される。点検扉70の外側面70aには、圧縮空気を供給する配管85と接続する供給口70bが形成されている。点検扉70の内側面70cには、圧縮空気を貯留室S2へ供給するための貫通孔70dが形成されている。貫通孔70dは1つ形成されてもよいし、複数個形成されてもよい。貫通孔70dには、スリットが形成されたベントホール70eが嵌め込まれている。 The fifth supply chamber S8 is formed inside the inspection door 70. The inspection door 70 is a door that is opened and closed during maintenance of the first lower sand tank 30. FIG. 11 is a cross-sectional view of the inspection door. As shown in FIG. 11, the inspection door 70 is a hollow member, and a fifth supply chamber S8 is defined therein. A supply port 70 b connected to a pipe 85 that supplies compressed air is formed on the outer surface 70 a of the inspection door 70. A through hole 70d for supplying compressed air to the storage chamber S2 is formed in the inner side surface 70c of the inspection door 70. One through hole 70d may be formed, or a plurality of through holes 70d may be formed. A vent hole 70e in which a slit is formed is fitted in the through hole 70d.
 図8~10に示されるように、第5供給室S8には、配管85が接続される。配管85は、供給口70bに接続されている。配管85は、圧縮空気源に接続された主配管100に接続されている。配管85には、電空比例弁95が設けられている。電空比例弁95は、第1下サンドタンク30の側方に配置される。第5供給室S8は、複数のベントホール70eを介して貯留室S2と連通している。電空比例弁95が開とされたとき、圧縮空気は、主配管100から配管85を流通し、第5供給室S8へ供給される。そして、圧縮空気は、第5供給室S8から複数のベントホール70eを介して貯留室S2へと送り込まれる。 As shown in FIGS. 8 to 10, a pipe 85 is connected to the fifth supply chamber S8. The pipe 85 is connected to the supply port 70b. The pipe 85 is connected to the main pipe 100 connected to the compressed air source. The piping 85 is provided with an electropneumatic proportional valve 95. The electropneumatic proportional valve 95 is disposed on the side of the first lower sand tank 30. The fifth supply chamber S8 communicates with the storage chamber S2 through a plurality of vent holes 70e. When the electropneumatic proportional valve 95 is opened, the compressed air flows from the main pipe 100 through the pipe 85 and is supplied to the fifth supply chamber S8. Then, the compressed air is sent from the fifth supply chamber S8 to the storage chamber S2 through the plurality of vent holes 70e.
 第5供給室S8から貯留室S2へと送られる流路には、第2透過部材30aが介在していない。第1下サンドタンク30の屈曲した下端部においては、その形状が故に、貯留室S2内に配置される透過部材の摩耗が他の配置位置に比べて大きくなる傾向にある。このため、第1下サンドタンク30の屈曲した下端部の貯留室S2内においては、第2透過部材30aの代わりに複数のベントホール70eを用いる。これにより、第1下サンドタンク30の屈曲した下端部において、透過部材の目詰まりの発生が回避される。 The second transmission member 30a is not interposed in the flow path sent from the fifth supply chamber S8 to the storage chamber S2. In the bent lower end portion of the first lower sand tank 30, the wear of the transmission member arranged in the storage chamber S2 tends to be larger than other arrangement positions because of the shape thereof. For this reason, in the storage chamber S2 at the bent lower end of the first lower sand tank 30, a plurality of vent holes 70e are used instead of the second transmission member 30a. Thereby, generation | occurrence | production of the clogging of a permeation | transmission member is avoided in the bent lower end part of the 1st lower sand tank 30. FIG.
 第2下サンドタンク31は、一例として、貯留室S3の底部に位置する第6供給室S9及び第7供給室S10を有する。第6供給室S9は、配管部材71の内部に画成される。配管部材71は、第2下サンドタンク31の第2接続口38付近の底部に配置される。配管部材71は、圧縮空気を供給する配管と接続する供給口71aと、圧縮空気を貯留室S3へ供給するための貫通孔71bが形成されている。貫通孔71bは1つ形成されてもよいし、複数個形成されてもよい。貫通孔71bには、スリットが形成されたベントホール(不図示)が嵌め込まれている。配管部材72は、圧縮空気を供給する配管と接続する供給口72aと、圧縮空気を貯留室S3へ供給するための貫通孔72bが形成されている。貫通孔72bは1つ形成されてもよいし、複数個形成されてもよい。貫通孔72bには、スリットが形成されたベントホール(不図示)が嵌め込まれている。 As an example, the second lower sand tank 31 has a sixth supply chamber S9 and a seventh supply chamber S10 located at the bottom of the storage chamber S3. The sixth supply chamber S <b> 9 is defined inside the piping member 71. The piping member 71 is disposed at the bottom near the second connection port 38 of the second lower sand tank 31. The piping member 71 is provided with a supply port 71a connected to a piping for supplying compressed air, and a through hole 71b for supplying compressed air to the storage chamber S3. One through hole 71b may be formed, or a plurality of through holes 71b may be formed. A vent hole (not shown) in which a slit is formed is fitted in the through hole 71b. The piping member 72 is provided with a supply port 72a connected to a piping for supplying compressed air, and a through hole 72b for supplying compressed air to the storage chamber S3. One through hole 72b may be formed, or a plurality of through holes 72b may be formed. A vent hole (not shown) in which a slit is formed is fitted in the through hole 72b.
 第6供給室S9には、配管86が接続される。配管86は、供給口71aに接続されている。配管86は、圧縮空気源に接続された主配管100に接続されている。配管86には、電空比例弁96が設けられている。第6供給室S9は、複数のベントホールを介して貯留室S3と連通している。電空比例弁96が開とされたとき、圧縮空気は、主配管100から配管86を流通し、第6供給室S9へ供給される。そして、圧縮空気は、第6供給室S9から複数のベントホールを介して貯留室S3へと送り込まれる。 A pipe 86 is connected to the sixth supply chamber S9. The pipe 86 is connected to the supply port 71a. The pipe 86 is connected to the main pipe 100 connected to the compressed air source. An electro-pneumatic proportional valve 96 is provided in the pipe 86. The sixth supply chamber S9 communicates with the storage chamber S3 through a plurality of vent holes. When the electropneumatic proportional valve 96 is opened, the compressed air flows from the main pipe 100 through the pipe 86 and is supplied to the sixth supply chamber S9. Then, the compressed air is sent from the sixth supply chamber S9 to the storage chamber S3 through a plurality of vent holes.
 第7供給室S10には、配管87が接続される。配管87は、供給口72aに接続されている。配管87は、圧縮空気源に接続された主配管100に接続されている。配管87には、電空比例弁97が設けられている。第7供給室S10は、複数のベントホールを介して貯留室S3と連通している。電空比例弁97が開とされたとき、圧縮空気は、主配管100から配管87を流通し、第7供給室S10へ供給される。そして、圧縮空気は、第7供給室S10から複数のベントホールを介して貯留室S3へと送り込まれる。 A pipe 87 is connected to the seventh supply chamber S10. The pipe 87 is connected to the supply port 72a. The pipe 87 is connected to the main pipe 100 connected to the compressed air source. The piping 87 is provided with an electropneumatic proportional valve 97. The seventh supply chamber S10 communicates with the storage chamber S3 through a plurality of vent holes. When the electropneumatic proportional valve 97 is opened, the compressed air flows from the main pipe 100 through the pipe 87 and is supplied to the seventh supply chamber S10. Then, the compressed air is sent from the seventh supply chamber S10 to the storage chamber S3 through a plurality of vent holes.
 第6供給室S9及び第7供給室S10から貯留室S2へと送られる流路には、透過部材が介在していない。第2下サンドタンク31は、貯留室内に配置される透過部材の摩耗が他のタンクに比べて大きくなる傾向にある。このため、第2下サンドタンク31の貯留室S3内においては、透過部材の代わりに複数のベントホールを用いる。これにより、第2下サンドタンク31において、透過部材の目詰まりの発生が回避される。 The transmission member is not interposed in the flow path sent from the sixth supply chamber S9 and the seventh supply chamber S10 to the storage chamber S2. In the second lower sand tank 31, the wear of the transmission member arranged in the storage chamber tends to be larger than that of other tanks. For this reason, in the storage chamber S3 of the second lower sand tank 31, a plurality of vent holes are used instead of the transmission member. Thereby, in the 2nd lower sand tank 31, generation | occurrence | production of the clogging of a permeation | transmission member is avoided.
[圧力検出器]
 抜枠造型機1は、少なくとも1つの圧力検出器を備えてもよい。少なくとも1つの圧力検出器は、上サンドタンク22、第1下サンドタンク30及び第2下サンドタンク31のうちの少なくとも1つのタンクの圧力を検出する。圧力検出器は、一例として、本体部と、本体部に収容され圧力によって変形するダイヤフラムと、ダイヤフラムの変形に応じた信号を出力する歪みゲージとを備えている。圧力検出器は、本体部に表示器(例えばLED(Light Emitting Diode)表示器)などを備えてもよい。圧力検出器の取り付け方法は、種々の方法を採用することができる。例えば、貯留室の側壁に取り付けてもよいし、貯留室に連通された空間の側壁に取り付けてもよい。
[Pressure detector]
The frame making machine 1 may include at least one pressure detector. The at least one pressure detector detects the pressure of at least one of the upper sand tank 22, the first lower sand tank 30, and the second lower sand tank 31. As an example, the pressure detector includes a main body, a diaphragm that is accommodated in the main body and deforms due to pressure, and a strain gauge that outputs a signal corresponding to the deformation of the diaphragm. The pressure detector may include a display (for example, an LED (Light Emitting Diode) display) in the main body. Various methods can be adopted as a method of attaching the pressure detector. For example, you may attach to the side wall of a storage chamber, and you may attach to the side wall of the space connected to the storage chamber.
 以下、各タンクにおける圧力検出器の配置について説明する。最初に上サンドタンク22における圧力検出器の配置について説明する。図3に示されるように、上サンドタンク22には、第1圧力検出器61及び第2圧力検出器62が設けられている。第1圧力検出器61は、第1供給室S4の圧力を検出する。第2圧力検出器62は、第2供給室S5の圧力を検出する。このように、上サンドタンク22では、第1透過部材22aを介して貯留室S1と連通する、貯留室S1の外側の空間(第1供給室S4,第2供給室S5)の圧力が検出される。 Hereinafter, the arrangement of the pressure detectors in each tank will be described. First, the arrangement of the pressure detectors in the upper sand tank 22 will be described. As shown in FIG. 3, the upper sand tank 22 is provided with a first pressure detector 61 and a second pressure detector 62. The first pressure detector 61 detects the pressure in the first supply chamber S4. The second pressure detector 62 detects the pressure in the second supply chamber S5. Thus, in the upper sand tank 22, the pressure in the space outside the storage chamber S1 (the first supply chamber S4 and the second supply chamber S5) communicating with the storage chamber S1 via the first transmission member 22a is detected. The
 次に、第1下サンドタンク30における圧力検出器の配置について説明する。図3に示されるように、第1下サンドタンク30には、第3圧力検出器63、第4圧力検出器64及び第5圧力検出器65が設けられている。第3圧力検出器63は、第3供給室S6及び第4供給室S7の圧力を検出する。第4圧力検出器64は、貯留室S2の圧力を検出する。第5圧力検出器65は、第5供給室S8の圧力を検出する。このように、第1下サンドタンク30では、貯留室S2の圧力が直接検出されるとともに、第2透過部材30aを介して貯留室S2と連通する、貯留室S2の外側の空間(第3供給室S6,第4供給室S7,第5供給室S8)の圧力が検出される。なお、第4圧力検出器64によって検出された貯留室S2の圧力は、後述する排気時の逆流防止の基準圧力として利用される。 Next, the arrangement of the pressure detectors in the first lower sand tank 30 will be described. As shown in FIG. 3, the first lower sand tank 30 is provided with a third pressure detector 63, a fourth pressure detector 64, and a fifth pressure detector 65. The third pressure detector 63 detects the pressures in the third supply chamber S6 and the fourth supply chamber S7. The fourth pressure detector 64 detects the pressure in the storage chamber S2. The fifth pressure detector 65 detects the pressure in the fifth supply chamber S8. In this way, in the first lower sand tank 30, the pressure outside the storage chamber S2 that directly detects the pressure of the storage chamber S2 and communicates with the storage chamber S2 via the second transmission member 30a (third supply). The pressure in the chamber S6, the fourth supply chamber S7, the fifth supply chamber S8) is detected. Note that the pressure in the storage chamber S2 detected by the fourth pressure detector 64 is used as a reference pressure for preventing backflow during exhaust, which will be described later.
 次に、第2下サンドタンク31における圧力検出器の配置について説明する。図3に示されるように、第2下サンドタンク31には、第6圧力検出器66が設けられている。第6圧力検出器66は、貯留室S3の圧力を検出する。なお、第6圧力検出器66は、ベントなどを介して貯留室S3と連通する、貯留室S3の外側の空間の圧力を検出してもよい。 Next, the arrangement of the pressure detectors in the second lower sand tank 31 will be described. As shown in FIG. 3, the second lower sand tank 31 is provided with a sixth pressure detector 66. The sixth pressure detector 66 detects the pressure in the storage chamber S3. The sixth pressure detector 66 may detect the pressure in the space outside the storage chamber S3 that communicates with the storage chamber S3 via a vent or the like.
[圧力検出器の取り付けの詳細]
 貯留室の外側の空間の圧力を検出する圧力検出器(第1圧力検出器61~第3圧力検出器63、第5圧力検出器65)の配置について説明する。これらの圧力検出器それぞれは接続形態が同一であるため、第3圧力検出器63を代表して説明する。図12は、第3圧力検出器の接続の一例である。図12に示されるように、第1下サンドタンク30の側壁30cの内側には、第2透過部材30aがゴム部材30fを介して取り付けられている。側壁30cには、貫通孔30eが形成されている。側壁30cの外側には、貫通孔30eに対応する位置に、第3供給室S6を画成する配管部材30dが取り付けられている。第3供給室S6は、貫通孔30e及び第2透過部材30aを介して貯留室S2と連通している。第3供給室S6には、圧縮空気が供給される接続口(不図示)が設けられている。接続口から供給された圧縮空気は、貫通孔30e及び第2透過部材30aを通過し、第1下サンドタンク30の貯留室S2の内側へ供給される。このように、第1圧力検出器61~第3圧力検出器63、第5圧力検出器65は、透過部材を介して貯留室と連通する、貯留室の外側の空間の圧力を検出する。
[Details of pressure detector installation]
The arrangement of pressure detectors (first pressure detector 61 to third pressure detector 63, fifth pressure detector 65) for detecting the pressure in the space outside the storage chamber will be described. Since these pressure detectors have the same connection form, the third pressure detector 63 will be described as a representative. FIG. 12 is an example of connection of the third pressure detector. As shown in FIG. 12, a second transmission member 30a is attached to the inside of the side wall 30c of the first lower sand tank 30 via a rubber member 30f. A through hole 30e is formed in the side wall 30c. A piping member 30d that defines the third supply chamber S6 is attached to the outside of the side wall 30c at a position corresponding to the through hole 30e. The third supply chamber S6 communicates with the storage chamber S2 through the through hole 30e and the second transmission member 30a. The third supply chamber S6 is provided with a connection port (not shown) through which compressed air is supplied. The compressed air supplied from the connection port passes through the through hole 30e and the second transmission member 30a, and is supplied to the inside of the storage chamber S2 of the first lower sand tank 30. Thus, the first pressure detector 61 to the third pressure detector 63 and the fifth pressure detector 65 detect the pressure in the space outside the storage chamber that communicates with the storage chamber via the transmission member.
[制御装置]
 抜枠造型機1は、制御装置50(制御部の一例)を備えてもよい。制御装置50は、プロセッサなどの制御部、メモリなどの記憶部、入力装置、表示装置などの入出力部、ネットワークカードなどの通信部などを備えるコンピュータであり、抜枠造型機1の各部、例えば鋳型砂供給系、圧縮空気供給系、駆動系及び電源系等を制御する。この制御装置50では、入力装置を用いて、オペレータが抜枠造型機1を管理するためにコマンドの入力操作等を行うことができ、また、表示装置により、抜枠造型機1の稼働状況を可視化して表示することができる。さらに、制御装置50の記憶部には、抜枠造型機1で実行される各種処理をプロセッサにより制御するための制御プログラムや、造型条件に応じて抜枠造型機1の各構成部に処理を実行させるためのプログラムが格納される。
[Control device]
The frame making machine 1 may include a control device 50 (an example of a control unit). The control device 50 is a computer including a control unit such as a processor, a storage unit such as a memory, an input / output unit such as an input device and a display device, a communication unit such as a network card, and the like. Control mold sand supply system, compressed air supply system, drive system and power supply system. In this control device 50, an operator can perform an input operation of a command to manage the frame making machine 1 by using an input device, and the operation status of the frame making machine 1 can be controlled by a display device. It can be visualized and displayed. Further, in the storage unit of the control device 50, a control program for controlling various processes executed by the frame making machine 1 by the processor and each component of the frame forming machine 1 according to molding conditions are processed. Stores a program to be executed.
 制御装置50は、第1圧力検出器61~第6圧力検出器66に接続され、少なくとも1つの圧力検出器の検出結果を取得する。圧力検出結果に基づく制御については後述される。 The control device 50 is connected to the first pressure detector 61 to the sixth pressure detector 66 and acquires the detection result of at least one pressure detector. Control based on the pressure detection result will be described later.
[造型処理]
 本実施形態に係る造型処理について概説する。図13は、一実施形態に係る抜枠造型機の造型処理を説明するフローチャートである。図13に示される造型処理は、一組の上鋳型及び下鋳型を造型する処理である。図13に示される造型処理は、抜枠造型機1の姿勢が原位置(初期位置)であることを条件の1つとして自動起動される。抜枠造型機1の姿勢が原位置でない場合には、手動で動作させて原位置まで移動させる。図3に示された抜枠造型機1の姿勢(原位置)で、自動起動ボタンが押されると、図13に示される造型処理が開始される。
[Molding process]
The molding process according to this embodiment will be outlined. FIG. 13 is a flowchart for explaining a molding process of the frame making machine according to the embodiment. The molding process shown in FIG. 13 is a process for molding a pair of upper mold and lower mold. The molding process shown in FIG. 13 is automatically started on the condition that the posture of the frame making machine 1 is the original position (initial position). If the frame making machine 1 is not in the original position, it is manually moved to the original position. When the automatic start button is pressed in the posture (original position) of the frame making machine 1 shown in FIG. 3, the molding process shown in FIG. 13 is started.
 造型処理が開始された場合、最初に、シャトルイン処理(S12)が行われる。シャトルイン処理では、搬送シリンダ21が、マッチプレート19を載置した搬送プレート20を造型位置へ移動させる。 When the molding process is started, the shuttle-in process (S12) is first performed. In the shuttle-in process, the transport cylinder 21 moves the transport plate 20 on which the match plate 19 is placed to the molding position.
 次に、枠セット処理(S14)が行われる。枠セット処理では、上鋳枠シリンダ16、下鋳枠シリンダ18(図2)、下盛枠シリンダ42及びスクイズシリンダ37が造型する鋳型の厚さに合わせて伸縮する。これにより、上鋳枠15が所定位置に移動するとともに、下鋳枠17がマッチプレート19に当接し、その後、マッチプレート19を載せた下鋳枠17が所定位置に移動することで、上鋳枠15及び下鋳枠17の間にマッチプレート19が狭持された状態となる。そして、第2下サンドタンク31及び下盛枠41が上昇し、下盛枠41が下鋳枠17に当接する。また、下タンクシリンダ32が伸縮し、第1下サンドタンク30を上下方向に移動させることで、第1下サンドタンク30の第1接続口35の高さが第2下サンドタンク31の第2接続口38の高さと一致する状態となる。このとき、上造型空間及び下造型空間は、制御装置50で決定された状態(高さ)になっている。 Next, frame setting processing (S14) is performed. In the frame setting process, the upper casting frame cylinder 16, the lower casting frame cylinder 18 (FIG. 2), the lower filling frame cylinder 42, and the squeeze cylinder 37 expand and contract according to the thickness of the mold to be formed. As a result, the upper casting frame 15 moves to a predetermined position, the lower casting frame 17 comes into contact with the match plate 19, and then the lower casting frame 17 on which the match plate 19 is placed moves to a predetermined position. The match plate 19 is sandwiched between the frame 15 and the lower casting frame 17. Then, the second lower sand tank 31 and the lower frame 41 are raised, and the lower frame 41 comes into contact with the lower casting frame 17. Further, the lower tank cylinder 32 expands and contracts, and the first lower sand tank 30 is moved in the vertical direction, so that the height of the first connection port 35 of the first lower sand tank 30 is the second of the second lower sand tank 31. The state coincides with the height of the connection port 38. At this time, the upper molding space and the lower molding space are in a state (height) determined by the control device 50.
 次に、エアレーション処理(S16)が行われる。図4に示されるように、エアレーション処理では、封止機構が第1下サンドタンク30の第1接続口35と第2下サンドタンク31の第2接続口38とを封止する。そして、上サンドタンク22のスライドゲート23、及び、第1下サンドタンク30のスライドゲート33が閉とされ、圧縮空気源及び電空比例弁90~97によって上サンドタンク22、第1下サンドタンク30及び第2下サンドタンク31内に圧縮空気が供給される。これにより、鋳型砂を流動させながら、上造型空間及び下造型空間に鋳型砂が充填される。一例として、設定された圧力及び時間を満たした場合、エアレーション処理が終了する。なお、エアレーション処理が完了した後において、上サンドタンク22、第1下サンドタンク30及び第2下サンドタンク31内の排気処理が行われる。 Next, an aeration process (S16) is performed. As shown in FIG. 4, in the aeration process, the sealing mechanism seals the first connection port 35 of the first lower sand tank 30 and the second connection port 38 of the second lower sand tank 31. Then, the slide gate 23 of the upper sand tank 22 and the slide gate 33 of the first lower sand tank 30 are closed, and the upper sand tank 22 and the first lower sand tank are driven by the compressed air source and the electropneumatic proportional valves 90 to 97. Compressed air is supplied into 30 and the second lower sand tank 31. As a result, the mold sand is filled into the upper molding space and the lower molding space while flowing the molding sand. As an example, when the set pressure and time are satisfied, the aeration process ends. After the aeration process is completed, the exhaust process in the upper sand tank 22, the first lower sand tank 30, and the second lower sand tank 31 is performed.
 次に、スクイズ処理(S18)が行われる。スクイズ処理では、エアレーション処理(S16)で動作させた封止機構が封止を解除し、スクイズシリンダ37がさらに伸長することにより、第2下サンドタンク31がさらに上昇する。これにより、第2下サンドタンク31に取り付けられた下プレート40が下盛枠41内に進入し、下造型空間内の鋳型砂を圧縮するとともに、上プレート25が上鋳枠15内に進入し、上造型空間の鋳型砂を圧縮する。スクイズシリンダ37が油圧回路で制御されている場合には、例えば油圧回路の油圧が設定された油圧と等しいと判定することができるときに、スクイズ処理が終了する。なお、スクイズ処理中であって、上鋳枠シリンダ16、下鋳枠シリンダ18及び下盛枠シリンダ42が油圧回路で制御されている場合、各シリンダはフリー回路に設定される。これによって、各シリンダはスクイズ力に負けて収縮する。 Next, a squeeze process (S18) is performed. In the squeeze process, the sealing mechanism operated in the aeration process (S16) releases the seal, and the squeeze cylinder 37 further expands, whereby the second lower sand tank 31 is further raised. As a result, the lower plate 40 attached to the second lower sand tank 31 enters the lower filling frame 41, compresses the molding sand in the lower molding space, and the upper plate 25 enters the upper casting frame 15. Compress the molding sand in the upper molding space. When the squeeze cylinder 37 is controlled by the hydraulic circuit, for example, when it can be determined that the hydraulic pressure of the hydraulic circuit is equal to the set hydraulic pressure, the squeeze process is terminated. In addition, when the squeeze process is being performed and the upper casting frame cylinder 16, the lower casting frame cylinder 18, and the lower filling frame cylinder 42 are controlled by a hydraulic circuit, each cylinder is set to a free circuit. As a result, each cylinder contracts against the squeeze force.
 次に、抜型処理(S20)が行われる。抜型処理では、下盛枠シリンダ42が収縮して下盛枠41を下降させる。その後、スクイズシリンダ37が収縮して、第2下サンドタンク31を下降させ、それに続いて、マッチプレート19及び搬送プレート20を載置した下鋳枠17を下降させる。そして、上鋳枠15から模型の抜型が行われる。下鋳枠17が固定部(不図示)まで下降したとき、マッチプレート19及び搬送プレート20が固定部に支持される。これにより、下鋳枠17から模型の抜型が行われる。 Next, a die cutting process (S20) is performed. In the punching process, the lower frame cylinder 42 contracts to lower the lower frame 41. Thereafter, the squeeze cylinder 37 contracts, the second lower sand tank 31 is lowered, and subsequently, the lower casting frame 17 on which the match plate 19 and the transport plate 20 are placed is lowered. Then, the model is removed from the upper casting frame 15. When the lower casting frame 17 is lowered to a fixed portion (not shown), the match plate 19 and the transport plate 20 are supported by the fixed portion. Thereby, the model is removed from the lower casting frame 17.
 次に、シャトルアウト処理(S22)が行われる。シャトルアウト処理では、搬送シリンダ21が収縮することにより、搬送プレート20を退避位置へ移動させる。必要であれば中子が上鋳枠15又は下鋳枠17に配置される。 Next, a shuttle-out process (S22) is performed. In the shuttle-out process, the transport plate 21 is moved to the retracted position when the transport cylinder 21 contracts. If necessary, the core is arranged on the upper casting frame 15 or the lower casting frame 17.
 次に、枠合せ処理(S24)が行われる。枠合せ処理では、下鋳枠シリンダ18が収縮し、スクイズシリンダ37が伸長することにより、下鋳枠17及び第2下サンドタンク31を上昇させて、枠を合わせる。 Next, a frame alignment process (S24) is performed. In the frame alignment process, the lower casting frame cylinder 18 contracts and the squeeze cylinder 37 extends to raise the lower casting frame 17 and the second lower sand tank 31 to align the frames.
 次に、抜枠処理(S26)が行われる。抜枠処理では、上鋳枠シリンダ16及び下鋳枠シリンダ18が収縮することにより、上鋳枠15及び下鋳枠17を上昇端まで上昇させて、抜枠を行う。 Next, a blanking process (S26) is performed. In the blanking process, the upper casting frame cylinder 16 and the lower casting frame cylinder 18 are contracted to raise the upper casting frame 15 and the lower casting frame 17 to the rising end, thereby performing the blanking.
 次に、第1枠分離処理(S28)が行われる。第1枠分離処理では、第2下サンドタンク31の下プレート40上に鋳型を載置した状態で、スクイズシリンダ37が収縮し、第2下サンドタンク31を下降させる。このとき、下鋳枠シリンダ18が伸長し、下鋳枠17を下降させるとともに、鋳型を搬出する際に邪魔にならない位置で停止させる。 Next, the first frame separation process (S28) is performed. In the first frame separation process, the squeeze cylinder 37 contracts with the mold placed on the lower plate 40 of the second lower sand tank 31, and the second lower sand tank 31 is lowered. At this time, the lower casting frame cylinder 18 extends to lower the lower casting frame 17 and stop at a position that does not interfere when the mold is carried out.
 次に、モールド押出処理(S30)が行われる。モールド押出処理では、押出シリンダ48(図2参照)が伸長することで、上鋳型及び下鋳型を装置外(例えば造型ライン)へ搬出する。 Next, a mold extrusion process (S30) is performed. In the mold extrusion process, the upper cylinder 48 and the lower mold are carried out of the apparatus (for example, a molding line) by extending the extrusion cylinder 48 (see FIG. 2).
 次に、第2枠分離処理(S32)が行われる。第2枠分離処理では、下鋳枠シリンダ18が伸長し、下鋳枠17を原位置に戻す。 Next, the second frame separation process (S32) is performed. In the second frame separation process, the lower casting frame cylinder 18 extends to return the lower casting frame 17 to the original position.
 以上で、一組の上鋳型及び下鋳型を造型する処理を終了する。 This completes the process of forming a pair of upper mold and lower mold.
[サンドタンク内の圧力検出]
 図14は、一実施形態に係る抜枠造型機の機能ブロック図である。図14に示されるように、抜枠造型機1は、第1圧力検出器61~第6圧力検出器66、制御装置50、表示部67、及び、電空比例弁90~97を備える。
[Pressure detection in sand tank]
FIG. 14 is a functional block diagram of a frame making machine according to an embodiment. As shown in FIG. 14, the frame making machine 1 includes a first pressure detector 61 to a sixth pressure detector 66, a control device 50, a display unit 67, and electropneumatic proportional valves 90 to 97.
 制御装置50は、第1圧力検出器61~第6圧力検出器66に接続され、検出結果を取得することができる。検出結果とは、第1圧力検出器61~第6圧力検出器66のうちの少なくとも1つの圧力検出器から出力された圧力に関する情報である。 The control device 50 is connected to the first pressure detector 61 to the sixth pressure detector 66 and can acquire the detection result. The detection result is information on the pressure output from at least one of the first pressure detector 61 to the sixth pressure detector 66.
 制御装置50は、演算部51、通信部52及び記憶部53を備える。演算部51は、圧力制御に関する各種演算を行う構成要素であり、プロセッサ及びメモリなどにより実現する。通信部52は、情報を装置外へ送信する構成要素であり、ネットワークカードなどにより実現する。 The control device 50 includes a calculation unit 51, a communication unit 52, and a storage unit 53. The calculation unit 51 is a component that performs various calculations related to pressure control, and is realized by a processor, a memory, and the like. The communication unit 52 is a component that transmits information to the outside of the apparatus, and is realized by a network card or the like.
 通信部52は、演算部51の指令に基づいて、データを通信規格に合わせて処理し、通信ネットワーク68へ出力する。通信ネットワーク68は、無線通信であってもよいし、有線通信であってもよい。記憶部53は、データを保存する構成要素であり、メモリなどにより実現する。 The communication unit 52 processes the data in accordance with the communication standard based on the command of the calculation unit 51 and outputs the processed data to the communication network 68. The communication network 68 may be wireless communication or wired communication. The storage unit 53 is a component that stores data, and is realized by a memory or the like.
 表示部67は、情報を視認可能な状態で表示することができる装置である。表示部67は、一例として、ディスプレイ装置である。表示部67は、装置に固定されていてもよいし、装置と別体となっていてもよい。表示部67は、制御装置50からの制御信号に基づいて、少なくとも1つの圧力検出器の検出結果を表示する。表示部67は、制御装置50からの制御信号に基づいて、警報情報を表示してもよい。表示部67は、操作員による入力操作を受け付けるタッチパネルなどで構成されてもよい。表示部67は、操作員による入力操作を制御装置50へ出力してもよい。 The display unit 67 is a device that can display information in a visible state. The display unit 67 is a display device as an example. The display unit 67 may be fixed to the device or may be separate from the device. The display unit 67 displays the detection result of at least one pressure detector based on the control signal from the control device 50. The display unit 67 may display alarm information based on a control signal from the control device 50. The display unit 67 may be configured by a touch panel that accepts an input operation by an operator. The display unit 67 may output an input operation by an operator to the control device 50.
 以下、制御装置50の制御処理について、各構成要素と対応させて説明する。
[第1データ表示処理]
 第1データ表示処理は、図13の造型処理の実行中において第1圧力検出器61~第6圧力検出器66によって検出された結果を、表示部67に表示させる処理である。表示のタイミングは、造型処理中であってもよいし、造型処理後であってもよい。制御装置50の演算部51は、第1圧力検出器61~第6圧力検出器66の検出結果として、圧力と時間との関係を示すグラフを表示部67に表示させる。演算部51は、検出結果に合わせて電空比例弁90~97の制御情報を表示部67に表示させてもよい。制御情報とは、電空比例弁の制御信号に関する情報である。例えば、電空比例弁の制御信号は、制御信号を所定の計算式に基づいて圧力に変換した信号である。このような変換は、演算部51により実行される。制御装置50の演算部51は、制御情報と検出結果とを比較可能な態様で表示部67に表示させる。例えば、制御装置50の演算部51は、制御情報と検出結果とを同じタイミングで画面表示する。演算部51は、一例として、比較する対象データを同一のグラフに重ねて表示する。演算部51は、比較する対象データを個々のグラフとして同一の画面内に並べて表示してもよい。なお、比較可能な態様は、比較する対象データが同じタイミングで画面表示される場合に限定されず、比較する対象データが交互に画面に表示されてもよい。
Hereinafter, the control processing of the control device 50 will be described in association with each component.
[First data display processing]
The first data display process is a process for causing the display unit 67 to display the results detected by the first pressure detector 61 to the sixth pressure detector 66 during the execution of the molding process of FIG. The display timing may be during the molding process or after the molding process. The calculation unit 51 of the control device 50 causes the display unit 67 to display a graph showing the relationship between pressure and time as the detection results of the first pressure detector 61 to the sixth pressure detector 66. The calculation unit 51 may cause the display unit 67 to display control information of the electropneumatic proportional valves 90 to 97 according to the detection result. The control information is information related to the control signal of the electropneumatic proportional valve. For example, the control signal of the electropneumatic proportional valve is a signal obtained by converting the control signal into pressure based on a predetermined calculation formula. Such conversion is executed by the calculation unit 51. The calculation unit 51 of the control device 50 causes the display unit 67 to display the control information and the detection result in a manner that allows comparison. For example, the calculation unit 51 of the control device 50 displays the control information and the detection result on the screen at the same timing. As an example, the calculation unit 51 displays the target data to be compared on the same graph. The calculation unit 51 may display the target data to be compared side by side as individual graphs in the same screen. In addition, the aspect which can be compared is not limited to when the object data to be compared is displayed on the screen at the same timing, and the object data to be compared may be alternately displayed on the screen.
 図15は、電空比例弁の制御信号及び圧力検出器の検出結果を示すグラフの一例である。図15に示されるグラフは、上サンドタンク22における検出結果であり、横軸は時間であり、縦軸は圧力である。図15において、電空比例弁の制御信号は圧力に変換され、破線で示されている。つまり、図中の破線が目標圧力である。破線の波形の立ち上がりから立ち下がりまでの時間がエアレーション時間T1である。図15において、検出結果は実線で示されている。太い実線が第1圧力検出器61の検出結果であり、細い実線が第2圧力検出器62の検出結果である。操作員などは、図15に示されたグラフに基づいて、制御の妥当性などを確認することができる。 FIG. 15 is an example of a graph showing the control signal of the electropneumatic proportional valve and the detection result of the pressure detector. The graph shown in FIG. 15 is a detection result in the upper sand tank 22, the horizontal axis is time, and the vertical axis is pressure. In FIG. 15, the control signal of the electropneumatic proportional valve is converted into pressure and is indicated by a broken line. That is, the broken line in the figure is the target pressure. The time from the rise to the fall of the dashed waveform is the aeration time T1. In FIG. 15, the detection result is shown by a solid line. The thick solid line is the detection result of the first pressure detector 61, and the thin solid line is the detection result of the second pressure detector 62. An operator or the like can confirm the validity of the control based on the graph shown in FIG.
 一例として、図15に示されたグラフにおいては、エアレーション時間T1の初期において上サンドタンク22内の圧力が上昇している。図中のタイミングE1で示されるように、圧力の上昇が一旦終了する。圧力の上昇の終了は、上サンドタンク22内の鋳型砂が流動しているために発生していると考えられる。その後、図中のタイミングE2で示されるように、圧力は再度上昇し始める。圧力の再上昇は、鋳型砂の充填が完了したために発生していると考えられる。そして、タイミングE2から時間経過すると、少し圧力が上昇して一定値となる。操作員などは、図15に示されたグラフに基づいてエアレーション時間T1の長さを検証することができる。操作員などは、後述する設定画面でエアレーション時間T1の長さを設定することができる。例えば、操作員などは、エアレーション時間T1の終了タイミングがタイミングE2に近づくようにエアレーション時間T1を調整してもよい。操作員などは、エアレーション時間T1の終了タイミングが、タイミングE2からマージン時間T2経過したタイミングに近づくようにエアレーション時間T1を調整してもよい。マージン時間T2は、実測に基づいて決定された値である。マージン時間T2は、操作員などにより適宜設定される値であってもよい。このような調整により、サイクルタイムを短縮させるとともに、消費するエアの量を最適化することができる。 As an example, in the graph shown in FIG. 15, the pressure in the upper sand tank 22 increases at the initial stage of the aeration time T1. As shown by the timing E1 in the figure, the pressure increase is temporarily terminated. The end of the increase in pressure is considered to have occurred because the mold sand in the upper sand tank 22 is flowing. Thereafter, as indicated by the timing E2 in the figure, the pressure starts to rise again. It is considered that the re-rise in pressure occurs because the filling of the mold sand is completed. Then, when time elapses from the timing E2, the pressure slightly increases and becomes a constant value. An operator or the like can verify the length of the aeration time T1 based on the graph shown in FIG. An operator or the like can set the length of the aeration time T1 on a setting screen described later. For example, an operator or the like may adjust the aeration time T1 so that the end timing of the aeration time T1 approaches the timing E2. An operator or the like may adjust the aeration time T1 so that the end timing of the aeration time T1 approaches the timing when the margin time T2 has elapsed from the timing E2. The margin time T2 is a value determined based on actual measurement. The margin time T2 may be a value appropriately set by an operator or the like. By such adjustment, the cycle time can be shortened and the amount of air consumed can be optimized.
[第2データ表示処理]
 第2データ表示処理は、第1圧力検出器61~第6圧力検出器66によって検出された結果を、表示部67に表示させる処理である。表示のタイミングは、第1透過部材22a又は第2透過部材30aの目詰まりをチェックするときであり、例えばメンテナンス時である。制御装置50の演算部51は、一例として、第1圧力検出器61~第3圧力検出器63のうちの少なくとも1つの検出結果として、圧力と時間との関係を示すグラフを表示部67に表示させる。第1圧力検出器61~第3圧力検出器63は、第1透過部材22a又は第2透過部材30aを介して貯留室に連通しているため、第1圧力検出器61~第3圧力検出器63の圧力の検出結果によって第1透過部材22a又は第2透過部材30aの目詰まりを検知することができる。
[Second data display processing]
The second data display process is a process of causing the display unit 67 to display the results detected by the first pressure detector 61 to the sixth pressure detector 66. The display timing is when checking for clogging of the first transmission member 22a or the second transmission member 30a, for example, during maintenance. For example, the calculation unit 51 of the control device 50 displays a graph showing the relationship between pressure and time on the display unit 67 as a detection result of at least one of the first pressure detector 61 to the third pressure detector 63. Let Since the first pressure detector 61 to the third pressure detector 63 communicate with the storage chamber via the first transmission member 22a or the second transmission member 30a, the first pressure detector 61 to the third pressure detector. The clogging of the first transmission member 22a or the second transmission member 30a can be detected based on the 63 pressure detection result.
 透過部材の目詰まりは、作業員などにより判断される。作業員などの判断を助けるために、圧力の検出結果とともに、閾値を表示してもよい。例えば、制御装置50の演算部51は、上サンドタンク22の少なくとも1つの圧力検出器(第1圧力検出器61,第2圧力検出器62)の検出結果と、予め設定された閾値とを比較可能な態様で表示部67に表示させる。あるいは、演算部51は、第1下サンドタンク30の第3圧力検出器63により検出された圧力と、予め設定された閾値とを比較可能な態様で表示部67に表示させてもよい。予め設定された閾値は、記憶部53に記憶されていてもよい。例えば、観測された異常値から所定値を減算した値が閾値として設定され、記憶部53に記憶されてもよい。制御装置50は、タッチパネルなどを介して閾値を取得し、記憶部53に記憶してもよい。演算部51は、検出結果に合わせて電空比例弁90~94の制御情報を表示部67に表示させてもよい。制御情報とは、電空比例弁の制御信号に関する情報である。例えば、電空比例弁の制御信号は、制御信号を所定の計算式に基づいて圧力に変換した信号である。このような変換は、演算部51により実行される。 The clogging of the transparent member is judged by the operator. A threshold value may be displayed together with the pressure detection result in order to help a worker or the like. For example, the calculation unit 51 of the control device 50 compares the detection result of at least one pressure detector (the first pressure detector 61 and the second pressure detector 62) of the upper sand tank 22 with a preset threshold value. It is displayed on the display unit 67 in a possible manner. Alternatively, the calculation unit 51 may cause the display unit 67 to display the pressure detected by the third pressure detector 63 of the first lower sand tank 30 and a preset threshold value in a comparable manner. The preset threshold value may be stored in the storage unit 53. For example, a value obtained by subtracting a predetermined value from the observed abnormal value may be set as the threshold value and stored in the storage unit 53. The control device 50 may acquire a threshold value via a touch panel or the like and store it in the storage unit 53. The calculation unit 51 may cause the display unit 67 to display control information of the electropneumatic proportional valves 90 to 94 in accordance with the detection result. The control information is information related to the control signal of the electropneumatic proportional valve. For example, the control signal of the electropneumatic proportional valve is a signal obtained by converting the control signal into pressure based on a predetermined calculation formula. Such conversion is executed by the calculation unit 51.
 図16は、圧力検出器の検出結果と閾値とを示すグラフの一例である。図16に示されるグラフは、上サンドタンク22における検出結果であり、横軸は時間であり、縦軸は圧力である。図16において、太い実線が異常値であり、破線が閾値、細い実線が圧力検出器の検出結果である。第1透過部材22aに目詰まりが発生している場合、圧力は上昇し、閾値を超えることになる。操作員などは、図16に示されたグラフに基づいて透過部材の目詰まりの有無を確認することができる。 FIG. 16 is an example of a graph showing the detection result of the pressure detector and the threshold value. The graph shown in FIG. 16 is a detection result in the upper sand tank 22, the horizontal axis is time, and the vertical axis is pressure. In FIG. 16, a thick solid line is an abnormal value, a broken line is a threshold value, and a thin solid line is a detection result of the pressure detector. When clogging occurs in the first transmission member 22a, the pressure rises and exceeds the threshold value. An operator or the like can confirm whether the transmission member is clogged based on the graph shown in FIG.
[第3データ表示処理]
 第3データ表示処理は、図13の造型処理の実行中において第1圧力検出器61~第6圧力検出器66によって検出された結果を、表示部67に表示させる処理である。表示のタイミングは、造型処理中であってもよいし、造型処理後であってもよい。制御装置50の演算部51は、第1圧力検出器61~第6圧力検出器66の検出結果として、圧力と時間との関係を示すグラフを表示部67に表示させる。演算部51は、検出結果に合わせて電空比例弁90~97の制御情報を表示部67に表示させてもよい。制御情報とは、電空比例弁の制御信号に関する情報である。例えば、電空比例弁の制御信号は、制御信号を所定の計算式に基づいて圧力に変換した信号である。このような変換は、演算部51により実行される。
[Third data display processing]
The third data display process is a process for causing the display unit 67 to display the results detected by the first pressure detector 61 to the sixth pressure detector 66 during the molding process shown in FIG. The display timing may be during the molding process or after the molding process. The calculation unit 51 of the control device 50 causes the display unit 67 to display a graph showing the relationship between pressure and time as the detection results of the first pressure detector 61 to the sixth pressure detector 66. The calculation unit 51 may cause the display unit 67 to display control information of the electropneumatic proportional valves 90 to 97 according to the detection result. The control information is information related to the control signal of the electropneumatic proportional valve. For example, the control signal of the electropneumatic proportional valve is a signal obtained by converting the control signal into pressure based on a predetermined calculation formula. Such conversion is executed by the calculation unit 51.
 制御装置50の演算部51は、第1圧力検出器61~第6圧力検出器66の検出結果を所定のタイミングで記憶部53に記憶する。そして、演算部51は、記憶された検出結果と今回の検出結果とを比較可能な態様で表示部67に表示させる。例えば、演算部51は、記憶部53を参照して、事前に記憶された検出結果を取得するとともに、第1圧力検出器61~第6圧力検出器66から今回の検出結果を取得する。そして、演算部51は、事前に記憶された検出結果と今回の検出結果とを同じタイミングで画面表示する。演算部51は、一例として、比較する対象データを同一のグラフに重ねて表示する。演算部51は、比較する対象データを個々のグラフとして同一の画面内に並べて表示してもよい。なお、比較可能な態様は、比較する対象データが同じタイミングで画面表示される場合に限定されず、比較する対象データが交互に画面に表示されてもよい。 The calculation unit 51 of the control device 50 stores the detection results of the first pressure detector 61 to the sixth pressure detector 66 in the storage unit 53 at a predetermined timing. And the calculating part 51 displays the memorize | stored detection result and this detection result on the display part 67 in the aspect which can be compared. For example, the computing unit 51 refers to the storage unit 53 and acquires the detection results stored in advance, and acquires the current detection results from the first pressure detector 61 to the sixth pressure detector 66. Then, the calculation unit 51 displays the detection result stored in advance and the current detection result on the screen at the same timing. As an example, the calculation unit 51 displays the target data to be compared on the same graph. The calculation unit 51 may display the target data to be compared side by side as individual graphs in the same screen. In addition, the aspect which can be compared is not limited to when the object data to be compared is displayed on the screen at the same timing, and the object data to be compared may be alternately displayed on the screen.
 図17は、事前に記憶された検出結果と今回の検出結果とを比較した一例である。図17に示されるグラフは、上サンドタンク22における検出結果であり、横軸は時間であり、縦軸は圧力である。画面例(A)は、事前に記憶された検出結果のグラフG1を表示している画面である。画面例(B)は、事前に記憶された検出結果のグラフG1と今回の検出結果のグラフG2とを重ねて表示している画面である。操作員などは、図17に示されたグラフに基づいて、以前の処理との相違点の有無を確認することができる。 FIG. 17 is an example in which the detection result stored in advance and the current detection result are compared. The graph shown in FIG. 17 is the detection result in the upper sand tank 22, the horizontal axis is time, and the vertical axis is pressure. The screen example (A) is a screen displaying a graph G1 of detection results stored in advance. The screen example (B) is a screen in which a detection result graph G1 stored in advance and a current detection result graph G2 are displayed in an overlapping manner. An operator or the like can confirm whether there is a difference from the previous process based on the graph shown in FIG.
[設定画面の表示処理]
 演算部51は、設定処理の一例として、設定画面を表示部67に表示させる。設定画面とは、エアレーション設定圧力と時間とを設定するための画面である。そして、演算部51は、入力部(不図示)などを介して受け付けた操作員の入力情報に基づいて、エアレーション設定圧力と時間とを設定する。一例として、演算部51は、エアレーション時間、圧力、閾値などを設定する。設定とは、例えば目標値として記憶部53に記憶されることである。
[Setting screen display processing]
The calculation unit 51 displays a setting screen on the display unit 67 as an example of the setting process. The setting screen is a screen for setting the aeration setting pressure and time. And the calculating part 51 sets aeration setting pressure and time based on the input information of the operator received via the input part (not shown) etc. As an example, the calculation unit 51 sets aeration time, pressure, threshold value, and the like. The setting is, for example, stored in the storage unit 53 as a target value.
 図18は、表示部により表示される画面例である。画面例(A)は、エアレーション時間を設定する設定画面の一例である。画面例(A)の上部には、ページを遷移する入力操作を受け付けるためのアイコンIC1が表示されている。画面下部においては、アプリケーション又は各種機能を呼び出す入力操作を受け付けるためのアイコンIC2が表示されている。画面中央には、設定対象と設定項目が表示されている。設定対象の一例は、電空比例弁である。画面例(A)においては、電空比例弁90,93と電空比例弁90,93とがオブジェクトOB1,OB2として表示されている。設定項目の一例は、エアレーション時間及び圧力である。画面例(A)においては、エアレーション時間と圧力とがオブジェクトOB3~OB5として表示されている。オブジェクトOB3~OB5は、操作員などにより入力可能な項目である。 FIG. 18 is a screen example displayed by the display unit. Screen example (A) is an example of a setting screen for setting the aeration time. In the upper part of the screen example (A), an icon IC1 for receiving an input operation for changing a page is displayed. In the lower part of the screen, an icon IC2 for receiving an input operation for calling an application or various functions is displayed. In the center of the screen, setting objects and setting items are displayed. An example of the setting target is an electropneumatic proportional valve. In the screen example (A), the electropneumatic proportional valves 90 and 93 and the electropneumatic proportional valves 90 and 93 are displayed as objects OB1 and OB2. An example of setting items is aeration time and pressure. In the screen example (A), the aeration time and pressure are displayed as objects OB3 to OB5. Objects OB3 to OB5 are items that can be input by an operator or the like.
 また、設定項目の一例は、追加処理時のエアレーション時間及び圧力である。追加処理は、エアレーション処理が正常な場合には実行されない。追加処理は、エアレーション処理が異常と判断される前に、エアレーション時間を延長するために実行される処理である。追加処理の詳細は後述する。画面例(A)においては、追加処理時のエアレーション時間と圧力とがオブジェクトOB6として表示されている。オブジェクトOB6は、操作員などにより入力可能な項目である。オブジェクトOB6において受け付けられる設定項目は、追加的なエアレーション時の設定値となる。操作員などは、オブジェクトOB3~OB6に値を入力することにより、エアレーションに関する設定を行うことができる。 Also, examples of setting items are aeration time and pressure during additional processing. The additional process is not executed when the aeration process is normal. The additional process is a process that is executed to extend the aeration time before it is determined that the aeration process is abnormal. Details of the addition process will be described later. In the screen example (A), the aeration time and the pressure during the additional processing are displayed as an object OB6. The object OB6 is an item that can be input by an operator or the like. The setting items accepted in the object OB6 are set values for additional aeration. An operator or the like can make settings related to aeration by inputting values into the objects OB3 to OB6.
[警報処理]
 制御装置50は、異常を検知したときに警報を行う。警報とは、操作員などに異常を報知することをいう。制御装置50は、警報処理の一例として、表示部67に警報に関する画面を表示する。制御装置50は、表示による警報に代えて、あるいは、表示による警報とともに、図示しないスピーカにおいてアラームを出力してもよい。
[Alarm processing]
The control device 50 issues an alarm when an abnormality is detected. An alarm means notifying an operator or the like of an abnormality. The control device 50 displays a screen related to an alarm on the display unit 67 as an example of alarm processing. The control device 50 may output an alarm from a speaker (not shown) instead of the alarm by display or together with the alarm by display.
 圧縮空気を用いて行われる抜枠造型機において想定される異常の1つは、吹き抜け異常である。吹き抜け異常とは、「下プレート40の各供給口の部分的な詰まりによって鋳型砂が存在しない箇所が発生し、当該箇所が圧縮空気の通り道となる現象」である。鋳型砂が存在しない箇所は空気抵抗が少ないため、圧縮空気は当該箇所ばかりに吹き抜ける。このため、吹き抜け異常が発生した場合、圧力が上昇しないことになる。制御装置50は、エアレーション処理時において、鋳型砂の正常な充填が行えていないと判定されたときに、エアレーション時間を延長する(追加処理)。つまり、制御装置50は、第1圧力検出器61~第6圧力検出器66の検出結果に基づいて少なくとも1つの電空比例弁に制御信号を出力する。より具体的な一例として、制御装置50は、エアレーション処理時において、エアレーション時間T1内に圧力検出器により検出された最大圧力が所定の閾値に達しない場合には、鋳型砂の正常な充填が行えていないと判定する。所定の閾値は、例えば記憶部53に記憶されている。そして、制御装置50は、例えば図18の画面例(A)を用いて設定された値に基づいて、電空比例弁に制御信号を出力する(エアレーション時間を延長する追加処理)。 One of the abnormalities expected in the frame making machine using compressed air is a blowout abnormality. The blow-out abnormality is “a phenomenon in which a portion where mold sand does not exist due to partial clogging of each supply port of the lower plate 40 occurs and the portion becomes a passage for compressed air”. Since there is little air resistance in the place where the mold sand does not exist, the compressed air blows through only the place. For this reason, when a blow-through abnormality occurs, the pressure does not increase. The control device 50 extends the aeration time when it is determined that the casting sand is not normally filled during the aeration process (additional process). That is, the control device 50 outputs a control signal to at least one electropneumatic proportional valve based on the detection results of the first pressure detector 61 to the sixth pressure detector 66. As a more specific example, the control device 50 can perform normal filling of the mold sand when the maximum pressure detected by the pressure detector within the aeration time T1 does not reach a predetermined threshold during the aeration process. Judge that it is not. The predetermined threshold is stored in the storage unit 53, for example. And the control apparatus 50 outputs a control signal to an electropneumatic proportional valve based on the value set using the screen example (A) of FIG. 18, for example (addition process which extends aeration time).
 制御装置50は、吹き抜け異常が追加処理によって解消した場合、つまり、追加エアレーション時間内に圧力検出器により検出された最大圧力が所定の閾値に達した場合には、鋳型砂の充填処理は正常であると判定し、警報は行わない。一方、制御装置50は、追加エアレーション時間内に圧力検出器により検出された最大圧力が所定の閾値に達しない場合には、警報情報を出力する。警報情報は、警報に関するデータであり、表示部67に出力される場合には画面データ、スピーカなどに出力される場合にはアラームデータである。制御装置50は、警報情報の出力とともに、抜枠造型機1の運転を停止してもよい。図18の画面例(B)は、警報の一例である。制御装置50は、異常の内容、抜枠造型機1の運転状態、処置(対処方法)、復帰(復帰方法)などを表示部67に表示させる。 When the blow-through abnormality is eliminated by the additional process, that is, when the maximum pressure detected by the pressure detector reaches the predetermined threshold value within the additional aeration time, the control device 50 performs the mold sand filling process normally. It is determined that there is, and no alarm is given. On the other hand, the control device 50 outputs alarm information when the maximum pressure detected by the pressure detector within the additional aeration time does not reach a predetermined threshold value. The alarm information is data relating to an alarm, and is screen data when output to the display unit 67, or alarm data when output to a speaker or the like. The control device 50 may stop the operation of the frame making machine 1 together with the output of the alarm information. The screen example (B) in FIG. 18 is an example of an alarm. The control device 50 causes the display unit 67 to display the content of the abnormality, the operating state of the frame making machine 1, the treatment (coping method), the return (return method), and the like.
 制御装置50は、エアレーション時間T1が終了すると、排気処理を行う。排気処理においては、上サンドタンク22内の圧縮空気が排気され、圧力が低下していく。排気機構に砂詰まりがある場合、例えば、図17の画面例(B)のグラフG3に示されるように、排気処理時間T3において、圧力の低下が鈍ることになる。制御装置50は、上サンドタンク22、第1下サンドタンク30及び第2下サンドタンク31を排気する際に、少なくとも1つの圧力検出器により検出された圧力が、所定の時間経過後に所定の閾値以下とならない場合には警報情報を出力する。これにより、操作員などは排気の異常を認識することができる。 The control device 50 performs exhaust processing when the aeration time T1 ends. In the exhaust process, the compressed air in the upper sand tank 22 is exhausted, and the pressure decreases. When the exhaust mechanism is clogged with sand, for example, as shown in the graph G3 of the screen example (B) in FIG. 17, the decrease in pressure becomes dull at the exhaust processing time T3. When the control device 50 evacuates the upper sand tank 22, the first lower sand tank 30, and the second lower sand tank 31, the pressure detected by the at least one pressure detector is a predetermined threshold value after a predetermined time has elapsed. If it is not below, alarm information is output. Thereby, an operator or the like can recognize an abnormality in exhaust.
 なお、制御装置50は、排気処理時において、少なくとも1つの圧力検出器の検出結果に基づいて少なくとも1つの電空比例弁が開となるように制御信号を出力してもよい。このように動作することで、供給室の圧力が高まることから、充填室から供給室への鋳型砂の逆流が防止される。鋳型砂の逆流は、ベントを配置している箇所、つまり、供給室S8~S10で発生しやすい。制御装置50は、排気処理時において、排気処理時に基準となる第4圧力検出器64によって検出された圧力に基づいて、電空比例弁95~97が開となるように制御信号を出力する。制御装置50は、第4圧力検出器64によって検出された圧力よりも所定値だけ高い圧力となるように、電空比例弁95~97を開としてもよい(フィードバック処理)。 The control device 50 may output a control signal so that at least one electropneumatic proportional valve is opened based on the detection result of the at least one pressure detector during the exhaust process. By operating in this way, the pressure in the supply chamber is increased, so that the backflow of mold sand from the filling chamber to the supply chamber is prevented. The backflow of the mold sand is likely to occur in the place where the vent is arranged, that is, in the supply chambers S8 to S10. At the time of exhaust processing, the control device 50 outputs a control signal so that the electropneumatic proportional valves 95 to 97 are opened based on the pressure detected by the fourth pressure detector 64 serving as a reference at the time of exhaust processing. The control device 50 may open the electropneumatic proportional valves 95 to 97 so that the pressure is higher than the pressure detected by the fourth pressure detector 64 by a predetermined value (feedback processing).
 以上、本実施形態に係る抜枠造型機1では、上サンドタンク22、第1下サンドタンク30及び第2下サンドタンク31の圧力が第1圧力検出器61~第6圧力検出器66により検出される。そして、制御装置50により、第1圧力検出器61~第6圧力検出器66の検出結果が取得される。このように、抜枠造型機1によれば、タンク内の圧力が取得されることによりサンドタンク内の状況が把握されるため、結果として優れた鋳型及び鋳物製品を得ることができる。 As described above, in the frame making machine 1 according to this embodiment, the pressures of the upper sand tank 22, the first lower sand tank 30, and the second lower sand tank 31 are detected by the first pressure detector 61 to the sixth pressure detector 66. Is done. Then, the control device 50 acquires the detection results of the first pressure detector 61 to the sixth pressure detector 66. Thus, according to the frame making machine 1, since the situation in the sand tank is grasped by acquiring the pressure in the tank, an excellent mold and cast product can be obtained as a result.
 抜枠造型機1によれば、第2下サンドタンクが上下方向に移動することによってスクイズ処理が行われる場合において、サンドタンク内の状況を適切に把握することができる。 According to the frame making machine 1, when the squeeze process is performed by moving the second lower sand tank in the vertical direction, the situation in the sand tank can be properly grasped.
 抜枠造型機1によれば、第1圧力検出器61~第6圧力検出器66の配置のために、圧縮空気を供給するための供給室S4~S10を利用することができる。また、抜枠造型機1は、鋳型砂を貯留する貯留室S1~S3に圧力検出のための貫通孔などを設ける必要がない。このため、抜枠造型機1によれば、第1圧力検出器61~第6圧力検出器66の配置が造型処理に与える影響を小さくすることができる。 According to the frame making machine 1, the supply chambers S4 to S10 for supplying compressed air can be used for the arrangement of the first pressure detector 61 to the sixth pressure detector 66. Further, the frame making machine 1 does not need to provide a through hole for pressure detection in the storage chambers S1 to S3 for storing the mold sand. For this reason, according to the frame making machine 1, the influence of the arrangement of the first pressure detector 61 to the sixth pressure detector 66 on the molding process can be reduced.
 抜枠造型機1によれば、上サンドタンク22の上下の圧力、つまり上サンドタンク22の全体の圧力が検出されるため、上サンドタンク22の検出位置に依存した圧力偏差を把握することができる。抜枠造型機1によれば、第1下サンドタンク30の上下の圧力、つまり第1下サンドタンク30の全体の圧力が検出されるため、第1下サンドタンク30の検出位置に依存した圧力偏差を把握することができる。 According to the punch frame molding machine 1, since the upper and lower pressures of the upper sand tank 22, that is, the entire pressure of the upper sand tank 22, are detected, it is possible to grasp the pressure deviation depending on the detection position of the upper sand tank 22. it can. According to the frame making machine 1, since the upper and lower pressures of the first lower sand tank 30, that is, the entire pressure of the first lower sand tank 30 is detected, the pressure depending on the detection position of the first lower sand tank 30. The deviation can be grasped.
 抜枠造型機1によれば、第1透過部材22a,第2透過部材30aの目詰まりを検出することができる。また、抜枠造型機1では、第1下サンドタンク30の屈曲した下端部の貯留室S2内、あるいは、第2下サンドタンク31内においては、透過部材の代わりに複数のベントホールを用いる。このため、抜枠造型機1によれば、透過部材の目詰まりが発生し易い箇所において、透過部材の目詰まりの発生を回避することができる。 According to the frame making machine 1, clogging of the first transmission member 22a and the second transmission member 30a can be detected. Further, in the frame making machine 1, a plurality of vent holes are used instead of the transmitting member in the storage chamber S2 at the bent lower end of the first lower sand tank 30 or in the second lower sand tank 31. For this reason, according to the frame making machine 1, it is possible to avoid the occurrence of clogging of the transmission member at a location where the clogging of the transmission member is likely to occur.
 抜枠造型機1によれば、第1圧力検出器61~第6圧力検出器66の検出結果を操作員に報知することができる。抜枠造型機1によれば、圧力の時間依存性を操作員に報知することができる。抜枠造型機1によれば、設定画面を表示部67に表示させることにより、操作員による設定操作を支援することができる。また、抜枠造型機1によれば、操作員に対して、事前に記憶された検出結果と今回の検出結果の差分を報知することができる。抜枠造型機1によれば、第1圧力検出器61~第6圧力検出器66の検出結果を、物理記憶媒体を介することなく外部のコンピュータなどに送信することができる。 According to the frame making machine 1, the detection results of the first pressure detector 61 to the sixth pressure detector 66 can be notified to the operator. According to the punch frame molding machine 1, it is possible to notify the operator of the time dependency of the pressure. According to the frame making machine 1, the setting operation by the operator can be supported by displaying the setting screen on the display unit 67. Moreover, according to the frame making machine 1, the operator can be notified of the difference between the detection result stored in advance and the current detection result. According to the frame making machine 1, the detection results of the first pressure detector 61 to the sixth pressure detector 66 can be transmitted to an external computer or the like without using a physical storage medium.
 抜枠造型機1によれば、圧力検出器の検出結果と、予め設定された閾値とを比較可能な態様で表示部に表示させることができる。この場合、操作員に対して、第1透過部材22a又は第2透過部材30aの目詰まりを予測させることができる。 According to the frame making machine 1, the detection result of the pressure detector and a preset threshold value can be displayed on the display unit in a manner that can be compared. In this case, the operator can predict clogging of the first transmission member 22a or the second transmission member 30a.
 抜枠造型機1によれば、圧力検出器の検出結果に基づいて電空比例弁に制御信号を出力することができるので、例えばフィードバック制御をすることができる。例えば、抜枠造型機1では、排気する際に、第3圧力検出器63の検出結果に基づいて、電空比例弁95~97が開となるように制御信号が出力される。このため、抜枠造型機1によれば、タンク内の鋳型砂の流動を適切に制御することができる。より具体的には、抜枠造型機1は、貯留室S2,S3から供給室S8~S10へ鋳型砂が逆流することを防ぐことができる。 According to the frame making machine 1, since a control signal can be output to the electropneumatic proportional valve based on the detection result of the pressure detector, for example, feedback control can be performed. For example, in the frame making machine 1, when evacuating, based on the detection result of the third pressure detector 63, a control signal is output so that the electropneumatic proportional valves 95 to 97 are opened. For this reason, according to the frame making machine 1, the flow of the molding sand in the tank can be appropriately controlled. More specifically, the frame making machine 1 can prevent the mold sand from flowing backward from the storage chambers S2 and S3 to the supply chambers S8 to S10.
 抜枠造型機1によれば、排気系統に不具合があることを操作員に警告することができる。抜枠造型機1によれば、電空比例弁90~97がサンドタンクの側方に配置されているので、圧縮空気の供給の応答性を向上させることができる。 According to the frame making machine 1, it is possible to warn the operator that there is a problem with the exhaust system. According to the punch frame molding machine 1, since the electropneumatic proportional valves 90 to 97 are arranged on the side of the sand tank, it is possible to improve the responsiveness of the supply of compressed air.
 抜枠造型機1によれば、最大圧力が所定の閾値に達しないときに追加的なエアレーションを自動で行うことができる。さらに、抜枠造型機1によれば、追加的なエアレーションによっても状況が改善されないときには、操作員に警報することができる。 According to the frame making machine 1, additional aeration can be automatically performed when the maximum pressure does not reach a predetermined threshold value. Furthermore, according to the frame making machine 1, an operator can be warned when the situation is not improved by additional aeration.
 なお、上述した実施形態は本開示に係る抜枠造型機の一例を示すものである。本開示に係る抜枠造型機は、実施形態に係る抜枠造型機1に限られるものではなく、各請求項に記載した要旨を変更しない範囲で、実施形態に係る抜枠造型機1を変形し、又は他のものに適用したものであってもよい。 The embodiment described above shows an example of a frame making machine according to the present disclosure. The frame making machine 1 according to the present disclosure is not limited to the frame making machine 1 according to the embodiment, and the frame forming machine 1 according to the embodiment is modified without changing the gist described in each claim. Or may be applied to other things.
 例えば、上記実施形態において、上サンドタンク22は上フレーム10に固定されている例を説明したが、上サンドタンク22は移動可能に構成されていてもよい。また、造型機のサンドタンクは3つである必要はなく、1つであってもよいし、2つ又は4つ以上であってもよい。 For example, in the above-described embodiment, the example in which the upper sand tank 22 is fixed to the upper frame 10 has been described, but the upper sand tank 22 may be configured to be movable. Moreover, the sand tank of a molding machine does not need to be three, and may be one and may be two, or four or more.
 1…抜枠造型機、12…ガイド、15…上鋳枠、16…上鋳枠シリンダ、17…下鋳枠、18…下鋳枠シリンダ、19…マッチプレート、22…上サンドタンク、25…上プレート、22a…第1透過部材、30a…第2透過部材、30…第1下サンドタンク、31…第2下サンドタンク、32…下タンクシリンダ、35…第1接続口、36…第1閉塞板、37…スクイズシリンダ、38…第2接続口、39…第2閉塞板、40…下プレート、41…下盛枠、42…下盛枠シリンダ、50…制御装置、51…演算部、52…通信部、53…記憶部、61…第1圧力検出器、62…第2圧力検出器、63…第3圧力検出器、64…第4圧力検出器、65…第5圧力検出器、67…表示部、68…通信ネットワーク、90~97…電空比例弁。 DESCRIPTION OF SYMBOLS 1 ... Die frame molding machine, 12 ... Guide, 15 ... Upper casting frame, 16 ... Upper casting frame cylinder, 17 ... Lower casting frame, 18 ... Lower casting frame cylinder, 19 ... Match plate, 22 ... Upper sand tank, 25 ... Upper plate, 22a ... first transmission member, 30a ... second transmission member, 30 ... first lower sand tank, 31 ... second lower sand tank, 32 ... lower tank cylinder, 35 ... first connection port, 36 ... first Blocking plate, 37 ... squeeze cylinder, 38 ... second connection port, 39 ... second blocking plate, 40 ... lower plate, 41 ... lower filling frame, 42 ... lower building frame cylinder, 50 ... control device, 51 ... calculation unit, 52 ... Communication unit, 53 ... Storage unit, 61 ... First pressure detector, 62 ... Second pressure detector, 63 ... Third pressure detector, 64 ... Fourth pressure detector, 65 ... Fifth pressure detector, 67 ... display unit, 68 ... communication network, 90-97 ... electro-pneumatic proportional valve.

Claims (23)

  1.  無鋳枠の上鋳型及び下鋳型を造型する抜枠造型機であって、
     上鋳枠と、
     前記上鋳枠の下方に配置され、前記上鋳枠とともにマッチプレートを狭持可能な下鋳枠と、
     前記上鋳枠の上方に配置され、圧縮空気源に接続され、その下端部が開口され、その内部に鋳型砂を貯留する上サンドタンクと、
     前記上サンドタンクの下端部に取り付けられ、前記上サンドタンクから前記上鋳枠内へ連通する少なくとも1つの供給口が形成された上プレートと、
     圧縮空気源に接続され、その内部に鋳型砂を貯留し、貯留した鋳型砂を排出する第1接続口を有する第1下サンドタンクと、
     前記下鋳枠の下方に配置され、その上端部が開口され、前記第1下サンドタンクの第1接続口に接続可能な第2接続口を有し、前記第1下サンドタンクから供給され前記下鋳枠内へ供給される鋳型砂を貯留する第2下サンドタンクと、
     前記第2下サンドタンクの上端部に取り付けられ、前記第2下サンドタンクから前記下鋳枠内へ連通する少なくとも1つの供給口が形成された下プレートと、
     前記上サンドタンク、前記第1下サンドタンク及び前記第2下サンドタンクのうちの少なくとも1つのタンクの圧力を検出する少なくとも1つの圧力検出器と、
     前記圧力検出器に接続され、前記少なくとも1つの圧力検出器の検出結果を取得する制御部と、
    を備える抜枠造型機。
    A frame making machine for forming an upper mold and a lower mold of a non-cast frame,
    Top casting frame,
    A lower casting frame that is disposed below the upper casting frame and can hold a match plate together with the upper casting frame;
    An upper sand tank that is disposed above the upper casting frame, connected to a compressed air source, its lower end is opened, and mold sand is stored therein,
    An upper plate attached to a lower end portion of the upper sand tank, and formed with at least one supply port communicating from the upper sand tank into the upper casting frame;
    A first lower sand tank connected to a compressed air source, storing mold sand therein, and having a first connection port for discharging the stored mold sand;
    Arranged below the lower casting frame, the upper end thereof is opened, and has a second connection port connectable to the first connection port of the first lower sand tank, and is supplied from the first lower sand tank and A second lower sand tank for storing mold sand supplied into the lower casting frame;
    A lower plate attached to an upper end portion of the second lower sand tank and having at least one supply port communicating from the second lower sand tank into the lower casting frame;
    At least one pressure detector for detecting the pressure of at least one of the upper sand tank, the first lower sand tank, and the second lower sand tank;
    A control unit connected to the pressure detector for obtaining a detection result of the at least one pressure detector;
    A frame making machine.
  2.  前記第2下サンドタンクを上下方向に移動させて、前記上プレート及び前記下プレートでスクイズを行う駆動部と、
     前記第1下サンドタンクを上下方向に移動させる調整駆動部と、
    を備える請求項1に記載の抜枠造型機。
    A drive unit that moves the second lower sand tank in a vertical direction to squeeze the upper plate and the lower plate;
    An adjustment driving unit for moving the first lower sand tank in the vertical direction;
    A frame making machine according to claim 1.
  3.  前記上サンドタンクは、前記鋳型砂を貯留する貯留室と、前記貯留室の側方に設けられ、圧縮空気源に接続された少なくとも1つの供給室とを有し、
     前記少なくとも1つの圧力検出器は、前記上サンドタンクの前記少なくとも1つの供給室の圧力を検出する、請求項1又は2に記載の抜枠造型機。
    The upper sand tank has a storage chamber for storing the mold sand, and at least one supply chamber provided on a side of the storage chamber and connected to a compressed air source,
    The frame making machine according to claim 1 or 2, wherein the at least one pressure detector detects a pressure in the at least one supply chamber of the upper sand tank.
  4.  前記上サンドタンクの前記少なくとも1つの供給室は、前記上サンドタンクの中央よりも上端側に位置する第1供給室と、前記上サンドタンクの中央よりも下端側に位置する第2供給室とを含み、
     前記少なくとも1つの圧力検出器は、前記第1供給室の圧力を検出する第1圧力検出器と、前記第2供給室の圧力を検出する第2圧力検出器とを含む、請求項3に記載の抜枠造型機。
    The at least one supply chamber of the upper sand tank includes a first supply chamber located on the upper end side with respect to the center of the upper sand tank, and a second supply chamber located on the lower end side with respect to the center of the upper sand tank. Including
    The at least one pressure detector includes a first pressure detector that detects a pressure in the first supply chamber and a second pressure detector that detects a pressure in the second supply chamber. Frame making machine.
  5.  前記上サンドタンクの貯留室は、その内面に圧縮空気が流通可能な複数の孔を有する第1透過部材を有し、
     前記上サンドタンクの前記少なくとも1つの供給室は、前記第1透過部材を介して前記上サンドタンクの貯留室と連通する、請求項3又は4に記載の抜枠造型機。
    The storage chamber of the upper sand tank has a first transmission member having a plurality of holes through which compressed air can flow on the inner surface thereof,
    5. The frame making machine according to claim 3, wherein the at least one supply chamber of the upper sand tank communicates with a storage chamber of the upper sand tank via the first permeable member.
  6.  前記第1下サンドタンクは、前記鋳型砂を貯留する貯留室と、前記貯留室の側方に設けられ、圧縮空気源に接続された少なくとも1つの供給室とを有し、
     前記少なくとも1つの圧力検出器は、前記第1下サンドタンクの前記少なくとも1つの供給室の圧力を検出する、請求項1~5の何れか一項に記載の抜枠造型機。
    The first lower sand tank has a storage chamber for storing the casting sand, and at least one supply chamber provided on a side of the storage chamber and connected to a compressed air source,
    The frame making machine according to any one of claims 1 to 5, wherein the at least one pressure detector detects a pressure in the at least one supply chamber of the first lower sand tank.
  7.  前記第1下サンドタンクの前記少なくとも1つの供給室は、前記第1下サンドタンクの中央に位置する第3供給室と、前記第1下サンドタンクの中央よりも上端側に位置する第4供給室と、前記第1下サンドタンクの中央よりも下端側に位置する第5供給室と、を含み、
     前記少なくとも1つの圧力検出器は、前記第3供給室の圧力を検出する第3圧力検出器と、前記第4供給室の圧力を検出する第4圧力検出器と、前記第5供給室の圧力を検出する第5圧力検出器と、を含む、請求項6に記載の抜枠造型機。
    The at least one supply chamber of the first lower sand tank includes a third supply chamber located in the center of the first lower sand tank and a fourth supply located on the upper end side of the center of the first lower sand tank. A fifth supply chamber located at a lower end side than the center of the first lower sand tank,
    The at least one pressure detector includes a third pressure detector that detects a pressure in the third supply chamber, a fourth pressure detector that detects a pressure in the fourth supply chamber, and a pressure in the fifth supply chamber. The frame making machine according to claim 6, further comprising a fifth pressure detector for detecting
  8.  前記第1下サンドタンクの前記貯留室は、その内面に圧縮空気が流通可能な複数の孔を有する第2透過部材を有し、
     前記第3供給室及び前記第4供給室は、前記第2透過部材を介して前記第1下サンドタンクの前記貯留室と連通する、請求項7に記載の抜枠造型機。
    The storage chamber of the first lower sand tank has a second permeable member having a plurality of holes through which compressed air can flow on the inner surface thereof,
    8. The frame making machine according to claim 7, wherein the third supply chamber and the fourth supply chamber communicate with the storage chamber of the first lower sand tank through the second transmission member.
  9.  前記第5供給室は、前記第1下サンドタンクの屈曲した下端部に設けられ、複数のベントホールを介して前記第1下サンドタンクの前記貯留室と連通する、請求項7又は8に記載の抜枠造型機。 The said 5th supply chamber is provided in the bent lower end part of the said 1st lower sand tank, and is connected with the said storage chamber of the said 1st lower sand tank through several vent holes. Frame making machine.
  10.  前記第2下サンドタンクは、前記鋳型砂を貯留する貯留室と、前記貯留室の底部に設けられ、圧縮空気源に接続された少なくとも1つの供給室とを有し、
     前記少なくとも1つの圧力検出器は、前記第2下サンドタンクの前記少なくとも1つの供給室の圧力を検出する、請求項1~9の何れか一項に記載の抜枠造型機。
    The second lower sand tank has a storage chamber for storing the casting sand, and at least one supply chamber provided at the bottom of the storage chamber and connected to a compressed air source,
    The frame making machine according to any one of claims 1 to 9, wherein the at least one pressure detector detects a pressure in the at least one supply chamber of the second lower sand tank.
  11.  前記第2下サンドタンクの少なくとも1つの供給室は、複数のベントホールを介して前記第2下サンドタンクの前記貯留室と連通する、請求項10に記載の抜枠造型機。 The frame making machine according to claim 10, wherein at least one supply chamber of the second lower sand tank communicates with the storage chamber of the second lower sand tank through a plurality of vent holes.
  12.  前記制御部に接続され、前記少なくとも1つの圧力検出器の検出結果を表示する表示部を備える請求項1~11の何れか一項に記載の抜枠造型機。 The frame making machine according to any one of claims 1 to 11, further comprising a display unit connected to the control unit and displaying a detection result of the at least one pressure detector.
  13.  前記制御部は、前記検出結果として圧力と時間との関係を示すグラフを前記表示部に表示させる、請求項12に記載の抜枠造型機。 The punching molding machine according to claim 12, wherein the control unit displays a graph indicating a relationship between pressure and time as the detection result on the display unit.
  14.  前記制御部は、エアレーション設定圧力と時間とを設定するための設定画面を前記表示部に表示させる、請求項12又は13に記載の抜枠造型機。 The punching molding machine according to claim 12 or 13, wherein the control unit displays a setting screen for setting an aeration set pressure and time on the display unit.
  15.  前記少なくとも1つの圧力検出器の検出結果を記憶する記憶部を備え、
     前記制御部は、前記記憶部に記憶された検出結果と、検出された今回の検出結果とを、比較可能な態様で前記表示部に表示させる、請求項12~14の何れか一項に記載の抜枠造型機。
    A storage unit for storing a detection result of the at least one pressure detector;
    The control unit according to any one of claims 12 to 14, wherein the control unit causes the display unit to display the detection result stored in the storage unit and the detected current detection result in a comparable manner. Frame making machine.
  16.  前記制御部は、前記少なくとも1つの圧力検出器の検出結果を、通信ネットワークを介して送信する通信部を有する、請求項1~14の何れか一項に記載の抜枠造型機。 The frame making machine according to any one of claims 1 to 14, wherein the control unit includes a communication unit that transmits a detection result of the at least one pressure detector via a communication network.
  17.  前記制御部に接続され、前記少なくとも1つの圧力検出器の検出結果を表示する表示部を備え、
     前記制御部は、前記上サンドタンクの前記少なくとも1つの圧力検出器の検出結果と、予め設定された閾値とを比較可能な態様で前記表示部に表示させる、請求項5に記載の抜枠造型機。
    A display unit connected to the control unit and displaying a detection result of the at least one pressure detector;
    6. The frame forming die according to claim 5, wherein the control unit causes the display unit to display a detection result of the at least one pressure detector of the upper sand tank and a preset threshold value in a comparable manner. Machine.
  18.  前記制御部に接続され、前記少なくとも1つの圧力検出器の検出結果を表示する表示部を備え、
     前記制御部は、前記第3圧力検出器又は前記第4圧力検出器により検出された圧力と、予め設定された閾値とを比較可能な態様で前記表示部に表示させる、請求項8に記載の抜枠造型機。
    A display unit connected to the control unit and displaying a detection result of the at least one pressure detector;
    9. The control unit according to claim 8, wherein the control unit causes the display unit to display the pressure detected by the third pressure detector or the fourth pressure detector and a preset threshold value in a comparable manner. Unframed molding machine.
  19.  前記上サンドタンク、前記第1下サンドタンク及び前記第2下サンドタンクそれぞれと、圧縮空気源との間には、制御信号に応じて開閉可能な少なくとも1つの制御弁が設けられ、
     前記制御部は、前記少なくとも1つの圧力検出器の検出結果に基づいて前記少なくとも1つの制御弁に前記制御信号を出力する、請求項1~18の何れか一項に記載の抜枠造型機。
    Between the upper sand tank, the first lower sand tank and the second lower sand tank, and a compressed air source, at least one control valve that can be opened and closed according to a control signal is provided,
    The frame making machine according to any one of claims 1 to 18, wherein the control unit outputs the control signal to the at least one control valve based on a detection result of the at least one pressure detector.
  20.  前記制御部は、前記上サンドタンク、前記第1下サンドタンク及び前記第2下サンドタンクを排気する際に、前記少なくとも1つの圧力検出器の検出結果に基づいて前記少なくとも1つの制御弁が開となるように前記制御信号を出力する、請求項19に記載の抜枠造型機。 The control unit opens the at least one control valve based on a detection result of the at least one pressure detector when exhausting the upper sand tank, the first lower sand tank, and the second lower sand tank. The frame making machine according to claim 19, wherein the control signal is output so that
  21.  前記制御部は、前記上サンドタンク、前記第1下サンドタンク及び前記第2下サンドタンクを排気する際に、前記少なくとも1つの圧力検出器により検出された圧力が所定の閾値以下とならない場合には警報情報を出力する、請求項19又は20に記載の抜枠造型機。 The control unit, when exhausting the upper sand tank, the first lower sand tank, and the second lower sand tank, when the pressure detected by the at least one pressure detector does not become a predetermined threshold value or less. 21. The frame making machine according to claim 19 or 20, which outputs alarm information.
  22.  前記上サンドタンクに対応する前記制御弁は、前記上サンドタンクの側方に配置され、
     前記第1下サンドタンクに対応する前記制御弁は、前記第1下サンドタンクの側方に配置される、請求項19~21の何れか一項に記載の抜枠造型機。
    The control valve corresponding to the upper sand tank is disposed on a side of the upper sand tank,
    The frame making machine according to any one of claims 19 to 21, wherein the control valve corresponding to the first lower sand tank is disposed on a side of the first lower sand tank.
  23.  前記制御部は、エアレーション処理時において、所定のエアレーション時間内に前記圧力検出器により検出された最大圧力が所定の閾値に達しない場合には、前記エアレーション時間を延長し、延長した後において前記少なくとも1つの圧力検出器により検出された最大圧力が所定の閾値に達しない場合には、警報情報を出力する、請求項1~22の何れか一項に記載の抜枠造型機。 When the maximum pressure detected by the pressure detector does not reach a predetermined threshold value within a predetermined aeration time during the aeration process, the control unit extends the aeration time, and after extending the at least The frame making machine according to any one of claims 1 to 22, wherein alarm information is output when a maximum pressure detected by one pressure detector does not reach a predetermined threshold value.
PCT/JP2018/017056 2017-05-12 2018-04-26 Flaskless mold machine WO2018207646A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019517561A JP6973481B2 (en) 2017-05-12 2018-04-26 Frame-less molding machine
MX2019013052A MX2019013052A (en) 2017-05-12 2018-04-26 Flaskless mold machine.
CN201880030326.5A CN110603110A (en) 2017-05-12 2018-04-26 Box-free molding machine
EP18799321.7A EP3586997A4 (en) 2017-05-12 2018-04-26 Flaskless mold machine
US16/609,831 US20200061696A1 (en) 2017-05-12 2018-04-26 Flaskless mold machine
KR1020197036382A KR20200007002A (en) 2017-05-12 2018-04-26 Flaskless Molding Machine
BR112019019063A BR112019019063A2 (en) 2017-05-12 2018-04-26 bottle-free molding machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017095852 2017-05-12
JP2017-095852 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018207646A1 true WO2018207646A1 (en) 2018-11-15

Family

ID=64104688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017056 WO2018207646A1 (en) 2017-05-12 2018-04-26 Flaskless mold machine

Country Status (9)

Country Link
US (1) US20200061696A1 (en)
EP (1) EP3586997A4 (en)
JP (1) JP6973481B2 (en)
KR (1) KR20200007002A (en)
CN (1) CN110603110A (en)
BR (1) BR112019019063A2 (en)
MX (1) MX2019013052A (en)
TW (1) TW201900298A (en)
WO (1) WO2018207646A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023202016A1 (en) 2022-03-16 2023-09-21 Sintokogio, Ltd. Molding system and molding process
DE102023201853A1 (en) 2022-03-16 2023-09-21 Sintokogio, Ltd. Molding system and molding process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835952B2 (en) * 2017-10-20 2020-11-17 Hunter Foundry Machinery Corporation Method and apparatus for forming sand molds via top and bottom pneumatic sand filling perpendicular to the pattern plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232820A (en) * 1975-09-08 1977-03-12 Sintokogio Ltd Mold forming device
JPS5451930A (en) 1977-10-01 1979-04-24 Sintokogio Ltd Mold making machine
JPH0214833Y2 (en) * 1985-02-15 1990-04-23
JPH10216902A (en) * 1997-01-31 1998-08-18 Sintokogio Ltd Method for supplying compressed air for blowing in blow squeeze type molding machine
JP2001018035A (en) * 1999-07-05 2001-01-23 Sintokogio Ltd Method for blowing molding sand into upper and lower molding flask simultaneously blowing type molding machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3021592A1 (en) * 1979-10-09 1981-04-23 Sintokogio, Ltd., Nagoya, Aichi MOLDING MACHINE
JPS6034444Y2 (en) * 1979-10-09 1985-10-14 新東工業株式会社 mold making machine
JPS6034445Y2 (en) * 1979-10-09 1985-10-14 新東工業株式会社 mold making machine
JP2772859B2 (en) * 1990-07-27 1998-07-09 新東工業株式会社 Frameless mold making machine
CN1311936C (en) * 2001-08-06 2007-04-25 新东工业株式会社 Method and system for monitoring molding machine
US7117924B2 (en) * 2004-12-06 2006-10-10 Hunter Automated Machinery Squeeze station for automated molding machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232820A (en) * 1975-09-08 1977-03-12 Sintokogio Ltd Mold forming device
JPS5451930A (en) 1977-10-01 1979-04-24 Sintokogio Ltd Mold making machine
JPH0214833Y2 (en) * 1985-02-15 1990-04-23
JPH10216902A (en) * 1997-01-31 1998-08-18 Sintokogio Ltd Method for supplying compressed air for blowing in blow squeeze type molding machine
JP2001018035A (en) * 1999-07-05 2001-01-23 Sintokogio Ltd Method for blowing molding sand into upper and lower molding flask simultaneously blowing type molding machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3586997A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023202016A1 (en) 2022-03-16 2023-09-21 Sintokogio, Ltd. Molding system and molding process
DE102023201853A1 (en) 2022-03-16 2023-09-21 Sintokogio, Ltd. Molding system and molding process
US11794237B2 (en) 2022-03-16 2023-10-24 Sintokogio, Ltd. Molding system and molding method
US11806778B2 (en) 2022-03-16 2023-11-07 Sintokogio, Ltd. Molding system

Also Published As

Publication number Publication date
US20200061696A1 (en) 2020-02-27
KR20200007002A (en) 2020-01-21
CN110603110A (en) 2019-12-20
BR112019019063A2 (en) 2020-04-22
EP3586997A4 (en) 2020-11-25
TW201900298A (en) 2019-01-01
EP3586997A1 (en) 2020-01-01
JP6973481B2 (en) 2021-12-01
JPWO2018207646A1 (en) 2020-03-19
MX2019013052A (en) 2019-12-11

Similar Documents

Publication Publication Date Title
WO2018207646A1 (en) Flaskless mold machine
JPH10263888A (en) Sheet metal forming hydraulic press
EP2826574B1 (en) Core sand filling method
WO2017199880A1 (en) Flaskless molding machine
JP2017192976A (en) Shim adjustment device and method for die cushion device
TWI581877B (en) Mold mounting device installation support device and mold making device
US5979536A (en) Die casting machine with pressure supervisory system supervising cavity pressure, and die therefor
WO2017199882A1 (en) Flaskless molding machine
JP4477549B2 (en) Hydraulic press
JP6468243B2 (en) Frame making machine
US4195682A (en) Method and apparatus for providing air vents or holes in casting moles of molding sand
JP2015226927A (en) Die cushion device of press machine
WO2017199338A1 (en) Flaskless molding machine
WO2001060541A1 (en) Method and device for detecting plate thickness in press
JPWO2019017024A1 (en) Mold height changing unit, outline molding machine, and mold height changing method
JP2008171388A (en) Device and method for diagnosing operation of machine
JP7388037B2 (en) Control device for die casting machine, device and method for obtaining index values used for setting control parameters
TW202000335A (en) Mold molding apparatus and method for controlling mold molding apparatus
CN110421127A (en) It is rectilinear to penetrate sand device
CN213933412U (en) Convenient to use&#39;s mould detection device
TWI698295B (en) Boxless molding machine
JP2013035021A (en) Press forming apparatus
JPH0237480Y2 (en)
JPH10202400A (en) Punch press forming method and device
KR20070050675A (en) Fuel feeding hole forming appatratus of a vehicle and forming method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517561

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019019063

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018799321

Country of ref document: EP

Effective date: 20190923

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197036382

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019019063

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190913