WO2018206219A1 - Automatisierte klangprobe an mehrkomponentigen bauteilen mittels mustererkennung - Google Patents

Automatisierte klangprobe an mehrkomponentigen bauteilen mittels mustererkennung Download PDF

Info

Publication number
WO2018206219A1
WO2018206219A1 PCT/EP2018/059419 EP2018059419W WO2018206219A1 WO 2018206219 A1 WO2018206219 A1 WO 2018206219A1 EP 2018059419 W EP2018059419 W EP 2018059419W WO 2018206219 A1 WO2018206219 A1 WO 2018206219A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
component
acoustic parameters
images
acoustic
Prior art date
Application number
PCT/EP2018/059419
Other languages
English (en)
French (fr)
Inventor
Ingo Balkowski
Ralf Bell
Uwe Pfeifer
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP18720135.5A priority Critical patent/EP3596438A1/de
Priority to US16/611,893 priority patent/US20210140925A1/en
Publication of WO2018206219A1 publication Critical patent/WO2018206219A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/028Acoustic or vibration analysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4436Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a reference signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/046Forward inferencing; Production systems
    • G06N5/047Pattern matching networks; Rete networks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/83Testing, e.g. methods, components or tools therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/333Noise or sound levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2693Rotor or turbine parts

Definitions

  • the invention relates to the automated performance of sound samples on multi-component components, such as blade associations, are recognized in the pattern.
  • the problem is the subjective, potentially error-prone assessment on the one hand and the time-consuming disassembly of the component on the other hand.
  • the object is achieved by a method according to claim 1 and a device according to claim 2.
  • distinctive characteristics of the sound image such as the temporal change of the frequencies, the frequency response and the decay behavior can be determined.
  • Other liberis ⁇ tics of the acoustic analysis methods can also be used.
  • FIG. 1 shows a frequency image 1 of one or more components when new or before the first use.
  • FIG. 2 shows a frequency image 2 of a used component according to FIG.
  • Both the intensity I and the position of the frequencies f have at least partially changed or shifted.
  • the pattern recognition recognizes the deviation from the nominal state and assigns the blade rows as a component of a further classification such as "acceptable” or “interchangeable.” These classifications are determined beforehand on the basis of preliminary examinations and existing measurements.

Abstract

Durch eine automatisierte Durchführung der Klangprobe an Schaufelverbänden, bei dem Frequenzbilder von neuen und gebrauchten Bauteilen miteinander verglichen werden, ist eine schnelle und einfache Klassifizierung über den Zustand des Bauteils möglich.

Description

Automatisierte Klangprobe an mehrkomponentigen Bauteilen mittels Mustererkennung
Die Erfindung betrifft die automatisierte Durchführung von Klangproben an mehrkomponentigen Bauteilen, wie Schaufelverbänden, bei dem Muster erkannt werden.
In Dampfturbinen und auch in Kompressoren sowie in Gasturbi- nen sind einzelne Schaufelreihen mittels Schaufelfuß und
Deckband verbunden. Dadurch entsteht ein fester Verband, der gegen Schwingungsanregung aus dem Strömungsmedium unempfindlich ist. Im Laufe des Betriebs kann sich der Verband lo¬ ckern, wodurch Schaufelschäden, Schäden an angrenzenden Kom- ponenten und Leistungsverluste entstehen können. Derzeit wer¬ den die einzelnen Komponenten demontiert, um den Schaufelverband zu inspizieren. Die Begutachtung findet mittels Hammerschlag auf den Verband und subjektiver Bewertung mittels Klangbild statt. Das Klangbild resultiert aus der akustischen Verarbeitung durch das menschliche Gehör.
Problematisch ist die subjektive, potenziell fehlerbehaftete Begutachtung zum einen und zum anderen die zeitraubende Demontage der Komponente.
Die Aufgabe wird gelöst durch ein Verfahren gemäß Anspruch 1 und eine Vorrichtung gemäß Anspruch 2.
In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig miteinander kombiniert werden kön¬ nen um weitere Vorteile zu erzielen.
Die Beschreibung und die Figuren stellen nur Ausführungsbeispiele der Erfindung dar.
Im Wesentlichen geht es darum, das Klangbild eines Neubau¬ teils oder einer technisch freigegebenen Komponente, insbesondere einer Schaufelreihe einer Mustererkennung zuzuführen. Dazu muss zunächst das Klangbild einer Schaufelreihe zugeord¬ net werden. Bei direkter Anregung der Schaufelreihe z.B. mittels Hammerschlag können die gemessenen, relevanten Frequenzbilder direkt der Schaufelreihe zugeordnet werden. Bei An- regung einer beschaufelten Welle oder eines beschaufelten Gehäuses an einem beliebigen Punkt, insbesondere mittels Ham¬ merschlag und Messung des Körperschalls oder der Körper¬ schwingungen an einer anderen beliebigen Stelle ist die Zuordnung der gemessenen Signale zu einer Schaufelreihe prob- lematisch. Dieses Problem kann jedoch durch Einzelmessung bei der Neufertigung gelöst werden. Die Frequenzbilder des Neuzustandes werden in einer Datenbank abgelegt und gelten als sogenannte Blueprints. Diese Blueprints werden einer Muster¬ erkennung zugeführt und als „gesunde" Schaufelreihe zugeord- net. Alternativ können die Frequenzbilder neuer Komponenten auch numerisch mittels Finite-Elemente Verfahren errechnet werden .
Ebenso können markante Charakteristika des Klangbildes wie die zeitliche Veränderung der Frequenzen, der Frequenzverlauf und das Abklingverhalten bestimmt werden. Andere Charakteris¬ tika der akustischen Auswertemethoden können ebenso verwendet werden . Bei der Messung der Schwingungen oder des Körperschalls an einer gebrauchten Komponente werden die Signale entsprechend ausgewertet und der Mustererkennung zugeführt.
In Figur 1 ist ein Frequenzbild 1 einer oder mehrerer Bauteile im Neuzustand oder vor dem ersten Einsatz gezeigt.
Aufgetragen ist die Intensität I und gegenüber der Frequenz f.
Erkennbar sind verschiedene, nicht unbedingt diskrete Fre- quenzen mit verschiedener Intensität, die typisch sind für ein Neubauteil. Dies ist nur ein Beispiel für ein Akustik¬ parameter . In Figur 2 ist ein Frequenzbild 2 eines gebrauchten Bauteils gemäß Figur 1 zu sehen.
Sowohl die Intensität I als auch die Lage der Frequenzen f haben sich zumindest teilweise verändert bzw. verschoben.
Ebenso sieht es aus für das Abklingverhalten der Intensität I über die Zeit t, wobei in Figur 3 ein Abklingverhalten 4 für neue Bauteile dargestellt ist und die Kurve 7, hier gestri¬ chelt, das Abklingverhalten eines gebrauchten Bauteils darstellt. Da Abklingverhalten 4, 7 ist nur ein Beispiel für ein Akustikparameter . Dies macht deutlich, dass Unterschiede gegeben sind, die aus¬ gewertet werden können.
Die Mustererkennung erkennt dabei die Abweichung zum Sollzustand und ordnet die Schaufelreihen als Bauteil einer weite- ren Klassifizierung wie "akzeptabel" oder „auszutauschen" zu. Diese Klassifizierungen werden zuvor anhand Voruntersuchungen und vorhandener Messungen festgelegt.
Zur Durchführung der Mustererkennung werden u.a. Methoden der Künstlichen Intelligenz angewandt.
Die Vorteile sind:
a) eindeutige Zuordnung von defekten Schaufelreihen mittels objektiver Methode.
b) Vermeidung der Demontage der Komponente, was eine Kosten- und Zeitersparnis bedeutet und zur Verfügbarkeitsverbesserung führt .

Claims

Patentansprüche
1. Verfahren zur automatisierten Durchführung einer Klang- probe,
bei dem vorab entweder durch direkte mechanische Anregung eines neuen mehrkomponentigen Bauteils,
insbesondere einer Schaufelreihe,
relevante Akustikparameter, insbesondere Frequenzbilder (1) und/oder Frequenzverläufe (1) und/oder Abklingverhalten (4) oder andere akustische Charakteristika gemessen werden, oder die relevanten Akustikparameter wie Frequenzbilder, Frequenzverläufe und/oder Akustikverhalten numerisch berechnet werden,
wobei diese in einer Datenbank hinterlegt wurden und
Durchführung der direkten mechanischen Anregung eines gebrauchten Bauteils,
Erfassung der relevanten Akustikparameter, insbesondere Frequenzbilder (2) und/oder Frequenzverläufe (2) und/oder Ab- klingverhalten (7),
wobei diese mit dem Frequenzbild (1) und/oder Frequenzver¬ läufen und/oder Abklingverhalten (4) des Neubauteils, welches in der Datenbank hinterlegt ist,
verglichen wird und
Abweichungen detektiert und bewertet werden.
2. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1,
die Mittel zur Aufnahme von Akustikparametern wie Frequenzbildern (1, 2) und/oder Frequenzverläufen (1, 2) und/oder Abklingverhalten (4, 7) aufweist,
die einem Bauteil zuordnungsbar sind,
oder die relevanten Akustikparameter wie Frequenzbilder, Frequenzverläufe und/oder Akustikverhalten numerisch berechnet werden,
eine Datenbank, in der diese Daten (1, 4) abspeicherbar sind,
und bei dem dieselbe Anregung,
insbesondere mechanische Anregung an demselben Bauteil nach Gebrauch durchführbar ist
und ebenfalls Akustikparameter, insbesondere Frequenzbilder (2) und/oder Frequenzverläufen und/oder Abklingverhalten (7) aufnehmbar sind,
wobei diese ebenfalls gespeichert werden und
mit den vorhandenen Akustikparametern, insbesondere Fre- quenzbildern (1) und/oder Frequenzverläufe (4) des neuen Bauteils verglichen werden können.
3. Verfahren nach Anspruch 1,
bei dem Abweichungen klassifiziert werden zwischen akzeptabel und auszutauschen.
4. Verfahren nach Anspruch 1, 2 oder 3,
bei dem zur Durchführung der Mustererkennung Methoden der künstlichen Intelligenz angewandt werden.
PCT/EP2018/059419 2017-05-12 2018-04-12 Automatisierte klangprobe an mehrkomponentigen bauteilen mittels mustererkennung WO2018206219A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18720135.5A EP3596438A1 (de) 2017-05-12 2018-04-12 Automatisierte klangprobe an mehrkomponentigen bauteilen mittels mustererkennung
US16/611,893 US20210140925A1 (en) 2017-05-12 2018-04-12 Automated resonance test on multicomponent components by means of pattern recognition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017208043.4 2017-05-12
DE102017208043.4A DE102017208043A1 (de) 2017-05-12 2017-05-12 Automatisierte Klangprobe an mehrkomponentigen Bauteilen mittels Mustererkennung

Publications (1)

Publication Number Publication Date
WO2018206219A1 true WO2018206219A1 (de) 2018-11-15

Family

ID=62062992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/059419 WO2018206219A1 (de) 2017-05-12 2018-04-12 Automatisierte klangprobe an mehrkomponentigen bauteilen mittels mustererkennung

Country Status (4)

Country Link
US (1) US20210140925A1 (de)
EP (1) EP3596438A1 (de)
DE (1) DE102017208043A1 (de)
WO (1) WO2018206219A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018213475A1 (de) * 2018-08-10 2020-02-13 Siemens Aktiengesellschaft Automatisierte Klangprobe an mehrkomponentigen Bauteilen mittels Mustererkennung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011114058A1 (de) * 2011-09-22 2013-03-28 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zu akustischen Beurteilung eines Bauteils

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934146A (ja) * 1982-08-20 1984-02-24 Nissan Motor Co Ltd ロ−タブレ−ドの探傷装置
DE102006048791A1 (de) * 2006-10-12 2008-04-17 Rieth-Hoerst, Stefan, Dr. Verfahren zur Prüfung der Qualität von Werkstücken oder Maschinenteilen mittels Schallanalyse
CN100557439C (zh) * 2007-01-26 2009-11-04 东南大学 基于声卡的旋转机械叶片频率智能测试方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011114058A1 (de) * 2011-09-22 2013-03-28 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zu akustischen Beurteilung eines Bauteils

Also Published As

Publication number Publication date
US20210140925A1 (en) 2021-05-13
EP3596438A1 (de) 2020-01-22
DE102017208043A1 (de) 2018-11-15

Similar Documents

Publication Publication Date Title
US10393621B2 (en) Method for assessing the condition of rotating machinery connected to an electric motor
EP2277039B9 (de) Verfahren und vorrichtung zur klassifikation von schallerzeugenden prozessen
DE102008027016B4 (de) Verfahren und Vorrichtung zur Analyse von Geräuschen eines Kraftfahrzeuges
DE102019106903A1 (de) Bestimmung der Maschinendrehzahl auf der Basis von Schwingungsspektraldiagrammen
DE102007016369A1 (de) Verfahren zur Ermittlung der Schaufelverstimmung bei Laufrädern in Integralbauweise
EP3370046B1 (de) Verfahren und vorrichtung zur bestimmung von maschinendrehzahlen
DE102011057175A1 (de) Verfahren zur Schwingungsmessung an Rotorblättern von Windenergieanlagen
DE102015206515A1 (de) Verfahren zum Bestimmen einer Restlebensdauer einer Windenergieanlage
WO2018206219A1 (de) Automatisierte klangprobe an mehrkomponentigen bauteilen mittels mustererkennung
EP2317308B1 (de) Vorrichtung und verfahren zum überprüfen eines bauteils auf schäden
DE102011114058B4 (de) Verfahren und Vorrichtung zur akustischen Beurteilung eines Bauteils
DE102010005525A1 (de) Verfahren zur Zustandsüberwachung einer Maschine und Überwachungseinrichtung hierfür
DE102010009941A1 (de) Verfahren zum Überwachen von Windturbinen
DE102009024981A1 (de) Verfahren zur Ermittlung und Analyse von Schäden an umlaufenden Maschinenelementen
DE102018213475A1 (de) Automatisierte Klangprobe an mehrkomponentigen Bauteilen mittels Mustererkennung
DE102018127457A1 (de) Vorrichtung und Verfahren zur Zustandsüberwachung einer elektrischen Maschine
Fabian et al. Generation of synthetic data with low-dimensional features for condition monitoring utilizing Generative Adversarial Networks
DE112017007461T5 (de) Vibrationsdetektionsvorrichtung und Unregelmäßigkeitsbestimmungssystem
DE102019114930B3 (de) Verfahren und Anordnung zur Überwachung von Anlagen
DE60319245T2 (de) Verfahren und einrichtung zur bestimmung des zustands einer turbinenschaufel und zur verwendung der gesammelten informationen zur schätzung der lebensdauer der schaufel
EP4097440A1 (de) Verfahren, vorrichtung und graphische benutzeroberfläche zur analyse eines mechanischen objektes
DE112020007629T5 (de) Verfahren und Vorrichtung zur Erfassung von Lagerfehlern auf der Grundlage der Höreigenschaften des menschlichen Ohres
DE602005000204T2 (de) Verfahren und Vorrichtung zur Bearbeitung von Schwingungsdaten
DE102016112591A1 (de) Verfahren zur Bestimmung eines Verschleißgrades einer mit wenigstens einem Kolben betriebenen Kühleinrichtung
DE102018221272B4 (de) Verfahren zum Bestimmen von Eigenschaften eines elektrischen Antriebssystems und ein elektrisches Antriebssystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18720135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018720135

Country of ref document: EP

Effective date: 20191015

NENP Non-entry into the national phase

Ref country code: DE