WO2018205863A1 - 化学液体的等离子体处理设备、方法及其在处理污水中的应用 - Google Patents

化学液体的等离子体处理设备、方法及其在处理污水中的应用 Download PDF

Info

Publication number
WO2018205863A1
WO2018205863A1 PCT/CN2018/085196 CN2018085196W WO2018205863A1 WO 2018205863 A1 WO2018205863 A1 WO 2018205863A1 CN 2018085196 W CN2018085196 W CN 2018085196W WO 2018205863 A1 WO2018205863 A1 WO 2018205863A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
plasma
container
treated
inlet
Prior art date
Application number
PCT/CN2018/085196
Other languages
English (en)
French (fr)
Inventor
程久华
Original Assignee
程久华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710319307.1A external-priority patent/CN107051349A/zh
Priority claimed from CN201810345805.8A external-priority patent/CN108455701B/zh
Application filed by 程久华 filed Critical 程久华
Publication of WO2018205863A1 publication Critical patent/WO2018205863A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields

Definitions

  • the present disclosure relates to the field of chemical liquid processing technologies, and more particularly to a plasma processing apparatus and method for chemical liquids and their use in treating sewage.
  • the plasma is the fourth state of matter, which is an ionized gas composed of a large number of free electrons and ions and which is electrically neutral in its entirety.
  • the plasma can generate a large amount of OH ⁇ free radicals during discharge, and OH ⁇ free radicals can induce a series of free radical chain reactions, which can be applied to sewage treatment.
  • OH ⁇ free radicals have large-scale chain reaction ability, and the reaction is rapid and non-selective. It can attack various pollutants in water and degrade it into carbon dioxide, water or other mineral salts, which can effectively remove organic matter in sewage, and Will cause secondary pollution.
  • Some chemical reactions that cannot be carried out under "tri-state" conditions can be carried out under plasma conditions. Plasma treatment of pollutants has both physical, chemical and biological reactions.
  • the treatment of sewage by plasma technology generates a plasma in the sewage and reacts with harmful substances in the sewage.
  • the positive and negative electrodes of the plasma generator must overcome the dielectric constant of water to ionize the gas to generate plasma. This process consumes a large amount of electrical energy, resulting in unnecessary loss of electrical energy.
  • the positive and negative electrodes of the plasma generator are directly in contact with the sewage, a part of the electric energy is used for heating the sewage liquid after the positive and negative electrodes are energized, so that the plasma is directly ionized in the liquid phase, and the Joule heat is high. The heat conversion is high and the power consumption is high, thereby causing waste of electric energy.
  • An object of the present disclosure includes providing a plasma treatment method for a chemical liquid to alleviate the technical problems of high power consumption, high heat conversion, high investment cost, and low reaction efficiency in the prior art plasma treatment liquid.
  • the object of the present disclosure also includes providing a processing apparatus by which plasma treatment of a liquid can alleviate high requirements for equipment installation protection, high equipment cost, slow reaction speed, and difficulty in reaction degradation hardening in current processing equipment.
  • Technical problems with pollutants are also included in the processing apparatus.
  • the present disclosure provides a plasma processing method for a chemical liquid, comprising the steps of:
  • the liquid to be treated is atomized and mixed with the plasma to form a gas-liquid mixture, and the plasma in the gas-liquid mixture reacts with the droplets of the liquid to be treated to effect treatment of the liquid.
  • Atomization treatment firstly atomizing some of the liquid to be treated to obtain droplet particles
  • the droplet particles are mixed with the plasma to form a gas-liquid mixture, and the product obtained by reacting the plasma in the gas-liquid mixture with the droplet of the liquid to be treated is dissolved in the remaining liquid to be treated;
  • the atomization and the steps of reacting with the plasma are repeated until all of the liquid to be treated is processed.
  • the droplet particles obtained after atomization of the liquid to be treated have a size of 0.2 to 200 ⁇ m.
  • the gas source of the plasma includes any one of chemical liquid vapor, air, water vapor, oxygen, nitrogen or carbon dioxide, chlorine gas, sulfur dioxide, methane, and acetylene.
  • a processing apparatus for realizing a plasma processing method of the above chemical liquid comprising a container for holding a liquid to be treated, the container being provided with a liquid inlet, a liquid outlet, and an air inlet for connecting the plasma generator
  • the container is connected with an atomizer for atomizing the liquid to be treated;
  • the liquid outlet is connected to the liquid inlet through a circulation line, and the circulation pipeline is provided with a circulation pump.
  • the atomizer is disposed at the liquid outlet.
  • the atomizer is disposed at the liquid inlet.
  • the atomizer is disposed inside the container and connected to the extension of the circulation line to the inside of the container at the inlet.
  • the atomizer is disposed at the bottom of the container.
  • the top of the container is provided with a pressure limiting valve for preventing excessive pressure in the container.
  • the pressure limiting valve is connected to the steam separator for preventing the loss of liquid components when the exhaust gas is connected.
  • the present disclosure also relates to a processing apparatus for realizing a plasma processing method of the above chemical liquid, comprising a first container for holding a liquid to be treated, a second container for generating a gas-liquid mixture, and for atomizing the to-be-processed a nebulizer for treating liquids;
  • the first container includes a first liquid inlet and a first liquid outlet
  • the second container includes a second liquid inlet and a second liquid outlet; the first liquid outlet and the second liquid inlet
  • the port is connected through the first pipe
  • the second liquid outlet is connected to the first liquid inlet through the second pipe
  • the second pipe is provided with a circulation pump
  • the second container further includes an air inlet connected to the plasma generator.
  • the atomizer is disposed at the first liquid outlet
  • the atomizer is disposed at the second liquid inlet
  • the atomizer is disposed at the bottom of the first container
  • the atomizer is disposed inside the second container and connected to the inward extension of the first conduit at the second inlet.
  • the present disclosure also relates to a processing apparatus for realizing a plasma processing method of the above chemical liquid, comprising a container for holding the liquid to be treated, a plasma generator, the container being provided with a liquid inlet and a liquid outlet
  • the plasma generator is provided with an inlet for the entry of the liquid to be treated and an outlet for the outflow of the reaction liquid, the liquid inlet of the container being in communication with an outlet of the plasma generator, the container
  • the liquid outlet is connected to the inlet of the plasma generator, and an atomizer for atomizing the liquid to be treated is further disposed between the liquid outlet of the container and the plasma generator.
  • the plasma generator includes at least one plasma processing unit, each of the plasma processing units including at least one monolithic processing structure, each of the monolithic processing structures including a relative arrangement An anode plate and a cathode plate, wherein the anode plate and the outside of the cathode plate are respectively provided with a first ceramic material plate and a second ceramic material plate having a microporous structure, the first ceramic material plate, the second The ceramic material plate, the anode plate, and the cathode plate are configured such that the liquid to be treated entering the inlet of the plasma generator can sequentially pass through the first ceramic material plate and the second ceramic material plate.
  • the ceramic material for preparing the first ceramic material sheet or the second ceramic material sheet comprises any one of the following materials: 1) silicate ceramics, 2) oxide ceramics such as oxidation Aluminum porcelain, magnesia ceramics, titanium oxide porcelain; 3) non-oxide ceramics such as boron nitride ceramics, silicon carbide ceramics, calcium fluoride porcelain; 4) composite ceramics such as magnesium-aluminum alloys composed of a combination of alumina and magnesia Pyrite porcelain, silicon oxynitride ceramics composed of aluminum oxide and silicon nitride; 5) cermets such as oxide-based cermets, carbide-based cermets, boride-based cermets, etc.; 6) fibers A high-strength, high-toughness ceramic in which ceramics are added with a metal fiber or an inorganic fiber in a ceramic matrix.
  • the anode plate and the cathode plate are staggered such that the ionization space between the anode plate and the cathode plate has diagonally disposed inlets and outlets.
  • the plasma generator includes a plurality of plasma processing units, and the plurality of plasma processing units are arranged in a matrix in a horizontal and vertical direction, and the liquid inlet ends of the plurality of plasma processing units The direction is the same as the direction of the liquid outlet.
  • each of the plasma processing units includes a plurality of the single-chip processing structures, and the plurality of the single-chip processing structures are spaced apart in a liquid flow direction.
  • a packaging material for encapsulating the first ceramic material plate and the second ceramic material plate is disposed around each of the plasma processing units in a gas-liquid flow direction.
  • An outer side of the encapsulating material is respectively provided with an opposite cathode connecting plate and an anode connecting plate, one end of the anode plate is connected to the anode connecting plate through the encapsulating material, and one end of the cathode plate passes through the encapsulating material Connected to the cathode connecting plate.
  • a catalyst for promoting the reaction of the liquid to be treated with the plasma is disposed in the gas-liquid circulation passage in each of the plasma processing units.
  • the catalyst comprises one or more of oxides of transition metal elements such as Ti, Mn, Fe, Co, Ni, and the like.
  • the plasma generator has a voltage of 2V to 100kV, a current of 0.1A to 100kA, and a frequency of 50Hz to 100KHz.
  • the present disclosure also relates to the use of the plasma treatment method of the above chemical liquid for treating sewage.
  • the liquid to be treated becomes droplet particles, and then the plasma is introduced.
  • the liquid droplet particles to be treated are suspended in the plasma, and the plasma is mixed with the droplet particles to form a dense and
  • the stable aerosol forms an air-encapsulated liquid, thereby forming a gas-liquid interface, and reacting the plasma with the liquid to be treated at the gas-liquid interface of the gas-encapsulated liquid, thereby purifying the liquid to be treated.
  • the gas-liquid interface in the gas-packed liquid structure increases the specific surface area of the reaction interface, the plasma and the liquid to be treated are formed after the droplet particles and the plasma form a gas-filled liquid structure. The reaction is more efficient.
  • the plasma generator does not directly perform reactive ionization in the liquid to be treated, but directly performs plasma excitation on the gas, so that only low electric energy is required to generate the plasma. , thereby reducing the loss of electrical energy.
  • the plasma generator and the container for holding the liquid to be treated are communicated through the air inlet on the container, and the electrode portion in the plasma generator does not directly contact the liquid to be treated inside the container. It is isolated from the liquid to be treated.
  • the plasma generator excites the gas outside of the vessel and then passes the plasma into the vessel. During this process, only the gas is excited by ionization. Since the ionization excitation directly acts on the gas, the safety protection requirements for energy consumption and plasma equipment are greatly reduced during the treatment.
  • the liquid to be treated is atomized by the atomizer, and then introduced into the container from the liquid inlet, mixed with the plasma gas to form an aerosol-type air-pack liquid structure, and reacted on the gas-liquid surface in the gas-filled liquid structure. After the reaction, it enters the inside of the liquid to be treated. Then, the above reaction process is repeated under the action of the recirculation pump, thereby realizing a continuous cyclic interfacial reaction, thereby increasing the reaction efficiency due to an increase in the specific surface area of the reaction, and at the same time degrading the stubborn contaminants in the chemical liquid.
  • FIG. 1 is a schematic structural diagram of a processing device according to Embodiment 4 of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a processing device according to Embodiment 5 of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a processing device according to Embodiment 6 of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a processing device according to Embodiment 7 of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a processing device according to Embodiment 8 of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a processing device according to Embodiment 9 of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a chemical liquid plasma processing apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the arrangement of a plurality of plasma processing units inside a plasma generator of a processing device according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a plasma processing module inside a plasma generator of a processing device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a plasma processing unit inside a plasma generator of a processing device according to an embodiment of the present invention
  • FIG. 11 is a first longitudinal sectional structural view of a single-piece processing structure of a plasma processing unit inside a plasma generator of a processing apparatus according to an embodiment of the present invention
  • FIG. 12 is a schematic cross-sectional view showing a first longitudinal processing structure of a plasma processing unit inside a plasma generator of the processing apparatus provided by the embodiment of FIG.
  • Icon 10-container; 101-inlet port; 102-outlet port; 103-inlet port; 110-first container; 111-first inlet port; 112-first outlet port; 120-second Container; 121-second liquid inlet; 122-second liquid outlet; 20-plasma generator; 210-plasma processing unit; 220-cathode connection plate; 230-anode connection plate; 240-monolithic processing structure ; 241 - first ceramic material plate; 242 - second ceramic material plate; 250 - packaging material; 243 - anode plate; 244 - cathode plate; 201 - inlet; 202 - outlet; 30 - atomizer; 40 - circulation pump .
  • connection and “connected” are to be understood broadly, and may be, for example, a fixed connection, a detachable connection, or an integral, unless otherwise explicitly defined and defined.
  • Ground connection it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal connection of two components.
  • intermediate medium which can be the internal connection of two components.
  • One aspect of the present disclosure provides a plasma processing method for a chemical liquid, comprising the steps of:
  • the liquid to be treated is atomized and mixed with the plasma to form a gas-liquid mixture, and the plasma in the gas-liquid mixture reacts with the droplets of the liquid to be treated to effect treatment of the liquid.
  • the liquid to be treated becomes droplet particles, and then the plasma is introduced.
  • the liquid droplet particles to be treated are suspended in the plasma, and the plasma is mixed with the droplet particles to form a dense and
  • the stable aerosol forms an air-encapsulated liquid, thereby forming a gas-liquid interface, and reacting the plasma with the liquid to be treated at the gas-liquid interface of the gas-encapsulated liquid, thereby purifying the liquid to be treated.
  • the gas-liquid interface in the gas-packed liquid structure increases the specific surface area of the reaction interface, the plasma and the liquid to be treated are formed after the droplet particles and the plasma form a gas-filled liquid structure. The reaction is more efficient.
  • the plasma generator does not directly perform reactive ionization in the liquid to be treated, but directly performs plasma excitation on the gas, so that only low electric energy is required to generate the plasma. , thereby reducing the loss of electrical energy.
  • Non-limiting chemical liquids in the present disclosure are, for example, papermaking sewage, printing and dyeing sewage, leather sewage, medical sewage or petrochemical sewage.
  • the atomization method includes atomizer fogging or micropore fogging or other forms.
  • Atomization treatment firstly atomizing some of the liquid to be treated to obtain droplet particles
  • the droplet particles are mixed with the plasma to form a gas-liquid mixture, and the product obtained by reacting the plasma in the gas-liquid mixture with the droplet of the liquid to be treated is dissolved in the remaining liquid to be treated;
  • the atomization and the steps of reacting with the plasma are repeated until all of the liquid to be treated is processed.
  • the size of the droplet particles obtained after atomization of the liquid to be treated is 0.2 to 200 ⁇ m.
  • the droplet particles obtained after atomization of the liquid to be treated have a size of 10 to 150 ⁇ m.
  • the droplet particles obtained after atomization of the liquid to be treated have a size of 30 to 110 ⁇ m.
  • the size of the droplets obtained after atomization of the liquid to be treated is too small, the specific surface area of the gas-liquid interface is large, and the reaction efficiency is obviously increased, but gas-liquid separation is difficult.
  • the particle size of the liquid droplet to be treated is too large, and the stability of the droplet particles is poor.
  • the large size also affects the reaction between the liquid to be treated and the plasma inside the droplet particles, which is unfavorable for the reaction.
  • the achievement of reaction efficiency is maximized by the introduction of droplets of a particular size.
  • the gas source of the plasma includes any one of chemical liquid vapor, air, water vapor, oxygen, nitrogen, or carbon dioxide.
  • the gas source of the plasma is the liquid vapor to be treated.
  • the chemical liquid vapor source can also select steam of other chemical liquids depending on the chemical properties of the liquid to be treated.
  • a plasma treatment method for a chemical liquid comprising the steps of:
  • a plasma the plasma generated by the excitation of the air in the plasma generator
  • Step a) and step b) are repeated until all of the liquid to be treated is completely treated, thereby effecting the treatment of the liquid.
  • the liquid to be treated is sewage.
  • the plasma generated in the plasma generator reacts with organic substances in the droplet particles of the sewage to form harmless substances such as water or carbon dioxide, thereby achieving the purpose of removing organic substances.
  • a plasma treatment method for a chemical liquid comprising the steps of:
  • a plasma the plasma generated by the excitation of the air in the plasma generator
  • Step a) and step b) are repeated until all of the liquid to be treated is completely treated, thereby effecting the treatment of the liquid.
  • the liquid to be treated is sewage.
  • the plasma generated in the plasma generator reacts with organic substances in the droplet particles of the sewage to form harmless substances such as water or carbon dioxide, thereby achieving the purpose of removing organic substances.
  • a plasma treatment method for a chemical liquid comprising the steps of:
  • a plasma the plasma generated by the excitation of the air in the plasma generator
  • Step a) and step b) are repeated until all of the liquid to be treated is completely treated, thereby effecting the treatment of the liquid.
  • the liquid to be treated is sewage.
  • the plasma generated in the plasma generator reacts with organic substances in the droplet particles of the sewage to form harmless substances such as water or carbon dioxide, thereby achieving the purpose of removing organic substances.
  • Sewage treatment is carried out using the traditional sewage treatment process Fenton method.
  • the plasma is generated directly by the plasma generator in the sewage treatment tank, and the generated plasma reacts with the organic matter in the sewage to achieve the purpose of removing organic matter.
  • Example 1 Example 2
  • Example 3 Comparative example 1 Power consumption / kW ⁇ h 105 45 78 157 Processing time / min 75 32 45 270
  • the power consumption in the examples 1-3 is reduced by more than 33% compared with the power consumption in the comparative example 1, wherein the power consumption in the embodiment 2 is the least, and the power consumption is compared with that of the comparative example 1.
  • the amount is reduced by 70%, and thus it can be seen that the treatment method provided by the present disclosure can significantly reduce energy consumption.
  • the processing time in Comparative Example 1 was 270 min, and the processing time in Example 1-3 was 32-75 min. From this, it is understood that the processing method provided by the present disclosure can significantly shorten the processing time and improve the processing efficiency.
  • the treatment methods in Examples 1-3 are the same, except that the size of the droplet particles obtained after atomization is different. It can be seen from the experimental data in Table 1 that the size of the droplet particles is different, and the liquid to be treated is treated. The processing time and the power consumption during processing have an impact. It can be seen from Table 1 that when the size of the droplet particles of the bubble is 30-110 ⁇ m in Example 2, the treatment effect is the best, and the power consumption and the treatment time are both low.
  • a processing apparatus of an embodiment of the present disclosure includes a container 10 for containing a liquid to be treated, and the container 10 is provided with a liquid inlet 101, a liquid outlet 102 and an air inlet 103 for connecting the plasma generator 20; the container 10 is connected with an atomizer 30 for atomizing the liquid to be treated; the liquid outlet 102 passes through the circulation line and the liquid inlet 101 Connected, a circulation pump 40 is provided on the circulation line.
  • the plasma generator 20 is in communication with the container 10 for holding the liquid to be treated through the air inlet 103 on the container 10, and the electrode portion in the plasma generator 20 is not in direct contact.
  • the liquid to be treated inside the container 10 is isolated from the liquid to be treated.
  • the plasma generator 20 energizes and ionizes the gas outside the vessel 10 and then passes into the vessel 10. During this process, only the gas is excited by the plasma. Since the plasma excitation directly acts on the gas, the requirements for energy consumption and plasma equipment safety protection during processing are greatly reduced.
  • the liquid to be treated by the atomizer 30 is atomized, and then introduced into the container 10 from the liquid inlet 101, mixed with the plasma gas to generate an aerosol-type gas-filled liquid structure, and the gas-liquid in the gas-filled liquid structure.
  • the surface is reacted, and after the reaction, it enters the inside of the liquid to be treated. Then, the above reaction process is repeated under the action of the recirculation pump 40, thereby achieving a continuous cycle interfacial reaction, which further increases the reaction efficiency due to an increase in the specific surface area of the reaction.
  • the tip of the plasma generator 20 can also be built directly into the interior of the container 10 containing the liquid to be treated, but does not contact the liquid level, thereby enabling plasma to be introduced into the container 10.
  • the liquid inlet 101, the liquid outlet 102, and the air inlet 103 can be disposed at any position on the wall of the container 10 according to the actual processing flow, as long as the corresponding functions can be realized.
  • the atomizer 30 is disposed at the liquid outlet 102.
  • the atomizer 30 is disposed at the liquid inlet 101.
  • the atomizer 30 is disposed inside the container 10 and connected to the extension of the circulation line into the container 10 at the liquid inlet 101.
  • the atomizer 30 is disposed at the bottom of the container 10.
  • the container 10 is also provided with a pressure limiting valve for preventing excessive pressure in the container 10; and a water vapor separator for preventing loss of liquid components when the pressure limiting valve is connected to the exhausting valve.
  • a pressure limiting valve is also provided at the top of the container 10.
  • the pressure limiting valve is opened and exhausted.
  • a steam separator is provided before flowing through the pressure limiting valve or after the pressure limiting valve.
  • a processing apparatus of an embodiment of the present disclosure includes a first container 110 for containing a liquid to be processed, for generating a second container 120 of the gas-liquid mixture and an atomizer 30 for atomizing the liquid to be treated;
  • the first container 110 includes a first liquid inlet 111 and a first liquid outlet 112
  • the second container 120 includes a second liquid inlet a port 121 and a second liquid outlet 122;
  • the first liquid outlet 112 and the second liquid inlet 121 communicate with each other through the first conduit, and the second liquid outlet 122 communicates with the first liquid inlet 111 through the second conduit;
  • the first pipe and the second pipe are each provided with a circulation pump 40;
  • the second container 120 further includes an air inlet 103 to which the plasma generator 20 is connected.
  • the atomizer 30 is disposed at the first liquid outlet 112;
  • the atomizer 30 is disposed at the second liquid inlet 121;
  • the atomizer 30 is disposed at the bottom of the first container 110;
  • the atomizer 30 is disposed inside the second container 120 and connected to the inward extension of the first conduit at the second liquid inlet 121.
  • the present embodiment is a processing apparatus including a container 10 for holding a liquid to be treated, the container 10 is provided with a liquid inlet 101, a liquid outlet 102, and a medium for connecting the plasma generator 20.
  • the air inlet 103; the container 10 is connected with an atomizer 30 for atomizing the liquid to be treated; the liquid outlet 102 communicates with the liquid inlet 101 through a circulation line, and the circulation line is provided with a circulation pump 40, and the atomizer 30 is arranged At the liquid outlet 102.
  • the liquid outlet 102 is located at the bottom of the container 10
  • the liquid inlet 101 is located at the top of the container 10
  • the air inlet 103 is located at the top of the container 10.
  • the treatment process of the liquid to be treated in the above equipment is: the liquid to be treated flows out from the liquid outlet 102 under the action of the circulation pump 40, and the atomization of the atomizer 30 forms small droplets, and then flows to the circulation pump 40.
  • the pressure of the circulation pump 40 is driven into the container 10 from the inlet port 101 under pressure.
  • the plasma generator 20 injects plasma gas into the container 10 to combine with the small droplets to form an aerosol.
  • the plasma and the liquid to be treated in the form of small droplets react at the gas-liquid interface to purify the liquid to be treated.
  • the reacted aerosol particles enter the liquid to be treated in the vessel 10. Under the action of the circulation pump 40, the above process is repeated until the liquid to be treated in the vessel 10 is completely purified, and then the operation of the apparatus is stopped.
  • the present embodiment is a processing apparatus which is different from the apparatus of Embodiment 4 in that the atomizer 30 is disposed at the liquid inlet 101.
  • the treatment process of the liquid to be treated in the above-mentioned equipment is: the liquid to be treated flows out from the liquid outlet 102 to the circulation pump 40 under the action of the circulation pump 40, and is atomized from the liquid inlet 101 by the pressure of the circulation pump 40.
  • the atomization of the device 30 forms small droplets which are then injected into the container 10.
  • the plasma generator 20 injects plasma gas into the container 10 to combine with the small droplets to form an aerosol.
  • the plasma and the liquid to be treated in the form of small droplets react at the gas-liquid interface to purify the liquid to be treated. Thereafter, the reacted aerosol particles enter the liquid to be treated in the vessel 10. Under the action of the circulation pump 40, the above process is repeated until the liquid to be treated in the vessel 10 is completely purified, and then the operation of the apparatus is stopped.
  • this embodiment is a processing apparatus, which is different from the apparatus of Embodiment 4 in that the liquid outlet 102 is located at the side wall of the container 10, and the liquid inlet 101 is located at the bottom of the container 10.
  • the air inlet 103 is located at the top of the container 10; the atomizer 30 is disposed at the bottom of the container 10.
  • the treatment process of the liquid to be treated in the above apparatus is: in this embodiment, the atomizer 30 is disposed inside the container 10, and the atomization droplets are generated on the surface of the liquid to be treated by the vibration of the atomizer 30.
  • the plasma generator 20 injects plasma gas into the container 10 to combine with the atomized droplets to form an aerosol.
  • the plasma and the liquid to be treated in the form of atomized droplets react at the gas-liquid interface to purify the liquid to be treated.
  • the atomized droplets after the reaction flow out through the liquid outlet 102 to the circulation pump 40 under the action of the circulation pump 40, and are re-entered into the container 10 from the liquid inlet 101 by the pressure of the circulation pump 40. in.
  • this embodiment is another processing apparatus of the structure, including a first container 110 for holding a liquid to be treated, a second container 120 for generating a gas-liquid mixture, and for atomizing to be processed.
  • a liquid atomizer 30 the first container 110 includes a first liquid inlet 111 and a first liquid outlet 112, and the second container 120 includes a second liquid inlet 121 and a second liquid outlet 122; the first liquid outlet 112 is connected to the second liquid inlet 121 through the first pipe, the second liquid outlet 122 is connected to the first liquid inlet 111 through the second pipe; the first pipe and the second pipe are provided with an increase pump;
  • the second container 120 further includes an air inlet 103 to which the plasma generator 20 is connected, and the atomizer 30 is disposed at the first liquid outlet 112.
  • the treatment process of the liquid to be treated in the above-mentioned equipment is: the liquid to be treated flows out from the first liquid outlet 112 of the first container 110 by the circulation pump 40, and the atomization by the atomizer 30 forms small droplets.
  • the flow to the circulation pump 40 is then injected into the second container 120 from the second inlet 121 of the second container 120 under the pressure of the circulation pump 40.
  • the plasma generator 20 injects plasma gas into the second container 120 to combine with the small droplets to form an aerosol.
  • the plasma and the liquid to be treated in the form of small droplets react at the gas-liquid interface to purify the liquid to be treated.
  • the reacted aerosol particles flow out from the second liquid outlet 122 in the second container 120 by the circulation pump 40, and enter the liquid to be treated of the first container 110 through the first liquid inlet 111.
  • the present embodiment is a processing apparatus which is different from the apparatus of Embodiment 7 in that the atomizer 30 is disposed at the second liquid inlet 121.
  • the treatment process of the liquid to be treated in the above equipment is: the liquid to be treated flows out from the first liquid outlet 112 under the action of the circulation pump 40, and flows to the second liquid inlet 121 under the pressure of the circulation pump 40, in the second
  • the liquid inlet 121 is atomized by the atomizer 30 to form small droplets, which are then injected into the second container 120.
  • the plasma generator 20 injects plasma gas into the container 10 to combine with the small droplets to form an aerosol.
  • the plasma and the liquid to be treated in the form of small droplets react at the gas-liquid interface to purify the liquid to be treated.
  • the reacted aerosol particles flow out from the second liquid outlet 122 in the second container 120 by the circulation pump 40, and enter the liquid to be treated of the first container 110 through the first liquid inlet 111.
  • the present embodiment is a processing apparatus which is different from the apparatus of Embodiment 7 in that the atomizer 30 is disposed at the bottom of the first container 110.
  • the processing of the liquid to be treated in the above apparatus is as follows:
  • the atomizer 30 is disposed inside the first container 110, and the atomized liquid droplet is generated on the surface of the liquid to be treated by the vibration of the atomizer 30.
  • the atomized droplets flow out from the first liquid outlet 112 by the circulation pump 40, and enter the second container 120 through the second liquid inlet 121.
  • the plasma generator 20 injects plasma gas into the container 10 to combine with the small droplets to form an aerosol.
  • the plasma and the liquid to be treated in the form of small droplets react at the gas-liquid interface to purify the liquid to be treated.
  • the reacted aerosol particles flow out from the second liquid outlet 122 in the second container 120 by the circulation pump 40, and enter the liquid to be treated of the first container 110 through the first liquid inlet 111.
  • Some embodiments of the present disclosure are also directed to a processing apparatus of a processing apparatus that implements the plasma processing method of the above chemical liquid, as shown in FIG. 7, which includes a container 10 for holding a liquid to be treated, and a plasma generator 20
  • the container 10 is provided with a liquid inlet 101 and a liquid outlet 102.
  • the plasma generator 20 is provided with an inlet for the liquid to be treated and an outlet for the reaction liquid to flow out, and the inlet 101 of the container 10 is connected to the plasma.
  • the outlet of the device 20, the liquid outlet 102 of the container 10 is connected to the inlet of the plasma generator 20, and the atomizer 30 for atomizing the liquid to be treated is further disposed between the liquid outlet of the container 10 and the plasma generator 20.
  • the atomization process of the liquid to be treated by the atomizer 30 is carried out, and the inlet of the plasma generator 20 is introduced into the plasma generator 20 to be mixed with the plasma gas generated in the plasma gas generator 20 to generate an aerosol-type gas-filled liquid structure. And reacting on the gas-liquid surface in the air-packing liquid structure, and the reacted product exiting the plasma generator 20 enters the inside of the liquid to be treated in the container 10 through the liquid inlet 101, and then functions as a circulation pump 40. Then, the above reaction process is repeated to achieve a continuous cyclic interfacial reaction, and the reaction efficiency is improved by an increase in the specific surface area of the reaction.
  • the liquid inlet 101 and the liquid outlet 102 can be disposed at any position on the wall of the container 10 according to the actual processing procedure, as long as the corresponding functions can be realized.
  • the atomizer 30 is disposed at the liquid outlet 102.
  • the atomizer 30 is disposed at the inlet of the plasma generator 20.
  • the atomizer 30 is disposed on a pipe connecting the liquid outlet 102 and the inlet of the plasma generator 20.
  • the atomizer 30 is disposed at the bottom of the container 10.
  • the pressure inside the container 10 is continuously increased.
  • the top of the container 10 is also provided with a pressure limiting valve.
  • the pressure limiting valve is opened and vented.
  • a steam separator is provided before flowing through the pressure limiting valve or after the pressure limiting valve. When venting, the liquid component is first recovered by a steam separator, and then the gas is discharged.
  • plasma generator 20 includes at least one plasma processing unit 210, each plasma processing unit 210 including at least one monolithic processing structure 240.
  • the plasma generator 20 includes a plurality of plasma processing units 210 arranged in a matrix in the horizontal and vertical directions, the direction of the liquid inlet ends of the plurality of plasma processing units 210, and The direction of the liquid outlet is the same. That is, the plasma generator 20 has a casing (not shown), the casing has an inlet and an outlet, and a plurality of plasma processing units 210 arranged in a matrix in the horizontal and vertical directions are disposed in the casing, and the droplets are atomized from the casing.
  • the inlet inlet of the body is processed by the plurality of plasma processing units 210 so that the droplets can be sufficiently mixed with the plasma generated in the casing of the plasma generator 20 to generate an aerosol-type gas-filled liquid structure, and the gas-filled liquid structure The gas-liquid surface in the reaction is reacted.
  • the plurality of plasma processing units 210 are arranged in a matrix in the horizontal and vertical directions, so that the droplets can be sufficiently reacted, and the processing efficiency is high.
  • the plurality of plasma processing units 210 of the entire matrix arrangement may be divided into a plurality of processing modules in a vertical direction, as shown in FIG. 9, one of the processing modules, each of which is uniform in the direction of material flow.
  • a plurality of plasma processing units 210 are provided at intervals.
  • each plasma processing unit 210 includes a plurality of monolithic processing structures 240 that are spaced apart in the direction of liquid flow, i.e., into the plasma generator 20.
  • the droplets of the reaction liquid can sequentially pass through the plurality of monolithic treatment structures 240 to achieve an adequate reaction to the droplets.
  • each of the monolithic processing structures 240 includes opposing anode plates 241 and cathode plates 242, which may be placed into the monolithic processing structure 240 by the arrangement of the anode plates 241 and the cathode plates 242, in accordance with some embodiments.
  • the gas source can be efficiently ionized into a plasma in the case where the anode plate 241 and the cathode plate 242 are energized, and the plasma can be combined with and reacted with the incoming droplets of the liquid to be reacted.
  • the outer sides of the anode plate 241 and the cathode plate 242 are respectively provided with a first ceramic material plate 243 and a second ceramic material plate 244 having a microporous structure, a first ceramic material plate 243, a second ceramic material plate 244, an anode plate 241, and a cathode.
  • the plate 242 is configured such that the liquid to be treated entering the inlet of the plasma generator 20 can pass through the first ceramic material plate 243 and the second ceramic material plate 244 in sequence, so that the plasma can be in the first ceramic material plate 243 and the second ceramic material.
  • the surface of the plate 244 and the pore structure are sufficiently contacted and reacted to further make the reaction more complete and the effect is more desirable.
  • the droplets first combine with the plasma on the surface of the first ceramic material plate 243 and react, and finally flow downward, through the space between the anode plate 241 and the cathode plate 242, and the second ceramic material plate 244, in the first The reaction continues on the second ceramic material sheet 244 and proceeds to the next monolithic processing structure 240.
  • the first ceramic material plate 243 and the second ceramic material plate 244 each have a thickness of 0.1 mm to 3 mm.
  • the gap between the anode plate 241 and the cathode plate 242 is 0.1 to 5 mm.
  • the above range values may be adjusted according to the actual reaction effect.
  • the ceramic material of the ceramic material sheet for preparing the first ceramic material sheet 243 or the second ceramic material sheet 244 comprises any one of the following materials: 1) silicate ceramics, 2) oxide ceramics such as alumina ceramics. , magnesia ceramics, titanium oxide porcelain; 3) non-oxide ceramics such as boron nitride ceramics, silicon carbide ceramics, calcium fluoride porcelain; 4) composite ceramics such as magnesium-aluminum spinel composed of a combination of alumina and magnesia Porcelain, silicon oxynitride ceramics composed of aluminum oxide and silicon nitride; 5) cermets such as oxide-based cermets, carbide-based cermets, boride-based cermets, etc.; 6) fiber-reinforced ceramics A high strength, high toughness ceramic formed by adding metal fibers or inorganic fibers to a ceramic matrix.
  • the anode plate 241 and the cathode plate 242 are staggered such that the ionization space between the anode plate 241 and the cathode plate 242 has diagonally disposed inlets and outlets.
  • the above structure is arranged such that the droplet-incorporating plasma-incorporated gas-in-liquid structure entering the plasma processing unit 210 can sequentially pass through the zigzag processing structure 240, thereby enabling the gas and droplets and the mixed gas-filled liquid structure to be obtained. From one end of the first ceramic material plate 243 and the second ceramic material plate 244 to the other end, the reaction can be sufficiently performed to make the degree of uniformity higher and the reaction effect better.
  • a packaging material 250 for encapsulating the first ceramic material plate 243 and the second ceramic material plate 242 is disposed around each of the plasma processing units 210 in the gas-liquid flow direction, and the outer sides of the packaging material 250 are respectively disposed.
  • One end of the anode plate 241 is connected to the anode connection plate 230 through the encapsulation material 250, and one end of the cathode plate 242 is connected to the cathode connection plate 220 through the encapsulation material 250.
  • the plurality of monolithic processing structures 240 can be surrounded by the encapsulating material to allow the reacted gas and liquid as well as the gas-liquid mixture to flow in a particular direction.
  • the plurality of plasma processing units 210 of the same processing module share a cathode connecting plate 220 and an anode connecting plate 230, thereby making the connection structure simpler, and the anode plate in each plasma processing unit 210.
  • Both the 241 and the cathode plate 242 are connected to the anode connecting plate 242 via a connecting bolt and a cathode connecting plate 241.
  • a catalyst for promoting the reaction of the liquid to be treated with the plasma is disposed in the gas-liquid flow passage in each of the plasma processing units 210.
  • the catalyst may be disposed in a gap between adjacent two monolithic processing structures 240 or in a gap between anode plate 241 and cathode plate 242.
  • the catalyst comprises one or more of oxides of transition metal elements such as Ti, Mn, Fe, Co, Ni, and the like.
  • the plasma generator has a voltage of 2V to 100kV, a current of 0.1A to 100kA, and a frequency of 50Hz to 100KHz.
  • the present disclosure also relates to the use of the plasma treatment method of the above chemical liquid for treating sewage.
  • the processing apparatus of this embodiment includes a container 10 for holding a liquid to be treated, a plasma generator 20, the container 10 is provided with a liquid inlet 101, a liquid outlet 102, and a plasma generator. 20 is provided with an inlet for the entry of the liquid to be treated and an outlet for the outflow of the reaction liquid, the liquid inlet 101 of the container 10 is in communication with the outlet of the plasma generator 20, and the liquid outlet 102 of the container 10 is connected to the plasma generator 20 The inlet is provided with an atomizer 30 for atomizing the liquid to be treated at the inlet of the plasma generator 20.
  • the top of the container 10 is also provided with a pressure limiting valve (not shown). When the pressure in the container 10 is too high, the pressure limiting valve is opened and vented. In order to prevent the loss of liquid components during venting, a steam separator is provided before flowing through the pressure limiting valve or after the pressure limiting valve. When venting, the liquid component is first recovered by a steam separator, and then the gas is discharged.
  • the plasma generator 20 includes a plurality of plasma processing units 210 arranged in a matrix in the horizontal and vertical directions, the direction of the liquid inlet end of the plurality of plasma processing units 210, and the liquid discharge end.
  • the plasma generator 20 has a casing (not shown) having an inlet and an outlet, and a plurality of plasma processing units 210 arranged in a matrix in the horizontal and vertical directions are disposed in the casing.
  • the plurality of plasma processing units 210 arranged in the entire matrix may be divided into a plurality of processing modules in a vertical direction, as shown in FIG. 9, one of the processing modules, each of which is uniform in the direction of material flow.
  • a plurality of plasma processing units 210 are provided at intervals.
  • each plasma processing unit 210 includes a plurality of single-chip processing structures 240, and a plurality of single-chip processing structures 240 are spaced apart in the liquid flow direction. Further, as shown in FIG. 11, each of the single-chip processing structures 240 includes an anode plate 241 and a cathode plate 242 disposed opposite to each other, and the first ceramic material plate 243 having a microporous structure is respectively disposed outside the anode plate 241 and the cathode plate 242.
  • the second ceramic material plate 244, the first ceramic material plate 243, the second ceramic material plate 244, the anode plate 241, and the cathode plate 242 are configured such that the liquid to be treated entering the inlet of the plasma generator 20 can sequentially pass through the first ceramic Material plate 243 and second ceramic material plate 244.
  • the first ceramic material plate 243 and the second ceramic material plate 244 each have a thickness of 1 mm.
  • the gap between the anode plate 241 and the cathode plate 242 was 1 mm.
  • the anode plate 241 and the cathode plate 242 are alternately arranged such that the ionization space between the anode plate 241 and the cathode plate 242 has the inlet 201 and the outlet 202 disposed diagonally.
  • An encapsulation material 250 for encapsulating the first ceramic material plate 243 and the second ceramic material plate 242 is disposed around each of the plasma processing units 210 in the gas-liquid flow direction, and the outer sides of the encapsulation material 250 are respectively provided with opposite cathode connections.
  • the plurality of plasma processing units 210 of the same processing module share a cathode connecting plate 220 and an anode connecting plate 230, and the anode plate 241 and the cathode plate 242 in each plasma processing unit 210 pass through.
  • the connecting bolt and the cathode connecting plate 241 are connected to the anode connecting plate 242.
  • the processing of the liquid to be treated in the above apparatus is: in this embodiment, the liquid to be treated is hit by the circulation pump 40 to the atomizer 30, and the liquid to be treated passes through the vibration of the atomizer 30 to act on the liquid to be treated.
  • the surface produces atomized droplets.
  • the atomized droplets enter from the inlet of the plasma generator 20, and the atomized droplets and gas are carried out in the unit to be treated 210 such that the ionized plasma and the atomized droplets combine to form an aerosol, and in the first ceramic material sheet 243 and The surface and the gap of the second ceramic material plate 244 react and flow, and the plasma and the liquid to be treated in the form of small droplets react at the gas-liquid interface to purify the liquid to be treated, thereby greatly improving the treatment area and the treatment efficiency. Thereafter, the reacted aerosol particles enter the container 10 from the outlet of the plasma generator 20 through the inlet port 101 into the liquid to be treated of the vessel 110.
  • the plasma processing method and equipment for chemical liquid of the present disclosure have high work efficiency, low energy consumption, low equipment cost in equipment input, large-scale production, improved reaction efficiency to chemical liquid treatment, and ability to degrade chemical liquid
  • the stubborn pollutants in the process can be used in wastewater treatment and are suitable for industrial production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)

Abstract

一种化学液体的等离子体处理设备、方法及其在处理污水中的应用。该化学液体的等离子体处理方法包括以下步骤:将待处理液体进行雾化处理后与等离子体混合形成气液混合物,气液混合物中的等离子体与待处理液体的雾滴反应,以实现对液体的处理。该处理设备包括用于盛放待处理液体的容器(10),容器(10)设有进液口(101)、出液口(102)和用于连通等离子体发生器(20)的进气口(103);容器(10)连接有用于雾化待处理液体的雾化器(30);出液口(102)通过循环管路与进液口(101)连通,循环管路上设有循环泵(40)。

Description

化学液体的等离子体处理设备、方法及其在处理污水中的应用
本申请要求于2017年05月08日提交中国专利局的申请号为CN201710319307.1、名称为“化学液体的等离子体处理方法及设备”以及2018年4月17日提交的中国专利局的申请号为CN2018103458058、名称为“等离子体发生器以及化学液的等离子体处理装置及应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及化学液体处理技术领域,尤其是涉及一种化学液体的等离子体处理设备、方法及其在在处理污水中的应用。
背景技术
等离子体是物质的第四态,是由大量的自由电子和离子组成、且在整体上表现为电中性的电离气体。等离子体在放电时能产生大量的OH·自由基,OH·自由基可以诱发一系列的自由基链式反应,进而可以应用于污水处理中。OH·自由基具备大规模链式反应能力,反应迅速而无选择性,可以攻击水中的各种污染物,使之降解为二氧化碳、水或其他矿物盐,能有效去除污水中的有机物,并且不会产生二次污染。一些在“三态”条件下不能进行的化学反应可在等离子状态下进行。等离子体处理污染物兼具物理、化学和生物反应。
目前,用等离子体技术处理污水是在污水中产生等离子体并与污水中的有害物质进行反应。由于水的介电常数比较大,等离子体发生器的正负极要克服水的介电常数将气体电离才能产生等离子体,这一过程要损耗大量的电能,造成电能不必要的损耗。另外,由于等离子体发生器的正负极直接与污水接触,对正负极通电后将有一部分的电能用于对污水液体的加热,因此在液相中直接电离产生等离子体,焦耳热高和热转化高,电耗高,从而造成了电能的浪费。同时,由于需要的电能大,对等离子体设备的电源及设备的安装保护要求较高,投资巨大,企业往往难以承担。此外,在液相中,气体电离后产生的等离子体在电极附近与污水反应,由于直接作用于液体内部,因此反应面积小,不利于反应的进行,从而降低了反应效率且难以降解顽固化学污染物。
发明内容
本公开的目的包括,提供一种化学液体的等离子体处理方法,以缓解现有技术的用等离子体处理液体时电耗高、热转化高、投资成本高及反应效率低的技术问题。
本公开的目的还包括,提供一种处理设备,利用该处理设备对液体进行等离子体处理可以缓解目前的处理设备中对设备安装保护要求高、设备成本高以及反应速度慢、难以反应降解顽固化学污染物的技术问题。
为了实现本公开的上述目的中的至少一个目的,特采用以下技术方案:
本公开提供了一种化学液体的等离子体处理方法,包括以下步骤:
将待处理液体进行雾化处理后与等离子体混合形成气液混合物,气液混合物中的等离子体与待处理液体的雾滴反应,以实现对液体的处理。
本公开较佳的实施例中,包括以下步骤:
雾化处理:先将部分待处理液体进行雾化处理,得到雾滴颗粒;
与等离子体反应:雾滴颗粒与等离子体混合形成气液混合物,气液混合物中的等离子体与待处理液体的雾滴反应后得到的产物溶于剩余的待处理液体中;
重复雾化以及与等离子体反应的步骤直至全部的待处理液体被处理。
本公开较佳的实施例中,待处理液体经雾化后所得雾滴颗粒的尺寸为0.2-200微米。
本公开较佳的实施例中,所述等离子体的气源包括待化学液体蒸汽、空气、水蒸气、氧气、氮气或二氧化碳、氯气、二氧化硫、甲烷、乙炔中的任意一种。
一种实现上述化学液体的等离子体处理方法的处理设备,包括用于盛放待处理液体的容器,所述容器设有进液口、出液口和用于连通等离子体发生器的进气口;所述容器连接有用于雾化待处理液体的雾化器;
所述出液口通过循环管路与所述进液口连通,所述循环管路上设有循环泵。
本公开较佳的实施例中,所述雾化器设置于所述出液口处。
本公开较佳的实施例中,所述雾化器设置于所述进液口处。
本公开较佳的实施例中,所述雾化器设置于容器内部并连接于进液口处循环管路向容器内的延伸部。
本公开较佳的实施例中,所述雾化器设置于所述容器的底部。
本公开较佳的实施例中,所述容器的顶部设有用于防止容器内压力过高的限压阀。
本公开较佳的实施例中,所述限压阀连接排气时用于防止液体成分流失的汽水分离器。
本公开还涉及一种实现上述化学液体的等离子体处理方法的处理设备,包括用于盛放待处理液体的第一容器、用于生成气液混合物的第二容器和用于雾化所述待处理液体的雾化器;
所述第一容器包括第一进液口和第一出液口,所述第二容器包括第二进液口和第二出液口;所述第一出液口与所述第二进液口通过第一管道相连通,所述第二出液口与所述第一进液口通过第二管道相连通;所述第二管道上均设有循环泵;
所述第二容器还包括有进气口,所述进气口连接有等离子体发生器。
本公开较佳的实施例中,所述雾化器设置于所述第一出液口处;
或,所述雾化器设置于所述第二进液口处;
或,所述雾化器设置于所述第一容器的底部;
或,所述雾化器设置于所述第二容器的内部并与第一管道在第二进液口处向内的延伸部连接。
本公开还涉及一种实现上述化学液体的等离子体处理方法的处理设备,其包括用于盛放所述待处理液体的容器、等离子体发生器,所述容器设有进液口、出液口;所述等离子体发生器设置有用于所述待处理液体进入的进口和用于反应液体流出的出口,所述容器的所述进液口连通于所述等离子体发生器的出口,所述容器的出液口连通于所述等离子体发生器的进口,所述容器的出液口和所述等离子体发生器之间还设置有用于雾化所述待处理液体的雾化器。
本公开较佳的实施例中,所述等离子体发生器包括至少一个等离子体处理单元,每个所述等离子体处理单元至少包括一个单片处理结构,每个所述单片处理结构包括相对设置的阳极板和阴极板,所述阳极板和所述阴极板的外侧分别设置有具有微孔结构的第一陶瓷材料板和第二陶瓷材料板,所述第一陶瓷材料板、所述第二陶瓷材料板、所述阳极板和所述阴极板被配置成所述等离子体发生器的进口进入的所述待处理液能够依次通过第一陶瓷材料板和所述第二陶瓷材料板。
本公开较佳的实施例中,制备所述第一陶瓷材料板或所述第二陶瓷材料板的陶瓷材料包括以下材料的任意一种:1)硅酸盐陶瓷、2)氧化物陶瓷如氧化铝瓷、氧化镁瓷、氧化钛瓷;3)非氧化物陶瓷如氮化硼瓷、碳化硅瓷、氟化钙瓷;4)复合陶瓷如由氧化铝和氧化镁组合而成的镁铝尖晶石瓷,由氧化铝与氮化硅组合而成的氧氮化硅铝瓷等;5)金属陶瓷如氧化物基金属陶瓷、碳化物基金属陶瓷、硼化物基金属陶瓷等;6)纤维增强陶瓷在陶瓷基体中添加金属纤维或无机纤维而成的一种高强度、高韧性陶瓷。
本公开较佳的实施例中,所述阳极板和所述阴极板交错布置,以使得所述阳极板和所述阴极板之间的电离空间具有对角设置的进口和出口。
本公开较佳的实施例中,所述等离子体发生器包括多个等离子体处理单元,多个所述等离子体处理单元呈横竖方向的矩阵布置,所述多个等离子体处理单元的进液端的方向和出液端的方向相同。
本公开较佳的实施例中,每个所述等离子处理单元包括多个所述单片处理结构,多个所述单片处理结构沿液体流通方向间隔设置。
本公开较佳的实施例中,每个所述等离子体处理单元的沿气液流动方向的四周均设置有用于封装所述第一陶瓷材料板和所述第二陶瓷材料板的封装材料,所述封装材料的外侧 分别设置有相对的阴极连接板和阳极连接板,所述阳极板的一端穿过所述封装材料连接于所述阳极连接板,所述阴极板的一端穿过所述封装材料连接于所述阴极连接板。
本公开较佳的实施例中,每个所述等离子处理单元内的气液流通通道内设置有用于促进所述待处理液体与所述等离子体反应的催化剂。
本公开较佳的实施例中,所述催化剂包括Ti,Mn,Fe,Co,Ni,等过渡金属元素的氧化物中的一种或多种。
本公开较佳的实施例中,所述等离子体发生器的电压为2V~100kV、电流为0.1A~100kA、频率为50Hz~100KHz。
本公开还涉及上述化学液体的等离子体处理方法在处理污水中的应用。
与已有技术相比,本公开具有如下有益效果:
(1)化学液体的等离子体处理方法的有益效果:
通过将待处理液体进行雾化处理,使待处理液体成为雾滴颗粒,然后通入等离子体,此时待处理液体雾滴颗粒悬浮于等离子体中,等离子体与雾滴颗粒混合,形成密集且稳定的气溶胶,形成气包液,进而形成气液界面,使等离子体与待处理液体在气包液的气液界面进行反应,从而净化待处理液体。与传统液相中的电离激发反应相比,由于气包液结构中的气液界面增加了反应界面的比表面积,因此雾滴颗粒与等离子体形成气包液结构后,等离子体与待处理液体的反应效率更高。
在本公开提供的液体处理方法中,等离子体发生器并未直接在待处理液体中进行反应电离,而是直接对气体进行等离子体激发,因此,只需要较低的电能即可产生出等离子体,从而降低了电能的损耗。
(2)处理设备的有益效果:
本公开提供的处理设备中,等离子体发生器与用于盛放待处理液体的容器通过容器上的进气口连通,等离子体发生器中的电极部分并未直接接触容器内部的待处理液体,而是与待处理液体隔离。等离子体发生器在容器外部对气体进行激发电离,然后再将等离子体通入到容器中。此过程中,只气体被电离激发。由于电离激发直接作用于气体,因此处理过程中对能耗及等离子体设备的安全防护要求大幅降低。
另外,通过雾化器对待处理液体进行雾化处理后从进液口通入容器中,与等离子气体混合生成气溶胶式的气包液结构,并在气包液结构中的气液表面进行反应,反应后再进入待处理液体内部。然后再循环泵的作用下,再重复上述反应过程,从而实现连续循环界面反应,由于反应比表面积的增加,进而提高了反应效率,同时能够降解化学液体中的顽固污染物。
附图说明
为了更清楚地说明本公开具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例4提供的处理设备的结构示意图;
图2为本公开实施例5提供的处理设备的结构示意图;
图3为本公开实施例6提供的处理设备的结构示意图;
图4为本公开实施例7提供的处理设备的结构示意图;
图5为本公开实施例8提供的处理设备的结构示意图;
图6为本公开实施例9提供的处理设备的结构示意图;
图7为本发明一种实施方式提供的化学液的等离子体处理装置的结构示意图;
图8为本发明一种实施方式提供的处理设备的等离子体发生器内部的多个等离子体处理单元的布置示意图;
图9为本发明一种实施方式提供的处理设备的等离子体发生器内部的等离子体处理模块的结构示意图;
图10为本发明一种实施方式提供的处理设备的等离子体发生器内部的一个等离子体处理单元的结构示意图;
图11为本发明一种实施方式提供的处理设备的等离子体发生器内部的一个等离子体处理单元的单片处理结构第一纵向的剖面结构示意图;
图12为图11的实施方式提供的处理设备的等离子体发生器内部的一个等离子体处理单元的单片处理结构与第一纵向垂直的第二纵向的剖面结构示意图。
图标:10-容器;101-进液口;102-出液口;103-进气口;110-第一容器;111-第一进液口;112-第一出液口;120-第二容器;121-第二进液口;122-第二出液口;20-等离子体发生器;210-等离子体处理单元;220-阴极连接板;230-阳极连接板;240-单片处理结构;241-第一陶瓷材料板;242-第二陶瓷材料板;250-封装材料;243-阳极板;244-阴极板;201-进口;202-出口;30-雾化器;40-循环泵。
具体实施方式
下面将结合附图对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于 附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
本公开的一个方面提供了一种化学液体的等离子体处理方法,包括以下步骤:
将待处理液体进行雾化处理后与等离子体混合形成气液混合物,气液混合物中的等离子体与待处理液体的雾滴反应,以实现对液体的处理。
通过将待处理液体进行雾化处理,使待处理液体成为雾滴颗粒,然后通入等离子体,此时待处理液体雾滴颗粒悬浮于等离子体中,等离子体与雾滴颗粒混合,形成密集且稳定的气溶胶,形成气包液,进而形成气液界面,使等离子体与待处理液体在气包液的气液界面进行反应,从而净化待处理液体。与传统液相中的电离激发反应相比,由于气包液结构中的气液界面增加了反应界面的比表面积,因此雾滴颗粒与等离子体形成气包液结构后,等离子体与待处理液体的反应效率更高。
在本公开提供的液体处理方法中,等离子体发生器并未直接在待处理液体中进行反应电离,而是直接对气体进行等离子体激发,因此,只需要较低的电能即可产生出等离子体,从而降低了电能的损耗。
本公开中的化学液体非限制性的例如为:造纸污水、印染污水、皮革污水、医疗污水或石油化工污水。
其中雾化方式包括雾化器造雾或微孔造雾或其他形式。
作为本公开优选的实施方式,包括以下步骤:
雾化处理:先将部分待处理液体进行雾化处理,得到雾滴颗粒;
与等离子体反应:雾滴颗粒与等离子体混合形成气液混合物,气液混合物中的等离子体与待处理液体的雾滴反应后得到的产物溶于剩余的待处理液体中;
重复雾化以及与等离子体反应的步骤直至全部的待处理液体被处理。
重复进行可待处理液体与等离子体的反应更加充分,并且循环进行可以在同一容器内完成,有利于节约设备成本。
作为本公开优选的实施方式,待处理液体经雾化后所得雾滴颗粒的尺寸为0.2-200微 米。
作为本公开进一步优选的实施方式,待处理液体经雾化后所得雾滴颗粒的尺寸为10-150微米。
作为本公开进一步优选的实施方式,待处理液体经雾化后所得雾滴颗粒的尺寸为30-110微米。
待处理液体雾化后得到的雾滴颗粒尺寸过小,气液界面的比表面积较大,反应效率增加效果明显,但气液分离困难。待处理液体雾滴颗粒尺寸过大,雾滴颗粒的稳定性较差,同时,尺寸太大还会影响雾滴颗粒内部待处理液体与等离子体的反应,不利于反应的进行。因此,本公开的优选实施方式中通过通入特定尺寸的雾滴颗粒,使反应效率的达到最大化。
作为本公开优选的实施方式,所述等离子体的气源包括化学液体蒸汽、空气、水蒸气、氧气、氮气或二氧化碳中的任意一种。
作为本公开的优选实施方式,等离子体的气源为待处理液体蒸汽。化学液体蒸汽气源除了可以为待处理液体蒸汽外,还可以根据待处理液体的化学性质选用其他化学液体的蒸汽。
实施例1
一种化学液体的等离子体处理方法,包括以下步骤:
步骤a):先将部分待处理液体先进行雾化处理,得到尺寸为0.2-30微米的待处理液体雾滴颗粒;
步骤b):将雾滴颗粒与等离子体(空气在等离子体发生器中激发产生的等离子体)混合形成气液混合物,气液混合物中的等离子体与雾滴颗粒中的待处理液体反应后得到的产物溶于剩余的待处理液体中;
重复进行步骤a)和步骤b)直至全部的待处理液体被完全处理,从而实现对液体的处理。
本实施例中,待处理液体为污水。上述等离子体发生器中产生的等离子体与污水的雾滴颗粒中的有机物反应生成水或二氧化碳等无害物质,从而达到去除有机物的目的。
实施例2
一种化学液体的等离子体处理方法,包括以下步骤:
步骤a):先将部分待处理液体先进行雾化处理,得到尺寸为30-110微米的待处理液体雾滴颗粒;
步骤b):将雾滴颗粒与等离子体(空气在等离子体发生器中激发产生的等离子体)混合形成气液混合物,气液混合物中的等离子体与雾滴颗粒中的待处理液体反应后得到的产物溶于剩余的待处理液体中;
重复进行步骤a)和步骤b)直至全部的待处理液体被完全处理,从而实现对液体的处理。
本实施例中,待处理液体为污水。上述等离子体发生器中产生的等离子体与污水的雾滴颗粒中的有机物反应生成水或二氧化碳等无害物质,从而达到去除有机物的目的。
实施例3
一种化学液体的等离子体处理方法,包括以下步骤:
步骤a):先将部分待处理液体先进行雾化处理,得到尺寸为110-200微米的待处理液体雾滴颗粒;
步骤b):将雾滴颗粒与等离子体(空气在等离子体发生器中激发产生的等离子体)混合形成气液混合物,气液混合物中的等离子体与雾滴颗粒中的待处理液体反应后得到的产物溶于剩余的待处理液体中;
重复进行步骤a)和步骤b)直至全部的待处理液体被完全处理,从而实现对液体的处理。
本实施例中,待处理液体为污水。上述等离子体发生器中产生的等离子体与污水的雾滴颗粒中的有机物反应生成水或二氧化碳等无害物质,从而达到去除有机物的目的。
对比例1
使用传统的污水处理工艺电芬顿法进行污水处理。在污水处理池中直接用等离子体发生器产生等离子体,产生的等离子体与污水中的有机物反应,以达到去除有机物的目的。
试验数据对比:
用实施例1-3和对比例1提供的方法各处理同样浓度的印染污水1吨,将各实施例和对比例中耗电量及处理时间列于表1。
表1耗电量及处理时间对比
处理指标 实施例1 实施例2 实施例3 对比例1
耗电量/kW·h 105 45 78 157
处理时间/min 75 32 45 270
由表1可知,实施例1-3中的耗电量比对比例1中的耗电量降低了33%以上,其中, 实施例2中的耗电量最少,与对比例1相比耗电量降低了70%,由此可见,本公开提供的处理方法能够显著降低能耗。同时,对比例1中的处理时间为270min,而实施例1-3中的处理时间为32-75min,由此可知,本公开提供的处理方法可以显著缩短处理时间,提高处理效率。
另外,实施例1-3中处理方法均相同,不同的是雾化后得到的雾滴颗粒的尺寸不同,从表1中的实验数据可以看出,雾滴颗粒的尺寸不同,会对待处理液体的处理时间及处理过程中的耗电量产生影响。由表1可知,实施例2中当气泡的雾滴颗粒的尺寸为30-110微米时,处理效果最好,耗电量及处理时间均较低。
本公开的另一个方面提供了一种处理设备,如图1-3所示,本公开一种实施方式的处理设备,包括用于盛放待处理液体的容器10,容器10设有进液口101、出液口102和用于连通等离子体发生器20的进气口103;容器10连接有用于雾化待处理液体的雾化器30;出液口102通过循环管路与进液口101连通,循环管路上设有循环泵40。
本公开实施方式提供的处理设备中,等离子体发生器20与用于盛放待处理液体的容器10通过容器10上的进气口103连通,等离子体发生器20中的电极部分并未直接接触容器10内部的待处理液体,而是与待处理液体隔离。等离子体发生器20在容器10外部对气体进行激发电离,再通入到容器10中。此过程中,只气体被等离子体激发。由于等离子体激发直接作用于气体,因此处理过程中对能耗及等离子体设备的安全防护要求大幅降低。
另外,通过雾化器30对待处理液体进行雾化处理后从进液口101通入容器10中,与等离子气体混合生成气溶胶式的气包液结构,并在气包液结构中的气液表面进行反应,反应后再进入待处理液体内部。然后再循环泵40的作用下,再重复上述反应过程,从而实现连续循环界面反应,由于反应比表面积的增加,进而提高了反应效率。
等离子体发生器20的枪头还可以直接内置于盛放待处理液体的容器10的内部,但不接触液面,从而实现向容器10内通入等离子体。
进液口101、出液口102和进气口103可以根据实际处理工艺流程设置在容器10壁上的任意位置,只要能实现相应的功能即可。
可选的,雾化器30设置于出液口102处。
可选的,雾化器30设置于进液口101处。
可选的,雾化器30设置于容器10内部并连接于进液口101处循环管路向容器10内的延伸部。
可选的,雾化器30设置于容器10的底部。
容器10还设有用于防止容器10内压力过高的限压阀;限压阀处还连接有排气时用于防止液体成分流失的汽水分离器。
由于容器10内不断地通入雾滴和等离子体,因此容器10内的压力会不断增加。为了防止容器10内的压力过高而发生爆炸,容器10的顶部还设有限压阀,当容器10内的压力过高时,限压阀开启并排气。为了防止在排气时液体成分流失,在流经限压阀前或限压阀后还设有汽水分离器。排气时先将液体成分通过汽水分离器进行回收,再通过将气体排出。
本公开的一些实施方式还提供了另外一种处理设备,如图4-6所示,本公开一种实施方式的处理设备,包括用于盛放待处理液体的第一容器110、用于生成气液混合物的第二容器120和用于雾化待处理液体的雾化器30;第一容器110包括第一进液口111和第一出液口112,第二容器120包括第二进液口121和第二出液口122;第一出液口112与第二进液口121通过第一管道相连通,第二出液口122与第一进液口111通过第二管道相连通;第一管道和第二管道上均设有循环泵40;第二容器120还包括有进气口103,进气口103连接有等离子体发生器20。
可选的,雾化器30设置于第一出液口112处;
或,雾化器30设置于第二进液口121处;
或,雾化器30设置于第一容器110的底部;
或,雾化器30设置于所述第二容器120的内部并与第一管道在第二进液口121处向内的延伸部连接。
实施例4
如图1所示,本实施例是一种处理设备,包括用于盛放待处理液体的容器10,容器10设有进液口101、出液口102和用于连通等离子体发生器20的进气口103;容器10连接有用于雾化待处理液体的雾化器30;出液口102通过循环管路与进液口101连通,循环管路上设有循环泵40,雾化器30设置于出液口102处。
本实施例中,出液口102位于容器10的底部,进液口101位于容器10的顶部,进气口103位于容器10的顶部。
待处理液体在上述设备中的处理过程为:待处理液体在循环泵40的作用下从出液口102流出,经过雾化器30的雾化作用形成小液滴,而后流向循环泵40,在循环泵40的压力驱动下从进液口101处喷射入容器10中。此时等离子体发生器20将等离子气体喷射入容器10内与小液滴结合,形成气溶胶。此时等离子体与小液滴形式的待处理液体在气液界面处发生反应,净化待处理液体。之后,反应后的气溶胶颗粒进入容器10中的待处理 液体中。在循环泵40的作用下,重复上述过程,直至容器10中的待处理液体净化完全,再停止设备的运转。
实施例5
如图2所示,本实施例是一种处理设备,与实施例4中的设备相比,不同之处在于,雾化器30设置于进液口101处。
待处理液体在上述设备中的处理过程为:待处理液体在循环泵40的作用下从出液口102流出流向循环泵40,在循环泵40的压力驱动下从进液口101处经过雾化器30的雾化作用形成小液滴,而后喷射入容器10中。此时等离子体发生器20将等离子气体喷射入容器10内与小液滴结合,形成气溶胶。等离子体与小液滴形式的待处理液体在气液界面处发生反应,净化待处理液体。之后,反应后的气溶胶颗粒进入容器10中的待处理液体中。在循环泵40的作用下,重复上述过程,直至容器10中的待处理液体净化完全,再停止设备的运转。
实施例6
如图3所示,本实施例是一种处理设备,与实施例4中的设备相比,不同之处在于,出液口102位于容器10的侧壁,进液口101位于容器10的底部,进气口103位于容器10的顶部;雾化器30设置于容器10的底部。
待处理液体在上述设备中的处理过程为:本实施例中,雾化器30设置与容器10内部,经过雾化器30的震动作用在待处理液体表面产生雾化液滴。此时等离子体发生器20将等离子气体喷射入容器10内与雾化液滴结合,形成气溶胶。等离子体与雾化液滴形式的待处理液体在气液界面处发生反应,净化待处理液体。之后,反应后的雾化液滴在循环泵40的作用下经出液口102流出流向循环泵40,并且在循环泵40的压力驱动下从进液口101重新进入容器10内的待处理液体中。
重复上述过程,直至容器10中的待处理液体净化完全,再停止设备的运转。
实施例7
如图4所示,本实施例是另外一种结构的处理设备,包括用于盛放待处理液体的第一容器110、用于生成气液混合物的第二容器120和用于雾化待处理液体的雾化器30;第一容器110包括第一进液口111和第一出液口112,第二容器120包括第二进液口121和第二出液口122;第一出液口112与第二进液口121通过第一管道相连通,第二出液口122与第一进液口111通过第二管道相连通;第一管道和第二管道上均设有增加泵;第二容器 120还包括有进气口103,进气口103连接有等离子体发生器20,雾化器30设置于第一出液口112处。
待处理液体在上述设备中的处理过程为:待处理液体在循环泵40的作用下从第一容器110的第一出液口112流出,经过雾化器30的雾化作用形成小液滴,而后流向循环泵40,在循环泵40的压力驱动下从第二容器120的第二进液口121处喷射入第二容器120中。此时等离子体发生器20将等离子气体喷射入第二容器120内与小液滴结合,形成气溶胶。等离子体与小液滴形式的待处理液体在气液界面处发生反应,净化待处理液体。之后,反应后的气溶胶颗粒在循环泵40的作用下从第二容器120中的第二出液口122流出,经过第一进液口111进入到第一容器110的待处理液体中。
重复上述过程,直至容器10中的待处理液体净化完全,再停止设备的运转。
实施例8
如图5所示,本实施例是一种处理设备,与实施例7中的设备相比,不同之处在于,雾化器30设置于第二进液口121处。
待处理液体在上述设备中的处理过程为:待处理液体在循环泵40的作用下从第一出液口112流出,在循环泵40的压力驱动下流向第二进液口121,在第二进液口121处经过雾化器30的雾化作用形成小液滴,而后喷射入第二容器120中。此时等离子体发生器20将等离子气体喷射入容器10内与小液滴结合,形成气溶胶。等离子体与小液滴形式的待处理液体在气液界面处发生反应,净化待处理液体。之后,反应后的气溶胶颗粒在循环泵40的作用下从第二容器120中的第二出液口122流出,经过第一进液口111进入到第一容器110的待处理液体中。
重复上述过程,直至容器10中的待处理液体净化完全,再停止设备的运转。
实施例9
如图6所示,本实施例是一种处理设备,与实施例7中的设备相比,不同之处在于,雾化器30设置于第一容器110的底部。
待处理液体在上述设备中的处理过程为:本实施例中,雾化器30设置与第一容器110内部,经过雾化器30的震动作用在待处理液体表面产生雾化液滴。雾化液滴在循环泵40的作用下从第一出液口112流出,经第二进液口121进入到第二容器120中。此时等离子体发生器20将等离子气体喷射入容器10内与小液滴结合,形成气溶胶。等离子体与小液滴形式的待处理液体在气液界面处发生反应,净化待处理液体。之后,反应后的气溶胶颗粒在循环泵40的作用下从第二容器120中的第二出液口122流出,经过第一进液口111 进入到第一容器110的待处理液体中。
重复上述过程,直至容器10中的待处理液体净化完全,再停止设备的运转。
本公开的一些实施方式还涉及一种实现上述化学液体的等离子体处理方法的处理设备的处理设备,如图7所示,其包括用于盛放待处理液体的容器10、等离子体发生器20,容器10设有进液口101、出液口102;等离子体发生器20设置有用于待处理液体进入的进口和用于反应液体流出的出口,容器10的进液口101连通于等离子体发生器20的出口,容器10的出液口102连通于等离子体发生器20的进口,容器10的出液口和等离子体发生器20之间还设置有用于雾化待处理液体的雾化器30。
通过雾化器30对待处理液体进行雾化处理后等离子体发生器20的进口通入等离子体发生器20中,与等离子气体发生器20内产生的等离子气体混合生成气溶胶式的气包液结构,并在气包液结构中的气液表面进行反应,从等离子发生器20出口出来的反应后的产物再通过进液口101进入容器10内的待处理液体内部,然后在循环泵40的作用下,再重复上述反应过程,从而实现连续循环界面反应,由于反应比表面积的增加,进而提高了反应效率。
进液口101、出液口102可以根据实际处理工艺流程设置在容器10壁上的任意位置,只要能实现相应的功能即可。
可选的,雾化器30设置于出液口102处。
或,雾化器30设置于等离子体发生器20的进口处。
或,雾化器30设置于连接出液口102和等离子体发生器20的进口的管道上。
可选的,雾化器30设置于容器10的底部。
由于容器10内不断地通入雾滴和等离子体反应后的产物,因此容器10内的压力会不断增加。为了防止容器10内的压力过高而发生爆炸,一些实施方式中,容器10的顶部还设有限压阀,当容器10内的压力过高时,限压阀开启并排气。为了防止在排气时液体成分流失,在流经限压阀前或限压阀后还设有汽水分离器。排气时先将液体成分通过汽水分离器进行回收,再通过将气体排出。
根据一些实施方式,等离子体发生器20包括至少一个等离子体处理单元210,每个等离子体处理单元210至少包括一个单片处理结构240。优选地,如图8所示,等离子体发生器20包括多个等离子体处理单元210,多个等离子体处理单元210呈横竖方向的矩阵布置,多个等离子体处理单元210的进液端的方向和出液端的方向相同。即等离子体发生器20具有一个壳体(图未示),壳体具有进口和出口,多个呈横竖方向的矩阵布置的等离子体处理单元210被设置于壳体内,雾化后雾滴从壳体的进口进入通过多个等离子体处理单元210进行处理,使得雾滴能够充分与等离子体发生器20的壳体内产生的等离子体混 合生成气溶胶式的气包液结构,并在气包液结构中的气液表面进行反应。多个等离子体处理单元210呈横竖方向的矩阵布置,使得能够充分对雾滴进行反应,并且处理效率高。
一些实施方式中,整个矩阵布置的多个等离子体处理单元210可以沿竖直方向分为多个处理模块,如图9所示,为其中一个处理模块,每个处理模块沿物料流动的方向均匀间隔设置有多个等离子体处理单元210。通过模块化的结构设置,可以便于等离子体发生器20的内部反应结构的安装以及优化装置内部的整体处理效率。
如图10所示,一些实施方式中,每个等离子处理单元210包括多个单片处理结构240,多个单片处理结构240沿液体流通方向间隔设置,即进入等离子体发生器20内的待反应液体的雾滴能够依次通过多个单片处理结构240以达到对雾滴的充分反应。
如图11所示,根据一些实施方式,每个单片处理结构240包括相对设置的阳极板241和阴极板242,通过阳极板241和阴极板242的设置可以使得进入单片处理结构240内的气源在阳极板241和阴极板242通电的情况下能够高效的电离为等离子体,该等离子体能够与进入的待反应液体的雾滴进行结合并反应。阳极板241和阴极板242的外侧分别设置有具有微孔结构的第一陶瓷材料板243和第二陶瓷材料板244,第一陶瓷材料板243、第二陶瓷材料板244、阳极板241和阴极板242被配置成等离子体发生器20的进口进入的待处理液能够依次通过第一陶瓷材料板243和第二陶瓷材料板244,使得等离子体能够在第一陶瓷材料板243以及第二陶瓷材料板244的表面以及孔隙结构中进行充分接触和反应,进而使得反应更加充分,效果更加理想。雾滴先在第一陶瓷材料板243的表面上与等离子体进行结合并反应,并最终向下流动,通过阳极板241和阴极板242之间的空间进入,第二陶瓷材料板244,在第二陶瓷材料板244上继续反应,再进入下一单片处理结构240。
根据一些实施方式,第一陶瓷材料板243和第二陶瓷材料板244的厚度均为0.1mm-3mm。阳极板241和阴极板242之间的空隙大小为0.1-5mm。当然其他实施方式中可以根据实际的反应效果的需求,对上述范围值进行调整。
根据一些实施方式,制备第一陶瓷材料板243或第二陶瓷材料板244的陶瓷材料板的陶瓷材料包括以下材料的任意一种:1)硅酸盐陶瓷、2)氧化物陶瓷如氧化铝瓷、氧化镁瓷、氧化钛瓷;3)非氧化物陶瓷如氮化硼瓷、碳化硅瓷、氟化钙瓷;4)复合陶瓷如由氧化铝和氧化镁组合而成的镁铝尖晶石瓷,由氧化铝与氮化硅组合而成的氧氮化硅铝瓷等;5)金属陶瓷如氧化物基金属陶瓷、碳化物基金属陶瓷、硼化物基金属陶瓷等;6)纤维增强陶瓷在陶瓷基体中添加金属纤维或无机纤维而成的一种高强度、高韧性陶瓷。
根据一些实施方式,阳极板241和阴极板242交错布置,以使得阳极板241和阴极板242之间的电离空间具有对角设置的进口和出口。上述结构设置使得进入等离子处理单元210的雾滴和等离子体结合的气包液结构能够依次呈Z形通过每个单片处理结构240,进 而使得气体和雾滴以及混合得到的气包液结构能够从第一陶瓷材料板243和第二陶瓷材料板244的一端到另一端,进而能够充分进行反应,使得均匀程度更高,反应效果更佳。
根据一些实施方式,每个等离子体处理单元210的沿气液流动方向的四周均设置有用于封装第一陶瓷材料板243和第二陶瓷材料板242的封装材料250,封装材料250的外侧分别设置有相对的阴极连接板220和阳极连接板230,阳极板241的一端穿过封装材料250连接于阳极连接板230,阴极板242的一端穿过封装材料250连接于阴极连接板220。通过封装材料可以将多个单片处理结构240包围固定,进而使得反应的气体和液体以及气液混合物能够沿着特定的方向流动。
如图9和图10所示,同一处理模块的多个等离子体处理单元210共用一个阴极连接板220和一个阳极连接板230,进而使得连接结构更加简单,每个等离子处理单元210内的阳极板241和阴极板242均通过连接螺栓和阴极连接板241和阳极连接板242相连。
根据一些实施方式,每个等离子处理单元210内的气液流通通道内设置有用于促进待处理液体与等离子体反应的催化剂。催化剂可以设置在相邻的两个单片处理结构240之间的空隙,或设置在阳极板241和阴极板242之间的间隙内。
根据一些实施方式,催化剂包括Ti,Mn,Fe,Co,Ni,等过渡金属元素的氧化物中的一种或多种。
根据一些实施方式,所述等离子体发生器的电压为2V~100kV、电流为0.1A~100kA、频率为50Hz~100KHz。
本公开还涉及上述化学液体的等离子体处理方法在处理污水中的应用。
实施例10
本实施例的处理设备,如图7所示,其包括用于盛放待处理液体的容器10、等离子体发生器20,容器10设有进液口101、出液口102;等离子体发生器20设置有用于待处理液体进入的进口和用于反应液体流出的出口,容器10的进液口101连通于等离子体发生器20的出口,容器10的出液口102连通于等离子体发生器20的进口,在等离子体发生器20的进口处设置有用于雾化待处理液体的雾化器30。
容器10的顶部还设有限压阀(图未示),当容器10内的压力过高时,限压阀开启并排气。为了防止在排气时液体成分流失,在流经限压阀前或限压阀后还设有汽水分离器。排气时先将液体成分通过汽水分离器进行回收,再通过将气体排出。
如图8所示,等离子体发生器20包括多个等离子体处理单元210,多个等离子体处理单元210呈横竖方向的矩阵布置,多个等离子体处理单元210的进液端的方向和出液端的方向相同。即等离子体发生器20具有一个壳体(图未示),壳体具有进口和出口,多个呈横竖方向的矩阵布置的等离子体处理单元210被设置于壳体内。本实施例中,整个矩阵布 置的多个等离子体处理单元210可以沿竖直方向分为多个处理模块,如图9所示,为其中一个处理模块,每个处理模块沿物料流动的方向均匀间隔设置有多个等离子体处理单元210。
如图10所示,本实施例中,每个等离子处理单元210包括多个单片处理结构240,多个单片处理结构240沿液体流通方向间隔设置。进一步,如图11所示,每个单片处理结构240包括相对设置的阳极板241和阴极板242,阳极板241和阴极板242的外侧分别设置有具有微孔结构的第一陶瓷材料板243和第二陶瓷材料板244,第一陶瓷材料板243、第二陶瓷材料板244、阳极板241和阴极板242被配置成等离子体发生器20的进口进入的待处理液能够依次通过第一陶瓷材料板243和第二陶瓷材料板244。本实施例中,第一陶瓷材料板243和第二陶瓷材料板244的厚度均为1mm。阳极板241和阴极板242之间的空隙大小为1mm。
本实施例中,阳极板241和阴极板242交错布置,以使得阳极板241和阴极板242之间的电离空间具有对角设置的进口201和出口202。每个等离子体处理单元210的沿气液流动方向的四周均设置有用于封装第一陶瓷材料板243和第二陶瓷材料板242的封装材料250,封装材料250的外侧分别设置有相对的阴极连接板220和阳极连接板230,阳极板241的一端穿过封装材料250连接于阳极连接板230,阴极板242的一端穿过封装材料250连接于阴极连接板220。如图9和图10所示,同一处理模块的多个等离子体处理单元210共用一个阴极连接板220和一个阳极连接板230,每个等离子处理单元210内的阳极板241和阴极板242均通过连接螺栓和阴极连接板241和阳极连接板242相连。
待处理液体在上述设备中的处理过程为:本实施例中,待处理液体在循环泵40的作用下被打到雾化器30,待处理液体经过雾化器30的震动作用在待处理液体表面产生雾化液滴。雾化液滴从等离子体发生器20的进口进入,雾化液滴和气体进行待处理单元210中使得电离的等离子体和雾化液滴结合形成气溶胶,并且在第一陶瓷材料板243和第二陶瓷材料板244的表面和空隙中进行反应和流动,等离子体与小液滴形式的待处理液体在气液界面处发生反应,净化待处理液体,大大提高了处理面积和处理效率。之后,反应后的气溶胶颗粒从等离子体发生器20的出口通过进液口101进入容器10内进入到容器110的待处理液体中。
重复上述过程,直至容器10中的待处理液体净化完全,再停止设备的运转。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方 案的范围。
工业实用性:
本公开的化学液体的等离子体处理方法及设备具有工作效率高、能耗低、在设备投入中降低了设备成本,能够大规模生产,提高了对化学液体处理的反应效率,同时能够降解化学液体中的顽固污染物,进而能够在污水处理方面得到很好的应用前景,适合应用于工业生产。

Claims (20)

  1. 一种化学液体的等离子体处理方法,其特征在于,包括以下步骤:
    将待处理液体进行雾化处理后与等离子体混合形成气液混合物,所述气液混合物中的所述等离子体与所述待处理液体的雾滴反应,以实现对所述待处理液体的处理。
  2. 根据权利要求1所述的化学液体的等离子体处理方法,其特征在于,包括以下步骤:
    雾化处理:先将部分所述待处理液体进行雾化处理,得到所述雾滴颗粒;
    与所述等离子体反应:将所述雾滴颗粒与所述等离子体混合形成气液混合物,所述气液混合物中的所述等离子体与所述待处理液体的所述雾滴颗粒反应后得到的产物溶于剩余的所述待处理液体中;
    重复雾化处理以及与等离子体反应的步骤直至全部的所述待处理液体被处理。
  3. 根据权利要求1或2所述的化学液体的等离子体处理方法,其特征在于,所述待处理液体经雾化后所得的所述雾滴颗粒的粒径尺寸为0.2-200微米,优选10-150微米,更优选30-110微米。
  4. 根据权利要求1或2所述的化学液体的等离子体处理方法,其特征在于,所述等离子体的气源包括待化学液体蒸汽、空气、水蒸气、氧气、氮气或二氧化碳、氯气、二氧化硫、甲烷、乙炔中的任意一种。。
  5. 一种实现权利要求1-4任一项所述的化学液体的等离子体处理方法的处理设备,其特征在于,包括用于盛放所述待处理液体的容器,所述容器设有进液口、出液口和用于连通等离子体发生器的进气口;所述容器连接有用于雾化待处理液体的雾化器;
    所述出液口通过循环管路与所述进液口连通,所述循环管路上设有循环泵。
  6. 根据权利要求5所述的处理设备,其特征在于,所述雾化器设置于所述出液口处;
    或,
    所述雾化器设置于所述进液口处;
    或,
    所述雾化器设置于所述容器内部并连接于所述进液口处的所述循环管路向所述容器内延伸的延伸部。
  7. 根据权利要求5所述的处理设备,其特征在于,所述雾化器设置于所述容器的底部。
  8. 根据权利要求5-7任一项所述的处理设备,其特征在于,所述容器的顶部设有用于防止容器内压力过高的限压阀;
    优选地,所述限压阀连接有排气时用于防止液体成分流失的汽水分离器。
  9. 一种实现权利要求1-4任一项所述的化学液体的等离子体处理方法的处理设备,其特征在于,包括用于盛放所述待处理液体的第一容器、用于生成所述气液混合物的第二容器和用于雾化所述待处理液体的雾化器;
    所述第一容器包括第一进液口和第一出液口,所述第二容器包括第二进液口和第二出液口;所述第一出液口与所述第二进液口通过第一管道相连通,所述第二出液口与所述第一进液口通过第二管道相连通;所述第一管道和所述第二管道上均设有循环泵;
    所述第二容器还包括有进气口,所述进气口连接有等离子体发生器。
  10. 根据权利要求9所述的处理设备,其特征在于,所述雾化器设置于所述第一出液口处;
    或,所述雾化器设置于所述第二进液口处;
    或,所述雾化器设置于所述第一容器的底部;
    或,所述雾化器设置于所述第二容器的内部并与所述第一管道在所述第二进液口处向内的延伸部连接。
  11. 一种实现权利要求1-4任一项所述的化学液体的等离子体处理方法的处理设备,其特征在于,包括用于盛放所述待处理液体的容器、等离子体发生器,所述容器设有进液口、出液口;所述等离子体发生器设置有用于所述待处理液体进入的进口和用于反应液体流出的出口,所述容器的所述进液口连通于所述等离子体发生器的出口,所述容器的出液口连通于所述等离子体发生器的进口,所述容器的出液口和所述等离子体发生器之间还设置有用于雾化所述待处理液体的雾化器。
  12. 根据权利要求11所述的处理设备,其特征在于,所述等离子体发生器包括至少一个等离子体处理单元,每个所述等离子体处理单元至少包括一个单片处理结构,每个所述单片处理结构包括相对设置的阳极板和阴极板,所述阳极板和所述阴极板的外侧分别设置有具有微孔结构的第一陶瓷材料板和第二陶瓷材料板,所述第一陶瓷材料板、所述第二陶瓷材料板、所述阳极板和所述阴极板被配置成所述等离子体发生器的进口进入的所述待处理液能够依次通过第一陶瓷材料板和所述第二陶瓷材料板。
  13. 根据权利要求12所述的处理设备,其特征在于,制备所述第一陶瓷材料板或所述第二陶瓷材料板的陶瓷材料包括以下材料的任意一种:1)硅酸盐陶瓷;2)氧化物陶瓷;3)非氧化物陶瓷;4)复合陶瓷;5)金属陶瓷;6)纤维增强陶瓷。
  14. 根据权利要求12所述的处理设备,其特征在于,所述阳极板和所述阴极板交错布置,以使得所述阳极板和所述阴极板之间的电离空间具有对角设置的进口和出口。
  15. 根据权利要求12所述的处理设备,其特征在于,所述等离子体发生器包括多个等离子体处理单元,多个所述等离子体处理单元呈横竖方向的矩阵布置,所述多个等离子 体处理单元的进液端的方向和出液端的方向相同,优选地,每个所述等离子处理单元包括多个所述单片处理结构,多个所述单片处理结构沿液体流通方向间隔设置。
  16. 根据权利要求15所述的处理设备,其特征在于,每个所述等离子体处理单元的沿气液流动方向的四周均设置有用于封装所述第一陶瓷材料板和所述第二陶瓷材料板的封装材料,所述封装材料的外侧分别设置有相对的阴极连接板和阳极连接板,所述阳极板的一端穿过所述封装材料连接于所述阳极连接板,所述阴极板的一端穿过所述封装材料连接于所述阴极连接板。
  17. 根据权利要求12-16任一项所述的处理设备,其特征在于,每个所述等离子处理单元内的气液流通通道内设置有用于促进所述待处理液体与所述等离子体反应的催化。
  18. 根据权利要求15所述的处理设备,其特征在于,所述催化剂包括Ti,Mn,Fe,Co,Ni,等过渡金属元素的氧化物中的一种或多种。
  19. 根据权利要求12-18任一项所述的处理设备,其特征在于,所述等离子体发生器的电压为2V~100kV、电流为0.1A~100kA、频率为50Hz~100KHz
  20. 如权利要求1-4中任一项所述的化学液体的等离子体处理方法在处理污水中的应用。
PCT/CN2018/085196 2017-05-08 2018-04-28 化学液体的等离子体处理设备、方法及其在处理污水中的应用 WO2018205863A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710319307.1A CN107051349A (zh) 2017-05-08 2017-05-08 化学液体的等离子体处理方法及设备
CN201710319307.1 2017-05-08
CN201810345805.8 2018-04-17
CN201810345805.8A CN108455701B (zh) 2018-04-17 2018-04-17 等离子体发生器以及化学液的等离子体处理装置及应用

Publications (1)

Publication Number Publication Date
WO2018205863A1 true WO2018205863A1 (zh) 2018-11-15

Family

ID=64105212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085196 WO2018205863A1 (zh) 2017-05-08 2018-04-28 化学液体的等离子体处理设备、方法及其在处理污水中的应用

Country Status (1)

Country Link
WO (1) WO2018205863A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110510706A (zh) * 2019-10-12 2019-11-29 大连民族大学 一种医疗废水处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120292262A1 (en) * 2011-04-25 2012-11-22 University Of Florida Research Foundation, Inc. Apparatuses and Methods for Purifying Liquids
WO2014171138A1 (ja) * 2013-04-18 2014-10-23 パナソニック株式会社 液体処理装置及び液体処理方法
CN104529044A (zh) * 2015-01-06 2015-04-22 北京隆冠世纪科技有限公司 纯物理方式的杀菌消毒复合水产生装置及其方法
CN104591355A (zh) * 2015-01-29 2015-05-06 广东佳德环保科技有限公司 一种流光放电等离子体水消毒灭菌的方法
CN105600869A (zh) * 2016-03-09 2016-05-25 南京大学 一种采用多层线板电极的电晕放电等离子体污水处理装置
CN107051349A (zh) * 2017-05-08 2017-08-18 苏州久华水处理科技有限公司 化学液体的等离子体处理方法及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120292262A1 (en) * 2011-04-25 2012-11-22 University Of Florida Research Foundation, Inc. Apparatuses and Methods for Purifying Liquids
WO2014171138A1 (ja) * 2013-04-18 2014-10-23 パナソニック株式会社 液体処理装置及び液体処理方法
CN104529044A (zh) * 2015-01-06 2015-04-22 北京隆冠世纪科技有限公司 纯物理方式的杀菌消毒复合水产生装置及其方法
CN104591355A (zh) * 2015-01-29 2015-05-06 广东佳德环保科技有限公司 一种流光放电等离子体水消毒灭菌的方法
CN105600869A (zh) * 2016-03-09 2016-05-25 南京大学 一种采用多层线板电极的电晕放电等离子体污水处理装置
CN107051349A (zh) * 2017-05-08 2017-08-18 苏州久华水处理科技有限公司 化学液体的等离子体处理方法及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110510706A (zh) * 2019-10-12 2019-11-29 大连民族大学 一种医疗废水处理方法
CN110510706B (zh) * 2019-10-12 2022-08-30 大连民族大学 一种医疗废水处理方法

Similar Documents

Publication Publication Date Title
KR101774710B1 (ko) 플라즈마와 촉매를 이용한 하이브리드 건식 유해가스 처리 장치 및 이의 운전방법
WO2018205862A1 (zh) 化学液体的等离子体处理方法及装置
CN105174360A (zh) 一种采用放电等离子体激活过硫酸盐的方法
CN107051349A (zh) 化学液体的等离子体处理方法及设备
KR101860633B1 (ko) 플라즈마와 촉매를 적용한 하이브리드 건식 유해가스 처리 시스템 및 이의 운전방법
CN206492384U (zh) 一种低温等离子废气处理装置
CN112930434A (zh) 一种发动机尾气臭氧净化系统和方法
WO2018205863A1 (zh) 化学液体的等离子体处理设备、方法及其在处理污水中的应用
CN107311272B (zh) 一种气体放电净化废水的方法和装置
CN101254960B (zh) 等离子体水处理方法及其装置
TW201021902A (en) System for eliminating waste gases by making use of plasmas at low and atmospheric pressure
CN110482642A (zh) 一种泡沫类介质阻挡放电等离子体的污染物处理装置
CN104891447B (zh) 一种半湿式高效臭氧发生方法及装置
CN208577466U (zh) 一种难降解废水的净化装置
CN103657359A (zh) 一种具有旋转电极的大气压辉光放电等离子反应器
CN209010185U (zh) 等离子体发生器以及化学液的等离子体处理装置
CN203866083U (zh) 一种旋流气柱的气液界面放电等离子反应装置
CN108455701B (zh) 等离子体发生器以及化学液的等离子体处理装置及应用
CN206867962U (zh) 高压电离分解净化塔
CN209740797U (zh) 一种废水处理装置
CN115108625A (zh) 一种有机污染物废水处理装置及废水处理方法
CN107364932B (zh) 一种基于等离子体射流处理废液的装置
CN212492881U (zh) 一种脉冲放电等离子体反应器和有机废水的处理装置
CN107029528A (zh) 高压电离分解净化塔
CN210393708U (zh) 一种高气压低温等离子体氯化氢氧化制备氯气的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798949

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.05.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18798949

Country of ref document: EP

Kind code of ref document: A1