WO2018205693A1 - 一种用于烟气净化装置的物料控制方法及系统 - Google Patents

一种用于烟气净化装置的物料控制方法及系统 Download PDF

Info

Publication number
WO2018205693A1
WO2018205693A1 PCT/CN2018/074584 CN2018074584W WO2018205693A1 WO 2018205693 A1 WO2018205693 A1 WO 2018205693A1 CN 2018074584 W CN2018074584 W CN 2018074584W WO 2018205693 A1 WO2018205693 A1 WO 2018205693A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption tower
roller feeder
tower
speed
target
Prior art date
Application number
PCT/CN2018/074584
Other languages
English (en)
French (fr)
Inventor
邱立运
魏进超
Original Assignee
中冶长天国际工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶长天国际工程有限责任公司 filed Critical 中冶长天国际工程有限责任公司
Priority to MYPI2018704299A priority Critical patent/MY197542A/en
Priority to RU2018140561A priority patent/RU2702381C1/ru
Priority to BR112018076255-5A priority patent/BR112018076255A2/pt
Priority to KR1020197001686A priority patent/KR102076947B1/ko
Publication of WO2018205693A1 publication Critical patent/WO2018205693A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/48Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof integrally combined with devices for controlling the filtration
    • B01D24/4869Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof integrally combined with devices for controlling the filtration by level measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/20Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of apparatus for measuring liquid level
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D9/00Level control, e.g. controlling quantity of material stored in vessel
    • G05D9/12Level control, e.g. controlling quantity of material stored in vessel characterised by the use of electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40084Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by exchanging used adsorbents with fresh adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating

Definitions

  • the invention relates to the technical field of flue gas purification, in particular to a material control method and system for a flue gas purification device.
  • Iron and steel enterprises usually use a special flue gas purification device, in which the adsorption gas (such as activated carbon) is contained in the flue gas purification device to adsorb the sintering flue gas, so as to realize the desulfurization and denitration treatment of the sintering flue gas.
  • FIG. 1 is a schematic structural view of a flue gas purifying apparatus in the prior art, which includes four adsorption towers 100, an analytical tower 200, a first chain conveyor 300, and a first A two-chain conveyor 400 and an activated carbon storage bin 500.
  • Each of the adsorption towers 100 contains activated carbon for adsorbing pollutants including sulfur oxides, nitrogen oxides and dioxins in the sintering flue gas
  • the analytical tower 200 is used for thermal regeneration of activated carbon.
  • the flue gas into the adsorption tower 100, the flue gas pollutants (such as SO 2, NO x, and dioxin, etc.) is adsorbed in the activated carbon adsorption tower 100, adsorbed contaminants from the activated carbon adsorption tower 100
  • the discharge is carried out in a roller feeder, and is transported to the analytical tower 200 through the first chain conveyor 300.
  • the analytical tower 200 analyzes the activated carbon adsorbed with the pollutants to generate activated carbon which recovers the adsorption capacity, and then recovers the activated carbon from the adsorption capacity.
  • the discharge in the roller feeder of the analysis tower 200 is re-transferred to each adsorption tower 100 via the second chain conveyor 400, supplementing the activated carbon consumed in each adsorption tower 100 for the subsequent adsorption process of the sintering flue gas, Repeatedly, the continuous purification treatment of the sintering flue gas is realized.
  • the cumulative height of the material (e.g., activated carbon) in the adsorption column 100 is generally referred to as the level of the adsorption column 100
  • the cumulative height of the material in the analytical column 200 e.g., activated carbon adsorbed with contaminants
  • the level of the analytical column 200 is commonly referred to as the level of the analytical column 200.
  • the actual material level of each adsorption tower 100 and the actual material level of the analytical tower 200 are controlled within a fixed range, the first chain conveyor 300 and the second chain conveyor.
  • the transfer of the machine 400 also needs to be controlled in a relatively balanced state so that the operation of the material in the entire flue gas cleaning device is in a relatively balanced state.
  • the second chain conveyor 400 is hindered from transporting materials into the adsorption tower 100. If the actual material level is too low, the adsorption of the flue gas is hindered, and the new material should be automatically added. Activated carbon.
  • the speed of the roller feeder of the adsorption tower 100, the speed of the roller feeder of the analytical tower 200, and the speed of the first chain conveyor 300 and the second chain conveyor 400 are set.
  • the speed of the flue gas purification device is in a relatively balanced state, but once the actual material level of the adsorption tower 100 in the flue gas purification device is abruptly changed or the equipment is abnormally stopped, the flue gas purification device cannot be quickly.
  • the material is adjusted to a relative equilibrium state, and it may even need to adjust the speed of multiple operating devices at the same time to maintain the system balance, the operation intensity is large, and there is no basis for rapid and accurate adjustment. Therefore, the existing material control method controls the material. The efficiency is low and the applicability is poor.
  • the invention provides a material control method and system for a flue gas purification device, to solve the existing material control method, and the control efficiency is low when the actual material level of the adsorption tower is abruptly changed or the equipment is abnormally stopped. Poor applicability.
  • the present invention provides a material control method for a flue gas purification device, the material control method comprising: obtaining a basic equilibrium speed in real time, wherein the basic equilibrium speed is a total amount of discharges of the analytical tower per unit time When the total discharge amount of the adsorption tower is equal, the running speed of the tower roller feeder is analyzed; the target speed is obtained in real time according to the difference between the actual average level of the adsorption tower and the target average level, and the basic equilibrium speed.
  • the target speed is such that the difference between the actual average level of the adsorption tower and the target average level is within a preset difference range, and the operating speed of the tower roller feeder is resolved; if the adsorption tower roller feed is detected The running speed of the machine is greater than the preset amplitude within a preset first time period, and the control tower roller feeder is operated at the basic equilibrium speed; if the actual average level of the adsorption tower and the target average level are detected The difference is continuously within the preset difference range for a preset second time period, and the control tower roller feeder is operated at the target speed.
  • the process of obtaining the basic balance speed in real time includes: real-time operation speed according to the adsorption tower roller feeder, and the operation speed of the adsorption tower roller feeder and the row of the adsorption tower roller feeder per unit time
  • the preset first relationship of the amount of material obtains the discharge amount of the adsorption tower roller feeder in a unit time; according to the discharge amount of the adsorption tower roller feeder in the unit time and the preset second relationship, the acquisition is obtained.
  • the discharge amount of the tower roller feeder is analyzed in unit time; the discharge amount of the tower roller feeder is analyzed according to the unit time, and the running speed of the tower roller feeder and the analytical tower roller type per unit time are analyzed.
  • the preset third relationship of the discharge amount of the feeder obtains the basic balance speed.
  • the process of the discharge amount of the adsorption tower roller feeder per unit time includes: real-time operation speed according to the adsorption tower roller feeder, and the operation speed and unit time of the following adsorption roller feeder
  • the preset first relationship of the discharge amount of the adsorption tower roller feeder, and the discharge amount of the adsorption tower roller feeder in a unit time is obtained;
  • W 1i represents the discharge amount of the i-th adsorption tower roller feeder per unit time
  • L 1i represents the length of the adsorption tower roller feeder
  • g 1i represents the roller of the adsorption tower roller feeder.
  • the width of the gap, D 1i represents the diameter of the adsorption tower roller feeder
  • ⁇ 1 represents the density of the adsorption saturated activated carbon
  • f 1i represents the operating speed of the adsorption tower roller feeder
  • n max1i represents the adsorption tower roller type.
  • the maximum speed of the feeder, Q 1 represents the frequency of the AC power source actually used by the adsorption tower roller feeder, i takes a positive integer.
  • the process of resolving the discharge amount of the tower roller feeder in a unit time is obtained, which specifically includes: according to the unit time
  • the discharge amount of the adsorption tower roller feeder and the preset second relationship described below acquire the discharge amount of the tower roller feeder in a unit time;
  • W 2 represents the discharge amount of the tower roller feeder per unit time
  • N 1 represents the number of the adsorption tower roller feeder
  • W 1i represents the i-th adsorption tower roller feeder per unit time.
  • the discharge amount, N 2 represents the number of analytical tower roller feeders in operation.
  • the discharge amount of the tower roller feeder is analyzed, and the preset third relationship of the operation speed of the tower roller feeder and the discharge amount of the tower roller feeder per unit time is analyzed.
  • the process of obtaining the basic equilibrium speed specifically includes: analyzing the discharge amount of the tower roller feeder according to the unit time, and the operation speed of the analytical tower roller feeder and the analysis tower roller type per unit time a preset third relationship of the discharge amount of the material machine to obtain a basic balance speed;
  • f 2 represents the basic equilibrium speed
  • Q 2 represents the frequency of the AC power source actually used by the analytical tower roller feeder
  • W 2 represents the discharge amount of the analytical tower roller feeder per unit time
  • L 2 The length of the analytical tower roller feeder is shown, g 2 is the width of the roll gap of the analytical tower roller feeder, D 2 is the diameter of the analytical tower roller feeder, and ⁇ 2 is the activated carbon after the analysis.
  • Density, n max2 represents the maximum rotational speed of the analytical tower roller feeder.
  • the material control method further comprises: setting an initial running speed of each of the adsorption tower roller feeders according to the preset fourth relational expression;
  • v 1i represents the initial operating speed of the i-th adsorption tower roller feeder
  • V 1i represents the activated carbon filling volume of the adsorption tower roller feeder
  • B 1i represents the discharge of the adsorption tower roller feeder.
  • the mouth width, h 1i represents the discharge opening height of the adsorption tower roller feeder
  • D 1i represents the diameter of the adsorption tower roller feeder, and ⁇ 1i represents the discharge efficiency of the adsorption tower roller feeder.
  • t 1i represents the residence time of the activated carbon in the adsorption tower roller feeder
  • n max1i represents the maximum rotation speed of the adsorption tower roller feeder, i takes a positive integer.
  • the material control method further comprises: detecting an operation mode of all the adsorption towers; if there is an adsorption tower whose operation mode is the selected mode, replenishing the materials discharged from the analytical tower to the adsorption tower whose operation mode is the selected mode; or If there is no adsorption tower with the operation mode selected mode, the material discharged from the analytical tower is replenished to the target adsorption tower, and the target adsorption tower is in all adsorption towers, and the operation mode is the ignore mode adsorption tower and the operation mode is isolated. The remaining adsorption towers outside the mode of adsorption tower.
  • the discharged material is replenished to the xth target adsorption tower, and the time for replenishing the material to the xth target adsorption tower is recorded, and the actual level of the xth target adsorption tower is determined to exceed whether the target adsorption tower is preset.
  • the material control method further comprises: detecting the actual material level of the analytical tower in real time, and if the actual material level of the analytical tower is detected to be less than or equal to the preset second material level, replenishing the material to the analytical tower.
  • the present invention also provides a material control system for a flue gas purification device, the material control system comprising: a level gauge for real-time acquisition of an actual material level of the adsorption tower; and a control device for performing Operation: reading the actual material level of the adsorption tower from the level gauge to generate the actual average level of the adsorption tower; obtaining the basic equilibrium speed in real time, the basic equilibrium speed is the total discharge of the analytical tower per unit time When the amount is equal to the total discharge amount of the adsorption tower, the operation speed of the tower roller feeder is analyzed; the target is obtained in real time according to the difference between the actual average level of the adsorption tower and the target average level, and the basic equilibrium speed.
  • the target speed is such that the difference between the actual average level of the adsorption tower and the target average level is within a preset difference range, and the operating speed of the tower roller feeder is resolved; if the adsorption tower roller type is detected The operating speed of the material machine is greater than the preset amplitude within a preset first time period, and the control tower roller feeder is operated at the basic equilibrium speed; if the actual average of the adsorption tower is detected The average difference between the position target fill level duration is within a predetermined difference range within a preset second time, the control desorber roll feeder running at the target speed.
  • the technical solution provided by the embodiment of the present invention may include the following beneficial effects:
  • the present invention provides a material control method and system for a flue gas purification device.
  • the material control method by realizing the basic equilibrium speed and the target speed in real time, when the actual speed of the adsorption tower roller feeder is abruptly caused to cause a sudden change in the actual material level of the adsorption tower, the actual analysis of the tower roller feeder will be analyzed.
  • the running speed is adjusted in real time to the basic balancing speed, and the difference between the actual average level of the adsorption tower and the target average level is quickly adjusted to the preset difference range, and the running speed and resolution of the roller conveyor in the adsorption tower
  • the operating speed of the tower roller feeder is constant, if the difference between the actual average level of the adsorption tower and the target average level exceeds the preset difference range, that is, the actual average level of the adsorption tower is abruptly changed.
  • the material control method can ensure that the operation of the material in the flue gas purification device is quickly adjusted to a relatively balanced state when the actual material level of the adsorption tower is abruptly changed, the control efficiency is higher, and the applicability is better.
  • FIG. 1 is a schematic structural view of a flue gas purification device in the prior art
  • FIG. 2 is a schematic flow chart of a material control method for a flue gas purification device according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an intermediate control device according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of a material control system for a flue gas purification device according to an embodiment of the present invention
  • FIG. 5 is a structural block diagram of another material control system for a flue gas purification device according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a material control method for a flue gas purification device according to an embodiment of the present invention. As can be seen from FIG. 2, the material control method includes:
  • Step 101 Acquire a basic balance speed in real time.
  • the actual material levels of each adsorption tower and the analytical tower are controlled within a fixed range, and the actual materials of the respective adsorption towers and analytical towers are controlled.
  • the position should not be too high or too low, and the transfer of the first chain conveyor and the second chain conveyor also needs to be controlled in a relatively balanced state, so that the operation of the materials in the entire flue gas purification device is relatively balanced.
  • the state ensures the continuous circulation purification of the sintering flue gas, avoiding the problem that the purification of the sintering flue gas is interrupted or the purification is not complete due to the excessive or too low actual material level.
  • the material for adsorbing the pollutants in the flue gas in the adsorption tower (for example, activated carbon) is discharged from the adsorption tower after adsorbing the pollutant, and passes through the first chain.
  • the conveyor is transported to the analytical tower, and the analytical tower analyzes the material adsorbing the pollutants to generate materials for recovering the adsorption capacity, and discharges the materials for recovering the adsorption capacity, and then the materials for recovering the adsorption capacity are re-transformed through the second chain conveyor.
  • the sintering flue gas is continuously purified. It can be seen that as long as the actual average level of the adsorption tower is always equal to the target average level, it is basically ensured that the operation of the materials in the flue gas purification device is in a relatively balanced state. Therefore, in order to operate the materials in the flue gas purification device in a relatively balanced state, the actual average level of the adsorption tower must be constantly adjusted to the target average level.
  • the preset difference range can be set according to the actual production needs, for example, according to the accuracy requirement of the actual production, and will not be described in detail herein.
  • the actual average level of the adsorption column is the ratio of the actual level of all the adsorption columns in the operating state to the number of all of the aforementioned adsorption columns.
  • the target average level of the adsorption tower is such that the actual level of all the adsorption towers is neither too high nor too low, and the materials used to purify the sintering fumes in all the adsorption towers (for example, activated carbon) are used to sinter the flue gas.
  • the purification efficiency is optimal, the ratio of the actual level of all the adsorption towers to the number of all adsorption towers.
  • the target average level is usually set according to the actual production experience. After setting, it can be pre-stored in the material control system for the flue gas purification device, and can be directly taken during use.
  • Adjusting the difference between the actual average level of the adsorption tower and the target average level to the preset difference range can be achieved by: obtaining the difference between the actual average level of the adsorption tower and the target average level in real time, Adjusting the running speed of the analytical tower roller feeder according to the difference between the actual average level of the adsorption tower and the target average level (in this paper, the roller feeder of the analytical tower is defined as the analytical tower roller feeder)
  • the difference between the actual average level of the adsorption tower and the target average level is within a preset difference.
  • the adjustment range of the difference between the actual average level of the adsorption tower and the target average level is small, and it is necessary to adjust the difference between the actual average level of the adsorption tower and the target average level. Adjust to within the preset difference range. Therefore, it is desirable to continuously adjust the difference between the actual average level of the adsorption tower and the target average level to within the preset difference range, so that the operation of the material in the flue gas purification device is in a relatively balanced state, and the actual operation of the adsorption tower The average level is abrupt, but the difference between the actual average level of the adsorption tower and the target average level is small. In this way, the difference between the actual average level of the adsorption tower and the target average level can be quickly adopted.
  • the difference between the actual average level of the adsorption tower and the target average level is within the preset difference range, and the actual average level and target of the adsorption tower.
  • the average level is basically the same.
  • the first chain conveyor and the second chain conveyor are all running at a constant speed, if the actual average level of the adsorption tower is abrupt, The difference between the actual average level of the adsorption tower and the target average level exceeds the preset difference range, usually due to the adsorption tower roller feeder (in this paper, the roller feeder of the adsorption tower is defined as the adsorption tower roller).
  • the operating speed of the feeder and/or the operating speed of the analytical tower roller feeder are abrupt, so that the total discharge amount of the adsorption tower is not equal to the total discharge amount of the analytical tower per unit time, resulting in unit time
  • the total amount of feed and the total discharge amount are not equal, that is, the feed rate and the discharge speed of the adsorption tower are not equal, resulting in a sudden change in the actual average level of the adsorption tower. It can be seen that as long as the operating speed of the analytical tower roller feeder is quickly adjusted according to the operating speed of the adsorption tower roller feeder, the total discharge amount of the adsorption tower and the total discharge amount of the analytical tower per unit time can be quickly set.
  • Adjust to the same state so as to quickly adjust the total amount of feed and the total discharge amount of the adsorption tower to the same state per unit time, that is, quickly adjust the feed rate and discharge speed of the adsorption tower to the same state, and then quickly
  • the difference between the actual average level of the adsorption tower and the target average level is adjusted to within the preset difference range.
  • the material control method for the flue gas purification device provided by the embodiment of the present invention, when the material of the flue gas purification device is controlled, the basic equilibrium speed is first obtained in real time, and the basic equilibrium speed is expressed in unit time.
  • the total discharge amount of the tower is equal to the total discharge amount of the adsorption tower, the operation speed of the tower roller feeder is analyzed.
  • the basic balance speed can be obtained in real time by the following methods:
  • W 1i represents the discharge amount of the i-th adsorption tower roller feeder per unit time, in units of tons/hour
  • L 1i represents the length of the adsorption tower roller feeder, in meters
  • g 1i represents the width of the roll gap of the adsorption tower roller feeder
  • the unit is meters
  • D 1i represents the diameter of the adsorption tower roller feeder
  • the unit is meters
  • ⁇ 1 represents the density of activated carbon saturated adsorption
  • f 1i represents the operating speed of the adsorption tower roller feeder, in Hertz
  • n max1i represents the maximum speed of the adsorption tower roller feeder, in revolutions per minute
  • Q 1 indicates The frequency of the AC power source actually used by the adsorption tower roller feeder, in Hertz.
  • i takes a positive integer, where L 1i , g 1i , D 1i , ⁇ 1 , n max1i and Q 1 are constant. It can be pre-stored in the material control system for the flue gas purification device, and can be directly read during use. That is, the material control system for the flue gas purification device is used to implement the material control method for the flue gas purification device provided by the embodiment of the present invention, and f 1i can be actually operated from the adsorption tower roller feeder. Read in real time in the inverter.
  • W 2 represents the discharge amount of the tower roller feeder in unit time, the unit is ton / cubic meter, N 1 represents the number of adsorption tower roller feeders, W 1i represents unit time
  • the discharge amount of the i-th adsorption tower roller feeder is in tons per cubic meter, and N 2 represents the number of analytical tower roller feeders in operation, wherein N 1 and N 2 are constants. It can be manually input into the material control system for the flue gas purification device, and N 1 can also be obtained by detecting the operation modes of all the adsorption towers (refer to the following examples).
  • the discharge amount of the tower roller feeder is analyzed, and the following third relationship between the operation speed of the analytical tower roller feeder and the discharge amount of the tower roller feeder per unit time is determined. Equation, formula (3), to obtain the basic balance speed:
  • f 2 represents the base equilibrium speed in Hertz
  • Q 2 represents the frequency of the AC power source actually used by the analytical tower roller feeder, in Hertz, for example, when the analytical tower roller feed
  • Q 2 50
  • W 2 represents the unit time
  • the discharge amount of the analytical tower roller feeder is in tons/hour
  • L 2 represents the length of the analytical tower roller feeder
  • the unit is meter
  • g 2 represents the roller of the analytical tower roller feeder
  • D 2 represents the diameter of the analytical tower roller feeder
  • the unit is meters
  • ⁇ 2 represents the density of activated carbon after analysis
  • the unit is tons / cubic meters
  • n max2 represents the analytical tower roller
  • Step 102 Obtain a target speed according to a difference between an actual average level of the adsorption tower and a target average level, and the basic equilibrium speed, wherein the target speed is an actual average level of the adsorption tower and a target average level.
  • the running speed of the tower roller feeder is resolved when the difference is within the preset difference range.
  • FIG. 3 is a schematic structural diagram of an intermediate control apparatus according to an embodiment of the present invention.
  • the intermediate control device includes a PID regulator 301, an average level generating module 302, a difference generating module 303, and a plurality of level gauges 304.
  • the basic balance speed obtained in step 101 is input to the PID regulator 301 of the intermediate control device in real time, and the actual material level of each adsorption tower is detected in real time through the plurality of level gauges 304 of the intermediate control device.
  • the average level generating module 302 of the intermediate control device generates an actual average level of the adsorption tower according to the actual material level of each adsorption tower obtained by the detection, and the difference average generation module 303 of the intermediate control device according to the actual average of the adsorption tower
  • the level and the target average level of the preset adsorption tower generate a difference between the actual average level of the adsorption column and the target average level, and the difference is input to the PID regulator 301.
  • the target speed can be acquired in real time by acquiring the speed output from the PID regulator 301 of the intermediate control device in real time.
  • Step 103 If it is detected that the operating speed of the adsorption tower roller feeder is greater than the preset amplitude within a preset first time period, the control analytical tower roller feeder operates at the basic equilibrium speed.
  • the total discharge amount of the adsorption tower and the total discharge amount of the analytical tower are adjusted to the same state in a unit time, and the total amount of the adsorption tower and the total discharge amount are adjusted to the same state in a unit time. , that is, the feed rate and the discharge speed of the adsorption tower are quickly adjusted to the same state, and the effect of quickly adjusting the difference between the actual average level of the adsorption tower and the target average level to the preset difference range is ensured, and the smoke is ensured.
  • the operation of the materials in the gas purification device is in a relatively balanced state.
  • Step 104 If it is detected that the difference between the actual average level of the adsorption tower and the target average level is within the preset difference range for a preset second period of time, the analytical tower roller feeder is controlled to the target speed. run.
  • control The analytical tower roller feeder operates at the target speed, so that the actual average material of the adsorption tower can be ensured when the operating speed of the adsorption tower roller feeder and the operating speed of the analytical tower roller feeder are both uniform.
  • the difference between the bit and the target average level exceeds the preset difference range, and the actual running speed of the analytical tower roller feeder can be adjusted according to the difference between the actual average level of the adsorption tower and the target average level in real time, thereby The difference between the actual average level of the adsorption tower and the target average level is quickly adjusted to within the preset difference range to ensure that the operation of the material in the flue gas purification device is in a relatively balanced state.
  • the material control method further includes:
  • the fourth relational formula, formula (4), is set to set the initial running speed of each of the adsorption tower roller feeders:
  • v 1i represents the initial operating speed of the i-th adsorption tower roller feeder, in units of percentage (%)
  • V 1i represents the activated carbon filling volume of the adsorption tower roller feeder, in cubic m
  • B 1i represents the discharge opening width of the adsorption tower roller feeder, in meters
  • h 1i represents the height of the discharge opening of the adsorption tower roller feeder
  • the unit is meters
  • D 1i represents the adsorption tower
  • the diameter of the roller feeder is in meters
  • ⁇ 1i is the discharge efficiency of the adsorption tower roller feeder
  • t 1i is the residence time of the activated carbon in the adsorption tower roller feeder, in minutes
  • n Max1i represents the maximum speed of the adsorption tower roller feeder, in revolutions per minute
  • i takes a positive integer, where V 1i , B 1i , h 1i , D 1i , ⁇ 1i and n max1i are constant and can be advanced It is stored in the
  • the material control method further comprises: detecting an operation mode of all the adsorption towers, and the operation modes of the adsorption tower include: a selected mode (FIX mode), an ignore mode (SKIP mode) or an isolation mode (ISO mode); if an operation mode exists
  • FIX mode a selected mode
  • SKIP mode an ignore mode
  • ISO mode isolation mode
  • the material discharged from the analytical tower is replenished to the adsorption tower whose operation mode is the selected mode
  • the target adsorption tower is in all the adsorption towers
  • the operation mode is an absorption tower in an ignoring mode and the other adsorption towers in an operation mode other than an adsorption mode in an isolation mode.
  • the material discharged from the analytical tower can be replenished into the target adsorption tower as follows:
  • the material discharged from the analytical tower is replenished to the xth target adsorption tower, and the time for replenishing the material to the xth target adsorption tower is recorded, and the actual level of the xth target adsorption tower is re-executed to exceed the target.
  • the preset first level of the adsorption tower or the length of time for replenishing the material in the target adsorption tower exceeds a preset third time length of the target adsorption tower; or
  • the material control method further comprises: detecting the actual material level of the analytical tower in real time, and if the actual material level of the analytical tower is detected to be less than or equal to the preset second material level, the material is supplemented to the analytical tower, and in the specific implementation process, The material is replenished from the material storage bin to the analytical column, for example, from the activated carbon storage bin 500 to the analytical column.
  • the preset first duration, the preset second duration, the preset third duration, the preset difference range, the preset amplitude, the preset first material level and the preset second The material level can be set according to the actual production situation, which will not be detailed here.
  • f 1i in the formula (1), f 2 in the formula (3), and the unit of v 1i in the formula (4) can be converted into the equal conversion relationship between the units as needed. Any of the following units: revolutions per minute, hertz, and percentage (%).
  • the material control method for the flue gas purification device obtaineds the basic equilibrium speed and the target speed in real time, and when the operating speed of the adsorption tower roller feeder is abrupt, the actual material level of the adsorption tower is abruptly changed.
  • the running speed of the tower roller feeder and the running speed of the analytical tower roller feeder are both at a constant speed, if the difference between the actual average level of the adsorption tower and the target average level exceeds the preset difference range, The actual average level of the adsorption tower is abruptly changed, and the actual running speed of the analytical tower roller feeder can be adjusted according to the difference between the actual average level of the adsorption tower and the target average level, so that the actual average of the adsorption tower is made.
  • the difference between the bit and the target average level is quickly adjusted to the preset difference range to ensure that the material in the flue gas purification device operates in a relatively balanced state.
  • the material control method can ensure that the operation of the material in the flue gas purification device is quickly adjusted to a relatively balanced state when the actual material level of the adsorption tower is abruptly changed, the control efficiency is higher, and the applicability is better.
  • the present invention also provides a material control system for a flue gas purification device.
  • FIG. 4 is a structural block diagram of a material control system for a flue gas purification device according to an embodiment of the present invention.
  • the material control system 400 includes a level gauge 401 and a control device 402.
  • the level gauge 401 includes a plurality of units for obtaining the actual level of each adsorption tower in real time.
  • Control device 402 includes:
  • the actual average level generating module 4021 is configured to read the actual level of the adsorption tower from the level gauge to generate an actual average level of the adsorption tower;
  • the basic balance speed obtaining module 4022 is configured to obtain a basic balance speed in real time, wherein the base balance speed is a unit time, and when the total discharge amount of the analytical tower is equal to the total discharge amount of the adsorption tower, the analytical tower roller feeder Running speed
  • the target speed obtaining module 4023 is configured to acquire a target speed according to a difference between an actual average level of the adsorption tower and a target average level, and the base balance speed, wherein the target speed is an actual average level of the adsorption tower.
  • the running speed of the tower roller feeder is resolved when the difference between the target average level and the target average level is within the preset difference range;
  • the first control module 4024 is configured to control the analytical tower roller feeder to operate at the basic equilibrium speed if it is detected that the operating speed of the adsorption tower roller feeder is greater than a preset amplitude within a preset first duration ;
  • the second control module 4025 is configured to control the analytical tower roller feeder if it is detected that the difference between the actual average level of the adsorption tower and the target average level is within a preset difference within a preset second time period. Run at the target speed.
  • the third control module 4026 can be used in place of the first control module 4024 and the second control module 4025.
  • FIG. 5 illustrates another use provided by the embodiment of the present invention.
  • a switch 501 is provided in the third control module 4026.
  • the third control module 4026 is specifically configured to perform the following operations: if it is detected that the running speed of the adsorption tower roller feeder is greater than the preset amplitude within a preset first time period, the switch 501 and the basic balance speed are obtained.
  • the module 4022 is connected to read the basic balance speed, and the control tower roller feeder is operated at the basic equilibrium speed; or, if the difference between the actual average level of the adsorption tower and the target average level is detected, the preset number is After the second time duration continues to be within the preset difference range, the switch 501 is connected to the target speed acquisition module 4023 to read the target speed, and the analytical tower roller feeder is controlled to operate at the target speed.
  • the material control system for the flue gas purification device provided by the embodiment of the present invention can perform each step of the material control method for the flue gas purification device to achieve the same beneficial effect, that is, the embodiment of the present invention is adopted.
  • the material control system for the flue gas purification device is provided to control the materials of the flue gas purification device, and the operation of the material in the flue gas purification device can be quickly adjusted to a relative balance when the actual material level of the adsorption tower is abruptly changed. The state of control is more efficient and the applicability is better.
  • the present invention further provides a computer storage medium, wherein the computer storage medium may store a program, where the program may be executed in various embodiments of the material control method for the flue gas purification device provided by the present invention. Part or all of the steps.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (English: read-only memory, abbreviated as: ROM) or a random access memory (English: random access memory, abbreviation: RAM).
  • the techniques in the embodiments of the present invention can be implemented by means of software plus a necessary general hardware platform. Based on such understanding, the technical solution in the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product, which may be stored in a storage medium such as a ROM/RAM. , a disk, an optical disk, etc., including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention or portions of the embodiments.
  • a computer device which may be a personal computer, server, or network device, etc.

Abstract

一种用于烟气净化装置的物料控制方法及系统,用于烟气净化装置的物料控制方法包括:实时获取基础平衡速度(101),基础平衡速度为单位时间内解析塔(200)的排料总量与吸附塔(100)的排料总量相等时解析塔(200)的辊式给料机的运行速度;实时根据吸附塔(100)的实际平均料位与目标平均料位的差值以及基础平衡速度,获取目标速度(102);如果检测到吸附塔(100)的辊式给料机的运行速度在预设第一时长内变化幅度大于预设幅度,控制解析塔(200)的辊式给料机以基础平衡速度运行(103);如果检测到吸附塔(100)的实际平均料位与目标平均料位的差值在预设第二时长内持续位于预设差值范围内,控制解析塔(200)的辊式给料机以目标速度运行(104)。用于烟气净化装置的物料控制方法能够保证吸附塔(100)的实际料位发生突变时,快速将物料的运转调整至相对平衡的状态,适用性更好。

Description

一种用于烟气净化装置的物料控制方法及系统
本申请要求于2017年05月12日提交中国专利局、申请号为201710333102.9、发明名称为“一种用于烟气净化装置的物料控制方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及烟气净化技术领域,尤其涉及一种用于烟气净化装置的物料控制方法及系统。
背景技术
目前在钢铁企业中,烧结工序产生的烧结烟气SO 2和NO x(NO和NO 2等)占钢铁企业污染排放总量的绝大部分,为了减轻由烧结烟气排放导致的大气污染,必须对烧结烟气进行脱硫和脱硝等处理。钢铁企业通常采用专门的烟气净化装置,在烟气净化装置中盛放具有吸附功能的物料(例如活性炭)吸附烧结烟气,以实现对烧结烟气的脱硫和脱硝等处理。
参考图1,图1示出的是现有技术中一种烟气净化装置的结构示意图,该烟气净化装置包括四个吸附塔100、一个解析塔200、第一链式输送机300、第二链式输送机400和一个活性炭储仓500。其中,每个吸附塔100内均盛放有活性炭,用于吸附烧结烟气中包括硫氧化物、氮氧化物和二恶英在内的污染物,解析塔200用于活性炭的热再生。
图1中,烟气进入吸附塔100后,烟气中的污染物(如SO 2、NO x和二恶英等)被吸附塔100中的活性炭吸附,吸附了污染物的活性炭从吸附塔100的辊式给料机中排出,经过第一链式输送机300运输至解析塔200,解析塔200将吸附有污染物的活性炭解析后,生成恢复吸附能力的活性炭,之后恢复吸附能力的活性炭从解析塔200的辊式给料机中排出,经第二链式输送机400重新传送至各个吸附塔100,补充各个吸附塔100中消耗的活性炭,用于之后对烧结烟气的吸附过程,如此反复,实现对烧结烟气的持续净化处理。
吸附塔100内物料(例如活性炭)的累积高度通常称为吸附塔100的料位,解析塔200内物料(例如吸附有污染物的活性炭)的累积高度通常称为解析塔200的料位。在上述对烧结烟气的持续净化过程中,各个吸附塔100的实际料位和解析塔200的实际料位均需被控制在固定范围内,第一链式输送机300和第二链式输送机400的传送也需要被控制在相对平衡的状态,从而使得整个烟气净化装置中物料的运转处于相对平衡的状态。其中,吸附塔100内的实际料位如果过高则有碍第二链式输送机400向吸附塔100内输送物料,实际料位过低则有碍于对烟气的吸附,应该自动补充新的活性炭。
现有技术中,通常通过设定吸附塔100的辊式给料机的速度、解析塔200的辊式给料机的速度以及第一链式输送机300的速度和第二链式输送机400的速度,使得烟气净化装置的物料处于相对平衡的状态,但是一旦烟气净化装置中吸附塔100的实际料位发生突变或有设备异常停止运行时,此种方式无法快速将烟气净化装置的物料调整至相对平衡状态,甚至可能需要同时调整多个运行设备的速度方能保持系统平衡,操作强度较大,也无快速准确调整的依据,由此,现有的物料控制方法对物料控制的效率较低,适用性较差。
发明内容
本发明提供了一种用于烟气净化装置的物料控制方法及系统,以解决现有的物料控制方法,对于吸附塔的实际料位发生突变或有设备异常停止运行时,控制效率较低,适用性较差的问题。
第一方面,本发明提供了一种用于烟气净化装置的物料控制方法,该物料控制方法包括:实时获取基础平衡速度,所述基础平衡速度为单位时间内,解析塔的排料总量与吸附塔的排料总量相等时,解析塔辊式给料机的运行速度;实时根据吸附塔的实际平均料位与目标平均料位的差值,以及所述基础平衡速度,获取目标速度,所述目标速度为使得吸附塔的实际平均料位与目标平均料位的差值位于预设差值范围内时解析塔辊式给料机的运行速度;如果检测到吸附塔辊式给料机的运行速度在预设第一时长内变化幅度大于预设幅度,控制解析塔辊式给料机以所述基础平衡速度运行;如果检测到吸附塔的实际平均料位与目标平均料位的差值在预设第二时长内持续位于预设差值范围内,控制解析塔辊式给料机以所述目标速度运行。
进一步,实时获取基础平衡速度的过程,具体包括:实时根据吸附塔辊式给料机的运行速度,以及吸附塔辊式给料机的运行速度与单位时间内吸附塔辊式给料机的排料量的预设第一关系式,获取单位时间内吸附塔辊式给料机的排料量;根据单位时间内吸附塔辊式给料机的排料量以及预设第二关系式,获取单位时间内解析塔辊式给料机的排料量;根据单位时间内解析塔辊式给料机的排料量,以及解析塔辊式给料机的运行速度与单位时间内解析塔辊式给料机的排料量的预设第三关系式,获取基础平衡速度。
进一步,实时根据吸附塔辊式给料机的运行速度,以及吸附塔辊式给料机的运行速度与单位时间内吸附塔辊式给料机的排料量的预设第一关系式,获取单位时间内吸附塔辊式给料机的排料量的过程,具体包括:实时根据吸附塔辊式给料机的运行速度,以及下述吸附塔辊式给料机的运行速度与单位时间内吸附塔辊式给料机的排料量的预设第一关系式,获取单位时间内吸附塔辊式给料机的排料量;
Figure PCTCN2018074584-appb-000001
其中,W 1i表示单位时间内第i个吸附塔辊式给料机的排料量,L 1i表示该吸附塔辊式给料机的长度,g 1i表示该吸附塔辊式给料机的辊间隙的宽度,D 1i表示该吸附塔辊式给料机的直径,ρ 1表示吸附饱和的活性炭密度,f 1i表示该吸附塔辊式给料机的运行速度,n max1i表示该吸附塔辊式给料机的最大转速,Q 1表示该吸附塔辊式给料机实际使用的交 流电源的频率,i取正整数。
进一步,根据单位时间内吸附塔辊式给料机的排料量以及预设第二关系式,获取单位时间内解析塔辊式给料机的排料量的过程,具体包括:根据单位时间内吸附塔辊式给料机的排料量以及下述预设第二关系式,获取单位时间内解析塔辊式给料机的排料量;
Figure PCTCN2018074584-appb-000002
其中,W 2表示单位时间内解析塔辊式给料机的排料量,N 1表示吸附塔辊式给料机的数量,W 1i表示单位时间内第i个吸附塔辊式给料机的排料量,N 2表示处于运行状态的解析塔辊式给料机的数量。
进一步,根据单位时间内解析塔辊式给料机的排料量,以及解析塔辊式给料机的运行速度与单位时间内解析塔辊式给料机的排料量的预设第三关系式,获取基础平衡速度的过程,具体包括:根据单位时间内解析塔辊式给料机的排料量,以及下述解析塔辊式给料机的运行速度与单位时间内解析塔辊式给料机的排料量的预设第三关系式,获取基础平衡速度;
Figure PCTCN2018074584-appb-000003
其中,f 2表示所述基础平衡速度,Q 2表示解析塔辊式给料机实际使用的交流电源的频率,W 2表示单位时间内该解析塔辊式给料机的排料量,L 2表示该解析塔辊式给料机的长度,g 2表示该解析塔辊式给料机的辊间隙的宽度,D 2表示该解析塔辊式给料机的直径,ρ 2表示解析之后的活性炭密度,n max2表示该解析塔辊式给料机的最大转速。
进一步,实时获取基础平衡速度之前,该物料控制方法还包括:按照下述预设第四关系式,设定每一个吸附塔辊式给料机的初始运行速度;
Figure PCTCN2018074584-appb-000004
其中,v 1i表示第i个吸附塔辊式给料机的初始运行速度,V 1i表示该吸附塔辊式给料机的活性炭填充体积,B 1i表示该吸附塔辊式给料机的排料口宽度,h 1i表示该吸附塔辊式给料机的排料口高度,D 1i表示该吸附塔辊式给料机的直径,η 1i表示该吸附塔辊式给料机的排料效率,t 1i表示该吸附塔辊式给料机中活性炭的滞留时间,n max1i表示该吸附塔辊式给料机的最大转速,i取正整数。
进一步,该物料控制方法还包括:检测所有吸附塔的运行模式;如果存在运行模式为选定模式的吸附塔,将解析塔排出的物料补充至运行模式为选定模式的吸附塔中;或,如果不存在运行模式为选定模式的吸附塔,将解析塔排出的物料补充至目标吸附塔中,所述目标吸附塔为所有吸附塔中,运行模式为忽略模式的吸附塔和运行模式为隔离模式的吸附塔之外的其余吸附塔。
进一步,将解析塔排出的物料补充至目标吸附塔中的过程,具体包括:确定目标吸附塔的数量N;设定x=m,判断第x个目标吸附塔的实际料位是否超过该目标吸附塔的预设第一料位或者向该目标吸附塔中补充物料的时长是否超过该目标吸附塔的预设第三时长,其中,m=1,2……,N;如果否,将解析塔排出的物料向第x个目标吸 附塔中补充,记录向第x个目标吸附塔中补充物料的时间,重新执行判断第x个目标吸附塔的实际料位是否超过该目标吸附塔的预设第一料位或者向该目标吸附塔中补充物料的时长是否超过该目标吸附塔的预设第三时长的操作;或,如果是,设定x=m+1,判断x>N是否成立;如果成立,停止将解析塔排出的物料向目标吸附塔中补充;或,如果不成立,重新执行判断第x个目标吸附塔的实际料位是否超过该目标吸附塔的预设第一料位或者向该目标吸附塔中补充物料的时长是否超过该目标吸附塔的预设第三时长的操作。
进一步,该物料控制方法还包括:实时检测解析塔的实际料位,如果检测到解析塔的实际料位小于或等于预设第二料位,向解析塔中补充物料。
第二方面,本发明还提供了一种用于烟气净化装置的物料控制系统,该物料控制系统包括:料位计,用于实时获取吸附塔的实际料位;控制装置,用于执行下述操作:从所述料位计中读取吸附塔的实际料位,生成吸附塔的实际平均料位;实时获取基础平衡速度,所述基础平衡速度为单位时间内,解析塔的排料总量与吸附塔的排料总量相等时,解析塔辊式给料机的运行速度;实时根据吸附塔的实际平均料位与目标平均料位的差值,以及所述基础平衡速度,获取目标速度,所述目标速度为使得吸附塔的实际平均料位与目标平均料位的差值位于预设差值范围内时解析塔辊式给料机的运行速度;如果检测到吸附塔辊式给料机的运行速度在预设第一时长内变化幅度大于预设幅度,控制解析塔辊式给料机以所述基础平衡速度运行;如果检测到吸附塔的实际平均料位与目标平均料位的差值在预设第二时长内持续位于预设差值范围内,控制解析塔辊式给料机以所述目标速度运行。
本发明实施例提供的技术方案可以包括以下有益效果:本发明提供了一种用于烟气净化装置的物料控制方法及系统。该物料控制方法中,通过实时获取基础平衡速度和目标速度,在吸附塔辊式给料机的运行速度发生突变导致吸附塔的实际料位发生突变时,将解析塔辊式给料机的实际运行速度实时调整为基础平衡速度,快速将吸附塔的实际平均料位与目标平均料位的差值调整至预设差值范围内,并且,在吸附塔辊式给料机的运行速度和解析塔辊式给料机的运行速度均为匀速状态时,如果吸附塔的实际平均料位与目标平均料位的差值超出预设差值范围,即吸附塔的实际平均料位发生突变,能够实时根据吸附塔的实际平均料位与目标平均料位的差值,调整解析塔辊式给料机的实际运行速度,从而使吸附塔的实际平均料位与目标平均料位的差值被快速调整至预设差值范围内,保证烟气净化装置中物料的运转处于相对平衡的状态。综上,该物料控制方法,能够保证吸附塔的实际料位发生突变时,快速的将烟气净化装置中物料的运转调整至相对平衡的状态,控制效率更高,适用性更好。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中一种烟气净化装置的结构示意图;
图2为本发明实施例提供的一种用于烟气净化装置的物料控制方法的流程示意图;
图3为本发明实施例提供的一种中间控制装置的结构示意图;
图4为本发明实施例提供的一种用于烟气净化装置的物料控制系统的结构框图;
图5为本发明实施例提供的另一种用于烟气净化装置的物料控制系统的结构框图。
具体实施方式
参见图2,图2示出的是本发明实施例提供的一种用于烟气净化装置的物料控制方法的流程示意图。结合图2可知,该物料控制方法包括:
步骤101、实时获取基础平衡速度。
结合前述背景技术可知,在采用烟气净化装置对烧结烟气进行净化的过程中,各个吸附塔和解析塔的实际料位均需被控制在固定范围内,各个吸附塔和解析塔的实际料位均不能太高,也不能太低,第一链式输送机和第二链式输送机的传送也需要被控制在相对平衡的状态,使得整个烟气净化装置中物料的运转处于相对平衡的状态,从而保证对烧结烟气进行持续循环的净化,避免因为实际料位的过高或过低导致对烧结烟气的净化中断或净化不彻底的问题产生。
在采用烟气净化装置对烧结烟气进行净化的过程中,吸附塔中用于吸附烧结烟气中污染物的物料(例如活性炭),在吸附污染物之后从吸附塔中排出,经过第一链式输送机运输至解析塔,解析塔将吸附有污染物的物料解析后,生成恢复吸附能力的物料,并将恢复吸附能力的物料排出,之后恢复吸附能力的物料经过第二链式输送机重新传送至各个吸附塔,用于之后对烧结烟气的净化过程,如此反复,持续对烧结烟气进行净化处理。由此可知,只要吸附塔的实际平均料位一直等于目标平均料位,基本可以保证烟气净化装置中物料的运转处于相对平衡的状态。因此,想要烟气净化装置中物料的运转处于相对平衡的状态,必须不断将吸附塔的实际平均料位调整为目标平均料位。实际生产中,只要将吸附塔的实际平均料位与目标平均料位的差值调整至预设差值范围内,即认为将吸附塔的实际料位调整为目标平均料位。其中,预设差值范围可以根据实际生产需要进行设定,例如根据实际生产的精确度要求进行设定,此处不再详述。
其中,吸附塔的实际平均料位为所有处于运行状态的吸附塔的实际料位的和与前述所有处于运行状态的吸附塔的数量的比值。吸附塔的目标平均料位为使得所有吸附塔的实际料位既不太高,也不太低,并且使得所有吸附塔中用于净化烧结烟气的物料(例如活性炭),对烧结烟气的净化效率达到最优时,所有吸附塔的实际料位的和与所有吸附塔的数量的比值。目标平均料位通常根据实际生产经验进行设定,设定之后可以预先存储于用于烟气净化装置的物料控制系统中,使用时直接调取即可。
将吸附塔的实际平均料位与目标平均料位的差值调整至预设差值范围内,可以通过下述方式实现:实时获取吸附塔的实际平均料位与目标平均料位的差值,根据吸附塔的实际平均料位与目标平均料位的差值调整解析塔辊式给料机(本文中,将解析塔的辊式给料机定义为解析塔辊式给料机)的运行速度,使得吸附塔的实际平均料位与目标平均料位的差值位于预设差值范围内。此种方式每次对于吸附塔的实际平均料位与目标平均料位的差值的调整幅度较小,需要经过多次调整,才能将吸附塔的实际平均料位与目标平均料位的差值调整至预设差值范围内。因此,想要不断将吸附塔的实际平均料位与目标平均料位的差值调整至预设差值范围内,使得烟气净化装置中物料的运转处于相对平衡的状态,对于吸附塔的实际平均料位发生突变,但吸附塔的实际平均料位与目标平均料位的差值较小的情况,采用此种方式可以很快将吸附塔的实际平均料位与目标平均料位的差值调整至预设差值范围内。但如果吸附塔的实际平均料位发生突变,且吸附塔的实际平均料位与目标平均料位的差值较大,此种方式就无法快速将吸附塔的实际平均料位与目标平均料位的差值调整至预设差值范围内。
而烟气净化装置在首次用于对烧结烟气进行净化处理之前,吸附塔的实际平均料位与目标平均料位的差值位于预设差值范围内,吸附塔的实际平均料位与目标平均料位基本相同。烟气净化装置被用于对烧结烟气进行净化处理之后,正常情况下,第一链式输送机和第二链式输送机均为匀速运行,如果吸附塔的实际平均料位发生突变,使得吸附塔的实际平均料位与目标平均料位的差值超出预设差值范围,通常是由于吸附塔辊式给料机(本文中,将吸附塔的辊式给料机定义为吸附塔辊式给料机)的运行速度和/或解析塔辊式给料机的运行速度发生突变,使得单位时间内,吸附塔的排料总量与解析塔的排料总量不相等,导致单位时间内,吸附塔中进料总量与排料总量不相等,即吸附塔的进料速度与排料速度不相等,从而导致吸附塔的实际平均料位发生突变。由此可知,只要根据吸附塔辊式给料机的运行速度快速调整解析塔辊式给料机的运行速度,快速将单位时间内,吸附塔的排料总量与解析塔的排料总量调整至相同状态,从而快速将单位时间内,吸附塔的进料总量与排料总量调整至相同状态,即快速将吸附塔的进料速度与排料速度调整至相同状态,就可以快速将吸附塔的实际平均料位与目标平均料位的差值调整至预设差值范围内。
基于前述内容,本发明实施例提供的用于烟气净化装置的物料控制方法中,在对烟气净化装置的物料进行控制时,首先实时获取基础平衡速度,基础平衡速度为单位时间内,解析塔的排料总量与吸附塔的排料总量相等时,解析塔辊式给料机的运行速度。
具体实施时,可以采用下述方式实时获取基础平衡速度:
实时根据每个吸附塔辊式给料机的运行速度,以及下述吸附塔辊式给料机的运行速度与单位时间内吸附塔辊式给料机的排料量的预设第一关系式,即公式(1),获取单位时间内该吸附塔辊式给料机的排料量:
Figure PCTCN2018074584-appb-000005
公式(1)中,W 1i表示单位时间内第i个吸附塔辊式给料机的排料量,单位为吨/小时,L 1i表示该吸附塔辊式给料机的长度,单位为米,g 1i表示该吸附塔辊式给料机的辊间隙的宽度,单位为米,D 1i表示该吸附塔辊式给料机的直径,单位为米,ρ 1表示吸附饱和的活性炭密度,单位为吨/立方米,f 1i表示该吸附塔辊式给料机的运行速度,单位为赫兹,n max1i表示该吸附塔辊式给料机的最大转速,单位为转/分钟,Q 1表示该吸附塔辊式给料机实际使用的交流电源的频率,单位为赫兹,例如当该吸附塔辊式给料机实际使用的交流电源的频率为50赫兹时,Q 1=50,当该吸附塔辊式给料机实际使用的交流电源的频率为60赫兹时,Q 1=60,i取正整数,其中,L 1i、g 1i、D 1i、ρ 1、n max1i和Q 1均为常量,可以预先存储于用于烟气净化装置的物料控制系统中,使用时直接读取即可,该用于烟气净化装置的物料控制系统用于实施本发明实施例提供的用于烟气净化装置的物料控制方法,f 1i可以从该吸附塔辊式给料机的实际运行的变频器中实时读取。
根据单位时间内每个吸附塔辊式给料机的排料量以及下述预设第二关系式,即公式(2),获取单位时间内解析塔辊式给料机的排料量:
Figure PCTCN2018074584-appb-000006
公式(2)中,W 2表示单位时间内解析塔辊式给料机的排料量,单位为吨/立方米,N 1表示吸附塔辊式给料机的数量,W 1i表示单位时间内第i个吸附塔辊式给料机的排料量,单位为吨/立方米,N 2表示处于运行状态的解析塔辊式给料机的数量,其中,N 1和N 2均为常数,可以通过人工输入至用于烟气净化装置的物料控制系统中,N 1也可以通过检测所有吸附塔的运行模式获得(可参考后续实施例内容)。
根据单位时间内解析塔辊式给料机的排料量,以及下述解析塔辊式给料机的运行速度与单位时间内解析塔辊式给料机的排料量的预设第三关系式,即公式(3),获取基础平衡速度:
Figure PCTCN2018074584-appb-000007
公式(3)中,f 2表示所述基础平衡速度,单位为赫兹,Q 2表示解析塔辊式给料机实际使用的交流电源的频率,单位为赫兹,例如当该解析塔辊式给料机实际使用的交流电源的频率为50赫兹时,Q 2=50,当该解析塔辊式给料机实际使用的交流电源的频率为60赫兹时,Q 2=60,W 2表示单位时间内该解析塔辊式给料机的排料量,单位为吨/小时,L 2表示该解析塔辊式给料机的长度,单位为米,g 2表示该解析塔辊式给料机的辊间隙的宽度,单位为米,D 2表示该解析塔辊式给料机的直径,单位为米, ρ 2表示解析之后的活性炭密度,单位为吨/立方米,n max2表示该解析塔辊式给料机的最大转速,单位为转/分钟,其中,L 2、g 2、D 2、ρ 2、n max2和Q 2均为常量,可以预先存储于用于烟气净化装置的物料控制系统中,使用时直接读取即可。
步骤102、实时根据吸附塔的实际平均料位与目标平均料位的差值,以及所述基础平衡速度,获取目标速度,所述目标速度为使得吸附塔的实际平均料位与目标平均料位的差值位于预设差值范围内时解析塔辊式给料机的运行速度。
参考图3,图3示出的是本发明实施例提供的一种中间控制装置的结构示意图。结合图3可知,该中间控制装置包括PID调节器301、平均料位生成模块302、差值生成模块303和多个料位计304。具体实施时,将步骤101中获取的基础平衡速度实时输入至该中间控制装置的PID调节器301中,通过该中间控制装置的多个料位计304实时检测各个吸附塔的实际料位,通过该中间控制装置的平均料位生成模块302,根据检测获得的各个吸附塔的实际料位,生成吸附塔的实际平均料位,通过该中间控制装置的差值生成模块303根据吸附塔的实际平均料位和预设的吸附塔的目标平均料位生成吸附塔的实际平均料位与目标平均料位的差值,并将该差值输入至PID调节器301中。这样,通过实时获取该中间控制装置的PID调节器301输出的速度即可实时获取到目标速度。
步骤103、如果检测到吸附塔辊式给料机的运行速度在预设第一时长内变化幅度大于预设幅度,控制解析塔辊式给料机以所述基础平衡速度运行。
在对烟气净化装置的物料进行控制的过程中,如果检测到一个或多个吸附塔辊式给料机的运行速度在预设第一时长内变化幅度大于预设幅度,即检测到一个或多个吸附塔的运行速度发生突变,则在后续对烟气净化装置的物料进行控制的过程中,需要控制解析塔辊式给料机以基础平衡速度运行,即实时将解析塔辊式给料机的实际运行速度调整为基础平衡速度。从而快速将单位时间内,吸附塔的排料总量与解析塔的排料总量调整至相同状态,进而快速将单位时间内,吸附塔的进料总量与排料总量调整至相同状态,即快速将吸附塔的进料速度与排料速度调整至相同状态,达到快速将吸附塔的实际平均料位与目标平均料位的差值调整至预设差值范围内的效果,保证烟气净化装置中物料的运转处于相对平衡的状态。
步骤104、如果检测到吸附塔的实际平均料位与目标平均料位的差值在预设第二时长内持续位于预设差值范围内,控制解析塔辊式给料机以所述目标速度运行。
在对烟气净化装置的物料进行控制的过程中,如果检测到吸附塔的实际平均料位与目标平均料位的差值在预设第二时长内持续位于预设差值范围内,则控制解析塔辊式给料机以目标速度运行,这样,可以保证吸附塔辊式给料机的运行速度和解析塔辊式给料机的运行速度均为匀速状态时,一旦吸附塔的实际平均料位与目标平均料位的差值超出预设差值范围,可以实时根据吸附塔的实际平均料位与目标平均料位的差值,调整解析塔辊式给料机的实际运行速度,从而使吸附塔的实际平均料位与目标平均料 位的差值被快速调整至预设差值范围内,保证烟气净化装置中物料的运转处于相对平衡的状态。
进一步,为了更加精确快速的将吸附塔的实际平均料位与目标平均料位的差值调整至预设差值范围内,在实时获取基础平衡速度之前,该物料控制方法还包括:按照下述预设第四关系式,即公式(4),设定每一个吸附塔辊式给料机的初始运行速度:
Figure PCTCN2018074584-appb-000008
公式(4)中,v 1i表示第i个吸附塔辊式给料机的初始运行速度,单位为百分比(%),V 1i表示该吸附塔辊式给料机的活性炭填充体积,单位为立方米,B 1i表示该吸附塔辊式给料机的排料口宽度,单位为米,h 1i表示该吸附塔辊式给料机的排料口高度,单位为米,D 1i表示该吸附塔辊式给料机的直径,单位为米,η 1i表示该吸附塔辊式给料机的排料效率,t 1i表示该吸附塔辊式给料机中活性炭的滞留时间,单位为分钟,n max1i表示该吸附塔辊式给料机的最大转速,单位为转/分钟,i取正整数,其中,V 1i、B 1i、h 1i、D 1i、η 1i和n max1i均为常量,可以预先存储于用于烟气净化装置的物料控制系统中,使用时直接读取即可,t 1i可以预先设定好之后存储于用于烟气净化装置的物料控制系统中,使用时直接读取即可,也可以通过人工输入至用于烟气净化装置的物料控制系统中。
进一步,该物料控制方法还包括:检测所有吸附塔的运行模式,吸附塔的运行模式包括:选定模式(FIX模式),忽略模式(SKIP模式)或隔离模式(ISO模式);如果存在运行模式为选定模式的吸附塔,将解析塔排出的物料补充至运行模式为选定模式的吸附塔中;或,如果不存在运行模式为选定模式的吸附塔,将解析塔排出的物料补充至目标吸附塔中,所述目标吸附塔为所有吸附塔中,运行模式为忽略模式的吸附塔和运行模式为隔离模式的吸附塔之外的其余吸附塔。
进一步,具体实施过程中,可以按照下述方式将解析塔排出的物料补充至目标吸附塔中:
确定目标吸附塔的数量N;
设定x=m,判断第x个目标吸附塔的实际料位是否超过该目标吸附塔的预设第一料位或者向该目标吸附塔中补充物料的时长是否超过该目标吸附塔的预设第三时长,其中,m=1,2……,N;
如果否,将解析塔排出的物料向第x个目标吸附塔中补充,记录向第x个目标吸附塔中补充物料的时间,重新执行判断第x个目标吸附塔的实际料位是否超过该目标吸附塔的预设第一料位或者向该目标吸附塔中补充物料的时长是否超过该目标吸附塔的预设第三时长的操作;或,
如果是,设定x=m+1,判断x>N是否成立;如果成立,停止将解析塔排出的物料 向目标吸附塔中补充;或,如果不成立,重新执行判断第x个目标吸附塔的实际料位是否超过该目标吸附塔的预设第一料位或者向该目标吸附塔中补充物料的时长是否超过该目标吸附塔的预设第三时长的操作。
进一步,该物料控制方法还包括:实时检测解析塔的实际料位,如果检测到解析塔的实际料位小于或等于预设第二料位,向解析塔中补充物料,具体实施过程中,可以从物料储存仓向解析塔中补充物料,例如,从活性炭储仓500向解析塔中补充活性炭。
需要说明的是,上述内容中提到的预设第一时长,预设第二时长,预设第三时长,预设差值范围,预设幅度,预设第一料位以及预设第二料位均可以根据实际生产情况进行设定,此处不再详述。
此外,还需要说明的是,公式(1)中f 1i,公式(3)中f 2和公式(4)中v 1i的单位均可以根据需要,按照单位之间的等量转换关系,转换为下述单位中的任意一个单位:转/分钟,赫兹和百分比(%)。
本发明实施例提供的用于烟气净化装置的物料控制方法,通过实时获取基础平衡速度和目标速度,在吸附塔辊式给料机的运行速度发生突变导致吸附塔的实际料位发生突变时,将解析塔辊式给料机的实际运行速度实时调整为基础平衡速度,快速将吸附塔的实际平均料位与目标平均料位的差值调整至预设差值范围内,并且,在吸附塔辊式给料机的运行速度和解析塔辊式给料机的运行速度均为匀速状态时,如果吸附塔的实际平均料位与目标平均料位的差值超出预设差值范围,即吸附塔的实际平均料位发生突变,能够实时根据吸附塔的实际平均料位与目标平均料位的差值,调整解析塔辊式给料机的实际运行速度,从而使吸附塔的实际平均料位与目标平均料位的差值被快速调整至预设差值范围内,保证烟气净化装置中物料的运转处于相对平衡的状态。综上,该物料控制方法,能够保证吸附塔的实际料位发生突变时,快速的将烟气净化装置中物料的运转调整至相对平衡的状态,控制效率更高,适用性更好。
与本发明提供的用于烟气净化装置的物料控制方法相对应,本发明还提供了一种用于烟气净化装置的物料控制系统。
参考图4,图4示出的是本发明实施例提供的一种用于烟气净化装置的物料控制系统的结构框图。结合图4可知,该物料控制系统400包括:料位计401和控制装置402。
料位计401包括多个,用于实时获取各个吸附塔的实际料位。
控制装置402包括:
实际平均料位生成模块4021,用于从所述料位计中读取吸附塔的实际料位,生成吸附塔的实际平均料位;
基础平衡速度获取模块4022,用于实时获取基础平衡速度,所述基础平衡速度为单位时间内,解析塔的排料总量与吸附塔的排料总量相等时,解析塔辊式给料机的运行速度;
目标速度获取模块4023,用于实时根据吸附塔的实际平均料位与目标平均料位的差值,以及所述基础平衡速度,获取目标速度,所述目标速度为使得吸附塔的实际平均料位与目标平均料位的差值位于预设差值范围内时解析塔辊式给料机的运行速度;
第一控制模块4024,用于如果检测到吸附塔辊式给料机的运行速度在预设第一时长内变化幅度大于预设幅度,控制解析塔辊式给料机以所述基础平衡速度运行;
第二控制模块4025,用于如果检测到吸附塔的实际平均料位与目标平均料位的差值在预设第二时长内持续位于预设差值范围内,控制解析塔辊式给料机以所述目标速度运行。
在一些可选的实施例中,可以用第三控制模块4026替代第一控制模块4024和第二控制模块4025,例如参考图5,图5示出的是本发明实施例提供的另一种用于烟气净化装置的物料控制系统500的结构框图。结合图5可知,第三控制模块4026中设置有一个切换开关501。第三控制模块4026具体用于执行下述操作:如果检测到吸附塔辊式给料机的运行速度在预设第一时长内变化幅度大于预设幅度,则将切换开关501与基础平衡速度获取模块4022联通,读取基础平衡速度,控制解析塔辊式给料机以所述基础平衡速度运行;或,如果检测到吸附塔的实际平均料位与目标平均料位的差值在预设第二时长内持续位于预设差值范围内,则将切换开关501与目标速度获取模块4023联通,读取目标速度,控制解析塔辊式给料机以所述目标速度运行。
采用本发明实施例提供的用于烟气净化装置的物料控制系统,能够执行上述用于烟气净化装置的物料控制方法的每一个步骤,达到相同的有益效果,亦即,采用本发明实施例提供的用于烟气净化装置的物料控制系统,对烟气净化装置的物料进行控制,能够保证吸附塔的实际料位发生突变时,快速的将烟气净化装置中物料的运转调整至相对平衡的状态,控制效率更高,适用性更好。
具体实现中,本发明还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时可包括本发明提供的用于烟气净化装置的物料控制方法的各实施例中的部分或全部步骤。所述的存储介质可为磁碟、光盘、只读存储记忆体(英文:read-only memory,简称:ROM)或随机存储记忆体(英文:random access memory,简称:RAM)等。
本领域的技术人员可以清楚地了解到本发明实施例中的技术可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明实施例中的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或 者实施例的某些部分所述的方法。
本说明书中各个实施例之间相同相似的部分互相参见即可。尤其,对于用于烟气净化装置的物料控制系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例中的说明即可。
以上所述的本发明实施方式并不构成对本发明保护范围的限定。

Claims (10)

  1. 一种用于烟气净化装置的物料控制方法,其特征在于,包括:
    实时获取基础平衡速度,所述基础平衡速度为单位时间内,解析塔的排料总量与吸附塔的排料总量相等时,解析塔辊式给料机的运行速度;
    实时根据吸附塔的实际平均料位与目标平均料位的差值,以及所述基础平衡速度,获取目标速度,所述目标速度为使得吸附塔的实际平均料位与目标平均料位的差值位于预设差值范围内时解析塔辊式给料机的运行速度;
    如果检测到吸附塔辊式给料机的运行速度在预设第一时长内变化幅度大于预设幅度,控制解析塔辊式给料机以所述基础平衡速度运行;
    如果检测到吸附塔的实际平均料位与目标平均料位的差值在预设第二时长内持续位于预设差值范围内,控制解析塔辊式给料机以所述目标速度运行。
  2. 如权利要求1所述的物料控制方法,其特征在于,实时获取基础平衡速度的过程,具体包括:
    实时根据吸附塔辊式给料机的运行速度,以及吸附塔辊式给料机的运行速度与单位时间内吸附塔辊式给料机的排料量的预设第一关系式,获取单位时间内吸附塔辊式给料机的排料量;
    根据单位时间内吸附塔辊式给料机的排料量以及预设第二关系式,获取单位时间内解析塔辊式给料机的排料量;
    根据单位时间内解析塔辊式给料机的排料量,以及解析塔辊式给料机的运行速度与单位时间内解析塔辊式给料机的排料量的预设第三关系式,获取基础平衡速度。
  3. 如权利要求2所述的物料控制方法,其特征在于,实时根据吸附塔辊式给料机的运行速度,以及吸附塔辊式给料机的运行速度与单位时间内吸附塔辊式给料机的排料量的预设第一关系式,获取单位时间内吸附塔辊式给料机的排料量的过程,具体包括:
    实时根据吸附塔辊式给料机的运行速度,以及下述吸附塔辊式给料机的运行速度与单位时间内吸附塔辊式给料机的排料量的预设第一关系式,获取单位时间内吸附塔辊式给料机的排料量;
    Figure PCTCN2018074584-appb-100001
    其中,W 1i表示单位时间内第i个吸附塔辊式给料机的排料量,L 1i表示该吸附塔辊式给料机的长度,g 1i表示该吸附塔辊式给料机的辊间隙的宽度,D 1i表示该吸附塔辊式给料机的直径,ρ 1表示吸附饱和的活性炭密度,f 1i表示该吸附塔辊式给料机的运行速度,n max1i表示该吸附塔辊式给料机的最大转速,Q 1表示该吸附塔辊式给料机实际使用的交流电源的频率,i取正整数。
  4. 如权利要求3所述的物料控制方法,其特征在于,根据单位时间内吸附塔辊式给料机的排料量以及预设第二关系式,获取单位时间内解析塔辊式给料机的排料量的 过程,具体包括:
    根据单位时间内吸附塔辊式给料机的排料量以及下述预设第二关系式,获取单位时间内解析塔辊式给料机的排料量;
    Figure PCTCN2018074584-appb-100002
    其中,W 2表示单位时间内解析塔辊式给料机的排料量,N 1表示吸附塔辊式给料机的数量,W 1i表示单位时间内第i个吸附塔辊式给料机的排料量,N 2表示处于运行状态的解析塔辊式给料机的数量。
  5. 如权利要求4所述的物料控制方法,其特征在于,根据单位时间内解析塔辊式给料机的排料量,以及解析塔辊式给料机的运行速度与单位时间内解析塔辊式给料机的排料量的预设第三关系式,获取基础平衡速度的过程,具体包括:
    根据单位时间内解析塔辊式给料机的排料量,以及下述解析塔辊式给料机的运行速度与单位时间内解析塔辊式给料机的排料量的预设第三关系式,获取基础平衡速度;
    Figure PCTCN2018074584-appb-100003
    其中,f 2表示所述基础平衡速度,Q 2表示解析塔辊式给料机实际使用的交流电源的频率,W 2表示单位时间内该解析塔辊式给料机的排料量,L 2表示该解析塔辊式给料机的长度,g 2表示该解析塔辊式给料机的辊间隙的宽度,D 2表示该解析塔辊式给料机的直径,ρ 2表示解析之后的活性炭密度,n max2表示该解析塔辊式给料机的最大转速。
  6. 如权利要求5所述的物料控制方法,其特征在于,实时获取基础平衡速度之前,该物料控制方法还包括:
    按照下述预设第四关系式,设定每一个吸附塔辊式给料机的初始运行速度;
    Figure PCTCN2018074584-appb-100004
    其中,v 1i表示第i个吸附塔辊式给料机的初始运行速度,V 1i表示该吸附塔辊式给料机的活性炭填充体积,B 1i表示该吸附塔辊式给料机的排料口宽度,h 1i表示该吸附塔辊式给料机的排料口高度,D 1i表示该吸附塔辊式给料机的直径,η 1i表示该吸附塔辊式给料机的排料效率,t 1i表示该吸附塔辊式给料机中活性炭的滞留时间,n max1i表示该吸附塔辊式给料机的最大转速,i取正整数。
  7. 如权利要求1至6任意一项所述的物料控制方法,其特征在于,该物料控制方法还包括:
    检测所有吸附塔的运行模式;
    如果存在运行模式为选定模式的吸附塔,将解析塔排出的物料补充至运行模式为选定模式的吸附塔中;或,
    如果不存在运行模式为选定模式的吸附塔,将解析塔排出的物料补充至目标吸附塔中,所述目标吸附塔为所有吸附塔中,运行模式为忽略模式的吸附塔和运行模式为 隔离模式的吸附塔之外的其余吸附塔。
  8. 如权利要求7所述的物料控制方法,其特征在于,将解析塔排出的物料补充至目标吸附塔中的过程,具体包括:
    确定目标吸附塔的数量N;
    设定x=m,判断第x个目标吸附塔的实际料位是否超过该目标吸附塔的预设第一料位或者向该目标吸附塔中补充物料的时长是否超过该目标吸附塔的预设第三时长,其中,m=1,2……,N;
    如果否,将解析塔排出的物料向第x个目标吸附塔中补充,记录向第x个目标吸附塔中补充物料的时间,重新执行判断第x个目标吸附塔的实际料位是否超过该目标吸附塔的预设第一料位或者向该目标吸附塔中补充物料的时长是否超过该目标吸附塔的预设第三时长的操作;或,
    如果是,设定x=m+1,判断x>N是否成立;如果成立,停止将解析塔排出的物料向目标吸附塔中补充;或,如果不成立,重新执行判断第x个目标吸附塔的实际料位是否超过该目标吸附塔的预设第一料位或者向该目标吸附塔中补充物料的时长是否超过该目标吸附塔的预设第三时长的操作。
  9. 如权利要求1至6任意一项所述的物料控制方法,其特征在于,该物料控制方法还包括:
    实时检测解析塔的实际料位,如果检测到解析塔的实际料位小于或等于预设第二料位,向解析塔中补充物料。
  10. 一种用于烟气净化装置的物料控制系统,其特征在于,包括:
    料位计,用于实时获取吸附塔的实际料位;
    控制装置,用于执行下述操作:
    从所述料位计中读取吸附塔的实际料位,生成吸附塔的实际平均料位;
    实时获取基础平衡速度,所述基础平衡速度为单位时间内,解析塔的排料总量与吸附塔的排料总量相等时,解析塔辊式给料机的运行速度;
    实时根据吸附塔的实际平均料位与目标平均料位的差值,以及所述基础平衡速度,获取目标速度,所述目标速度为使得吸附塔的实际平均料位与目标平均料位的差值位于预设差值范围内时解析塔辊式给料机的运行速度;
    如果检测到吸附塔辊式给料机的运行速度在预设第一时长内变化幅度大于预设幅度,控制解析塔辊式给料机以所述基础平衡速度运行;
    如果检测到吸附塔的实际平均料位与目标平均料位的差值在预设第二时长内持续位于预设差值范围内,控制解析塔辊式给料机以所述目标速度运行。
PCT/CN2018/074584 2017-05-12 2018-01-30 一种用于烟气净化装置的物料控制方法及系统 WO2018205693A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MYPI2018704299A MY197542A (en) 2017-05-12 2018-01-30 Material control method and system for a flue gas cleaning device
RU2018140561A RU2702381C1 (ru) 2017-05-12 2018-01-30 Способ и система контроля подачи материала для устройства очистки дымовых газов
BR112018076255-5A BR112018076255A2 (pt) 2017-05-12 2018-01-30 método e sistema de controle de material para um dispositivo de limpeza de gás de combustão
KR1020197001686A KR102076947B1 (ko) 2017-05-12 2018-01-30 플루 가스 정화 장치용 물질 제어 방법 및 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710333102.9A CN108873954B (zh) 2017-05-12 2017-05-12 一种用于烟气净化装置的物料控制方法及系统
CN201710333102.9 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018205693A1 true WO2018205693A1 (zh) 2018-11-15

Family

ID=64104675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074584 WO2018205693A1 (zh) 2017-05-12 2018-01-30 一种用于烟气净化装置的物料控制方法及系统

Country Status (6)

Country Link
KR (1) KR102076947B1 (zh)
CN (1) CN108873954B (zh)
BR (1) BR112018076255A2 (zh)
MY (1) MY197542A (zh)
RU (1) RU2702381C1 (zh)
WO (1) WO2018205693A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109445374A (zh) * 2018-12-13 2019-03-08 沈阳工程学院 一种用于螺旋布料给料机的智能控制系统
CN112987803A (zh) * 2021-02-02 2021-06-18 桂林鸿程矿山设备制造有限责任公司 一种氢氧化钙给料配水控制系统、方法及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112044233B (zh) * 2019-06-05 2022-05-03 中冶长天国际工程有限责任公司 一种活性炭法烟气净化系统中辊式给料机排料量的计算方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527514A (en) * 1993-11-18 1996-06-18 Sumitomo Heavy Industries, Ltd. Desulfurizing and denitrating tower
JPH08188258A (ja) * 1994-12-29 1996-07-23 Ishiyama Bunyo 粉粒体計量供給装置
JPH08323144A (ja) * 1995-06-01 1996-12-10 Sumitomo Heavy Ind Ltd 乾式脱硫脱硝装置
CN101441445A (zh) * 2008-09-18 2009-05-27 中冶长天国际工程有限责任公司 一种烧结物料平衡方法及系统
CN102728217A (zh) * 2012-07-10 2012-10-17 中国华电工程(集团)有限公司 移动床活性焦联合脱硫脱硝脱汞的方法及系统
CN102774666A (zh) * 2012-07-26 2012-11-14 中国神华能源股份有限公司 料位平衡控制方法和系统
CN204952658U (zh) * 2015-07-24 2016-01-13 中冶华天工程技术有限公司 烧结球团烟气资源化系统
CN105618019A (zh) * 2014-11-28 2016-06-01 湖南中冶长天节能环保技术有限公司 包括余热利用的活性炭热解析方法及其装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5355939B2 (ja) * 2008-06-09 2013-11-27 住友重機械工業株式会社 排ガス処理装置及び排ガス処理方法
JP5558439B2 (ja) * 2011-09-06 2014-07-23 住友重機械工業株式会社 排ガス処理装置及び排ガス処理方法
KR101581562B1 (ko) * 2014-06-27 2015-12-30 현대제철 주식회사 배가스 처리 장치 및 방법
AU2015343719B2 (en) * 2014-11-06 2018-09-13 Exxonmobil Upstream Research Company Adsorbing contaminants from a gas stream
CN104648970B (zh) * 2014-12-31 2017-02-01 中冶长天国际工程有限责任公司 一种配料控制方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527514A (en) * 1993-11-18 1996-06-18 Sumitomo Heavy Industries, Ltd. Desulfurizing and denitrating tower
JPH08188258A (ja) * 1994-12-29 1996-07-23 Ishiyama Bunyo 粉粒体計量供給装置
JPH08323144A (ja) * 1995-06-01 1996-12-10 Sumitomo Heavy Ind Ltd 乾式脱硫脱硝装置
CN101441445A (zh) * 2008-09-18 2009-05-27 中冶长天国际工程有限责任公司 一种烧结物料平衡方法及系统
CN102728217A (zh) * 2012-07-10 2012-10-17 中国华电工程(集团)有限公司 移动床活性焦联合脱硫脱硝脱汞的方法及系统
CN102774666A (zh) * 2012-07-26 2012-11-14 中国神华能源股份有限公司 料位平衡控制方法和系统
CN105618019A (zh) * 2014-11-28 2016-06-01 湖南中冶长天节能环保技术有限公司 包括余热利用的活性炭热解析方法及其装置
CN204952658U (zh) * 2015-07-24 2016-01-13 中冶华天工程技术有限公司 烧结球团烟气资源化系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109445374A (zh) * 2018-12-13 2019-03-08 沈阳工程学院 一种用于螺旋布料给料机的智能控制系统
CN112987803A (zh) * 2021-02-02 2021-06-18 桂林鸿程矿山设备制造有限责任公司 一种氢氧化钙给料配水控制系统、方法及存储介质
CN112987803B (zh) * 2021-02-02 2023-01-06 桂林鸿程矿山设备制造有限责任公司 一种氢氧化钙给料配水控制系统、方法及存储介质

Also Published As

Publication number Publication date
KR20190020084A (ko) 2019-02-27
KR102076947B1 (ko) 2020-02-12
MY197542A (en) 2023-06-22
RU2702381C1 (ru) 2019-10-08
CN108873954B (zh) 2020-02-14
CN108873954A (zh) 2018-11-23
BR112018076255A2 (pt) 2019-03-26

Similar Documents

Publication Publication Date Title
WO2018205693A1 (zh) 一种用于烟气净化装置的物料控制方法及系统
JP6070971B1 (ja) 排ガス処理装置及び排ガス処理方法
CN103728994B (zh) 一种水泥厂scr脱硝效率监测控制方法
WO2019144523A1 (zh) 一种多工序烟气净化系统及其控制方法
CN110354630B (zh) 用于烟气净化系统中解析塔的冷风量控制方法及装置
CN109268944A (zh) 空气调节器及其控制方法、装置和计算机可读存储介质
BR112020011466A2 (pt) Sistema de purificação de gases de combustão de múltiplos processos e métodos de controle para ele
CN103562637A (zh) 管理在烟道气处理系统中利用的能量的系统和方法
CN108434936B (zh) 一种用于烟气净化系统的物料平衡控制方法及装置
JP2013052377A (ja) 排ガス処理装置及び排ガス処理方法
JP6439207B1 (ja) 排ガス水銀除去システム
JP6539885B1 (ja) 排ガス水銀除去システム
CN109827787B (zh) 活性炭烟气净化系统及其辊式给料机排料效率测量方法
JP7106834B2 (ja) 脱硫装置の運転方法、脱硫制御装置
CN109827685B (zh) 活性炭烟气净化系统、辊式给料机排料效率测量方法
CN108525464A (zh) 一种用于脱硫脱硝系统的料位控制方法及装置
US10449487B2 (en) Mercury control in a seawater flue gas desulfurization system
CN112742162A (zh) 一种用于解析系统的物料平衡控制方法、装置及系统
CN112044233A (zh) 一种活性炭法烟气净化系统中辊式给料机排料量的计算方法及系统
CN113941218B (zh) 一种吸附塔烟气防泄漏控制系统、方法及装置
CN117747002A (zh) 一种氮气流量确定方法、装置、计算机设备及存储介质
JP2018171585A (ja) 排ガス処理装置及び排ガス処理方法
CN114712979A (zh) 一种快速判断烟气净化工艺中so2吸附效率的方法和系统
CN117553304A (zh) 垃圾焚烧系统中脱硝剂投加量的控制方法和及相关装置
JP4249044B2 (ja) 排ガス処理槽への排ガス処理剤の供給方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18797856

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018076255

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197001686

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112018076255

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181217

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18797856

Country of ref document: EP

Kind code of ref document: A1