WO2018205594A1 - 内嵌式触控显示面板及其制作方法、显示装置 - Google Patents
内嵌式触控显示面板及其制作方法、显示装置 Download PDFInfo
- Publication number
- WO2018205594A1 WO2018205594A1 PCT/CN2017/115529 CN2017115529W WO2018205594A1 WO 2018205594 A1 WO2018205594 A1 WO 2018205594A1 CN 2017115529 W CN2017115529 W CN 2017115529W WO 2018205594 A1 WO2018205594 A1 WO 2018205594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- touch
- sub
- display panel
- electrode
- electrodes
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 238000000034 method Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 8
- 229920002120 photoresistant polymer Polymers 0.000 claims description 8
- 239000007772 electrode material Substances 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 4
- 239000012811 non-conductive material Substances 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 2
- 230000008901 benefit Effects 0.000 description 62
- 239000010410 layer Substances 0.000 description 30
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 239000003990 capacitor Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 4
- 239000002356 single layer Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0443—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/1201—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/131—Interconnections, e.g. wiring lines or terminals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/40—OLEDs integrated with touch screens
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8052—Cathodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04111—Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
Definitions
- the present disclosure relates to the field of touch display technologies, and in particular, to an in-cell touch display panel, a method for fabricating the same, and a display device.
- OLED organic light emitting diode
- the capacitive touch screen has the advantages of long life, high light transmittance, and multi-touch support, compared with the resistive touch screen. Moreover, the capacitive touch screen also has a good suppression effect on noise and parasitic capacitance to the ground. Therefore, capacitive touch screens have become the mainstream in the field of touch screens.
- the projected capacitive touch screen technology realizes the touch function by using a change in capacitance generated when a finger approaches the touch panel.
- the projected capacitive touch screen can be divided into a self-capacitive touch screen and a mutual capacitive touch screen.
- the self-capacitive touch screen and the mutual capacitive touch screen respectively detect the touch position of the finger based on the principle of mutual capacitance and self-capacitance.
- the projected capacitive touch screen can be further divided into an external type and an embedded type.
- the in-cell capacitive touch screen integrates the touch electrodes into the display screen, has the advantages of simple structure, lightness, thinness and low cost, and is increasingly becoming the mainstream technology of the touch screen, for example, more and more widely used in various portable devices.
- smart terminals such as mobile phones.
- the in-cell capacitive touch screen can be divided into On-Cell touch screen and In-Cell touch screen.
- the In-Cell touch screen can be divided into Hybrid In-Cell (HIC) capacitive touch screen and fully embedded (Full).
- In-Cell, FIC In-Cell, FIC capacitive touch screen.
- An object of the present disclosure is to provide an in-cell touch display panel, a manufacturing method thereof, and a display device to further improve performance of the display panel and the display device.
- an in-cell touch display panel includes a substrate substrate, a touch electrode, and a touch chip, and the touch electrodes include a plurality of sub-electrodes independent of each other.
- the display panel further includes a plurality of touch leads corresponding to the sub-electrodes, wherein each sub-electrode is connected to the touch chip through a corresponding touch lead; at least one sub-electrode has at least one non-conductive area, and the sub-electrode is not
- An orthographic projection of the conductive region on the substrate substrate and an orthographic projection of the touch lead corresponding to the sub-electrode on the substrate substrate at least partially overlap.
- the in-cell touch display panel is an OLED display panel
- the touch electrode is used as an OLED cathode of the OLED display panel.
- the touch lead is used to transmit a display driving signal to the touch electrode during the display phase; the touch scan signal is transmitted to the touch electrode during the touch phase, and the touch electrode is generated at the touch position.
- the touch signal is transmitted to the touch chip.
- the plurality of sub-electrodes are arranged in a matrix, and each sub-electrode is a square electrode block.
- a retaining wall is used to separate adjacent sub-electrodes.
- the material of the retaining wall also forms the at least one non-conductive region.
- the cross section of the retaining wall is an inverted trapezoid.
- the retaining wall is formed from a negative photoresist material.
- the non-conductive regions are vias in the sub-electrodes or are filled with a non-conductive material.
- a display device comprising the in-cell touch display panel as described in any of the above embodiments.
- the present disclosure also provides a method for fabricating an in-cell touch display panel as described in the foregoing embodiments, including:
- the plurality of sub-electrodes are formed by vapor-depositing a film layer of a touch electrode material on a base substrate on which a retaining wall is formed.
- the in-cell touch display panel, the manufacturing method thereof, and the display device provided by the embodiment of the present disclosure are configured to provide at least one non-conductive region in a region of the sub-electrode of the touch electrode.
- the orthographic projection of the touch lead corresponding to the sub-electrode on the sub-electrode is located in the region of the sub-electrode, so that the influence of the touch lead on the sub-electrode can be reduced, and the signal-to-noise ratio of the in-cell touch display panel is improved. To improve its touch accuracy.
- FIG. 1 and 2 show a partial structural diagram of an in-cell touch display panel.
- FIG. 3 shows a schematic diagram of a cathode pattern of an in-cell touch display panel.
- FIG. 4 is a schematic view showing a cathode pattern structure of another in-cell touch display panel.
- FIG. 5 is a schematic diagram of a touch electrode and a touch lead in an in-cell touch display panel provided by an exemplary embodiment of the present disclosure.
- FIG. 6 is a schematic diagram of a touch electrode and a touch lead in an in-cell touch display panel according to another exemplary embodiment of the present disclosure.
- FIG. 7 is a flow chart showing a method of fabricating an in-cell touch display panel according to an exemplary embodiment of the present disclosure.
- the array substrate of the in-cell self-capacitance OLED panel may include a glass substrate 30, an array of pixels 20, and a touch electrode 10, and may further include a touch driver IC (TIC) and a display driver.
- TIC touch driver IC
- DI Display driver IC
- FPC Flexible Printed Circuit
- the touch electrode 10 can be connected to the touch chip through a touch pattern metal (TPM) to detect the touch position and/or the touch pressure.
- TPM touch pattern metal
- the package cover 40 is provided to protect the fabricated array substrate.
- the cathode of the OLED can be reused as a touch electrode, that is, the touch electrode 10 in FIGS. 1 and 2 also serves as a cathode of the OLED.
- the touch electrode 10 can be divided into different blocks by a process, and a time-division-driven scheme can be applied to the OLED panel.
- the electrode 10 serves as a cathode of the OLED element, and forms a voltage difference with the pixel anode, so that the OLED emits light; during the touch phase, the electrode 10 functions as a touch electrode for detecting the touch operation.
- FIG. 3 shows a schematic diagram of a touch electrode/cathode pattern in an in-cell touch display panel.
- different cathode blocks S11, S12, ..., S1N, S21, S22, ..., S2N, SM1, SM2, ..., SMN, etc.
- M and N are positive integers of 1 or more.
- each cathode block is extended by a metal material to an integrated circuit IC chip (for example, a touch chip, or an integrated chip of a touch chip and a display driver chip). Terminals, and the distance of each cathode block from the IC chip is different, which results in a large difference in line impedance between the IC chip and the different cathode blocks, so that different voltages exist between different cathode blocks and IC chips.
- IR Drop affects the uniformity of the touch effect.
- each cathode block can be passed The metal wire is connected to the IC chip. As shown in FIG. 4, each cathode block is connected to the terminals of the IC chip through a metal wire.
- a metal wire may pass through many cathode blocks at the same time, that is, there may be multiple metal wires under each cathode block (for example, the cathode in FIG. 4) There are three metal wires under the block S1N at the same time).
- a metal wire passes through different cathode blocks, and the metal wire affects the capacitance of the corresponding cathode block, thereby affecting the signal detection of the finger touch and affecting the signal-to-noise ratio of the signal.
- the in-cell touch display panel includes a base substrate, a touch electrode, and a touch chip, and the touch electrodes include a plurality of independent touches. Multiple sub-electrodes.
- the in-cell touch display panel further includes a touch lead (eg, a metal line) corresponding to the plurality of sub-electrodes, and each sub-electrode is connected to the touch chip through a corresponding touch lead.
- the at least one sub-electrode has at least one non-conductive region, and the orthographic projection of the non-conductive region of the sub-electrode on the substrate substrate at least partially overlaps with the orthographic projection of the touch-control wire corresponding to the sub-electrode on the substrate.
- the pixel region of the array substrate may include a plurality of pixel units arranged in a matrix, each of the pixel units may include at least three sub-pixel units, each of the sub-pixel units including a thin film transistor including a gate, a gate insulating layer, an active layer, and a source Pole and drain, etc.
- the sub-electrodes are electrically connected to the touch chip through the corresponding touch leads, and thus, in the specific implementation, in the in-cell touch display panel provided in this embodiment.
- Each of the touch leads has a one-to-one correspondence with each of the sub-electrodes.
- Each of the sub-electrodes is electrically connected to the touch chip through a corresponding touch lead. This achieves electrical connection between each sub-electrode and the touch chip.
- C ⁇ S/4 ⁇ kd
- C the capacitance of the capacitor structure formed by one of the sub-electrodes and the touch lead in the touch electrode
- ⁇ the dielectric constant of the insulating electrolyte
- S the sub-electrode and the touch
- k the electrostatic force constant
- d the spacing between the sub-electrode and the touch lead.
- the non-conductive region is disposed in the sub-electrode, and the orthographic projection of the non-conductive region on the substrate substrate and the orthographic projection of the touch-control wire corresponding to the sub-electrode on the substrate substrate at least partially overlap, such that The facing area S of the capacitor structure formed by the sub-electrode and the corresponding touch lead can be reduced, so that the capacitance of the capacitor structure can be reduced, and finally the signal-to-noise ratio of the in-cell touch display panel can be improved. And improve the touch detection accuracy.
- the in-cell touch display panel provided by the embodiment of the present disclosure is provided below through FIG. 5 and FIG. 6 . Detailed instructions are given.
- FIG. 5 is a schematic diagram of an in-cell touch display panel provided by an exemplary embodiment of the present disclosure.
- the previously mentioned HIC capacitive touch screen is generally based on a double-layer touch lead design, which uses a mutual capacitance principle, while the FIC capacitive touch screen is based on a single-layer touch lead design, which uses a self-capacitance principle to achieve multi-touch. That is to say, the HIC capacitive touch screen requires two layers of touch leads, and the FIC capacitive touch screen integrates the touch leads into one layer.
- the single-layer touch leads of the FIC capacitive touch screen are taken as an example for illustration.
- the present invention is not limited thereto, and the principle of the present invention can also be applied to the double-layer touch leads of the HIC capacitive touch screen.
- the in-cell touch display panel may be an OLED display panel including an OLED cathode; the touch electrode may be reused as the OLED cathode.
- the present invention is not limited thereto.
- the in-cell touch display panel may also be any other type of display panel such as an LCD display panel. Accordingly, the touch electrodes may be reused in common. electrode.
- the basic structure of an OLED is a structure comprising a sandwich of an anode (for example, thin and transparent indium tin oxide ITO) and a metal cathode.
- the entire structural layer further includes a hole transport layer, an emitting layer (EL) and an electron transport layer.
- EL emitting layer
- an appropriate voltage is applied between the anode and the cathode, the positive and negative cathodes are combined in the light-emitting layer to produce light, and three primary colors of red, green, and blue RGB are generated depending on the material of the light-emitting layer to constitute a basic color.
- a DC voltage is applied to the cathode, and the anode is simultaneously applied with a gray scale voltage, thereby realizing control of the luminance of the light, thereby realizing display of the OLED.
- a metal such as Ag, Al, Ca, In, Li, and Mg having a low work function, or a composite metal having a low work function (for example, Mg-) may be employed.
- Ag magnesium silver to make the cathode.
- the touch lead is used to transmit a display driving signal to the touch electrode during the display phase; the touch scan signal is transmitted to the touch electrode during the touch phase, and the touch position occurs at the touch position.
- the touch signal generated by the touch electrode is transmitted to the touch chip.
- the touch electrode is composed of a plurality of sub-electrodes, in order to reduce the display phase and the touch In the phase of mutual interference, the display phase and the touch phase can be driven in a time-division manner, and in the specific implementation, the display driving chip and the touch chip for display can be integrated into one chip, which can further reduce the production cost.
- the display phase refers to a time period for realizing the function of displaying an image when the array substrate is applied to the touch display panel; and the touch phase is used when the array substrate is applied to the touch display panel.
- a mode is adopted for time-division driving of the sub-electrode (refer to driving between the display phase and the touch phase), that is, in the display phase, the sub-electrode is used as an OLED cathode, and the sub-electrode is And the OLED anode applies a corresponding voltage for realizing the display image function, thereby realizing the function of displaying an image; in the touch phase, the sub-electrode functions as a touch electrode, and applies a corresponding voltage for implementing the touch function to the sub-electrode, and simultaneously The anode does not work to avoid the effects of touch.
- each of the sub-electrodes is a square electrode block.
- the present invention is not limited thereto, and each of the sub-electrodes may have any other shape, for example, a strip electrode.
- the shape of the sub-electrodes may be a rectangle, such as a square of the same size as shown in FIG. 5, and each sub-electrode may correspond to a plurality of pixel units.
- the present invention is not limited thereto, and the shape of each of the sub-electrodes may be the same or different, and the area sizes may be the same or different. In the case where the shape and size of each sub-electrode are the same, it is more advantageous to ensure the uniformity of the touch when the finger is touched.
- each of the touch leads is in the same layer as the source, drain or gate of the thin film transistor of the pixel region of the in-cell touch display panel.
- the in-cell touch display panel further includes a plurality of bases (insulating layers) corresponding to the sub-electrodes in one-to-one correspondence; the bases are provided with via holes, and the sub-electrodes pass through the The via holes in the base are connected to the corresponding touch leads.
- the base structure corresponding to each sub-electrode is disposed on the layer structure of the touch lead, so that the through-hole process is facilitated at the base position, which facilitates good electrical connection between the sub-electrode and the touch lead.
- the via U shown in the embodiment of FIG. 5 is circular, the present invention is not limited thereto, and the shape of the via may be arbitrary.
- the size of the sub-electrodes is different according to the size of the in-cell touch display panel, which is not limited herein. Generally, for a touch display panel of 6 inches or less, the side length of the square sub-electrode can be Between 3.5-5mm.
- the single sub-electrode m can be a square electrode block of about 5 mm by about 5 mm, and the sub-electrode can be connected to the touch chip through a touch lead n, and the sub-electrode is given to the sub-sensor through the touch chip.
- the electrode applies a drive signal, and the sub-electrode m can provide a feedback signal to the touch chip.
- the capacitance of the sub-electrode m is a fixed value.
- the capacitance of the sub-electrode m is the finger capacitance plus the original capacitance. Due to the different capacitor sizes, the RC delay time of the signal is also different.
- a non-conductive region Q (eg, an opening) is disposed in a portion of the metal touch lead opposite the sub-electrode, such that at least a portion of the sub-electrode facing the metal touch lead is at least partially
- the formed non-conductive region does not affect the capacitance of the sub-electrode, thereby improving the signal-to-noise ratio of the finger touch signal and improving the accuracy of the touch detection.
- the non-conductive region Q in FIG. 5 is disposed in a rectangular shape, the present invention is not limited thereto, and the non-conductive region Q may be any shape. Further, although each of the non-conductive regions Q in FIG. 5 is a rectangle having the same shape and the same size, the present invention is not limited thereto, and each of the non-conductive regions Q may have a different shape and may have different sizes. In addition, in order to clearly show the purpose of the non-conductive region Q, FIG. 5 deliberately draws the non-conductive region Q to be large, but in practical applications, as long as the non-conductive region Q is orthographically projected on the substrate substrate The orthographic projection of the electrodes on the substrate may at least partially overlap.
- the non-conductive region Q may be disposed to be more elongated than the embodiment shown in FIG. 5, so that the region where the touch lead and the sub-electrode face each other is substantially completely set as a non-conductive region. . Because the region facing the sub-electrode and the touch electrode is almost completely non-conductive, the capacitance of the capacitor structure formed by the sub-electrode and the touch electrode can be minimized, and the touch signal noise is improved. Ratio and touch accuracy.
- FIG. 6 is a schematic diagram of an in-cell touch display panel provided by another exemplary embodiment of the present disclosure.
- the in-cell display panel may further include a retaining wall (eg, A in FIG. 6) for separating the adjacent sub-electrodes.
- a retaining wall eg, A in FIG. 6
- the material of the retaining wall also forms at least one non-conductive region (eg, B in FIG. 6).
- the cross section of the retaining wall is an inverted trapezoid, that is, the cross section of the retaining wall is a trapezoid having an upper bottom edge larger than a lower bottom edge.
- the retaining wall is formed from a negative photoresist material.
- the negative photoresist material retaining wall can isolate the cathode to form a pattern required for the touch electrode, that is, to vapor-deposit the cathode in a desired shape.
- the embodiment of the present disclosure reduces the capacitance of the panel capacitor by reducing the area of the facing region between the sub-electrode and the touch lead, thereby improving the accuracy of the touch signal.
- a region where the cathode is opposite to the touch lead is hollowed out to form a hole, or a region where the cathode and the touch lead are directly opposed is filled with a non-conductive material.
- the above is only an example of the self-capacitance in-cell touch display panel structure.
- the specific structure of the display panel is not limited to this, and the film structure can be increased or decreased according to actual production needs, so as to be suitable for The display panel of multiple modes is not limited herein.
- Another embodiment of the present disclosure provides a display device including the in-cell touch display panel as in the above embodiment of the invention.
- the display device can be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
- a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
- Other indispensable components of the display device are known to those skilled in the art, and are not described herein, nor should they be construed as limiting the invention.
- FIG. 7 is a flow chart showing a method of fabricating an in-cell touch display panel according to an exemplary embodiment of the present disclosure.
- the manufacturing method of the in-cell touch display panel in the above embodiment may include the following steps.
- step S100 a plurality of touch leads are formed in the pixel region of the base substrate.
- step S110 a retaining wall is formed on the base substrate on which the pixel region is formed.
- step S110 may include:
- the exposed negative photoresist film layer is developed to form a retaining wall.
- the light can be scattered to some extent during the exposure process, so that the obtained cross-section of the retaining wall is an inverted trapezoid whose upper bottom edge is larger than the lower bottom edge.
- step S120 a touch electrode material film layer is evaporated on the base substrate on which the retaining wall is formed to form a plurality of sub-electrodes.
- Each of the sub-electrodes is connected to the touch chip through a corresponding touch lead; at least one sub-electrode has at least one non-conductive area, and the non-conductive area is projected on the base substrate and the touch lead is on the base substrate.
- the orthographic projections on at least partially overlap.
- the retaining wall can automatically separate adjacent sub-electrodes during the vapor deposition process, and isolate the sub-electrode from the non-conductive region inside the sub-electrode. Forming a sub-electrode having a non-conductive region.
- each sub-electrode and its non-conductive region can be formed by a single evaporation process. Therefore, the embodiment of the present invention can simplify the manufacturing process of the in-cell touch display panel.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
一种内嵌式触控显示面板及其制作方法、显示装置。该内嵌式触控显示面板包括衬底基板、触控电极和触控芯片。触控电极包括多个彼此独立的子电极,所述显示面板还包括多条与所述子电极一一对应的触控引线,每个所述子电极通过对应的触控引线与所述触控芯片相连。至少一子电极具有至少一非导电区域,且子电极的非导电区域在衬底基板上的正投影和与该子电极对应的触控引线在衬底基板上的正投影至少部分重叠。
Description
相关申请的交叉引用
本申请要求于2017年5月12日向中国专利局提交的专利申请201710336082.0的优先权利益,并且在此通过引用的方式将该在先申请的内容并入本文。
本公开涉及触控显示技术领域,具体而言,涉及一种内嵌式触控显示面板及其制作方法、显示装置。
随着显示技术的飞速发展,触控显示技术已经被广泛应用于手机、手表、平板电脑等各种显示产品中。有机电致发光二极管(Organic light emitting diode,OLED)显示器由于具有宽视角、低能耗、产品形态薄等特点已成为目前的发展趋势。
关于触控屏技术,相对于电阻式触控屏,电容式触控屏具有寿命长、透光率高、可以支持多点触控等优点。并且,电容式触控屏对噪声和对地寄生电容也有很好的抑制作用。因此,电容式触控屏已成为触控屏领域中的主流。
投射式电容触摸屏技术是利用手指接近触摸面板时所产生的电容变化来实现触控功能。投射式电容触摸屏按照其工作原理划分可以分为自电容式触摸屏和互电容式触摸屏,自电容式触摸屏和互电容式触摸屏分别基于互电容和自电容的原理实现对手指触摸位置的检测。按照触摸模组的结构划分,投射式电容触摸屏又可以分为外挂式和内嵌式。其中,内嵌式电容触摸屏将触控电极集成在显示屏中,具有结构简单、轻、薄、成本低的优点,越来越成为触摸屏的主流技术,例如,越来越广泛应用于各种便携式智能终端(诸如手机)中。
内嵌式电容触摸屏可以分为On-Cell触摸屏和In-Cell触摸屏,其中In-Cell触控屏又可分为复合内嵌式(Hybrid In-Cell,HIC)电容触摸屏和完全内嵌式(Full In-Cell,FIC)电容触摸屏。
发明内容
本公开的目的在于提供一种内嵌式触控显示面板及其制作方法、显示装置,以进一步提升显示面板和显示装置的性能。
根据本公开的一个方面,提供一种内嵌式触控显示面板,包括衬底基板、触控电极和触控芯片,触控电极包括彼此独立的多个子电极。显示面板还包括多条与子电极一一对应的触控引线,每个子电极通过对应的触控引线与所述触控芯片相连;至少一子电极具有至少一非导电区域,且子电极的非导电区域在所述衬底基板上的正投影和与该子电极对应的触控引线在衬底基板上的正投影至少部分重叠。
在一些实施例中,内嵌式触控显示面板为OLED显示面板,触控电极复用作OLED显示面板的OLED阴极。
在一些实施例中,触控引线用于在显示阶段向触控电极传递显示驱动信号;在触控阶段向触控电极传递触控扫描信号,且将发生触控位置处的触控电极产生的触控信号传输到所述触控芯片。
在一些实施例中,所述多个子电极呈矩阵排列,且每个子电极是方形电极块。
在一些实施例中,挡墙用于将相邻的子电极分隔开来。
在一些实施例中,挡墙的材料还形成所述至少一非导电区域。
在一些实施例中,挡墙的横截面为倒梯形。
在一些实施例中,挡墙由负性光刻胶材料制作形成。
在一些实施例中,非导电区域为子电极中的通孔或者填充有非导电材料。
根据本公开的另一方面,提供了一种显示装置,其包括如上述实施例中任一实施例所述的内嵌式触控显示面板。
本公开还提供了一种用于制作如前述实施例所述的内嵌式触控显示面板的方法,包括:
在衬底基板的像素区内形成所述多条触控引线;
在形成有像素区的衬底基板上形成挡墙;
在形成有挡墙的衬底基板上蒸镀触控电极材料膜层形成所述多个子电极。
对于本公开的实施例提供的内嵌式触控显示面板及其制作方法、显示装置,通过在触控电极的子电极的区域内设置至少一非导电区域,
与该子电极对应的触控引线在子电极上的正投影位于子电极的该区域内,从而能够减少触控引线对子电极的电容影响,提高该内嵌式触控显示面板的信噪比,提高其触控精度。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
此处的附图被并入说明书中并构成本说明书的一部分,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1和图2示出一种内嵌式触控显示面板的部分结构示意图。
图3示出一种内嵌式触控显示面板阴极图案的示意图。
图4示出另一内嵌式触控显示面板阴极图案结构的示意图。
图5示出本公开示例性实施例提供的内嵌式触控显示面板的中的触控电极和触控引线的示意图。
图6示出本公开的另一示例性实施例提供的内嵌式触控显示面板中的触控电极和触控引线的示意图。
图7示出本公开示例性实施例提供的内嵌式触控显示面板的制作方法的流程图。
现在,将参考附图更全面地描述本公开的示例性实施例。然而,本公开的实施例能够以多种形式实施,且不应被理解为限于在此阐述的示例。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,在实践本公开的实施例提供的技术方案时,可省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。
需要指出的是,在附图中,为了图示的清晰起见,可能会夸大层和区域的尺寸。而且可以理解,当某一元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另
外,可以理解,当某一元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当某一层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间唯一的层,或还可以存在一个以上的其它中间层或元件。说明书通篇以相似的参考标记指示相似的元件。
下面,以OLED面板为例简要说明内嵌式自电容显示面板的主要结构。如图1和2所示,内嵌式自电容OLED面板的阵列基板可以包括玻璃基板30、像素20的阵列和触控电极10,还可包括触控芯片(touch driver IC,TIC)、显示驱动芯片(display driver IC,DDI)、柔性电路板(Flexible Printed Circuit FPC)等。触控电极10可以通过TPM(touch pattern metal,触控金属线)连接至触控芯片,实现触控位置和/或触控压力大小的检测。
由于有机材料及金属对氧气及水气相当敏感,在制作完成阵列基板后,需经过封装以对其进行保护,如图2所示,提供封装盖板40对制作完成的阵列基板进行保护。
对于自电容OLED面板,可以让OLED的阴极复用作触控电极,即图1和图2中的触控电极10同时也作为OLED的阴极。例如,可以利用工艺制程将触控电极10分割成不同的区块,并将分时驱动的方案应用于OLED面板。在显示阶段,电极10作为OLED元件的阴极,与像素阳极形成电压差,使得OLED发光;在触控阶段,电极10作为触控电极进行触控工作的检测。
图3示出了一种内嵌式触控显示面板中的触控电极/阴极图案的示意图。如图3所示,可以利用隔离柱而得到不同的阴极块(S11、S12…S1N,S21、S22…S2N,SM1、SM2…SMN等),其中M和N均为大于等于1的正整数。
然而,本申请的发明人发现,该方案的存在的一个问题在于,各个阴极块是通过金属材料引出延伸到集成电路IC芯片(例如,触控芯片,或触控芯片和显示驱动芯片的集成芯片)的端子,,而各个阴极块距IC芯片的距离是不同的,这导致IC芯片和不同阴极块之间具有差异较大的线路阻抗,使得不同的阴极块和IC芯片之间存在不同的电压降(IR Drop),,影响了触控效果的均一性。
为了改善由于上述的电压降导致的缺陷,可以让每个阴极块通过
金属线与IC芯片连接。如图4所示,每个阴极块通过一条金属线连接至IC芯片的端子。但是,本申请的发明人发现,该方案存在的一个问题是:一条金属线可能会同时通过很多阴极块,即每个阴极块下面会可能同时存在多条金属线(例如,图4中的阴极块S1N下面同时存在三条金属线)。而一条金属线通过不同的阴极块,该金属线会对相应的阴极块的电容产生影响,从而影响手指触控的信号检测,影响信号的信噪比。
因此,本申请的发明人提出了另一解决方案,根据本公开的实施例提供的内嵌式触控显示面板包括衬底基板、触控电极和触控芯片,触控电极包括多个彼此独立的多个子电极。该内嵌式触控显示面板还包括与所述多个子电极一一对应的触控引线(例如金属线),每个子电极通过对应的触控引线与触控芯片连接。至少一子电极具有至少一非导电区域,且子电极的非导电区域在衬底基板上的正投影与该子电极对应的触控引线在衬底基板上的正投影至少部分重叠。
阵列基板的像素区可包括矩阵排列的多个像素单元,每个像素单元可包括至少三个子像素单元,每个子像素单元包括薄膜晶体管,薄膜晶体管包括栅极、栅绝缘层、有源层、源极和漏极等。
在本公开的实施例中,各子电极通过与其对应的触控引线与该触控芯片实现电性连接,因此,在具体实施时,在本实施例提供的上述内嵌式触控显示面板中,各条触控引线与各子电极一一对应。各子电极通过对应的触控引线与触控芯片电性连接。这样实现了各子电极与触控芯片的电性连接。
根据电容公式:C=εS/4πkd,其中,C为触控电极中的一个子电极与触控引线形成的电容结构的电容,ε为绝缘电解质的介电常数,S为该子电极与触控引线形成的电容结构的正对面积,k为静电力常数,d为该子电极与触控引线之间的间距。本发明实施例通过在子电极中设置非导电区域,且该非导电区域在衬底基板上的正投影和与子电极对应的触控引线在衬底基板上的正投影至少部分重叠,这样,能够减小该子电极与对应的触控引线形成的电容结构的正对面积S,从而能够减小该电容结构的电容,最终可提高该内嵌式触控显示面板触控时的信噪比,并提高了触控检测精度。
下面通过图5和图6对本公开实施例提供的内嵌式触控显示面板
进行详细说明。
图5示出本公开示例性实施例提供的内嵌式触控显示面板的示意图。
之前提到的HIC电容触摸屏一般是基于双层触控引线设计,采用的是互电容原理,而FIC电容触摸屏是基于单层触控引线设计,采用的是自电容原理,实现多点触控。也就是说,HIC电容触摸屏需要两层触控引线,而FIC电容触摸屏将触控引线集成到一层。下面的实施例中均以FIC电容触摸屏的单层触控引线为例进行举例说明,但本发明并不限定于此,本发明的原理也可以适用于HIC电容触摸屏的双层触控引线。只要应用了本公开实施例中的方案提出的通过在子电极中设置非导电区域来减小该子电极与对应的触控引线形成的电容结构的电容这一技术原理,均属于本发明的保护范围之内。
在示例性实施例中,内嵌式触控显示面板可以为OLED显示面板,其包括OLED阴极;所述触控电极可以复用作所述OLED阴极。但本发明并不限定于此,在其他实施例中,所述内嵌式触控显示面板还可以为LCD显示面板等任意其他类型的显示面板,相应的,所述触控电极可以复用公共电极。
OLED的基本结构是包括阳极(例如,薄而透明的铟锡氧化物ITO)和金属阴极的三明治的结构。整个结构层还包括空穴传输层、发光层(Emitting Material Layer,EL)与电子传输层。当向阳极和阴极之间施加适当电压时,正极空穴与阴极电子就会在发光层中结合,产生光亮,根据发光层的材料不同而产生红、绿和蓝RGB三原色,构成基本色彩。在进行显示时,向阴极施加直流电压,阳极同时施加灰阶电压,从而实现发光亮度的控制,进而实现OLED的显示。
在阴极部分,为了增加发光元件的发光效率,可采用具有低功函数(Low work function)的Ag、Al、Ca、In、Li与Mg等金属,或低功函数的复合金属(例如:Mg-Ag镁银)来制作阴极。
在示例性实施例中,触控引线用于在显示阶段向所述触控电极传递显示驱动信号;在触控阶段向所述触控电极传递触控扫描信号,且将发生触控位置处的所述触控电极产生的触控信号传输到所述触控芯片。
由于触控电极是由多个子电极组成的,为了减少显示阶段和触控
阶段的相互干扰,可以采用显示阶段和触控阶段分时驱动的方式,并且,在具体实施时还可以将显示用的显示驱动芯片和触控芯片整合为一个芯片,这样可以进一步降低生产成本。
这里,所述显示阶段是指在阵列基板应用于触控显示面板的情况下,用以实现显示图像功能的时间段;所述触控阶段在阵列基板应用于触控显示面板的情况下,用以实现触控功能的时间阶段。在具体操作过程中,采用对所述子电极分时驱动(指显示阶段和触控阶段分开驱动)的模式,即,在显示阶段,将所述子电极作为OLED阴极,并为所述子电极和OLED阳极施加实现显示图像功能的相应电压,从而实现显示图像的功能;在触控阶段,所述子电极作为触控电极,并为所述子电极施加实现触控功能的相应电压,同时使阳极不工作,以避免对触控的影响。
在图5所示的实施例中,所述多个子电极呈矩阵排列,每个子电极是方形电极块。但本发明并不限定于此,各子电极还可以为任何其它的形状,例如还可以为条状电极。
子电极的形状可以为矩形,例如图5所示的大小相同的正方形,各子电极可对应多个像素单元。但本发明并不限定于此,各子电极的形状可以相同,也可以不相同,面积大小可以相同,也可以不相同。在各子电极的形状大小均相同的情况下,更有利于保证手指触控时触控的均一性。
在示例性实施例中,各条触控引线与内嵌式触控显示面板的像素区的薄膜晶体管的源极、漏极或栅极处于同一层。在另外的实施例中,内嵌式触控显示面板还包括与多个与所述子电极一一对应的基台(绝缘层);所述基台中设置有过孔,所述子电极通过所述基台中的过孔与相应的所述触控引线相连。在触控引线所在的层结构上设置与各子电极一一对应的基台,这样在基台位置便于实施过孔工艺,有助于实现子电极与触控引线的良好电性连接。
需要说明的是,虽然图5的实施例中绘示的过孔U为圆形的,但本发明并不限定于此,过孔的形状可以是任意的。
当所述阵列基板应用于内嵌式触控显示面板时,根据内嵌式触控显示面板的尺寸不同,所述子电极的尺寸也不尽相同,在此不做限定。一般地,对于6寸以下的触控显示面板,方形子电极的边长可以为
3.5-5mm之间。
需要说明的是,在制造上述内嵌式触控显示面板时,本领域技术人员可以根据像素区的面积以及实际要求的触控电极密度来设置所包含的子电极的数量。本发明实施例中对子电极的具体数量不进行限制。
在图5所示的实施例中,单个子电极m可以是5mm乘以5mm左右的方形电极块,该子电极可通过一根触控引线n连接至触控芯片,通过触控芯片给该子电极施加驱动信号,并且该子电极m可以向触控芯片提供反馈信号。当手指未触控显示面板时,子电极m所承受的电容为一固定值,当手指触控显示面板时,子电极m承受的电容为手指电容加上原有电容。由于电容大小不同,信号的RC延迟(resistance capacitance delay)时间也不相同,这样,手指触控的前后触控芯片就会接收到不一样的电信号,从而实现触控点的确定。继续参考图5,在一些实施例中,在金属触控引线与子电极正对的部分设置非导电区域Q(例如,开孔),这样,子电极与金属触控引线正对的区域至少部分被镂空或者填充非导电材料,所形成的非导电区域不会对子电极的电容有影响,从而提高手指触控信号的信噪比,同时提高触控检测的精度。
需要说明的是,虽然图5中的非导电区域Q设置为长方形,但本发明对此不作限定,非导电区域Q可以是任意形状。此外,虽然图5中的各非导电区域Q是同样形状同样大小的长方形,但本发明并不限定于此,各个非导电区域Q可以是不同的形状,并可以具有不同的大小。另外,为了清楚显示出该非导电区域Q的目的,图5特意将该非导电区域Q绘示得较大,但实际应用中,只要该非导电区域Q在衬底基板上的正投影与子电极在衬底基板上的正投影至少部分重叠即可。
在其他实施例中,该非导电区域Q可以设置为比图5所示的实施例中更细长的形状,从而大致完全将该该触控引线与子电极正对的区域设置为非导电区域。因为该子电极与该触控电极正对的区域几乎完全为非导电区域,从而能够最大程度的减小该子电极与该触控电极形成的电容结构的电容,更有利于提高触控信噪比及触控精度。
图6示出本公开的另一示例性实施例提供的内嵌式触控显示面板的示意图。
在示例性实施例中,内嵌式显示面板还可以包括挡墙(例如图6示中的A),挡墙A用于将各个相邻的子电极分隔开来。
在示例性实施例中,所述挡墙的材料还形成至少一非导电区域(例如图6示中的B)。
在示例性实施例中,所述挡墙的横截面为倒梯形,即,挡墙的横截面为上底边大于下底边的梯形。通过使挡墙横截面为上底边大于下底边的倒梯形,可以直接在阵列基板上蒸镀电极材料膜层,并通过挡墙将相邻的子电极隔离开来、将子电极和子电极内部的非导电区域隔离开来,从而通过一次蒸镀即可制造出子电极结构,因此,本公开实施例可以进一步简化上述内嵌式触控显示面板的制造工艺。
在示例性实施例中,所述挡墙由负性光刻胶材料制作形成。
在对有机发光层和引进进行蒸镀时,负性光刻胶材料挡墙可以对阴极进行隔离,从而形成触控电极所需的图案,即实现按照所需形状蒸镀阴极。
本公开的实施例通过减小子电极与触控引线之间的正对区域的面积,进而减小子电极与触控引线形成平板电容器的电容值,从而提升触控信号的精度。在进行阴极蒸镀时,使得阴极与触控引线正对的区域,镂空形成孔,或在阴极与触控引线正对的区域填充非导电材料。由此,减小金属触控引线对子电极的电容触控的影响,从而提高触控的信号的信噪比,提高触控检测精度。
以上仅为自电容内嵌式触控显示面板结构的示例,在实际生产和应用中,显示面板的具体结构不限于此,可根据实际生产需要,增减或改变其膜层结构,以便适用于多种模式的显示面板,在此不做限定。
进一步地,本公开的另一实施例提供了一种显示装置,包括如上述发明实施例中的内嵌式触控显示面板。
该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员所知晓的,在此不做赘述,也不应作为对本发明的限制。
图7示出本公开示例性实施例提供的内嵌式触控显示面板的制作方法的流程图。
如图7所示,上述实施例中的内嵌式触控显示面板的制作方法可以包括以下步骤。
在步骤S100中,在衬底基板的像素区形成多条触控引线。
在步骤S110中,在形成有像素区的衬底基板上形成挡墙。
在示例性实施例中,步骤S110可以包括:
在衬底基板的像素区上形成负性光刻胶膜层;
在负性光刻胶膜层上方设置掩膜板并对负性光刻胶进行曝光;
对曝光后的负性光刻胶膜层进行显影形成挡墙。
可以利用曝光过程中光线在一定程度上的散射,从而让获得的挡墙的横截面为上底边大于下底边的倒梯形。
在步骤S120中,在形成有挡墙的衬底基板上蒸镀触控电极材料膜层形成多个子电极。
每个所述子电极通过对应的触控引线与触控芯片相连;至少一子电极具有至少一非导电区域,所述非导电区域在衬底基板上的正投影和触控引线在衬底基板上的正投影至少部分重叠。
由于挡墙的横截面为上底边大于下底边的倒梯形,所以在蒸镀过程中挡墙能够自动将相邻的子电极隔开,并将子电极和子电极内部的非导电区域隔离开,形成具有非导电区域的子电极。在上述实施例中,通过一次蒸镀工艺即可形成各子电极及其内部的非导电区域,因此本发明实施例可以简化内嵌式触控显示面板的制造工艺。
此外,上述内嵌式触控显示面板的制作方法中各步骤的具体细节已经在对应的内嵌式触控显示面板中进行了详细的描述,因此此处不再赘述。而且,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。在其它实施例中,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
本领域技术人员在考虑说明书及实践这里的公开内容后,将容易想到其它替代性的实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。
Claims (11)
- 一种内嵌式触控显示面板,包括衬底基板、触控电极和触控芯片,其中所述触控电极包括彼此独立的多个子电极,所述显示面板还包括多条与所述子电极一一对应的触控引线,每个所述子电极通过对应的触控引线与所述触控芯片相连;其中至少一子电极具有至少一非导电区域,且子电极的非导电区域在所述衬底基板上的正投影和与该子电极对应的触控引线在衬底基板上的正投影至少部分重叠。
- 根据权利要求1所述的内嵌式触控显示面板,其中所述内嵌式触控显示面板为OLED显示面板,所述触控电极复用作所述OLED显示面板的OLED阴极。
- 根据权利要求1所述的内嵌式触控显示面板,其中所述触控引线用于在显示阶段向所述触控电极传递显示驱动信号;在触控阶段向所述触控电极传递触控扫描信号,且将发生触控位置处的触控电极产生的触控信号传输到所述触控芯片。
- 根据权利要求1所述的内嵌式触控显示面板,其中所述多个子电极呈矩阵排列,且每个子电极是方形电极块。
- 根据权利要求1所述的内嵌式触控显示面板,其中所述内嵌式显示面板还包括挡墙,所述挡墙用于将相邻的子电极分隔开来。
- 根据权利要求5所述的内嵌式触控显示面板,其中所述挡墙的材料还形成所述至少一非导电区域。
- 根据权利要求5或6所述的内嵌式触控显示面板,其中所述挡墙的横截面为倒梯形。
- 根据权利要求5所述的内嵌式触控显示面板,其中所述挡墙由负性光刻胶材料制作形成。
- 根据权利要求1所述的内嵌式触控显示面板,其中所述非导电区域为子电极中的通孔或者填充有非导电材料。
- 一种显示装置,包括如上述权利要求1-9任一项所述的内嵌式触控显示面板。
- 一种用于制作如权利要求1所述的内嵌式触控显示面板的方法,包括:在衬底基板的像素区内形成所述多条触控引线;在形成有像素区的衬底基板上形成挡墙;在形成有挡墙的衬底基板上蒸镀触控电极材料膜层形成所述多个子电极。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/998,617 US10963105B2 (en) | 2017-05-12 | 2017-12-12 | In-cell touch display panel, manufacturing method thereof, display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710336082.0 | 2017-05-12 | ||
CN201710336082.0A CN107168578B (zh) | 2017-05-12 | 2017-05-12 | 内嵌式触控显示面板及其制作方法、显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018205594A1 true WO2018205594A1 (zh) | 2018-11-15 |
Family
ID=59815035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/115529 WO2018205594A1 (zh) | 2017-05-12 | 2017-12-12 | 内嵌式触控显示面板及其制作方法、显示装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10963105B2 (zh) |
CN (1) | CN107168578B (zh) |
WO (1) | WO2018205594A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107168578B (zh) * | 2017-05-12 | 2019-09-27 | 京东方科技集团股份有限公司 | 内嵌式触控显示面板及其制作方法、显示装置 |
CN107608560B (zh) * | 2017-10-20 | 2020-04-24 | 武汉天马微电子有限公司 | 一种触控显示面板及显示装置 |
CN108183121A (zh) * | 2017-12-15 | 2018-06-19 | 武汉华星光电半导体显示技术有限公司 | 柔性显示面板及其制作方法 |
JP2019113656A (ja) * | 2017-12-22 | 2019-07-11 | シャープ株式会社 | 液晶パネル |
CN108389883B (zh) * | 2018-03-06 | 2020-12-25 | 京东方科技集团股份有限公司 | 触控显示基板及其制作方法、显示装置 |
CN108598132A (zh) * | 2018-05-23 | 2018-09-28 | 京东方科技集团股份有限公司 | 显示基板的制作方法、掩膜板的制作方法、显示装置 |
CN108762561B (zh) | 2018-05-25 | 2021-01-15 | 京东方科技集团股份有限公司 | 触控显示面板及其制造方法、驱动方法、触控显示装置 |
US20220147183A1 (en) * | 2018-12-13 | 2022-05-12 | Shenzhen Royole Technologies Co., Ltd. | Touch panel and touch detection method |
CN110673762B (zh) * | 2019-09-29 | 2023-04-07 | 合肥微晶材料科技有限公司 | 一种低可见性触控电极及其制作方法 |
CN110750176B (zh) * | 2019-10-28 | 2022-09-13 | 昆山工研院新型平板显示技术中心有限公司 | 触控模组及其制备方法、显示面板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105094422A (zh) * | 2015-06-23 | 2015-11-25 | 京东方科技集团股份有限公司 | 一种触控显示面板、其制备方法、驱动方法及显示装置 |
CN105528125A (zh) * | 2014-10-17 | 2016-04-27 | 瑞鼎科技股份有限公司 | 内嵌式互电容触控面板及其布局 |
US20160313831A1 (en) * | 2015-04-27 | 2016-10-27 | Raydium Semiconductor Corporation | In-cell touch panel |
CN106354302A (zh) * | 2016-08-19 | 2017-01-25 | 京东方科技集团股份有限公司 | 内嵌式透明触控显示面板及其制造方法、驱动方法 |
CN107168578A (zh) * | 2017-05-12 | 2017-09-15 | 京东方科技集团股份有限公司 | 内嵌式触控显示面板及其制作方法、显示装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101903823B (zh) * | 2007-12-21 | 2012-02-08 | 富士通株式会社 | 显示元件及其制造方法以及电子纸张及电子终端装置 |
KR20090075554A (ko) * | 2008-01-04 | 2009-07-08 | 삼성전자주식회사 | 액정 표시 장치와 그 제조 방법 |
CN103226412A (zh) * | 2013-04-10 | 2013-07-31 | 北京京东方光电科技有限公司 | 一种内嵌式触摸屏及显示装置 |
US9046682B2 (en) * | 2013-11-05 | 2015-06-02 | Amazon Technologies, Inc. | Mechanical stress mitigation in electrowetting display structures |
CN103885637B (zh) * | 2014-03-12 | 2017-05-31 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104076984A (zh) * | 2014-06-26 | 2014-10-01 | 合肥鑫晟光电科技有限公司 | 一种内嵌触摸显示屏及其驱动显示方法、显示装置 |
CN104461209B (zh) * | 2015-01-09 | 2017-12-19 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104536630B (zh) * | 2015-01-21 | 2017-05-10 | 京东方科技集团股份有限公司 | 一种触摸显示面板、其检测方法及显示装置 |
KR20160092107A (ko) * | 2015-01-26 | 2016-08-04 | 삼성디스플레이 주식회사 | 표시 장치 및 그 제조 방법 |
CN104503633B (zh) * | 2015-01-26 | 2018-07-06 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏、其驱动方法及显示装置 |
CN105259696A (zh) * | 2015-11-16 | 2016-01-20 | 深圳市华星光电技术有限公司 | 彩色滤光基板的制作方法 |
KR102565306B1 (ko) * | 2016-11-23 | 2023-08-10 | 엘지디스플레이 주식회사 | 표시패널 및 터치표시장치 |
-
2017
- 2017-05-12 CN CN201710336082.0A patent/CN107168578B/zh active Active
- 2017-12-12 WO PCT/CN2017/115529 patent/WO2018205594A1/zh active Application Filing
- 2017-12-12 US US15/998,617 patent/US10963105B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105528125A (zh) * | 2014-10-17 | 2016-04-27 | 瑞鼎科技股份有限公司 | 内嵌式互电容触控面板及其布局 |
US20160313831A1 (en) * | 2015-04-27 | 2016-10-27 | Raydium Semiconductor Corporation | In-cell touch panel |
CN105094422A (zh) * | 2015-06-23 | 2015-11-25 | 京东方科技集团股份有限公司 | 一种触控显示面板、其制备方法、驱动方法及显示装置 |
CN106354302A (zh) * | 2016-08-19 | 2017-01-25 | 京东方科技集团股份有限公司 | 内嵌式透明触控显示面板及其制造方法、驱动方法 |
CN107168578A (zh) * | 2017-05-12 | 2017-09-15 | 京东方科技集团股份有限公司 | 内嵌式触控显示面板及其制作方法、显示装置 |
Also Published As
Publication number | Publication date |
---|---|
US20200333906A1 (en) | 2020-10-22 |
CN107168578B (zh) | 2019-09-27 |
CN107168578A (zh) | 2017-09-15 |
US10963105B2 (en) | 2021-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018205594A1 (zh) | 内嵌式触控显示面板及其制作方法、显示装置 | |
CN107342370B (zh) | 显示面板及显示装置 | |
CN107704129B (zh) | Oled触控显示基板、制作方法、显示面板及显示装置 | |
WO2018205651A1 (zh) | Oled触控显示面板及其制作方法、触控显示装置 | |
WO2017197934A1 (zh) | 阵列基板及其制作方法、触控显示装置 | |
US10234979B2 (en) | Array substrate, related display panels, and related display apparatus | |
WO2016082636A1 (zh) | 像素结构、透明触摸显示屏及其制作方法、和显示装置 | |
WO2017084366A1 (zh) | 触摸屏及其制作方法、显示装置 | |
US10466820B2 (en) | OLED array substrate, manufacturing method thereof and touch display device | |
KR101574390B1 (ko) | 유기 발광 다이오드, 터치 디스플레이 장치 및 그의 제조 방법 | |
US9262001B2 (en) | High-accuracy OLED touch display panel structure of narrow border | |
US11561660B2 (en) | Display apparatuses and self-capacitance touch panels thereof | |
US20160011705A1 (en) | Touch display panel and touch display device | |
JP2017504918A (ja) | タッチ表示装置およびその製造方法 | |
TWI649685B (zh) | 窄邊框高感測靈敏度之內嵌式有機發光二極體觸控顯示面板結構 | |
US9412796B2 (en) | High-accuracy OLED touch display panel structure | |
US10156919B2 (en) | In-cell touch display structure | |
US11487370B2 (en) | Touch substrate, touch substrate driving method and preparation method, and touch device | |
US10394353B2 (en) | In-cell touch display structure | |
US10101833B2 (en) | Display panel and manufacturing method therefor, and display device | |
CN107885400B (zh) | 一种oled触控显示面板及其驱动方法 | |
US20150085208A1 (en) | In-cell touch display structure | |
US11737304B2 (en) | Display substrates, display panels and display devices | |
US11069752B2 (en) | Display device and manufacturing method thereof | |
CN111399684A (zh) | 一种触控基板、其制作方法、显示面板及显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17909459 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17909459 Country of ref document: EP Kind code of ref document: A1 |