WO2018205412A1 - 一种双激光束自动补偿同步校形与强化装置及方法 - Google Patents

一种双激光束自动补偿同步校形与强化装置及方法 Download PDF

Info

Publication number
WO2018205412A1
WO2018205412A1 PCT/CN2017/094096 CN2017094096W WO2018205412A1 WO 2018205412 A1 WO2018205412 A1 WO 2018205412A1 CN 2017094096 W CN2017094096 W CN 2017094096W WO 2018205412 A1 WO2018205412 A1 WO 2018205412A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
calibration
workpiece
enhanced
strengthening
Prior art date
Application number
PCT/CN2017/094096
Other languages
English (en)
French (fr)
Inventor
张永康
杨智帆
于秋云
秦艳
杨丰槐
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Priority to US16/153,714 priority Critical patent/US20190039184A1/en
Publication of WO2018205412A1 publication Critical patent/WO2018205412A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/286Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/34Rotor-blade aggregates of unitary construction, e.g. formed of sheet laminae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods

Definitions

  • the invention relates to the technical field of additive manufacturing, in particular to a dual laser beam automatic compensation synchronous calibration and strengthening device and method.
  • the overall shape of the aero-engine blade and the shape of the blade will destroy the structure of the part to some extent, change the surface structure of the metal material, reduce the surface properties of the metal parts, and the fatigue performance and surface precision of the structure are difficult. Meet the requirements.
  • the tracking detection of the part processing process, the quality evaluation of the surface of the part, the analysis of the overall structure of the part, the control system of the processing process, the feedback system and the adjustment equipment basically adopt the "one step one stop" method, that is, the first part is performed.
  • On-line tracking detection of the surface, and then the feedback system transmits the data information, and then the control system controls the adjustment equipment to process the parts.
  • the online tracking detection system evaluates the surface quality of the parts and analyzes the overall structure of the parts.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a dual laser beam automatic compensation synchronous calibration and strengthening device with high processing efficiency, good quality, long service life and guaranteed production requirements.
  • the device comprises a calibration laser, a reinforced laser, a calibrated laser control system for separately controlling the calibrated laser and the reinforced laser, and a reinforced laser control system, respectively adjusting the calibrated laser and strengthening Calibration laser power adjustment device and enhanced laser power adjustment device for laser power, online monitoring system for monitoring surface performance and shape size of workpiece, feedback of data monitored by online monitoring system to calibration laser power adjustment device and enhanced laser power adjustment device The real-time tracking feedback system, the workpiece rotating device that controls the rotation of the workpiece, and the computer.
  • the workpiece is fixed on the workpiece rotating device, the calibration laser and the enhanced laser are located on the workpiece side;
  • the calibration laser control system is respectively connected with the calibration laser power adjusting device and the calibration laser, and the enhanced laser control system and the enhanced laser power adjustment respectively The device and the enhanced laser connection;
  • the online monitoring system is respectively connected with the calibration laser power adjustment device and the enhanced laser power adjustment device through the real-time tracking feedback system;
  • the workpiece rotation device, the calibration laser power adjustment device, the enhanced laser power adjustment device, and the real-time tracking feedback The system is connected to a computer and is controlled by a computer.
  • the above-mentioned calibration laser and reinforced laser can select different parameter specifications for the two lasers according to different requirements in the calibration and strengthening process.
  • the enhanced laser can move freely on both sides of the workpiece, so that the calibration laser and the reinforced laser can be distributed on the same side of the blade for synchronization: the online monitoring system is located between the calibration laser and the reinforced laser, and the distance is determined by the calibration and reinforcement.
  • the blending analysis of the corresponding temperature field shows that the realization of the three Synchronization.
  • the calibration laser and the reinforced laser can also be distributed simultaneously on the corresponding parts on both sides of the blade: the calibrated laser and the reinforced laser are symmetrically distributed along the center line, and the online monitoring system is on the same side of the calibrated laser and separated by a certain distance to realize the synchronization of the three. . Selecting the optimal work plan through error analysis will help speed up the processing efficiency.
  • the on-line monitoring system is used to synchronously detect the surface of the workpiece.
  • the surface information and parameter adjustment of the workpiece are transmitted to the calibration laser power adjustment device and the enhanced laser power adjustment device, respectively adjusting the parameters of the two lasers, and automatically compensating Repeat the calibration and reinforcement several times.
  • the workpiece rotation device can rotate the workpiece to any angle, and at the same time cooperate with the two lasers to realize the calibration and reinforcement of the workpiece surface at any angle.
  • the present invention further provides a method for automatically correcting a synchronous calibration and strengthening device for a dual laser beam: the steps are as follows:
  • the online monitoring system monitors the workpiece size and shape parameters, the computer saves the data as the original data X0, and the real-time tracking feedback system transmits the information to the calibration laser power adjustment device and the enhanced laser power adjustment device, computer recording At this time, the calibration laser and the enhanced laser parameters are used as the raw data M0 adjusted by the two laser parameters;
  • the computer When the overall blade and blade of the aero-engine reach the ideal situation, the computer performs the original data analysis and calculation, and obtains the parameter X and the laser parameter M of the workpiece size and shape as the synchronization calibration and laser parameter adjustment control standards respectively; analyzing the original data X0 With the error of the ideal parameter X, this data S0 is recorded as the original data for minimizing the error during the synchronization correction and strengthening process;
  • the calibration laser and the reinforced laser are located on the same side of the workpiece; when the calibration laser is calibrated, the online monitoring system performs real-time tracking, and the corrected workpiece size parameters are sequentially fed back to the enhanced laser and the calibration laser; the calibration laser power The adjusting device and the enhanced laser power adjusting device respectively adjust the parameters of the calibrated laser and the reinforced laser, control the synchronous laser to work synchronously, and realize the synchronizing effect of the calibration-detection and feedback-enhancement;
  • the on-line monitoring system collects parameters X1 and two laser parameters M1 of the surface performance and shape of the workpiece, and after computer records and saves the data, feeds back to the calibration laser power adjustment device and the enhanced laser power adjustment device, and performs error analysis to record and save the data S1;
  • step (6) If the same side realizes the calibration—detection and feedback—Improve the synchronization effect and realize the calibration on the same side—detection and feedback—the surface performance and shape and size parameters of the workpiece meet the relevant requirements after the synchronization is strengthened, and the error is within the allowable error range. Inside, the processing is completed, otherwise it will enter step (6);
  • the calibration laser and the reinforced laser are respectively located on both sides of the workpiece for work; when the calibration laser is calibrated, the online monitoring system performs real-time tracking, and the corrected workpiece size parameters are sequentially fed back to the enhanced laser and the calibration laser;
  • the laser power adjusting device and the enhanced laser power adjusting device respectively adjust the calibration laser and the enhanced laser parameters, strengthen the laser control system to control the enhanced laser synchronization work, and realize the synchronizing effect of the calibration-detection and feedback-enhancement;
  • the on-line monitoring system collects parameters X2 and two laser parameters M2 of the surface performance and structural dimensions of the workpiece, and the computer records and stores the data, and then feeds back to the calibration laser power adjustment device and the enhanced laser. Power adjustment device, and perform error analysis, record and save data S2;
  • step (9) If the two sides realize the calibration-detection and feedback-enhanced synchronization, the surface performance and shape and size parameters of the workpiece meet the relevant requirements, and the error is within the allowable error range, then the processing is completed, otherwise it proceeds to step (9);
  • the reinforced laser can move freely on both sides of the workpiece, so that the calibrated laser and the reinforced laser are distributed on the same side or both sides of the workpiece, the calibrated laser performs the sizing process, the laser is strengthened, and the surface of the workpiece is monitored by an on-line monitoring system.
  • Performance and shape size, the real-time tracking feedback system feeds back the data monitored by the online monitoring system to the calibration laser power adjustment device and the enhanced laser power adjustment device for automatic compensation, eliminating the synergistic effect of workpiece alignment and synchronization enhancement, and improving the workpiece.
  • the surface accuracy also greatly improves the processing efficiency.
  • the optimal working plan is selected, so that the workpiece is continuously optimized until the workpiece processing requirements are met.
  • FIG. 1 is a schematic structural view of a calibration laser and a reinforced laser on the same side of a workpiece according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a calibration laser and a reinforced laser on both sides of a workpiece according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the working principle of the embodiment of the present invention.
  • a dual laser beam automatic compensation synchronization correction and strengthening device includes a calibration laser 1, a reinforced laser 2, and a control laser 1 and a reinforced laser 2, respectively.
  • the calibration laser control system 3 and the enhanced laser control system 4 the calibration laser power adjustment device 5 and the enhanced laser power adjustment device 6 for adjusting the power of the calibration laser 1 and the enhancement laser 2, respectively, and monitoring the surface properties and shape dimensions of the workpiece a
  • the monitoring system 7 feeds back the data monitored by the online monitoring system 7 to the calibration laser power adjustment device 5 and the real-time tracking feedback system 8 of the enhanced laser power adjustment device 6, the workpiece rotation device 9 that controls the rotation of the workpiece a, and the computer 10.
  • the workpiece a is fixed on the workpiece rotating device 9, the calibrated laser 1 and the reinforced laser 2 are located on the workpiece a side; the calibrated laser control system 3 is connected to the calibrated laser power adjusting device 5 and the calibrated laser 1 respectively, and the reinforced laser is The control system 4 is respectively connected to the enhanced laser power adjusting device 6 and the enhanced laser 2; the online monitoring system 7 is connected to the calibration laser power adjusting device 5 and the enhanced laser power adjusting device 6 through the real-time tracking feedback system 8, respectively; the workpiece rotating device 9, The calibration laser power adjustment device 5, the enhanced laser power adjustment device 6, and the real-time tracking feedback system 8 are all connected to the computer 10 and controlled by the computer 10.
  • the above-mentioned calibration laser 1 and the reinforced laser 2 can select different parameter specifications according to different requirements in the calibration and strengthening process.
  • the reinforced laser 2 can move freely on both sides of the workpiece a, so that the calibrated laser 1 and the reinforced laser 2 can be distributed on the same side of the workpiece a for synchronous operation, or can be distributed on the corresponding parts on both sides of the workpiece a to work synchronously, and selected by error analysis.
  • the optimal work plan is conducive to speeding up the processing efficiency.
  • the system 8 transmits the surface information and parameter adjustment of the workpiece a to the calibration laser power adjustment device 5 and the enhanced laser power adjustment device 6, respectively adjusting and controlling the parameters of the two lasers, and repeating the calibration and strengthening repeatedly after the automatic compensation.
  • the workpiece a After machining a surface of a workpiece a, the workpiece a can be rotated to an arbitrary angle by the workpiece rotating device 9, and the two lasers are rotated to realize the calibration and strengthening of the surface of the workpiece a at an arbitrary angle.
  • the online monitoring system 7 monitors the size and shape parameters of the workpiece a
  • the computer 10 saves the data as the original data X0
  • the real-time tracking feedback system 8 transmits information to the calibration laser power adjustment device 5 and the enhanced laser.
  • Power adjustment device 6, the computer 10 records the calibration laser 1 and the enhanced laser 2 parameters at this time, as the two laser parameters adjusted raw data M0;
  • the computer 10 When the overall blade and blade of the aero-engine reach the ideal situation, the computer 10 performs the original data analysis and calculation, and obtains the parameter X and the laser parameter M of the size and shape of the workpiece a, respectively, as the synchronous calibration and laser parameter adjustment control standard; The error of the data X0 and the ideal parameter X, the data S0 is recorded as the original data for minimizing the error during the synchronization correction and strengthening process;
  • the calibration laser 1 and the reinforced laser 2 are both located on the same side of the workpiece a.
  • the on-line monitoring system 7 performs real-time tracking, and the dimensional parameters of the workpiece a after correction are sequentially fed back to the reinforced laser 2 And the calibration laser 1;
  • the calibration laser power adjustment device 5 and the enhanced laser power adjustment device 6 respectively adjust the parameters of the calibration laser 1 and the enhanced laser 2, and the enhanced laser control system 4 controls the enhanced laser 2 to work synchronously to realize the calibration-detection and Feedback - enhanced synchronization;
  • the on-line monitoring system 7 collects parameters X1 and two laser parameters M1 of the surface performance and shape size of the workpiece a. After the computer 10 records the saved data, it feeds back to the calibration laser power adjustment device 5 and the enhanced laser power adjustment device 6, and performs error analysis. Recording and saving data S1;
  • step (6) If the same side realizes the calibration-detection and feedback-enhanced synchronization, the surface performance and shape and size parameters of the workpiece meet the relevant requirements, and the error is within the allowable error range, then the processing is completed, otherwise it proceeds to step (6);
  • the calibration laser and the reinforced laser are respectively located on both sides of the workpiece for work; when the calibration laser is calibrated, the online monitoring system performs real-time tracking, and the corrected workpiece size parameters are sequentially fed back to the enhanced laser and the calibration laser;
  • the laser power adjusting device and the enhanced laser power adjusting device respectively adjust the calibration laser and the enhanced laser parameters, strengthen the laser control system to control the enhanced laser synchronization work, and realize the synchronizing effect of the calibration-detection and feedback-enhancement;
  • the on-line monitoring system 7 collects the parameter X2 of the surface performance and the structural size of the workpiece a and the two laser parameters M2. After the computer 10 records the saved data, it feeds back to the calibration laser power adjustment device 5 and the enhanced laser power adjustment device 6, and performs error analysis. Recording and saving data S2;
  • step (9) If the two sides realize the calibration-detection and feedback-enhanced synchronization, the surface performance and shape and size parameters of the workpiece meet the relevant requirements, and the error is within the allowable error range, then the processing is completed, otherwise it proceeds to step (9);
  • the reinforced laser 2 can be freely moved on both sides of the workpiece a, so that the calibrated laser 1 and the reinforced laser 2 are distributed on the same side or both sides of the workpiece a, the calibrated laser 1 performs a aligning process, and the reinforced laser 2 is reinforced.
  • the process the online monitoring system 7 monitors the surface performance and shape size of the workpiece a, and the real-time tracking feedback system 8 feeds back the data monitored by the online monitoring system 7 to the calibration laser power adjustment device 5 and the enhanced laser power adjustment device 6 for automatic compensation.
  • the synergistic effect of the correction of the workpiece a and the synchronization enhancement is eliminated, and the surface precision of the workpiece a is improved, and the processing efficiency is also greatly improved.
  • the optimal working plan is selected, so that the workpiece a is continuously optimized until the workpiece processing requirements are met.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种双激光束自动补偿同步校形与强化装置及方法。强化激光器(2)能自由移动于工件(a)两侧,使校形激光器(1)和强化激光器(2)分布于工件(a)同侧或两侧,校形激光器(1)进行校形工序,同时强化激光器(2)同步进行强化工序,在线监测系统(7)监测工件(a)表面性能和形状尺寸,实时跟踪反馈系统(8)将在线监测系统(7)监测到的数据反馈给校形激光器(1)功率调节装置(5)和强化激光器(2)功率调节装置(6),进行自动补偿,消除了工件(a)校形和同步强化的协同影响,提高工件(a)表面精度的同时,也很大程度上提高了加工效率。另外,通过计算机(10)和各模块配合,通过采集到的数据分析误差,选择最优的工作方案,使工件(a)不断地被优化直至达到工件(a)加工要求。

Description

一种双激光束自动补偿同步校形与强化装置及方法 技术领域
本发明涉及增材制造的技术领域,尤其涉及到一种双激光束自动补偿同步校形与强化装置及方法。
背景技术
目前,单独进行校形存在一些问题:航空发动机整体叶盘、叶片的校形会在一定程度上破坏零件组织,改变金属材料表层组织,降低金属零件的表面性能,结构的疲劳性能和表面精度难以达到要求。
单独进行强化存在一些问题:单独进行强化只强化了部分区域,激光冲击强化后叶片的疲劳寿命得到大幅度的提高,但是会出现应力变化幅度大的问题,为了解决上述现象,可以对整个叶片表面进行激光冲击处理,但这将大大降低加工效率,而且,整体表面处理由于残余压应力的释放会引起叶片比较大的变形,影响叶片的使用性能。
现有技术中,零件加工过程的跟踪检测,零件表面的质量评估,零件整体结构的分析,加工过程的控制系统,反馈系统和调节设备基本采用“一步一停”的方式,即:先进行零件表面的在线跟踪检测,之后反馈系统进行数据信息的传递,然后由控制系统控制调节设备进行零件的加工,加工完成后,在线跟踪检测系统对零件表面进行质量评估,并对零件整体结构进行分析。
所以,航空发动机整体叶盘、叶片等工件分步进行校形和强化时,其单独作用效果会相互干扰,协同影响,降低零件加工的质量。同时,零件加工过程中的辅助系统采用“一步一停”的工作方式,会出现超前,滞后现象,导致工作效率低;各步和各环节之间的误差使零件的加工质量达不到要求。同时,激光冲击强化后叶片的疲劳寿命得到大幅度的提高,但是会出现应力 变化幅度大的问题,但对整个叶片表面进行激光冲击处理,将大大降低加工效率,释放残余压应力,引起叶片比较大的变形,影响叶片的使用性能。
发明内容
本发明的目的在于克服现有技术的不足,提供一种加工效率高、质量好、寿命长、保证达到生产要求的双激光束自动补偿同步校形与强化装置。
为实现上述目的,本发明所提供的技术方案为:装置包括校形激光器、强化激光器、分别控制校形激光器和强化激光器的校形激光器控制系统和强化激光器控制系统、分别调节校形激光器和强化激光器功率的校形激光器功率调节装置和强化激光器功率调节装置、监测工件表面性能和形状尺寸的在线监测系统、将在线监测系统监测到的数据反馈给校形激光器功率调节装置和强化激光器功率调节装置的实时跟踪反馈系统、控制工件旋转的工件旋转装置、计算机。
其中,工件固定在工件旋转装置上,校形激光器、强化激光器位于工件侧;校形激光器控制系统分别与校形激光器功率调节装置和校形激光器连接,而强化激光器控制系统分别与强化激光器功率调节装置和强化激光器连接;在线监测系统通过实时跟踪反馈系统分别与校形激光器功率调节装置和强化激光器功率调节装置连接;工件旋转装置、校形激光器功率调节装置、强化激光器功率调节装置、实时跟踪反馈系统均与计算机连接,由计算机控制。
上述的校形激光器、强化激光器根据校形和强化过程中的不同的要求,两激光器可以选择不同的参数规格。
强化激光器能自由移动于工件两侧,使校形激光器和强化激光器可以分布在叶片的同侧进行同步工作:在线监测系统位于校形激光器和强化激光器之间,相隔距离由校形和强化产生的相应温度场的交融分析得出,实现三者 的同步作用。校形激光器和强化激光器也可以分布在叶片两侧相应部位同步工作:校形激光器和强化激光器呈中心线对称分布,在线监测系统与校形激光器同侧且相隔一定距离,实现三者的同步作用。通过误差分析选择最优的工作方案,利于加快加工效率。
利用在线监测系统进行工件表面的同步检测,通过实时跟踪反馈系统,将工件表面信息和参数调整传递给校形激光器功率调节装置和强化激光器功率调节装置,分别调节控制两激光器的参数,自动补偿后重复多次进行校形和强化。
加工完一个工件表面,通过工件旋转装置可以旋转工件至任意角度,同时配合两激光器转动,实现任意角度的工件表面的校形和强化。
为实现上述目的,本发明另外提供一种用于双激光束自动补偿同步校形与强化装置的方法:步骤如下:
(1)原始数据采集:
进行同步校形与强化工件前,在线监测系统监测工件尺寸和形状参数,计算机保存数据为原始数据X0,同时实时跟踪反馈系统传递信息给校形激光器功率调节装置和强化激光器功率调节装置,计算机记录此时校形激光器和强化激光器参数,作为该两激光器参数调节的原始数据M0;
(2)误差分析:
当航空发动机整体叶盘、叶片达到理想情况时,计算机进行原始数据分析计算,得出工件尺寸和形状等参数X和激光器参数M,分别作为同步校形和激光器参数调节控制标准;分析原始数据X0与理想参数X的误差,记录此数据S0,作为同步校形和强化过程中误差最小化的原始数据;
(3)校形激光器和强化激光器同侧自动补偿同步校形与强化:
校形激光器和强化激光器均位于工件同一侧;校形激光器进行校形时,在线监测系统进行实时跟踪,并将校形后的工件尺寸参数,先后反馈给强化激光器和校形激光器;校形激光器功率调节装置和强化激光器功率调节装置分别调节校形激光器和强化激光器参数,控制强化激光器同步工作,实现校形—检测和反馈—强化的同步作用;
(4)同侧实现校形—检测和反馈—强化同步作用后进行数据采集和误差分析:
在线监测系统收集工件表面性能和形状尺寸等参数X1和两激光器参数M1,计算机记录保存数据后,反馈给校形激光器功率调节装置和强化激光器功率调节装置,并进行误差分析,记录保存数据S1;
(5)若同侧实现校形—检测和反馈—强化同步作用后同侧实现校形—检测和反馈—强化同步作用后工件表面性能和形状尺寸参数达到相关要求,同时误差在允许的误差范围内,则加工完毕,否则进入步骤(6);
(6)校形激光器和强化激光器两侧自动补偿同步校形与强化:
校形激光器和强化激光器分别位于工件两侧进行工作;校形激光器进行校形时,在线监测系统进行实时跟踪,并将校形后的工件尺寸参数,先后反馈给强化激光器和校形激光器;校形激光器功率调节装置和强化激光器功率调节装置分别调节校形激光器和强化激光器参数,强化激光器控制系统控制强化激光器同步工作,实现校形—检测和反馈—强化的同步作用;
(7)两侧实现校形—检测和反馈—强化同步作用后进行数据采集和误差分析:
在线监测系统收集工件表面性能和结构尺寸等参数X2和两激光器参数M2,计算机记录保存数据后,反馈给校形激光器功率调节装置和强化激光器 功率调节装置,并进行误差分析,记录保存数据S2;
(8)若两侧实现校形—检测和反馈—强化同步作用后工件表面性能和形状尺寸参数达到相关要求,同时误差在允许的误差范围内,则加工完毕,否则进入步骤(9);
(9)对比分析校形激光器和强化激光器同侧自动补偿同步校形与强化的数据以及校形激光器和强化激光器两侧自动补偿同步校形与强化的数据,选择其中效果最佳的工作方案;
(10)按照最佳工作方案不断重复加工,直至工件表面性能和形状尺寸参数Xn达到相关要求且误差Sn在允许的误差范围内为止。
与现有技术相比,本方案的原理以及相应的有益效果如下:
本方案中,强化激光器能自由移动于工件两侧,使校形激光器和强化激光器分布于工件同侧或两侧,校形激光器进行校形工序,强化激光器进行强化工序,在线监测系统监测工件表面性能和形状尺寸,实时跟踪反馈系统将在线监测系统监测到的数据反馈给校形激光器功率调节装置和强化激光器功率调节装置,进行自动补偿,消除了工件校形和同步强化的协同影响,提高工件表面精度的同时,也很大程度上提高了加工效率。另外,通过计算机和各模块配合,通过采集到的数据分析误差,选择最优的工作方案,使工件不断地被优化直至达到工件加工要求。
附图说明
图1为本发明实施例校形激光器和强化激光器位于工件同侧时的结构示意图;
图2为本发明实施例校形激光器和强化激光器位于工件两侧时的结构示意图;
图3为本发明实施例的工作原理图。
具体实施方式
下面结合具体实施例对本发明作进一步说明:
参见附图1-2所示,本实施例所述的一种双激光束自动补偿同步校形与强化装置,包括校形激光器1、强化激光器2、分别控制校形激光器1和强化激光器2的校形激光器控制系统3和强化激光器控制系统4、分别调节校形激光器1和强化激光器2功率的校形激光器功率调节装置5和强化激光器功率调节装置6、监测工件a表面性能和形状尺寸的在线监测系统7、将在线监测系统7监测到的数据反馈给校形激光器功率调节装置5和强化激光器功率调节装置6的实时跟踪反馈系统8、控制工件a旋转的工件旋转装置9、计算机10。
其中,工件a固定在工件旋转装置9上,校形激光器1、强化激光器2位于工件a侧;校形激光器控制系统3分别与校形激光器功率调节装置5和校形激光器1连接,而强化激光器控制系统4分别与强化激光器功率调节装置6和强化激光器2连接;在线监测系统7通过实时跟踪反馈系统8分别与校形激光器功率调节装置5和强化激光器功率调节装置6连接;工件旋转装置9、校形激光器功率调节装置5、强化激光器功率调节装置6、实时跟踪反馈系统8均与计算机10连接,由计算机10控制。
上述的校形激光器1、强化激光器2根据校形和强化过程中的不同的要求,两激光器可以选择不同的参数规格。
强化激光器2能自由移动于工件a两侧,使校形激光器1和强化激光器2可以分布在工件a的同侧进行同步工作,也可以分布在工件a两侧相应部位同步工作,通过误差分析选择最优的工作方案,利于加快加工效率。
利用在线监测系统7进行工件a表面的同步检测,通过实时跟踪反馈系 统8,将工件a表面信息和参数调整传递给校形激光器功率调节装置5和强化激光器功率调节装置6,分别调节控制两激光器的参数,自动补偿后重复多次进行校形和强化。
加工完一个工件a表面,通过工件旋转装置9可以旋转工件a至任意角度,同时配合两激光器转动,实现任意角度的工件a表面的校形和强化。
如图3所示,具体的工作步骤如下:
(1)原始数据采集:
进行同步校形与强化工件a前,在线监测系统7监测工件a尺寸和形状参数,计算机10保存数据为原始数据X0,同时实时跟踪反馈系统8传递信息给校形激光器功率调节装置5和强化激光器功率调节装置6,计算机10记录此时校形激光器1和强化激光器2参数,作为该两激光器参数调节的原始数据M0;
(2)误差分析:
当航空发动机整体叶盘、叶片达到理想情况时,计算机10进行原始数据分析计算,得出工件a尺寸和形状等参数X和激光器参数M,分别作为同步校形和激光器参数调节控制标准;分析原始数据X0与理想参数X的误差,记录此数据S0,作为同步校形和强化过程中误差最小化的原始数据;
(3)校形激光器1和强化激光器2同侧自动补偿同步校形与强化:
校形激光器1和强化激光器2均位于工件a同一侧进行工作;校形激光器1进行校形时,在线监测系统7进行实时跟踪,并将校形后的工件a尺寸参数,先后反馈给强化激光器2和校形激光器1;校形激光器功率调节装置5和强化激光器功率调节装置6分别调节校形激光器1和强化激光器2参数,强化激光器控制系统4控制强化激光器2同步工作,实现校形—检测和反馈 —强化的同步作用;
(4)同侧实现校形—检测和反馈—强化同步作用后进行数据采集和误差分析:
在线监测系统7收集工件a表面性能和形状尺寸等参数X1和两激光器参数M1,计算机10记录保存数据后,反馈给校形激光器功率调节装置5和强化激光器功率调节装置6,并进行误差分析,记录保存数据S1;
(5)若同侧实现校形—检测和反馈—强化同步作用后工件表面性能和形状尺寸参数达到相关要求,同时误差在允许的误差范围内,则加工完毕,否则进入步骤(6);
(6)校形激光器1和强化激光器2两侧自动补偿同步校形与强化:
校形激光器和强化激光器分别位于工件两侧进行工作;校形激光器进行校形时,在线监测系统进行实时跟踪,并将校形后的工件尺寸参数,先后反馈给强化激光器和校形激光器;校形激光器功率调节装置和强化激光器功率调节装置分别调节校形激光器和强化激光器参数,强化激光器控制系统控制强化激光器同步工作,实现校形—检测和反馈—强化的同步作用;
(7)两侧实现校形—检测和反馈—强化同步作用后进行数据采集和误差分析:
在线监测系统7收集工件a表面性能和结构尺寸等参数X2和两激光器参数M2,计算机10记录保存数据后,反馈给校形激光器功率调节装置5和强化激光器功率调节装置6,并进行误差分析,记录保存数据S2;
(8)若两侧实现校形—检测和反馈—强化同步作用后工件表面性能和形状尺寸参数达到相关要求,同时误差在允许的误差范围内,则加工完毕,否则进入步骤(9);
(9)对比分析校形激光器1和强化激光器2同侧自动补偿同步校形与强化的数据以及校形激光器1和强化激光器2两侧自动补偿同步校形与强化的数据,选择其中效果最佳的工作方案;
(10)按照最佳工作方案不断重复加工,直至工件a表面性能和形状尺寸参数Xn达到相关要求且误差Sn在允许的误差范围内为止。
本实施例中,强化激光器2能自由移动于工件a两侧,使校形激光器1和强化激光器2分布于工件a同侧或两侧,校形激光器1进行校形工序,强化激光器2进行强化工序,在线监测系统7监测工件a表面性能和形状尺寸,实时跟踪反馈系统8将在线监测系统7监测到的数据反馈给校形激光器功率调节装置5和强化激光器功率调节装置6,进行自动补偿,消除了工件a校形和同步强化的协同影响,提高工件a表面精度的同时,也很大程度上提高了加工效率。另外,通过计算机10和各模块配合,通过采集到的数据分析误差,选择最优的工作方案,使工件a不断地被优化直至达到工件加工要求。
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (3)

  1. 一种双激光束自动补偿同步校形与强化装置,其特征在于:包括校形激光器(1)、强化激光器(2)、分别控制校形激光器(1)和强化激光器(2)的校形激光器控制系统(3)和强化激光器控制系统(4)、分别调节校形激光器(1)和强化激光器(2)功率的校形激光器功率调节装置(5)和强化激光器功率调节装置(6)、监测工件表面性能和形状尺寸的在线监测系统(7)、将在线监测系统(7)监测到的数据反馈给校形激光器功率调节装置(5)和强化激光器功率调节装置(6)的实时跟踪反馈系统(8)、控制工件旋转的工件旋转装置(9)、计算机(10);其中,工件固定在工件旋转装置(9)上,校形激光器(1)、强化激光器(2)位于工件侧;校形激光器控制系统(3)分别与校形激光器功率调节装置(5)和校形激光器(1)连接,而强化激光器控制系统(4)分别与强化激光器功率调节装置(6)和强化激光器(2)连接;在线监测系统(7)通过实时跟踪反馈系统(8)分别与校形激光器功率调节装置(5)和强化激光器功率调节装置(6)连接;工件旋转装置(9)、校形激光器功率调节装置(5)、强化激光器功率调节装置(6)、实时跟踪反馈系统(8)均与计算机(10)连接,由计算机(10)控制。
  2. 根据权利要求1所述的一种双激光束自动补偿同步校形与强化装置,其特征在于:所述强化激光器(2)自由移动于工件两侧。
  3. 一种用于权利要求1所述双激光束自动补偿同步校形与强化装置的方法,其特征在于:包括以下步骤:
    (1)原始数据采集:
    进行同步校形与强化工件前,在线监测系统监测工件尺寸和形状参数,计算机保存数据为原始数据X0,同时实时跟踪反馈系统传递信息给校形激光器功率调节装置和强化激光器功率调节装置,计算机记录此时校形激光器和强化激光器参数,作为该两激光器参数调节的原始数据M0;
    (2)误差分析:
    当航空发动机整体叶盘、叶片达到理想情况时,计算机进行原始数据分 析计算,得出工件尺寸和形状等参数X和激光器参数M,分别作为同步校形和激光器参数调节控制标准;分析原始数据X0与理想参数X的误差,记录此数据S0,作为同步校形和强化过程中误差最小化的原始数据;
    (3)校形激光器和强化激光器同侧自动补偿同步校形与强化:
    校形激光器和强化激光器均位于工件同一侧进行工作;校形激光器进行校形时,在线监测系统进行实时跟踪,并将校形后的工件尺寸参数,先后反馈给强化激光器和校形激光器;校形激光器功率调节装置和强化激光器功率调节装置分别调节校形激光器和强化激光器参数,强化激光器控制系统控制强化激光器同步工作,实现校形—检测和反馈—强化的同步作用;
    (4)同侧实现校形—检测和反馈—强化同步作用后进行数据采集和误差分析:
    在线监测系统收集工件表面性能和形状尺寸等参数X1和两激光器参数M1,计算机记录保存数据后,反馈给校形激光器功率调节装置和强化激光器功率调节装置,并进行误差分析,记录保存数据S1;
    (5)若同侧实现校形—检测和反馈—强化同步作用后工件表面性能和形状尺寸参数达到相关要求,同时误差在允许的误差范围内,则加工完毕,否则进入步骤(6);
    (6)校形激光器和强化激光器两侧自动补偿同步校形与强化;
    (7)两侧实现校形—检测和反馈—强化同步作用后进行数据采集和误差分析:
    在线监测系统收集工件表面性能和结构尺寸等参数X2和两激光器参数M2,计算机记录保存数据后,反馈给校形激光器功率调节装置和强化激光器功率调节装置,并进行误差分析,记录保存数据S2;
    (8)若两侧实现校形—检测和反馈—强化同步作用后工件表面性能和形状尺寸参数达到相关要求,同时误差在允许的误差范围内,则加工完毕,否则进入步骤(9);
    (9)对比分析校形激光器和强化激光器同侧自动补偿同步校形与强化的数据以及校形激光器和强化激光器两侧自动补偿同步校形与强化的数据,选择其中效果最佳的工作方案;
    (10)按照最佳工作方案不断重复加工,直至工件表面性能和形状尺寸参数Xn达到相关要求且误差Sn在允许的误差范围内为止。
PCT/CN2017/094096 2017-05-08 2017-07-24 一种双激光束自动补偿同步校形与强化装置及方法 WO2018205412A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/153,714 US20190039184A1 (en) 2017-05-08 2018-10-06 Apparatus and method for automatic compensation, and synchronous correcting and strengthening with dual-laser beams

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710316272.6A CN107138857B (zh) 2017-05-08 2017-05-08 一种双激光束自动补偿同步校形与强化装置及方法
CN201710316272.6 2017-05-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/153,714 Continuation US20190039184A1 (en) 2017-05-08 2018-10-06 Apparatus and method for automatic compensation, and synchronous correcting and strengthening with dual-laser beams

Publications (1)

Publication Number Publication Date
WO2018205412A1 true WO2018205412A1 (zh) 2018-11-15

Family

ID=59778431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094096 WO2018205412A1 (zh) 2017-05-08 2017-07-24 一种双激光束自动补偿同步校形与强化装置及方法

Country Status (3)

Country Link
US (1) US20190039184A1 (zh)
CN (1) CN107138857B (zh)
WO (1) WO2018205412A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111730210A (zh) * 2020-06-09 2020-10-02 邓泽清 一种采用极坐标运动的双主轴激光雕刻机

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190001658A1 (en) * 2017-06-30 2019-01-03 General Electric Company Systems and method for advanced additive manufacturing
CN108248011B (zh) * 2017-12-20 2019-08-27 广东工业大学 一种激光冲击锻打与激光切割复合增材制造装置及方法
CN108406101A (zh) * 2018-05-14 2018-08-17 桂林电子科技大学 一种玻璃微流道的激光复合加工装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120318775A1 (en) * 2011-06-17 2012-12-20 Precitec Kg Optical measuring device for monitoring a joint seam, joining head and laser welding head with same
TW201618879A (zh) * 2014-11-17 2016-06-01 財團法人工業技術研究院 表面加工方法
CN205733426U (zh) * 2015-12-23 2016-11-30 西安天瑞达光电技术发展有限公司 一种激光冲击强化双通道激光传输快速切换装置
CN106216843A (zh) * 2016-08-25 2016-12-14 广东工业大学 一种基于大数据平台的自适应激光喷丸校形装置及方法
CN106216842A (zh) * 2016-07-12 2016-12-14 广东工业大学 焊接金属板料激光喷丸校形尺寸精度在线控制的方法与装置
CN106312323A (zh) * 2016-11-02 2017-01-11 广东工业大学 一种变形叶片的激光喷丸校形方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839728A (ja) * 1981-09-02 1983-03-08 Toshiba Corp レ−ザによる焼入方法
US6005219A (en) * 1997-12-18 1999-12-21 General Electric Company Ripstop laser shock peening
US6472029B1 (en) * 1998-06-30 2002-10-29 The P.O.M. Group Fabrication of laminate structures using direct metal deposition
JP5199579B2 (ja) * 2007-01-12 2013-05-15 三菱重工業株式会社 管体の残留応力改善方法及び装置
KR101599869B1 (ko) * 2011-05-02 2016-03-07 아이피지 포토닉스 코포레이션 레이저 기반 마킹 방법 및 장치
US20140272198A1 (en) * 2013-03-15 2014-09-18 Stuart Bowden Systems, methods, and media for creating metallization for solar cells
US9682441B2 (en) * 2015-06-01 2017-06-20 Caterpillar Inc. Laser polishing system and method for metal face seal
CN106048144A (zh) * 2016-07-27 2016-10-26 东南大学 一种激光增材薄壁件激光冲喷丸应力调控的方法
JP6840581B2 (ja) * 2017-03-15 2021-03-10 株式会社東芝 積層造形装置、処理装置、及び積層造形方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120318775A1 (en) * 2011-06-17 2012-12-20 Precitec Kg Optical measuring device for monitoring a joint seam, joining head and laser welding head with same
TW201618879A (zh) * 2014-11-17 2016-06-01 財團法人工業技術研究院 表面加工方法
CN205733426U (zh) * 2015-12-23 2016-11-30 西安天瑞达光电技术发展有限公司 一种激光冲击强化双通道激光传输快速切换装置
CN106216842A (zh) * 2016-07-12 2016-12-14 广东工业大学 焊接金属板料激光喷丸校形尺寸精度在线控制的方法与装置
CN106216843A (zh) * 2016-08-25 2016-12-14 广东工业大学 一种基于大数据平台的自适应激光喷丸校形装置及方法
CN106312323A (zh) * 2016-11-02 2017-01-11 广东工业大学 一种变形叶片的激光喷丸校形方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111730210A (zh) * 2020-06-09 2020-10-02 邓泽清 一种采用极坐标运动的双主轴激光雕刻机
CN111730210B (zh) * 2020-06-09 2022-01-18 匠铜实业(杭州)有限公司 一种采用极坐标运动的双主轴激光雕刻机

Also Published As

Publication number Publication date
CN107138857B (zh) 2019-03-05
CN107138857A (zh) 2017-09-08
US20190039184A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
WO2018205412A1 (zh) 一种双激光束自动补偿同步校形与强化装置及方法
CN104139321B (zh) 大型结构件原位测量自动找正系统及其找正方法
CN104289748B (zh) 一种大型薄壁蒙皮自适应等壁厚铣削系统及其加工方法
CN102095732B (zh) 旋转型零件表面质量检测系统
CN112111628A (zh) 一种激光淬火质量均匀性控制方法及装置
CN100584533C (zh) 一种曲轴连杆颈圆度的随动测量方法
CN110052540A (zh) 优化车身外覆盖件表面质量的模具型面过a面补偿方法
CN105537653A (zh) 一种斜孔组合钻模的引导结构及调试方法
CN203557141U (zh) 用于阶梯轴的联动式可调对中机构
CN109531273A (zh) 一种基于精密检测技术的铸造舱段加工方法
CN109048172A (zh) 一种钢桥梁曲线工型杆件制作组装装置及其制作组装方法
CN111069973B (zh) 一种复杂外形铸件快速找正的方法及装置
CN117706975A (zh) 一种基于超声换能器的焊接应力调控控制系统及方法
CN107716674B (zh) 机器人滚边系统闭环控制方法
CN103737432A (zh) 球头铣刀精密铣削拼接淬硬钢倾斜表面的振动测试装置
CN202256267U (zh) 可调式超声波检测探头盒
CN107728578A (zh) 一种基于加工变形监测数据的加工顺序自适应调整方法
CN103658241B (zh) 一种驱动桥专用立式校直机及其控制方法
CN106521137A (zh) 一种强化焊接构件焊缝的超声冲击装置
WO2023097711A1 (zh) 一种新型智能机床加工系统
CN103743328B (zh) 转向螺母导管孔位置度检测装置
CN201984042U (zh) 旋转型零件表面质量检测系统
CN109352372A (zh) 一种实现零件基准快速调整的方法
CN107283080A (zh) 一种激光加工焦距及入射角的测量标定装置
CN208139988U (zh) 一种在位微距测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908977

Country of ref document: EP

Kind code of ref document: A1