WO2018205156A1 - 一种基于碳硼烷陶瓷涂层的耐热纺织品及其制备方法 - Google Patents
一种基于碳硼烷陶瓷涂层的耐热纺织品及其制备方法 Download PDFInfo
- Publication number
- WO2018205156A1 WO2018205156A1 PCT/CN2017/083672 CN2017083672W WO2018205156A1 WO 2018205156 A1 WO2018205156 A1 WO 2018205156A1 CN 2017083672 W CN2017083672 W CN 2017083672W WO 2018205156 A1 WO2018205156 A1 WO 2018205156A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carborane ceramic
- carborane
- ceramic precursor
- bis
- reaction
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/06—Preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/48—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
- C08G77/54—Nitrogen-containing linkages
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/14—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/80—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with boron or compounds thereof, e.g. borides
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/50—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
- D06M13/51—Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
- D06M13/513—Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond
Definitions
- the present invention relates to a heat resistant textile based on a carborane ceramic coating and a preparation method thereof, and belongs to the field of preparation and application of high temperature resistant polymers and composite materials.
- High temperature resistant textiles have a wide range of applications in high temperature filtration and protective clothing.
- SiBCN ceramic has the advantages of high temperature resistance, high oxidation resistance, high temperature creep resistance, high hardness, wear resistance, small linear expansion coefficient and chemical corrosion resistance.
- the SiBCN coating acts as an interface material between the fiber and the ceramic matrix to improve the wettability of the fiber and the ceramic matrix.
- the simplest is to first borane the silazane.
- Reactive cross-linking of cyclosilazane to obtain a ceramic body wherein a series of boron-based cycloparaffin is synthesized by hydroboration, aminolysis and thermal polymerization using methylvinyldichlorosilane as a raw material, and converted into Si-BCN quaternary ceramics have better high temperature stability than Si-CN ternary ceramics.
- this method prepares a precursor compound oxime, and the intermediate organoborane is highly toxic, has poor operability, and is difficult to industrially implement.
- the object of the present invention is to disclose a heat-resistant textile based on a carborane ceramic coating and a preparation method thereof, which not only have good heat resistance, but also have good flexibility and facilitate adhesion.
- a method for preparing a heat resistant textile based on a carborane ceramic coating comprising the steps of:
- the step (1) is: mixing sodium hydroxide with water, adding sodium dihydrogen phosphate monohydrate to prepare a buffer, adding an ether solvent and a metal catalyst; then adding a hydrazine, a hydrocarbon group
- step (2) is: adding a metal catalyst to a trivinyltrimethylcyclotrisilazane aromatic solution under an inert atmosphere; then adding a dimethylchlorosilane aromatic solution; reacting to prepare 1, 3, 5 -trimethyl-1,3,5-tris[ ⁇ -(dimethylsilyl)ethyl]cyclotrisilazane
- step (3) is a 1,-hydrocarbyl silicon group containing triethylamine Addition of 1,3,5-trimethyl-1,3,
- the hydrazine, -hydrocarbyl silicon methylene-2,2'-bis(dimethylsilyl)biscarborane is hydrazine, -methylphenyl silicon methylene-2,2 '-bis(dimethylsilyl)biscarborane or hydrazine, -diphenylsilyl-2,2'-bis(dimethylsilyl)dicarbobane;
- the metal catalyst is palladium carbon a catalyst or a platinum carbon catalyst;
- the ether solvent is 1, 4-dioxane, the aromatic hydrocarbon is toluene and/or xylene;
- the inert atmosphere is a nitrogen atmosphere; and the halogenated alkane solvent is dichloromethane.
- the textile is an aramid textile.
- step (1) sodium hydroxide, water, sodium dihydrogen phosphate monohydrate, metal catalyst, U'-hydrocarbyl silicon methylene-2,2'-bis (dimethylsilyl)
- the mass ratio of biscarbane is (0.2 ⁇ 2): (20 ⁇ 200): (0.2 ⁇ 5): (0.1 ⁇ 2): (0.5 ⁇ 5), the reaction temperature is 25 °C ⁇ 65 °C, The reaction time is 1 ⁇ 48 hours;
- step (2) the mass ratio of trivinyltrimethylcyclotrisilazane, metal catalyst and dimethylchlorosilane is (0.5 ⁇ 5): (0.001 ⁇ 0.2) ): (0.5 ⁇ 5), the reaction temperature is 25°C ⁇ 85°C, and the reaction time is 1 ⁇ 48 hours; in step (3), triple B
- the mass ratio of amine, hydrazine, -hydrocarbyl silicon methylene-2,2'-bis(dimethylhydroxysilyl)biscarborane is (0.5 ⁇ 10): (1 ⁇ 5)
- the reaction enthalpy is 1 ⁇ 48 ⁇ ; in step (4), the carborane ceramic precursor system mass concentration is 1% ⁇ 40 ⁇ 3 ⁇ 4 ; carborane ceramic precursor, epoxy The mass ratio of the silane coupling agent to the diisoprene diepoxide was 1:0.05:0.1.
- the heat-resistant textile based on the carborane ceramic coating obtained in the step (5) is repeatedly subjected to the steps (4) and (5) to obtain a heat-resistant textile based on the carborane ceramic coating. .
- the present invention also discloses a heat resistant textile based on a carborane ceramic coating, including an aramid textile and a carborane ceramic coating; the carborane ceramic is prepared from a carborane ceramic precursor. .
- the present invention also discloses a carborane ceramic precursor system comprising a carborane ceramic precursor and a solvent, a silane coupling agent, an epoxide.
- the present invention discloses a method for preparing a carborane ceramic precursor system for a heat resistant textile based on a carborane ceramic coating, dissolving the carborane ceramic precursor in a 3 ⁇ 4 generation alkane solvent, and then adding
- the carborane ceramic precursor system is prepared from an epoxysilane coupling agent and a diisoprene diepoxide.
- R -CH 3 or -Ph; m and n are each an integer of 3 to 50.
- the solvent is a halogenated alkane solvent
- the silane coupling agent is an epoxy silane coupling agent
- the epoxide is a diisoprene diepoxide
- the carbon The mass concentration of the borane ceramic precursor system is ⁇ .
- the mass ratio of the carborane ceramic precursor, the epoxy silane coupling agent and the diisoprene: epoxide is 1:0.05:0.1.
- the novel carborane ceramic precursor molecular chain containing silazane of the present invention provides sufficient cross-linking reactivity and cross-linking degree, and is suitable for treating textile coatings. It is converted into a ceramic coating; the coating is a prepolymer, so it is easy to prepare a solution, and a uniform and controllable coating can be formed on the fiber surface of the treated fabric by controlling the concentration of the precursor solution and the number of treatments.
- hydrazine, -hydrocarbyl silicon methylene-2,2'-bis(dimethylsilyl)biscarborane is prepared by adding acetylene to a hydrocarbyl dichlorosilane solution under an inert gas.
- the magnesium bromide reagent is reacted at 35 to 45 ° C; then the borane solution is added dropwise and reacted at 80 to 90 ° C to obtain a hydrocarbyl silicon methylene biscarbane; an inert gas, an ice water bath Under the conditions, a solution of n-butyllithium is added dropwise to the hydrocarbyl silicon methylene diborane solution, and the ice water bath strip The reaction is carried out; then the dimethylchlorosilane solution is added dropwise, the reaction is carried out under ice water bath conditions, and then reacted at room temperature to obtain hydrazine, -hydrocarbyl silicon methylene-2,2'-bis(dimethylsilyl) double Carborane.
- the mass ratio of hydrocarbyl dichlorosilane, ethynyl magnesium bromide Grignard reagent and borane borane is (0.2 ⁇ 2): (0.5 ⁇ 5): (0.1 ⁇ 1); hydrocarbyl silicon methylene dicarbane, n-butyl
- the mass ratio of lithium and dimethylchlorosilane is (1 ⁇ 10): (0.2 ⁇ 2): (0.5 ⁇ 5).
- the extracting agent is diethyl ether, ethyl acetate, n-hexane or a solvent in which any two of them are mixed in any weight ratio;
- the desiccant is anhydrous magnesium sulfate, anhydrous sodium sulfate, Any one of anhydrous calcium chloride;
- the aromatic hydrocarbon solvent is toluene, xylene or a mixed solvent of the two in any ratio;
- the condition of the rotary extracting extractant is a temperature of 30 to 60 ° C, The degree of vacuum is 10 ⁇ 20mmHg.
- the novel carborane ceramic precursor of the present invention is supported by a cyclic trimethylcyclotrisilazane skeleton, ring three.
- the uniform network cross-linking structure provided by the silazane chain link can make the carborane distribution more uniform on the fiber surface, and the double-carbobane sandwich structure provides excellent heat resistance and thermal oxidation resistance.
- the carborane ceramic precursor molecule provided by the present invention contains a boron element in the main chain, and the quality of the coating can be increased in the heated cerium oxide, thereby compensating for the mass loss caused by thermal decomposition of the coating, thereby avoiding coating.
- the layer is cracked during the thermal decomposition process, and the aramid fiber and the ceramic matrix interface are more closely combined, so that a better protection effect can be achieved.
- the raw materials used in the novel carborane ceramic precursors disclosed in the present invention are all commercially available raw materials, have wide sources, are inexpensive, and are not toxic; the reaction conditions are mild, the process is simple, and the products are easy to be purified.
- the carborane precursor is polymerized from an industrialized commercially available raw material trivinyltrimethylcyclotrisilazane and a non-toxic carborane compound, and the preparation method is simple, safe, and has a good operating environment, and is suitable for industrial scale production.
- Example 1 is an infrared absorption curve diagram of a novel carborane ceramic precursor prepared in Example 1;
- FIG. 2 is a hydrogen nuclear magnetic resonance spectrum of a novel carborane ceramic precursor prepared in Example 1.
- reaction temperature 25 grams of ethynyl magnesium bromide Grignard reagent, 30 minutes between drops, set the reaction temperature to 40 ° C, 4 hours of reaction time, 6.2 grams of borane, 78 grams of acetonitrile and 178 A mixed solution of gram of tetrahydrofuran was reacted for 4 hours, and then added dropwise through a constant pressure dropping funnel, and the mixture was added dropwise for 30 minutes. After the completion of the dropwise addition, the reaction temperature was adjusted to 80 ° C and the reaction time was 48 hours.
- Preparing a buffer solution 0.20 g of sodium hydroxide was added to 50.00 g of deionized water and configured to be 0.1 mol/L. The sodium hydroxide solution was dissolved, and 0.65 g of sodium dihydrogen phosphate monohydrate was added, and the mixture was stirred and dissolved. In a 250 ml three-necked flask, a buffer solution was first added, and 15.51 g of 1,4-dioxane and 0.50 g of palladium carbon were used to catalyze the ij. After the experimental apparatus was set up, the configured 3.00 was dropped through a constant pressure dropping funnel.
- the insoluble palladium carbon catalyst was removed by suction filtration, and the filtrate was extracted with anhydrous diethyl ether, and 20 g of anhydrous diethyl ether was added each time, and the mixture was extracted three times. The combined extracts were separated, and the oil layer was separated, and then washed with deionized water to neutrality. After adding 5 g of anhydrous magnesium sulfate, the mixture was dried for 5 hours, finally filtered, and steamed to a constant weight at 55 ° C under a vacuum of 20 mmHg to obtain a product.
- FIG. 1 an infrared absorption curve of a novel carborane ceramic precursor prepared according to the technical scheme of the present embodiment is shown. It can be seen from the figure that the absorption peak at 3379.83 cm 1 is the stretching vibration peak of NH; the BH peak of carborane is at 2563.46 cm -1 ; and the stretching vibration peak of Si-O-Si cm 1 at 1031.58 cm 1 Then The occurrence of the polycondensation reaction was strongly confirmed.
- FIG. 2 there is a hydrogen nuclear magnetic resonance spectrum of a novel carborane ceramic precursor prepared according to the technical scheme of the present embodiment.
- 0.05-0.26 m, Si-CH 3
- 0.4-2.0 br, BH
- 7.2-7.7 d, ph-H
- 2.27 d, NH
- the synthesis of the polymer was confirmed by combining the infrared absorption spectrum.
- the molecular structure of the carborane ceramic precursor is as follows:
- n and n are each an integer of 4-8.
- the tensile speed is 100mm / min
- the tensile strength of the untreated aramid fabric is 55.9MPa
- the aramid fiber after one coating treatment The tensile strength is 56.7 MPa, which is increased by 1.5%.
- the tensile strength is 56.3 MPa, which is increased by 0.8%.
- the tensile strength is 56.0 MPa, which is increased by 0.2 ⁇ 3 ⁇ 4.
- the heat stability of the aramid fiber before and after the treatment was tested.
- the untreated aramid fiber was completely degraded at 400 ° C for 30 minutes, and the aramid fabric was treated with 3 times of coating. Even after baking for 2 hours under heating to 500 ° C, the mass residue is as high as 99%.
- the air in the apparatus was removed by nitrogen gas, and the solution in a three-necked flask was waited under ice bath conditions. The temperature was lowered to 0 ° C, and then 12.50 g of a 1.6 M n-butyllithium hexane solution was added dropwise through a constant pressure dropping funnel, and the dropwise addition was carried out for 20 minutes, and the reaction time was 4 hours, and the reaction temperature was kept at zero.
- Dispensing buffer solution 0.40 g of sodium hydroxide was added to 100.00 g of deionized water to prepare a 0.10 mol/L sodium hydroxide solution, and after dissolution, 1.30 g of sodium dihydrogen phosphate monohydrate was added and stirred to dissolve.
- a buffer solution 32.00 g of 1,4-dioxane and 1.50 g of a palladium-carbon catalyst were first added, and after setting up the experimental apparatus, a 6.00 g ⁇ was dispensed through a constant pressure dropping funnel.
- a carborane ceramic precursor system was prepared in accordance with Example 1.
- the aramid fabric was immersed therein and air-dried at room temperature. The treatment was repeated 5 times to obtain an aramid fabric having a 5-layer coating on the surface.
- the tensile speed is 100mm / min
- the tensile strength of the untreated aramid fabric is 55.9MPa
- the aramid fiber after one coating treatment The tensile strength is 56.6 MPa, which is increased by 1.7%.
- the tensile strength is 56.3 MPa, which is increased by 0.7%.
- the tensile strength is 56.0 MPa, which is increased by 0.1 ⁇ 3 ⁇ 4.
- the heat-resistant stability of the aramid fiber before and after the treatment was tested. It can be seen that the untreated aramid fiber was completely degraded at 400 ° C for 30 minutes, and the aramid fabric after 5 times of coating treatment. Even after baking for 2 hours under heating to 500 ° C, the mass residue is as high as 99%.
- Example 1 After the experimental apparatus was set up, the air in the apparatus was removed by nitrogen gas, and the temperature of the solution in the three-necked flask was lowered to 0 in an ice bath. Then, 25.50 g of a 1.6 M n-butyllithium hexane solution was added dropwise through a constant pressure dropping funnel, and the dropwise addition was carried out for 60 minutes, and the reaction time was 8 hours, and the reaction temperature was kept at zero.
- reaction solution was extracted with anhydrous diethyl ether, and separated, then washed with deionized water until neutral, dried over 20 g of anhydrous magnesium sulfate for 5 hours, finally filtered, at 40 ° C, vacuum 20 mmHg
- the mixture was refluxed to constant weight to give the product hydrazine, bisphenylsilyl-2,2'-bis(dimethylsilyl)dicarbobane.
- buffer solution 0.80 g of sodium hydroxide was added to 200.00 g of deionized water to prepare a 0.10 mol/L sodium hydroxide solution. After dissolving, 2.60 g of sodium dihydrogen phosphate monohydrate was added and stirred to dissolve.
- the insoluble palladium carbon catalyst was removed by suction filtration, and the filtrate was extracted with anhydrous diethyl ether, and 100 g of anhydrous diethyl ether was added each time, and the mixture was extracted three times.
- the extracts were combined, the oil layer was separated, and then washed with deionized water to neutrality. After drying for 5 hours with 50 g of anhydrous magnesium sulfate, finally filtered, and steamed to constant weight at 55 ° C, vacuum of 20 mmHg to obtain a product.
- the reaction was carried out for 1 hour, and then the temperature was raised to 75 ° C for 5 hours, and the reaction liquid became silvery gray to obtain the product 1,3,5-trimethyl-1,3,5-tri[ ⁇ -(dimethyl chloride).
- the silyl)ethyl]cyclotrisilazane is directly passed to the next reaction.
- Example 1 a carborane ceramic precursor system was prepared, the aramid fabric was immersed therein, and air-dried at room temperature. The treatment was repeated 3 times to obtain an aramid fabric having a 1-3 coat layer on the surface.
- the tensile strength of the aramid fiber after one coat treatment was 56.7 MPa, which was increased by 1.4%; after the coating treatment twice, the tensile strength was 56.3 MPa, which was increased by 0.8%; After 3 times, the tensile strength was 56.1 MPa, an increase of 0.3%.
- the heat stability of the aramid fiber before and after the treatment was tested. It can be seen that the untreated aramid fiber was completely degraded at 400 ° C for 30 minutes, and the aramid fabric was treated with 3 times of coating. Even after baking for 2 hours under heating to 550 ° C, the mass residue is as high as 89%.
- reaction solution was extracted with anhydrous ethyl acetate, separated, then washed with deionized water until neutral, dried over 40 g of anhydrous magnesium sulfate for 12 hours, finally filtered, at 35 ° C, vacuum It was steamed to constant weight for 10 mmHg to obtain the product hydrazine, -bisphenylsilicylene-2,2'-bis(dimethylsilyl)dicarbobane.
- buffer solution 1.60 grams of sodium hydroxide was added to 400.00g of deionized water to be configured as 0.10
- a mol/L sodium hydroxide solution was dissolved, and 5.20 g of sodium dihydrogen phosphate monohydrate was added, and the mixture was stirred and dissolved.
- a buffer solution was first added to a 200 Oml three-necked flask, and 135.50 g of 1,4-dioxane and 6.50 g of palladium carbon were used to catalyze the ij. After the experimental apparatus was set up, it was dispensed through a constant pressure dropping funnel.
- the insoluble palladium carbon catalyst was removed by suction filtration, and the filtrate was extracted with anhydrous n-hexane, and 40 g of anhydrous n-hexane was added each time, and the mixture was extracted five times.
- the combined extracts were separated, and the oil layer was separated, then washed with deionized water to neutrality, dried over 100 g of anhydrous magnesium sulfate for 12 hours, finally filtered, and steamed to a constant weight at 55 ° C, a vacuum of 15 mmH g to obtain
- the reaction was carried out for 2 hours, then the temperature was raised to 75 ° C for 10 hours, and the reaction solution became silver gray to obtain the product 1,3,5-trimethyl-1,3,5-tri[ ⁇ -(dimethyl chloride).
- the silyl)ethyl]cyclotrisilazane is directly passed to the next reaction.
- Example 1 a carborane ceramic precursor system was prepared, the aramid fabric was immersed therein, and air-dried at room temperature. The treatment was repeated 3 times to obtain an aramid fabric having a 1-3 coat layer on the surface.
- the tensile strength of the aramid fiber after one coat treatment is 56.8 MPa, which is increased by 1.6%;
- the tensile strength was 56.3 MPa, which was increased by 0.8%.
- the tensile strength was 56.0. MPa, increased by 0.2%.
- the heat stability of the aramid fiber before and after the treatment was tested. It can be seen that the untreated aramid fiber was completely degraded at 400 ° C for 30 minutes, and the aramid fabric was treated with 3 times of coating. Even after baking for 2 hours under heating to 600 ° C, the mass residue is as high as 69%.
- the reaction solution was extracted with anhydrous diethyl ether, and the mixture was separated, then washed with deionized water until neutral, dried over anhydrous magnesium sulfate for 5 hours, finally filtered, and then steamed at 30 ° C, vacuum 15 mmHg to With constant weight, the product methylphenylsilicylenedicarbane 8.8 g was obtained. 17.82 g of dry tetrahydrofuran and 2.36 g of methylphenylsilicylene dicarboborane were placed in a 10 Oml three-necked flask. After setting up the experimental apparatus, the air in the apparatus was removed by nitrogen, and the flask was waited in an ice bath.
- the temperature of the solution was lowered to 0 ° C, and then 6.00 g of a 1.6 M n-butyllithium hexane solution was added dropwise through a constant pressure dropping funnel, and the mixture was added dropwise for 15 minutes, and the reaction time was 2 hours, maintaining the reaction temperature. Below zero.
- a mixed solution of 0.95 g of dimethylchlorosilane and 8.92 g of dry tetrahydrofuran was added dropwise under ice-cooling, the dropping process was carried out for 15 minutes, and the reaction was carried out for 1 hour and then transferred to room temperature. The reaction was continued and the reaction time was 24 hours.
- buffer solution 0.20 g of sodium hydroxide was added to 50.00 g of deionized water to prepare a 0.1 mol/L sodium hydroxide solution. After dissolving, 0.65 g of sodium dihydrogen phosphate monohydrate was added and stirred to dissolve. In a 250 ml three-necked flask, a buffer solution was first added, and 15.51 g of 1,4-dioxane and 0.50 g of palladium on carbon were used to catalyze the ij.
- the temperature was raised to 50 ° C, and the reaction time was 18 hours. .
- the reaction was completed, it was naturally cooled to room temperature, and the insoluble triethylamine hydrochloride was removed by suction filtration, and the filtrate was extracted with anhydrous diethyl ether, and then separated, then washed with deionized water to neutral, and dried over 5 g of anhydrous magnesium sulfate. ⁇ , finally filtered, steamed to constant weight at 55 ° C, vacuum of 20 mmHg, the product is a new type of carborane ceramic precursor.
- the molecular structure of the carborane ceramic precursor is as follows:
- m and ⁇ are integers of 5 to 12, respectively
- Example 1 a carborane ceramic precursor system was prepared, the aramid fabric was immersed therein, and air-dried at room temperature. The treatment was repeated 3 times to obtain an aramid fabric having a 1-3 coat layer on the surface.
- the tensile speed is 100mm / min
- the tensile strength of the untreated aramid fabric is 55.9MPa
- the aramid fiber after one coating treatment The tensile strength is 56.7 MPa, which is increased by 1.5%.
- the tensile strength is 56.3 MPa, which is increased by 0.8%.
- the tensile strength is 56.0 MPa, which is increased by 0.2 ⁇ 3 ⁇ 4.
- the heat stability of the aramid fiber before and after the treatment was tested.
- the untreated aramid fiber was completely degraded at 400 ° C for 30 minutes, and the aramid fabric was treated with 3 times of coating. Even after baking for 2 hours under heating to 500 ° C, the mass residue is as high as 99%.
- the insoluble palladium carbon catalyst was removed by suction filtration, and the filtrate was extracted with anhydrous ethyl acetate.
- the combined extracts were separated, and the oil layer was separated, then washed with deionized water to neutrality, dried with 10 g of anhydrous calcium chloride for 5 hours, finally filtered, and steamed to a constant weight at 55 ° C, a vacuum of 15 m hHg.
- the product ⁇ , -methylphenylsilicylene-2,2'-bis(dimethylhydroxysilyl)biscarbocene was obtained.
- the reaction was carried out for 1 hour, and then the temperature was raised to 65 ° C for 5 hours, and the reaction liquid became silvery gray to obtain the product 1,3,5-trimethyl-1,3,5-tri[ ⁇ -(dimethyl chloride).
- the silyl)ethyl]cyclotrisilazane is directly passed to the next reaction.
- the prepared carborane monomer solution was added dropwise through a constant pressure dropping funnel, and the mixture was added dropwise for 20 minutes, and after reacting at room temperature for 50 minutes, the temperature was raised to 50 ° C, and the reaction time was 24 hours.
- a carborane ceramic precursor system was prepared in accordance with Example 1.
- the aramid fabric was immersed therein and air-dried at room temperature. The treatment was repeated 3 times to obtain an aramid fabric having a 1-3 coat layer on the surface.
- the tensile strength of the aramid fiber after one coat treatment was 56.7 MPa, which was increased by 1.5%;
- the tensile strength of the aramid fiber was 56.4 MPa, which was increased by 0.9%.
- the tensile strength of the aramid fiber was 56.0 MPa, which was increased by 0.2%.
- the heat-resistant stability of the aramid fiber can be greatly improved, and the mechanical properties are not lowered, especially the flexibility is good, and since the carborane ceramic can be bonded to the high-temperature adhesive, It is easy to bond and solves the problem of difficult bonding of existing high temperature resistant textiles.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Textile Engineering (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
Abstract
本发明公开了一种基于碳硼烷陶瓷涂层的耐热纺织品及其制备方法,包括芳纶纺织品以及碳硼烷陶瓷涂层;所述碳硼烷陶瓷由碳硼烷陶瓷前驱体制备得到;前驱体以环硅氮烷为骨架支撑,具有交联网状结构,进一步交联时有很好的陶瓷化产率,因此可在芳纶纤维表面形成致密的陶瓷涂层。提供的前驱体制备工艺简便,制备反应条件温和,原材料易得,适合工业放大化生产。经涂层处理后的芳纶纺织品耐热性能和抗氧化性能非常优异。
Description
一种基于碳硼垸陶瓷涂层的耐热纺织品及其制备方法 技术领域
[0001] 本发明涉及一种基于碳硼烷陶瓷涂层的耐热纺织品及其制备方法, 属于耐高温 聚合物和复合材料制备和应用领域。
背景技术
[0002] 耐高温纺织品在高温过滤、 防护服装方面有着广泛的应用。 SiBCN陶瓷作为一 种新型高性能陶瓷材料, 具有耐高温能力强、 抗氧化能力高、 抗高温蠕变性好 、 硬度高、 耐磨损、 线性膨胀系数小、 耐化学腐蚀等优点。 SiBCN涂层在纤维与 陶瓷基体之间作为界面材料, 可提高纤维与陶瓷基体的浸润性; SiBCN四元陶瓷 化材料的制备方法中, 最简单的是先将环硅氮烷硼烷化, 利用环硅氮烷的反应 性交联获得陶瓷体, 其中, 以甲基乙烯基二氯硅烷为原料, 经硼氢化、 氨解以 及热聚合反应合成了一系列硼基团化环硅氮烷, 转化成 Si-B-C-N四元体系陶瓷 比 Si-C-N三元体系陶瓷具有更好的高温稳定性。 然而, 这一方法制备前体化合 物吋, 中间体有机硼烷具有剧毒, 可操作性差, 难以工业化实施。
技术问题
问题的解决方案
技术解决方案
[0003] 本发明的目的在于公幵一种基于碳硼烷陶瓷涂层的耐热纺织品及其制备方法, 不仅具有良好的耐热性, 还具有良好的柔韧性, 并利于粘接。
[0004] 一种基于碳硼烷陶瓷涂层的耐热纺织品的制备方法, 包括以下步骤:
[0005] (1)以 Ι, -烃基硅甲撑 -2,2'-双 (二甲基硅基)双碳硼烷为原料, 在碱性条件下、 金 属催化剂下, 进行反应制备 Ι, -烃基硅甲撑 -2,2'-双 (二甲基羟基硅基)双碳硼烷;
[0006] (2)以二甲基氯硅烷、 三乙烯基三甲基环三硅氮烷为原料, 在金属催化剂下, 反 应制备 1,3,5-三甲基 -1,3,5-三 [β- (二甲基氯硅基)乙基]环三硅氮烷;
[0007] (3)以 1,1'-烃基硅甲撑 -2,2'-双 (二甲基羟基硅基)双碳硼烷、 1,3,5-三甲基 -1,3,5-三[ β- (二甲基氯硅基)乙基]环三硅氮烷为原料, 在三乙胺存在下, 制备碳硼烷陶瓷前
驱体;
[0008] (4)以碳硼烷陶瓷前驱体与溶剂、 硅烷偶联剂、 环氧化物为原料, 制备碳硼烷陶 瓷前驱体体系;
[0009] (5)将纺织品浸泡碳硼烷陶瓷前驱体体系; 干燥处理得到基于碳硼烷陶瓷涂层的 耐热纺织品。
[0010] 上述技术方案中, 步骤 (1)为, 将氢氧化钠与水混合, 再加入一水磷酸二氢钠混 合制备缓冲液, 再加入醚类溶剂以及金属催化剂; 然后加入 Ι, -烃基硅甲撑 -2,2' -双 (二甲基硅基)双碳硼烷的芳烃溶液, 反应制备 Ι, -烃基硅甲撑 -2,2'-双 (二甲基 羟基硅基)双碳硼烷; 步骤 (2)为, 惰性气氛下, 在三乙烯基三甲基环三硅氮烷芳 烃溶液中加入金属催化剂; 然后加入二甲基氯硅烷芳烃溶液; 反应制备 1,3,5-三 甲基 -1,3,5-三 [β- (二甲基氯硅基)乙基]环三硅氮烷; 步骤 (3)为, 将含有三乙胺的 1, -烃基硅甲撑 -2,2'-双 (二甲基羟基硅基)双碳硼烷芳烃溶液滴加入 1,3,5-三甲基 -1,3 ,5-三 [β- (二甲基氯硅基)乙基]环三硅氮烷中, 反应制备碳硼烷陶瓷前驱体; 步骤( 4)为, 将碳硼烷陶瓷前驱体溶解于卤代烷烃溶剂中, 再加入环氧基硅烷偶联剂与 二异戊二烯二环氧化物制备所述碳硼烷陶瓷前驱体体系; 步骤 (5)为, 将纺织品 浸泡碳硼烷陶瓷前驱体体系 0.5~1小吋; 室温风干得到基于碳硼烷陶瓷涂层的耐 热纺织品。
[0011] 上述技术方案中, 所述 Ι, -烃基硅甲撑 -2,2'-双 (二甲基硅基)双碳硼烷为 Ι, -甲 基苯基硅甲撑 -2,2'-双 (二甲基硅基)双碳硼烷或 Ι, -二苯基硅甲撑 -2,2'-双 (二甲基 硅基)双碳硼烷; 所述金属催化剂为钯碳催化剂或铂碳催化剂; 所述醚类溶剂为 1 ,4-二氧六环, 所述芳烃为甲苯和 /或二甲苯; 所述惰性气氛为氮气气氛; 所述卤 代烷烃溶剂为二氯甲烷、 二氯乙烷、 三氯甲烷中的一种或者几种; 所述纺织品 为芳纶纺织品。
[0012] 上述技术方案中, 步骤 (1)中, 氢氧化钠、 水、 一水磷酸二氢钠、 金属催化剂、 U'-烃基硅甲撑 -2,2'-双 (二甲基硅基)双碳硼烷的质量比为 (0.2~2):(20~200):(0.2~5) :(0.1~2):(0.5~5) , 反应温度为 25°C~65°C, 反应吋间为 1~48小吋; 步骤 (2)中, 三 乙烯基三甲基环三硅氮烷、 金属催化剂、 二甲基氯硅烷的质量比为 (0.5~5):(0.001 ~0.2):(0.5~5) , 反应温度为 25°C~85°C, 反应吋间为 1~48小吋; 步骤 (3)中, 三乙
胺、 Ι, -烃基硅甲撑 -2,2'-双 (二甲基羟基硅基)双碳硼烷的质量比为 (0.5~10):(1~5) , 反应温度为 25°C~75°C, 反应吋间为 1~48小吋; 步骤 (4)中, 所述碳硼烷陶瓷前 驱体体系的质量浓度为 1%~40<¾; 碳硼烷陶瓷前驱体、 环氧基硅烷偶联剂与二异 戊二烯二环氧化物的质量比为 1 :0.05:0.1。
[0013] 上述技术方案中, 将步骤 (5)得到的基于碳硼烷陶瓷涂层的耐热纺织品重复经过 步骤 (4)、 步骤 (5), 得到基于碳硼烷陶瓷涂层的耐热纺织品。
[0014] 本发明还公幵了一种基于碳硼烷陶瓷涂层的耐热纺织品, 包括芳纶纺织品以及 碳硼烷陶瓷涂层; 所述碳硼烷陶瓷由碳硼烷陶瓷前驱体制备得到。
[0015] 本发明还公幵了一种碳硼烷陶瓷前驱体体系, 包括碳硼烷陶瓷前驱体以及溶剂 、 硅烷偶联剂、 环氧化物。
[0016] 本发明公幵了一种基于碳硼烷陶瓷涂层的耐热纺织品用碳硼烷陶瓷前驱体体系 的制备方法, 将碳硼烷陶瓷前驱体溶解于 ¾代烷烃溶剂中, 再加入环氧基硅烷 偶联剂与二异戊二烯二环氧化物制备所述碳硼烷陶瓷前驱体体系。
[0017] 本发明所述碳硼烷陶瓷前驱体的化学结构式如下:
[]
[0018] 其中, R= -CH 3或 -Ph; m、 n分别为 3〜50的整数。
[0019] 上述技术方案中, 所述溶剂为卤代烷烃溶剂; 所述硅烷偶联剂为环氧基硅烷偶 联剂; 所述环氧化物为二异戊二烯二环氧化物; 所述碳硼烷陶瓷前驱体体系的 质量浓度为 ^〜 ^。
[0020] 上述技术方案中, 所述碳硼烷陶瓷前驱体、 环氧基硅烷偶联剂与二异戊二烯: 环氧化物的质量比为 1 :0.05:0.1。
[0021] 本发明制备碳硼烷陶瓷前驱体的具体反应式如下:
[0022] 本发明公幵的新型碳硼烷陶瓷前驱体分子主链含环硅氮烷, 可提供足够的交联 反应性和交联程度, 用于对纺织品涂层处理吋, 可以很好地转化为陶瓷涂层; 涂层为预聚物, 因此易于配制成溶液, 通过控制前驱体溶液浓度和处理次数等 方法可在被处理织物的纤维表面形成均匀完整和可控的涂层。
[0023] 本发明中, Ι, -烃基硅甲撑 -2,2'-双 (二甲基硅基)双碳硼烷的制备为, 惰性气体 下, 向烃基二氯硅烷溶液内滴加乙炔基溴化镁格氏试剂, 于 35〜45°C下反应; 然 后滴加癸硼烷溶液, 于 80〜90°C下反应, 得到烃基硅甲撑双碳硼烷; 惰性气体下 , 冰水浴条件下, 向烃基硅甲撑双碳硼烷溶液内滴加正丁基锂溶液, 冰水浴条
件下反应; 然后滴加二甲基氯硅烷溶液, 于冰水浴条件下下反应, 然后于室温 反应, 得到 Ι, -烃基硅甲撑 -2,2'-双 (二甲基硅基)双碳硼烷。 烃基二氯硅烷、 乙炔 基溴化镁格氏试剂、 癸硼烷的质量比为 (0.2~2):(0.5~5):(0.1~1); 烃基硅甲撑双碳 硼烷、 正丁基锂、 二甲基氯硅烷的质量比为 (1~10):(0.2~2):(0.5~5)。
[0024] 本发明中, 所述的萃取剂为乙醚, 乙酸乙酯, 正己烷或其中任意两者以任意重 量比混合的溶剂; 所述的干燥剂为无水硫酸镁, 无水硫酸钠, 无水氯化钙中的 任意一种; 所述的芳烃溶剂为甲苯, 二甲苯或两者以任意比例混合的混合溶剂 ; 所述的旋蒸除萃取剂的条件为温度 30~60°C, 真空度为 10~20mmHg。
发明的有益效果
有益效果
[0025] 本发明与现有技术相比的突出优点是:
[0026] 1.与现有技术中用于涂层处理的陶瓷前驱体不同, 本发明公幵的新型碳硼烷陶 瓷前驱体以环状三甲基环三硅氮烷为骨架支撑, 环三硅氮烷链节提供的均匀的 网状交联结构可以使碳硼烷在纤维表面分布更加均匀, 利用双碳硼烷夹心结构 提供优异的耐热性能和抗热氧化性能。
[0027] 2.本发明提供的碳硼烷陶瓷前驱体分子主链含硼元素, 在受热氧化吋可使涂层 质量增加, 如此可弥补涂层受热分解所造成的质量损失, 从而能避免涂层受热 分解过程中产生的裂缝, 且可使芳纶纤维与陶瓷基体界面结合更为紧密, 因此 可起到更好的保护效果。
[0028] 本发明公幵的新型碳硼烷陶瓷前驱体所使用的原材料均为市售原料, 来源广泛 , 价格便宜且不具有毒性; 反应条件温和, 工艺简单且产物易于提纯, 公幵的 新型碳硼烷前驱体由工业化市售原料三乙烯基三甲基环三硅氮烷与无毒的碳硼 烷化合物聚合而成, 且制备方法简单、 安全, 操作环境好, 适合工业化放大生 产。
对附图的简要说明
附图说明
[0029] 图 1是实施例一制备的新型碳硼烷陶瓷前驱体的红外吸收曲线图;
[0030] 图 2是实施例一制备的新型碳硼烷陶瓷前驱体的氢核磁共振光谱图。
本发明的实施方式
[0031] 下面结合附图和实施例对本发明技术方案作进一步的阐述。
[0032] 实施例一
[0033] 1.合成 Ι, -双苯基硅甲撑 -2,2'-双 (二甲基羟基硅基)双碳硼烷
[0034] 在 1000ml的三口烧瓶中加入 135克除水四氢呋喃和 13.2克的二苯基二氯硅烷, 搭好实验装置后, 先通氮气除去装置内的空气, 而后通过恒压滴液漏斗滴加 25 克的乙炔基溴化镁格氏试剂, 滴加吋间为 30分钟, 设置反应温度为 40°C, 反应 吋间为 4小吋, 同吋配置 6.2克癸硼烷, 78克乙腈和 178克四氢呋喃的混合溶液 , 反应 4小吋之后, 同样通过恒压滴液漏斗滴加, 滴加吋间为 30分钟。 滴加结束 之后, 调节反应温度为 80°C, 反应吋间为 48小吋。 反应结束后, 加入配置好的 11 0克乙腈, 55克丙酮, 36克浓盐酸和 50克去离子水混合溶液进行淬灭, 淬灭吋 间为 6小吋, 直至不再有气泡产生。 淬灭结束后, 加入无水乙醚对反应液进行萃 取, 每次加入 200克乙醚, 共萃取 3次。 合并萃取液, 分出油层, 然后用去离子 水洗至中性, 加入 30克无水硫酸镁干燥 5小吋, 最后过滤, 于 45°C、 真空度为 20 mmHg旋蒸至恒重, 得到 9.8g双苯基硅甲撑双碳硼烷。
[0035] 在 100ml三口烧瓶中加入 17.82克干燥四氢呋喃和 2.36克双苯基硅甲撑双碳硼烷 , 搭好实验装置后, 先通氮气除去装置内的空气, 在冰浴的条件下等三口烧瓶 中溶液的温度降至 0°C, 而后通过恒压滴液漏斗滴加 6.00克 1.6M正丁基锂己烷溶 液, 滴加吋间为 15分钟, 反应吋间为 2小吋, 保持反应温度为零下。 反应两个小 吋后, 同样在冰浴的条件下滴加 0.95克二甲基氯硅烷和 8.92克干燥四氢呋喃的混 合溶液, 滴加过程为 15分钟, 反应 1小吋后转移至室温的条件下继续反应, 反应 吋间为 24小吋。
[0036] 反应结束后, 加入 20.58克饱和氯化铵溶液进行淬灭, 淬灭吋间为 12小吋。 淬 灭结束后, 用无水乙醚对反应液进行萃取, 分液, 然后用去离子水洗至中性, 4. 00克无水硫酸镁干燥 5小吋, 最后过滤, 于 35°C、 真空度为 20mmHg下旋蒸至恒 重, 得到产物 Ι, -双苯基硅甲撑 -2,2'-双 (二甲基硅基)双碳硼烷。
[0037] 配制缓冲溶液: 将 0.20克氢氧化钠加入到 50.00g去离子水中配置成 0.1 mol/L的
氢氧化钠溶液, 溶解后加入 0.65克的一水磷酸二氢钠, 搅拌溶解。 在 250ml的三 口烧瓶中先加入缓冲溶液, 15.51克的 1,4-二氧六环和 0.50克的钯碳催化齐 ij, 搭好 实验装置后, 通过恒压滴液漏斗滴加配置好的 3.00克 Ι, -双苯基硅甲撑 -2,2'-双( 二甲基硅基)双碳硼烷和 17.50克除水甲苯的混合溶液, 滴加吋间为 5分钟, 设置 反应温度为 35°C, 反应吋间为 12小吋。
[0038] 反应结束后, 抽滤除去不溶的钯碳催化剂, 滤液用无水乙醚萃取, 每次加入 20 克无水乙醚, 共萃取 3次。 合并萃取液, 分出油层, 然后用去离子水水洗至中性 , 加入 5克无水硫酸镁干燥 5小吋, 最后过滤, 于 55°C, 真空度为 20mmHg旋蒸至 恒重, 得到产物 Ι, -双苯基硅甲撑 -2,2'-双 (二甲基羟基硅基)双碳硼烷。
[0039] 2.合成 1,3,5-三甲基 -1,3,5-三 [β- (二甲基氯硅基)乙基]环三硅氮烷
[0040] 在 100ml的三口烧瓶中先加入 17.50克除水甲苯溶液, 1.27克的三乙烯基三甲基 环三硅氮烷, 以及 0.01克卡斯特催化剂, 搭好实验装置后, 先通氮气除去装置内 的空气, 而后通过恒压滴液漏斗滴加配置好的 1.42克二甲基氯硅烷和 8.75克除水 甲苯的混合溶液, 滴加吋间为 5分钟, 在 25°C的条件下反应 1小吋, 随后升温至 75 。C反应 4小吋, 反应液变为银灰色, 得到产物 1,3,5-三甲基 -1,3,5-三 [β- (二甲基氯 硅基)乙基]环三硅氮烷, 直接进入下一步反应。
[0041] 3.缩聚反应
[0042] 在 100ml的烧杯中加入 13.00克的无水甲苯, 3.07克 1 , -双苯基硅甲撑 -2,2'-双 (二 甲基羟基硅基)双碳硼烷, 以及 1.02克的三乙胺, 混合均匀; 在上述步骤 2得到的 1,3,5-三甲基 -1,3,5-三 [β- (二甲基氯硅基)乙基]环三硅氮烷中, 通过恒压滴液漏斗 滴加配制好的碳硼烷单体溶液, 滴加吋间为 15分钟, 在室温下反应 30分钟后, 升温至 50°C, 反应吋间为 18小吋。 反应结束后, 自然冷却至室温, 抽滤除去不溶 的三乙胺盐酸盐, 滤液用无水乙醚萃取, 分液, 然后用去离子水水洗至中性, 5 克无水硫酸镁干燥 5小吋, 最后过滤, 在 55°C、 真空度为 20mmHg下旋蒸至恒重 , 得到一种新型的碳硼烷陶瓷前驱体。
[0043] 参见附图 1, 是按本实施例技术方案制备的新型碳硼烷陶瓷前驱体的红外吸收 曲线图谱。 从图中可以看到, 3379.83 cm 1处的吸收峰是 N-H的伸缩振动峰; 碳 硼烷的 B-H峰在 2563.46 cm - 1处; 而 1031.58 cm 1处 Si-O-Si cm 1的伸缩振动峰则
有力的证实了缩聚反应的发生。
[0044] 参见附图 2, 是按本实施例技术方案制备的新型碳硼烷陶瓷前驱体氢核磁共振 光谱。 从图中可以看到, 0.05-0.26(m, Si-CH 3); 0.4-2.0(br, B-H); 7.2-7.7(d, ph-H); 2.27(d,N-H); 5.86-6.08(m, CH=CH 2); 结合红外吸收图谱, 证实了聚合物 的合成。
[0045] 碳硼烷陶瓷前驱体分子结构式如下:
[0046] m和 n分别为 4~8的整数。
[0047] 4.涂层处理
[0048] 将 12g碳硼烷陶瓷前驱体溶解在 100g二氯甲烷溶液中, 配制成质量浓度为 0.12g/ 毫升的溶液, 加入 0.6g环氧基硅烷偶联剂 KH560与 1.2g二异戊二烯二环氧化物 (E RL-4269), 备用。 将凯夫拉芳纶织物浸泡在碳硼烷陶瓷前驱体体系中, 室温自然 风干。 重复处理 3次, 得到表面有 1-3层涂层的芳纶织物。
[0049] 按照国标 GB/1040.2-2006进行拉伸试验, 拉伸速度为 100mm/min, 测得未处理 芳纶织物的拉伸强度为 55.9MPa; 经过 1次涂层处理的芳纶纤维的拉伸强度为 56.7 MPa, 提高了 1.5%; 在涂层处理 2次后, 拉伸强度为 56.3MPa, 提高了 0.8%; 在 涂层处理 3次后, 拉伸强度为 56.0MPa, 提高了 0.2<¾。 测试了处理前后芳纶纤维 的耐热稳定性能, 可以看出, 未经处理的芳纶纤维在 400°C的条件下, 30分钟便 已经完全降解, 而经过 3次涂层处理的芳纶织物, 即使加热至 500°C的条件下烘烤 2小吋后, 质量残留高达 99%。
[0050] 实施例二
[0051] 1.合成 Ι, -双苯基硅甲撑 -2,2'-双 (二甲基羟基硅基)双碳硼烷
[0052] 参考实施例一的制备方法, 滴加混合溶液后, 86°C反应 48小吋, 其余条件一样 , 得到 9.8g双苯基硅甲撑双碳硼烷。 在 250ml三口烧瓶中加入 35.64克干燥四氢呋 喃和 4.75克双苯基硅甲撑双碳硼烷, 搭好实验装置后, 先通氮气除去装置内的空 气, 在冰浴的条件下等三口烧瓶中溶液的温度降至 0°C而后通过恒压滴液漏斗滴 加 12.50克 1.6M正丁基锂己烷溶液, 滴加吋间为 20分钟, 反应吋间为 4小吋, 保持 反应温度为零下。 反应 4个小吋后, 同样在冰浴的条件下滴加 1.92克二甲基氯硅 烷和 17.85克干燥四氢呋喃的混合溶液, 滴加过程为 20分钟, 反应 1小吋后转移至 室温的条件下继续反应, 反应吋间为 24小吋。
[0053] 反应结束后, 加入 41.16克饱和氯化铵溶液进行淬灭, 淬灭吋间为 20小吋。 淬灭 结束后, 用无水乙醚对反应液进行萃取, 分液, 然后用去离子水洗至中性, 10 克无水硫酸镁干燥 5小吋, 最后过滤, 于 35°C、 真空度为 20mmHg下旋蒸至恒重 , 得到产物 Ι, -双苯基硅甲撑 -2,2'-双 (二甲基硅基)双碳硼烷。
[0054] 配缓冲溶液: 将 0.40克氢氧化钠加入到 lOO.OOg去离子水中配置成 0.10 mol/L的 氢氧化钠溶液, 溶解后加入 1.30克的一水磷酸二氢钠, 搅拌溶解。 在 250ml的三 口烧瓶中先加入缓冲溶液, 32.00克的 1,4-二氧六环和 1.50克的钯碳催化剂, 搭好 实验装置后, 通过恒压滴液漏斗滴加配置好的 6.00克 Ι, -双苯基硅甲撑 -2,2'-双( 二甲基硅基)双碳硼烷和 35.50克除水甲苯的混合溶液, 滴加吋间为 5分钟, 设置 反应温度为 35°C, 反应吋间为 12小吋。
[0055] 反应结束后, 抽滤除去不溶的钯碳催化剂, 滤液用无水乙醚萃取, 每次加入 40 克无水乙醚, 共萃取 5次。 合并萃取液, 分出油层, 然后用去离子水水洗至中性 , 加入 15克无水硫酸镁干燥 5小吋, 最后过滤, 于 60°C, 真空度为 20mmHg旋蒸 至恒重, 得到产物 Ι, -双苯基硅甲撑 -2,2'-双 (二甲基羟基硅基)双碳硼烷。
[0056] 2.合成 1,3,5-三甲基 -1,3,5-三 [β- (二甲基氯硅基)乙基]环三硅氮烷
[0057] 在 250ml的三口烧瓶中先加入 35.00克除水甲苯溶液, 2.54克的三乙烯基三甲基 环三硅氮烷, 以及 0.02克卡斯特催化剂, 搭好实验装置后, 先通氮气除去装置内 的空气, 而后通过恒压滴液漏斗滴加配置好的 2.84克二甲基氯硅烷和 17.75克除 水甲苯的混合溶液, 滴加吋间为 10分钟, 在 35°C的条件下反应 1小吋, 随后升温 至 75°C反应 4小吋, 反应液变为银灰色, 得到产物 1,3,5-三甲基 -1,3,5-三 [β- (二甲
基氯硅基)乙基]环三硅氮烷, 直接进入下一步反应。
[0058] 3.缩聚反应
[0059] 在 250ml的烧杯中加入 26.00克的无水甲苯, 6.54克 1 , -双苯基硅甲撑 -2,2'-双 (二 甲基羟基硅基)双碳硼烷, 以及 2.04克的三乙胺, 混合均匀; 在上述步骤 2得到的 1,3,5-三甲基 -1,3,5-三 [β- (二甲基氯硅基)乙基]环三硅氮烷中, 通过恒压滴液漏斗 滴加配制好的碳硼烷单体溶液, 滴加吋间为 30分钟, 在室温下反应 1小吋后, 升 温至 55°C, 反应吋间为 24小吋。 反应结束后, 自然冷却至室温, 抽滤除去不溶的 三乙胺盐酸盐, 滤液用无水乙醚萃取, 分液, 然后用去离子水水洗至中性, 10 克无水硫酸镁干燥 5小吋, 最后过滤, 在 55°C、 真空度为 15mmHg下旋蒸至恒重 , 得到一种新型的碳硼烷陶瓷前驱体; 结构式中, m和 n分别为 5~10的整数。
[0060] 4.涂层处理
[0061] 参照实施例一制备碳硼烷陶瓷前驱体体系, 将芳纶织物浸泡其中, 室温自然风 干。 重复处理 5次, 得到表面有 5层涂层的芳纶织物。
[0062] 按照国标 GB/1040.2-2006进行拉伸试验, 拉伸速度为 100mm/min, 测得未处理 芳纶织物的拉伸强度为 55.9MPa; 经过 1次涂层处理的芳纶纤维的拉伸强度为 56.6 MPa, 提高了 1.7%; 在涂层处理 2次后, 拉伸强度为 56.3MPa, 提高了 0.7%; 在 涂层处理 5次后, 拉伸强度为 56.0MPa, 提高了 0.1<¾。 测试了处理前后芳纶纤维 的耐热稳定性能, 可以看出, 未经处理的芳纶纤维在 400°C的条件下, 30分钟便 已经完全降解, 而经过 5次涂层处理的芳纶织物, 即使加热至 500°C的条件下烘烤 2小吋后, 质量残留高达 99%。
[0063] 实施例三
[0064] 1.合成 Ι, -双苯基硅甲撑 -2,2'-双 (二甲基羟基硅基)双碳硼烷
[0065] 在 1000ml三口烧瓶中加入 71.28克干燥四氢呋喃和 9.55克双苯基硅甲撑双碳硼烷
(实施例一) , 搭好实验装置后, 先通氮气除去装置内的空气, 在冰浴的条件 下等三口烧瓶中溶液的温度降至 0。C而后通过恒压滴液漏斗滴加 25.50克 1.6M正丁 基锂己烷溶液, 滴加吋间为 60分钟, 反应吋间为 8小吋, 保持反应温度为零下。 反应 8个小吋后, 同样在冰浴的条件下滴加 3.95克二甲基氯硅烷和 35.75克干燥四 氢呋喃的混合溶液, 滴加过程为 30分钟, 反应 2小吋后转移至室温的条件下继续
反应, 反应吋间为 24小吋。 反应结束后, 加入 82.32克饱和氯化铵溶液进行淬灭 , 淬灭吋间为 20小吋。 淬灭结束后, 用无水乙醚对反应液进行萃取, 分液, 然 后用去离子水洗至中性, 20克无水硫酸镁干燥 5小吋, 最后过滤, 于 40°C、 真空 度为 20mmHg下旋蒸至恒重, 得到产物 Ι, -双苯基硅甲撑 -2,2'-双 (二甲基硅基)双 碳硼烷。 配缓冲溶液: 将 0.80克氢氧化钠加入到 200.00g去离子水中配置成 0.10 mol/L的氢氧化钠溶液, 溶解后加入 2.60克的一水磷酸二氢钠, 搅拌溶解。 在 250 ml的三口烧瓶中先加入缓冲溶液, 64.00克的 1,4-二氧六环和 3.50克的钯碳催化剂 , 搭好实验装置后, 通过恒压滴液漏斗滴加配置好的 12.50克 Ι, -双苯基硅甲撑 -2 ,2'-双 (二甲基硅基)双碳硼烷和 71.50克除水甲苯的混合溶液, 滴加吋间为 30分钟 , 设置反应温度为 55°C, 反应吋间为 12小吋。 反应结束后, 抽滤除去不溶的钯碳 催化剂, 滤液用无水乙醚萃取, 每次加入 100克无水乙醚, 共萃取 3次。 合并萃 取液, 分出油层, 然后用去离子水水洗至中性, 加入 50克无水硫酸镁干燥 5小吋 , 最后过滤, 于 55°C, 真空度为 20mmHg旋蒸至恒重, 得到产物 Ι, -双苯基硅甲 撑 -2,2'-双 (二甲基羟基硅基)双碳硼烷。
[0066] 2.合成 1,3,5-三甲基 -1,3,5-三 [β- (二甲基氯硅基)乙基]环三硅氮烷
[0067] 在 1000ml的三口烧瓶中先加入 75.50克除水甲苯溶液, 5.25克的三乙烯基三甲基 环三硅氮烷, 以及 0.05克卡斯特催化剂, 搭好实验装置后, 先通氮气除去装置内 的空气, 而后通过恒压滴液漏斗滴加配置好的 5.75克二甲基氯硅烷和 35.50克除 水甲苯的混合溶液, 滴加吋间为 30分钟, 在 45°C的条件下反应 1小吋, 随后升温 至 75°C反应 5小吋, 反应液变为银灰色, 得到产物 1,3,5-三甲基 -1,3,5-三 [β- (二甲 基氯硅基)乙基]环三硅氮烷, 直接进入下一步反应。
[0068] 3.缩聚反应
[0069] 在 1000ml的烧杯中加入 55.00克的无水甲苯, 6.50克 Ι, -双苯基硅甲撑 -2,2'-双( 二甲基羟基硅基)双碳硼烷, 以及 2.50克的三乙胺, 混合均匀; 在上述步骤 2得到 的 1,3,5-三甲基 -1,3,5-三 [β- (二甲基氯硅基)乙基]环三硅氮烷中, 通过恒压滴液漏 斗滴加配制好的碳硼烷单体溶液, 滴加吋间为 45分钟, 在室温下反应 120分钟后 , 升温至 55°C, 反应吋间为 36小吋。 反应结束后, 自然冷却至室温, 抽滤除去不 溶的三乙胺盐酸盐, 滤液用无水乙醚萃取, 分液, 然后用去离子水水洗至中性
, 50克无水硫酸镁干燥 12小吋, 最后过滤, 在 55°C、 真空度为 20mmHg下旋蒸至 恒重, 得到产物为碳硼烷陶瓷前驱体。 碳硼烷陶瓷前驱体分子结构式中 m和 n分 别为 4~6的整数。
[0070] 4.涂层处理
[0071] 参照实施例一制备碳硼烷陶瓷前驱体体系, 将芳纶织物浸泡其中, 室温自然风 干。 重复处理 3次, 得到表面有 1-3层涂层的芳纶织物。
[0072] 经过 1次涂层处理的芳纶纤维的拉伸强度为 56.7MPa, 提高了 1.4%; 在涂层处理 2次后, 拉伸强度为 56.3MPa, 提高了 0.8%; 在涂层处理 3次后, 拉伸强度为 56.1 MPa, 提高了 0.3%。 测试了处理前后芳纶纤维的耐热稳定性能, 可以看出, 未 经处理的芳纶纤维在 400°C的条件下, 30分钟便已经完全降解, 而经过 3次涂层处 理的芳纶织物, 即使加热至 550°C的条件下烘烤 2小吋后, 质量残留高达 89%。
[0073] 实施例四
[0074] 1.合成 Ι, -双苯基硅甲撑 -2,2'-双 (二甲基羟基硅基)双碳硼烷
[0075] 在 2000ml三口烧瓶中加入 145.50克干燥四氢呋喃和 19.32克双苯基硅甲撑双碳硼 烷 (实施例一), 搭好实验装置后, 先通氮气除去装置内的空气, 在冰浴的条件下 等三口烧瓶中溶液的温度降至 0。C而后通过恒压滴液漏斗滴加 55.25克 1.6M正丁基 锂己烷溶液, 滴加吋间为 120分钟, 反应吋间为 8小吋, 保持反应温度为零下。 反应 8个小吋后, 同样在冰浴的条件下滴加 7.68克二甲基氯硅烷和 71.45克干燥四 氢呋喃的混合溶液, 滴加过程为 60分钟, 反应 2小吋后转移至室温的条件下继续 反应, 反应吋间为 36小吋。 反应结束后, 加入 164.64克饱和氯化铵溶液进行淬灭 , 淬灭吋间为 20小吋。 淬灭结束后, 用无水乙酸乙酯对反应液进行萃取, 分液 , 然后用去离子水洗至中性, 40克无水硫酸镁干燥 12小吋, 最后过滤, 于 35°C、 真空度为 lOmmHg下旋蒸至恒重, 得到产物 Ι, -双苯基硅甲撑 -2,2'-双 (二甲基硅 基)双碳硼烷。 配缓冲溶液: 将 1.60克氢氧化钠加入到 400.00g去离子水中配置成 0 .10
mol/L的氢氧化钠溶液, 溶解后加入 5.20克的一水磷酸二氢钠, 搅拌溶解。 在 200 Oml的三口烧瓶中先加入缓冲溶液, 135.50克的 1,4-二氧六环和 6.50克的钯碳催化 齐 ij, 搭好实验装置后, 通过恒压滴液漏斗滴加配置好的 24.30克 Ι, -双苯基硅甲
撑 -2,2'-双 (二甲基硅基)双碳硼烷和 142.50克除水甲苯的混合溶液, 滴加吋间为 5 分钟, 设置反应温度为 35°C, 反应吋间为 12小吋。
[0076] 反应结束后, 抽滤除去不溶的钯碳催化剂, 滤液用无水正己烷萃取, 每次加入 40克无水正己烷, 共萃取 5次。 合并萃取液, 分出油层, 然后用去离子水水洗至 中性, 加入 100克无水硫酸镁干燥 12小吋, 最后过滤, 于 55°C, 真空度为 15mmH g旋蒸至恒重, 得到产物 Ι, -双苯基硅甲撑 -2,2'-双 (二甲基羟基硅基)双碳硼烷。
[0077] 2.合成 1,3,5-三甲基 -1,3,5-三 [β- (二甲基氯硅基)乙基]环三硅氮烷
[0078] 在 2000ml的三口烧瓶中先加入 145.00克除水甲苯溶液, 10.50克的三乙烯基三甲 基环三硅氮烷, 以及 0.10克卡斯特催化剂, 搭好实验装置后, 先通氮气除去装置 内的空气, 而后通过恒压滴液漏斗滴加配置好的 11.52克二甲基氯硅烷和 71.50克 除水甲苯的混合溶液, 滴加吋间为 120分钟, 在 35°C的条件下反应 2小吋, 随后升 温至 75°C反应 10小吋, 反应液变为银灰色, 得到产物 1,3,5-三甲基 -1,3,5-三 [β- (二 甲基氯硅基)乙基]环三硅氮烷, 直接进入下一步反应。
[0079] 3.缩聚反应
[0080] 在 2000ml的烧杯中加入 105.50克的无水甲苯, 27.80克 1 , -双苯基硅甲撑 -2,2'-双
(二甲基羟基硅基)双碳硼烷, 以及 8.53克的三乙胺, 混合均匀; 在上述步骤 2得到 的 1,3,5-三甲基 -1,3,5-三 [β- (二甲基氯硅基)乙基]环三硅氮烷中, 通过恒压滴液漏 斗滴加配制好的碳硼烷单体溶液, 滴加吋间为 120分钟, 在室温下反应 4小吋后 , 升温至 55°C, 反应吋间为 48小吋。 反应结束后, 自然冷却至室温, 抽滤除去不 溶的三乙胺盐酸盐, 滤液用无水正己烷萃取, 分液, 然后用去离子水水洗至中 性, 100克无水硫酸钠干燥 5小吋, 最后过滤, 在 55°C、 真空度为 15mmHg下旋蒸 至恒重, 得到产物为一种新型的碳硼烷陶瓷前驱体, 分子结构式中 m和 n分别为 6 ~12的整数。
[0081] 4.涂层处理
[0082] 参照实施例一制备碳硼烷陶瓷前驱体体系, 将芳纶织物浸泡其中, 室温自然风 干。 重复处理 3次, 得到表面有 1-3层涂层的芳纶织物。
[0083] 经过 1次涂层处理的芳纶纤维的拉伸强度为 56.8MPa, 提高了 1.6%; 在涂层处理
2次后, 拉伸强度为 56.3MPa, 提高了 0.8%; 在涂层处理 3次后, 拉伸强度为 56.0
MPa, 提高了 0.2%。 测试了处理前后芳纶纤维的耐热稳定性能, 可以看出, 未 经处理的芳纶纤维在 400°C的条件下, 30分钟便已经完全降解, 而经过 3次涂层处 理的芳纶织物, 即使加热至 600°C的条件下烘烤 2小吋后, 质量残留高达 69%。
[0084] 实施例五
[0085] 1.合成 Ι, -甲基苯基硅甲撑 -2,2'-双 (二甲基羟基硅基)双碳硼烷
[0086] 在 1000ml的三口烧瓶中加入 135克除水四氢呋喃和 9.6克的甲基苯基二氯硅烷 , 搭好实验装置后, 先通氮气除去装置内的空气, 而后通过恒压滴液漏斗滴加 2 2克的乙炔基溴化镁格氏试剂, 滴加吋间为 35分钟, 设置反应温度为 40°C, 反应 吋间为 4小吋, 同吋配置 6.2克癸硼烷, 78克乙腈和 178克四氢呋喃的混合溶液 , 反应 4小吋之后, 同样通过恒压滴液漏斗滴加, 滴加吋间为 35分钟。 滴加结束 之后, 调节反应温度为 80°C, 反应吋间为 48小吋。 反应结束后, 加入配置好的 11 0克乙腈, 55克丙酮, 36克浓盐酸和 50克去离子水混合溶液进行淬灭, 淬灭吋 间为 6小吋, 直至不再有气泡产生, 淬灭结束后, 用无水乙醚对反应液进行萃取 , 分液, 然后用去离子水洗至中性, 无水硫酸镁干燥 5小吋, 最后过滤, 于 30°C 、 真空度为 15mmHg旋蒸至恒重, 得到产物甲基苯基硅甲撑双碳硼烷 8.8g。 在 10 Oml三口烧瓶中加入 17.82克干燥四氢呋喃和 2.36克甲基苯基硅甲撑双碳硼烷, 搭 好实验装置后, 先通氮气除去装置内的空气, 在冰浴的条件下等三口烧瓶中溶 液的温度降至 0°C, 而后通过恒压滴液漏斗滴加 6.00克 1.6M正丁基锂己烷溶液, 滴加吋间为 15分钟, 反应吋间为 2小吋, 保持反应温度为零下。 反应两个小吋后 , 同样在冰浴的条件下滴加 0.95克二甲基氯硅烷和 8.92克干燥四氢呋喃的混合溶 液, 滴加过程为 15分钟, 反应 1小吋后转移至室温的条件下继续反应, 反应吋间 为 24小吋。 反应结束后, 加入 20.58克饱和氯化铵溶液进行淬灭, 淬灭吋间为 12 小吋。 淬灭结束后, 用无水乙醚对反应液进行萃取, 分液, 然后用去离子水洗 至中性, 4.00克无水硫酸镁干燥 5小吋, 最后过滤, 于 35°C、 真空度为 20mmHg 下旋蒸至恒重, 得到产物 Ι, -甲基苯基硅甲撑 -2,2'-双 (二甲基硅基)双碳硼烷。 配 缓冲溶液: 将 0.20克氢氧化钠加入到 50.00g去离子水中配置成 0.1 mol/L的氢氧化 钠溶液, 溶解后加入 0.65克的一水磷酸二氢钠, 搅拌溶解。 在 250ml的三口烧瓶 中先加入缓冲溶液, 15.51克的 1,4-二氧六环和 0.50克的钯碳催化齐 ij, 搭好实验装
置后, 通过恒压滴液漏斗滴加配置好的 3.00克 Ι, -甲基苯基硅甲撑 -2,2'-双 (二甲 基硅基)双碳硼烷和 17.50克除水甲苯的混合溶液, 滴加吋间为 5分钟, 设置反应 温度为 35°C, 反应吋间为 12小吋。 反应结束后, 抽滤除去不溶的钯碳催化剂, 滤 液用无水乙酸乙酯萃取, 每次加入 20克无水乙酸乙酯, 共萃取 3次。 合并萃取液 , 分出油层, 然后用去离子水水洗至中性, 加入 5克无水氯化钙干燥 5小吋, 最 后过滤, 于 55°C, 真空度为 20mmHg旋蒸至恒重, 得到产物 Ι, -甲基苯基硅甲撑- 2,2'-双 (二甲基羟基硅基)双碳硼烷。
[0087] 2.合成 1,3,5-三甲基 -1,3,5-三 [β- (二甲基氯硅基)乙基]环三硅氮烷
[0088] 在 100ml的三口烧瓶中先加入 17.50克除水甲苯溶液, 1.27克的三乙烯基三甲基 环三硅氮烷, 以及 0.01克卡斯特催化剂, 搭好实验装置后, 先通氮气除去装置内 的空气, 而后通过恒压滴液漏斗滴加配置好的 1.42克二甲基氯硅烷和 8.75克除水 甲苯的混合溶液, 滴加吋间为 5分钟, 在 25°C的条件下反应 1小吋, 随后升温至 75 。C反应 4小吋, 反应液变为银灰色, 得到产物 1,3,5-三甲基 -1,3,5-三 [β- (二甲基氯 硅基)乙基]环三硅氮烷, 直接进入下一步反应。
[0089] 3.缩聚反应
[0090] 在 100ml的烧杯中加入 13.00克的无水甲苯, 3.67克 Ι, -甲基苯基硅甲撑 -2,2'-双( 二甲基羟基硅基)双碳硼烷, 以及 1.02克的三乙胺, 混合均匀; 在上述步骤 2得到 的 1,3,5-三甲基 -1,3,5-三 [β- (二甲基氯硅基)乙基]环三硅氮烷中, 通过恒压滴液漏 斗滴加配制好的碳硼烷单体溶液, 滴加吋间为 15分钟, 在室温下反应 30分钟后 , 升温至 50°C, 反应吋间为 18小吋。 反应结束后, 自然冷却至室温, 抽滤除去不 溶的三乙胺盐酸盐, 滤液用无水乙醚萃取, 分液, 然后用去离子水水洗至中性 , 5克无水硫酸镁干燥 5小吋, 最后过滤, 在 55°C、 真空度为 20mmHg下旋蒸至恒 重, 得到产物为一种新型的碳硼烷陶瓷前驱体。 碳硼烷陶瓷前驱体分子结构式 如下:
[]
[0091] m和 η分别为 5~12的整数
[0092] 4.涂层处理
[0093] 参照实施例一制备碳硼烷陶瓷前驱体体系, 将芳纶织物浸泡其中, 室温自然风 干。 重复处理 3次, 得到表面有 1-3层涂层的芳纶织物。
[0094] 按照国标 GB/1040.2-2006进行拉伸试验, 拉伸速度为 100mm/min, 测得未处理 芳纶织物的拉伸强度为 55.9MPa; 经过 1次涂层处理的芳纶纤维的拉伸强度为 56.7 MPa, 提高了 1.5%; 在涂层处理 2次后, 拉伸强度为 56.3MPa, 提高了 0.8%; 在 涂层处理 3次后, 拉伸强度为 56.0MPa, 提高了 0.2<¾。 测试了处理前后芳纶纤维 的耐热稳定性能, 可以看出, 未经处理的芳纶纤维在 400°C的条件下, 30分钟便 已经完全降解, 而经过 3次涂层处理的芳纶织物, 即使加热至 500°C的条件下烘烤 2小吋后, 质量残留高达 99%。
[0095] 实施例六
[0096] 1.合成 Ι, -甲基苯基硅甲撑 -2,2'-双 (二甲基羟基硅基)双碳硼烷
[0097] 在 250ml三口烧瓶中加入 35.64克干燥四氢呋喃和 4.72克甲基苯基硅甲撑双碳硼 烷 (实施例五), 搭好实验装置后, 先通氮气除去装置内的空气, 在冰浴的条件下 等三口烧瓶中溶液的温度降至 0。C, 而后通过恒压滴液漏斗滴加 12.50克 1.6M正丁 基锂己烷溶液, 滴加吋间为 30分钟, 反应吋间为 3小吋, 保持反应温度为零下。 反应 3个小吋后, 同样在冰浴的条件下滴加 1.95克二甲基氯硅烷和 17.85克干燥四 氢呋喃的混合溶液, 滴加过程为 30分钟, 反应 2小吋后转移至室温的条件下继续 反应, 反应吋间为 18小吋。 反应结束后, 加入 41.16克饱和氯化铵溶液进行淬灭 , 淬灭吋间为 12小吋。 淬灭结束后, 用无水乙酸乙酯对反应液进行萃取, 分液
, 然后用去离子水洗至中性, 10.00克无水硫酸镁干燥 5小吋, 最后过滤, 于 40°C 、 真空度为 20mmHg下旋蒸至恒重, 得到产物 Ι, -甲基苯基硅甲撑 -2,2'-双 (二甲 基硅基)双碳硼烷。 配缓冲溶液: 将 0.40克氢氧化钠加入到 lOO.OOg去离子水中配 置成 O.l mol/L的氢氧化钠溶液, 溶解后加入 1.30克的一水磷酸二氢钠, 搅拌溶解
[0098] 在 250ml的三口烧瓶中先加入缓冲溶液, 32.50克的 1,4-二氧六环和 1.50克的钯碳 催化剂, 搭好实验装置后, 通过恒压滴液漏斗滴加配置好的 6.50克 Ι, -甲基苯基 硅甲撑 -2,2'-双 (二甲基硅基)双碳硼烷和 35.50克除水甲苯的混合溶液, 滴加吋间 为 15分钟, 设置反应温度为 35°C, 反应吋间为 12小吋。
[0099] 反应结束后, 抽滤除去不溶的钯碳催化剂, 滤液用无水乙酸乙酯萃取, 每次加 入 20克无水乙酸乙酯, 共萃取 5次。 合并萃取液, 分出油层, 然后用去离子水水 洗至中性, 加入 10克无水氯化钙干燥 5小吋, 最后过滤, 于 55°C, 真空度为 15m mHg旋蒸至恒重, 得到产物 Ι, -甲基苯基硅甲撑 -2,2'-双 (二甲基羟基硅基)双碳硼 院。
[0100] 2.合成 1,3,5-三甲基 -1,3,5-三 [β- (二甲基氯硅基)乙基]环三硅氮烷
[0101] 在 250ml的三口烧瓶中先加入 35.50克除水甲苯溶液, 2.52克的三乙烯基三甲基 环三硅氮烷, 以及 0.04克卡斯特催化剂, 搭好实验装置后, 先通氮气除去装置内 的空气, 而后通过恒压滴液漏斗滴加配置好的 2.85克二甲基氯硅烷和 16.50克除 水甲苯的混合溶液, 滴加吋间为 15分钟, 在 35°C的条件下反应 1小吋, 随后升温 至 65°C反应 5小吋, 反应液变为银灰色, 得到产物 1,3,5-三甲基 -1,3,5-三 [β- (二甲 基氯硅基)乙基]环三硅氮烷, 直接进入下一步反应。
[0102] 3.缩聚反应
[0103] 在 250ml的烧杯中加入 26.50克的无水甲苯, 6.81克 1 , -甲基苯基硅甲撑 -2,2'-双( 二甲基羟基硅基)双碳硼烷, 以及 2.42克的三乙胺, 混合均匀,备用。
[0104] 在上述步骤 2得到的 1,3,5-三甲基 -1,3,5-三 [β- (二甲基氯硅基)乙基]环三硅氮烷中
, 通过恒压滴液漏斗滴加配制好的碳硼烷单体溶液, 滴加吋间为 20分钟, 在室 温下反应 50分钟后, 升温至 50°C, 反应吋间为 24小吋。
[0105] 反应结束后, 自然冷却至室温, 抽滤除去不溶的三乙胺盐酸盐, 滤液用无水正
己烷萃取, 分液, 然后用去离子水水洗至中性, 10克无水硫酸钠干燥 5小吋, 最 后过滤, 在 55°C、 真空度为 20mmHg下旋蒸至恒重, 得到产物碳硼烷陶瓷前驱体 。 碳硼烷陶瓷前驱体分子结构式中, m和 n分别为 6~12的整数。
[0106] 4.涂层处理
[0107] 参照实施例一制备碳硼烷陶瓷前驱体体系, 将芳纶织物浸泡其中, 室温自然风 干。 重复处理 3次, 得到表面有 1-3层涂层的芳纶织物。
[0108] 经过 1次涂层处理的芳纶纤维的拉伸强度为 56.7MPa, 提高了 1.5%; 在涂层处理
2次后, 芳纶纤维的拉伸强度为 56.4MPa, 提高了 0.9%; 在涂层处理 3次后, 芳纶 纤维的拉伸强度为 56.0MPa, 提高了 0.2%。
[0109] 测试了处理前后芳纶纤维的耐热稳定性能, 可以看出, 未经处理的芳纶纤维在
400°C的条件下, 30分钟便已经完全降解, 而经过 3次涂层处理的芳纶织物, 即使 加热至 500°C的条件下烘烤 2小吋后, 质量残留高达 99%。
[0110] 经过本发明处理后, 芳纶纤维的耐热稳定性能大幅提高, 而且力学性能没有下 降, 特别是柔韧性较好, 并且由于碳硼烷陶瓷可与耐高温胶黏剂粘合, 从而易 于粘接, 解决了现有耐高温纺织品粘接困难的问题。
Claims
(1) 以 Ι, -烃基硅甲撑 -2,2'-双 (二甲基硅基) 双碳硼烷为原料, 在 碱性条件下、 金属催化剂下, 进行反应制备 Ι, -烃基硅甲撑 -2,2'-双 ( 二甲基羟基硅基) 双碳硼烷;
(2) 以二甲基氯硅烷、 三乙烯基三甲基环三硅氮烷为原料, 在金属 催化剂下, 反应制备 1,3,5-三甲基 -1,3,5-三 [β- (二甲基氯硅基)乙基]环 三硅氮烷;
(3) 以 Ι, -烃基硅甲撑 -2,2'-双 (二甲基羟基硅基) 双碳硼烷、 1,3,5- 三甲基 -1,3,5-三 [β- (二甲基氯硅基)乙基]环三硅氮烷为原料, 在三乙胺 存在下, 制备碳硼烷陶瓷前驱体;
(4) 以碳硼烷陶瓷前驱体与溶剂、 硅烷偶联剂、 环氧化物为原料, 制备碳硼烷陶瓷前驱体体系;
(5) 将纺织品浸泡碳硼烷陶瓷前驱体体系; 干燥处理得到基于碳硼 烷陶瓷涂层的耐热纺织品。
[权利要求 2] 根据权利要求 1所述基于碳硼烷陶瓷涂层的耐热纺织品的制备方法, 其特征在于,
步骤 (1) 为, 将氢氧化钠与水混合, 再加入一水磷酸二氢钠混合制 备缓冲液, 再加入醚类溶剂以及金属催化剂; 然后加入 Ι, -烃基硅甲 撑 -2,2'-双 (二甲基硅基) 双碳硼烷的芳烃溶液, 反应制备 Ι, -烃基硅 甲撑 -2,2'-双 (二甲基羟基硅基) 双碳硼烷;
步骤 (2) 为, 惰性气氛下, 在三乙烯基三甲基环三硅氮烷芳烃溶液 中加入金属催化剂; 然后加入二甲基氯硅烷芳烃溶液; 反应制备 1,3,5 -三甲基 -1,3,5-三 [β- (二甲基氯硅基)乙基]环三硅氮烷;
步骤 (3) 为, 将含有三乙胺的 Ι, -烃基硅甲撑 -2,2'-双 (二甲基羟基 硅基) 双碳硼烷芳烃溶液滴加入 1,3,5-三甲基 -1,3,5-三 [β- (二甲基氯硅 基)乙基]环三硅氮烷中, 反应制备碳硼烷陶瓷前驱体;
步骤 (4) 为, 将碳硼烷陶瓷前驱体溶解于卤代烷烃溶剂中, 再加入 环氧基硅烷偶联剂与二异戊二烯二环氧化物制备所述碳硼烷陶瓷前驱 体体系;
步骤 (5) 为, 将纺织品浸泡碳硼烷陶瓷前驱体体系 0.5~1小吋; 室温 风干得到基于碳硼烷陶瓷涂层的耐热纺织品。
[权利要求 3] 根据权利要求 2所述基于碳硼烷陶瓷涂层的耐热纺织品的制备方法, 其特征在于, 所述 Ι, -烃基硅甲撑 -2,2'-双 (二甲基硅基) 双碳硼烷为 1,1'-甲基苯基硅甲撑 -2,2'-双 (二甲基硅基) 双碳硼烷或 Ι, -二苯基硅 甲撑 -2,2'-双 (二甲基硅基) 双碳硼烷; 所述金属催化剂为钯碳催化 剂或铂碳催化剂; 所述醚类溶剂为 1,4-二氧六环, 所述芳烃为甲苯和 / 或二甲苯; 所述惰性气氛为氮气气氛; 所述 ¾代烷烃溶剂为二氯甲烷 、 二氯乙烷、 三氯甲烷中的一种或者几种; 所述纺织品为芳纶纺织品
[权利要求 4] 根据权利要求 2所述基于碳硼烷陶瓷涂层的耐热纺织品的制备方法, 其特征在于,
步骤 (1) 中, 氢氧化钠、 水、 一水磷酸二氢钠、 金属催化剂、 Ι, - 烃基硅甲撑 -2,2'-双 (二甲基硅基) 双碳硼烷的质量比为 (0.2~2) : ( 20-200) : (0.2-5) : (0.1-2) : (0.5 5) , 反应温度为 25°C~65°C, 反应吋间为 1~48小吋;
步骤 (2) 中, 三乙烯基三甲基环三硅氮烷、 金属催化剂、 二甲基氯 硅烷的质量比为 (0.5~5) : (0.001-0.2) : (0.5-5) , 反应温度为 25°C ~85°C, 反应吋间为 1~48小吋;
步骤 (3) 中, 三乙胺、 Ι, -烃基硅甲撑 -2,2'-双 (二甲基羟基硅基) 双碳硼烷的质量比为 (0.5~10) : (1-5) , 反应温度为 25°C~75°C, 反 应吋间为 1~48小吋;
步骤 (4) 中, 所述碳硼烷陶瓷前驱体体系的质量浓度为 1%~40<¾; 碳硼烷陶瓷前驱体、 环氧基硅烷偶联剂与二异戊二烯二环氧化物的质 量 t匕为 1:0.05:0.1。
[权利要求 5] 根据权利要求 2所述基于碳硼烷陶瓷的耐热纺织品的制备方法, 其特 征在于, 将步骤 (5) 得到的基于碳硼烷陶瓷涂层的耐热纺织品重复 经过步骤 (4) 、 步骤 (5) , 得到基于碳硼烷陶瓷涂层的耐热纺织口
[权利要求 6] 一种基于碳硼烷陶瓷涂层的耐热纺织品, 其特征在于, 所述基于碳硼 烷陶瓷涂层的耐热纺织品包括芳纶纺织品以及碳硼烷陶瓷涂层; 所述 碳硼烷陶瓷由碳硼烷陶瓷前驱体制备得到; 所述碳硼烷陶瓷前驱体的 化学结构式如下:
其中, R= -CH 3或 -Ph; m、 n分别为 3〜50的整数。
[权利要求 7] 一种基于碳硼烷陶瓷涂层的耐热纺织品用碳硼烷陶瓷前驱 其 特征在于, 所述碳硼烷陶瓷前驱体体系包括碳硼烷陶瓷前驱体以及溶 剂、 硅烷偶联剂、 环氧化物; 所述碳硼烷陶瓷前驱体的化学结构式如 下:
[权利要求 8] 根据权利要求 7所述基于碳硼烷陶瓷涂层的耐热纺织品用碳硼烷陶瓷 前驱体体系, 其特征在于, 所述溶剂为 ¾代烷烃溶剂; 所述硅烷偶联 剂为环氧基硅烷偶联剂; 所述环氧化物为二异戊二烯二环氧化物; 所 述碳硼烷陶瓷前驱体体系的质量浓度为 1%~40<¾。
[权利要求 9] 一种基于碳硼烷陶瓷涂层的耐热纺织品用碳硼烷陶瓷前驱体体系的制 备方法, 其特征在于, 将碳硼烷陶瓷前驱体溶解于 ¾代烷烃溶剂中, 再加入环氧基硅烷偶联剂与二异戊二烯二环氧化物制备所述碳硼烷陶 瓷前驱体体系; 所述碳硼烷陶瓷前驱体的化学结构式如下:
其中, R= -CH 3或 -Ph; m、 n分别为 3〜50的整数。
[权利要求 10] 根据权利要求 9所述基于碳硼烷陶瓷涂层的耐热纺织品用碳硼烷陶瓷 前驱体体系, 其特征在于, 所述硅烷偶联剂为环氧基硅烷偶联剂; 所 述环氧化物为二异戊二烯二环氧化物; 碳硼烷陶瓷前驱体、 环氧基硅 烷偶联剂与二异戊二烯二环氧化物的质量比为 1 :0.05:0.1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/083672 WO2018205156A1 (zh) | 2017-05-09 | 2017-05-09 | 一种基于碳硼烷陶瓷涂层的耐热纺织品及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/083672 WO2018205156A1 (zh) | 2017-05-09 | 2017-05-09 | 一种基于碳硼烷陶瓷涂层的耐热纺织品及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018205156A1 true WO2018205156A1 (zh) | 2018-11-15 |
Family
ID=64104055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/083672 WO2018205156A1 (zh) | 2017-05-09 | 2017-05-09 | 一种基于碳硼烷陶瓷涂层的耐热纺织品及其制备方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018205156A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090238964A1 (en) * | 2004-02-03 | 2009-09-24 | The Government Of The Us, As Represented By The Secretary Of The Navy | Coating of organic fibers with siloxane-carborane polymers |
CN102167832A (zh) * | 2011-03-02 | 2011-08-31 | 中国科学院化学研究所 | 一种聚(碳硼烷-硅氧/硅氮烷)聚合物及其制备方法 |
CN102634031A (zh) * | 2012-04-06 | 2012-08-15 | 中国科学院化学研究所 | 耐高温聚(硅氮烷-硅氧烷)共聚物及其制备方法 |
CN102643101A (zh) * | 2012-04-18 | 2012-08-22 | 东华大学 | 一种c/sibnc复合材料的制备方法 |
CN104532551A (zh) * | 2014-12-12 | 2015-04-22 | 哈尔滨工业大学 | 一种碳纤维表面原位制备硅硼碳氮陶瓷涂层的方法 |
CN105694049A (zh) * | 2016-01-22 | 2016-06-22 | 中国人民解放军国防科学技术大学 | 聚硼硅氮烷的制备方法 |
CN105820343A (zh) * | 2016-04-28 | 2016-08-03 | 苏州大学 | 一种硼硅聚合物、制备方法及其应用 |
-
2017
- 2017-05-09 WO PCT/CN2017/083672 patent/WO2018205156A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090238964A1 (en) * | 2004-02-03 | 2009-09-24 | The Government Of The Us, As Represented By The Secretary Of The Navy | Coating of organic fibers with siloxane-carborane polymers |
CN102167832A (zh) * | 2011-03-02 | 2011-08-31 | 中国科学院化学研究所 | 一种聚(碳硼烷-硅氧/硅氮烷)聚合物及其制备方法 |
CN102634031A (zh) * | 2012-04-06 | 2012-08-15 | 中国科学院化学研究所 | 耐高温聚(硅氮烷-硅氧烷)共聚物及其制备方法 |
CN102643101A (zh) * | 2012-04-18 | 2012-08-22 | 东华大学 | 一种c/sibnc复合材料的制备方法 |
CN104532551A (zh) * | 2014-12-12 | 2015-04-22 | 哈尔滨工业大学 | 一种碳纤维表面原位制备硅硼碳氮陶瓷涂层的方法 |
CN105694049A (zh) * | 2016-01-22 | 2016-06-22 | 中国人民解放军国防科学技术大学 | 聚硼硅氮烷的制备方法 |
CN105820343A (zh) * | 2016-04-28 | 2016-08-03 | 苏州大学 | 一种硼硅聚合物、制备方法及其应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5128494A (en) | Hydridosiloxanes as precursors to ceramic products | |
JPS62290730A (ja) | 有機シラザン重合体の製造方法 | |
CN107033357B (zh) | 一种碳硼烷陶瓷前驱体体系及其制备方法与应用 | |
JPS6353293B2 (zh) | ||
CN109337078B (zh) | 一种碳化硅陶瓷先驱体聚碳硅烷的制备方法 | |
CN105237773B (zh) | 一种耐超高温ZrC/SiC复相陶瓷先驱体的合成方法 | |
CN106674528B (zh) | 一种聚碳硅烷的制备方法 | |
CN111363158A (zh) | 一种含环氧基的聚硅氧硼烷超支化聚合物及其制备方法 | |
JPH02188471A (ja) | セラミック/繊維複合材料およびその製造方法 | |
CN107141486B (zh) | 一种硅基碳硼烷聚合物及其制备方法 | |
CN110725133B (zh) | 一种基于碳硼烷陶瓷涂层的耐热纺织品 | |
US5246738A (en) | Hydridosiloxanes as precursors to ceramic products | |
JPH0363576B2 (zh) | ||
US5319121A (en) | Hydridosiloxanes as precursors to ceramic products | |
WO2018205156A1 (zh) | 一种基于碳硼烷陶瓷涂层的耐热纺织品及其制备方法 | |
CN105820343B (zh) | 一种硼硅聚合物、制备方法及其应用 | |
CN101134816A (zh) | 倍半硅氧烷多芳炔杂化树脂及其制备方法和用途 | |
JP4669200B2 (ja) | 炭窒化ケイ素ホウ素セラミック及び先駆化合物、それらの製造方法及び使用 | |
JPH01153730A (ja) | 有機シラザン重合体の製造方法 | |
JP3290463B2 (ja) | 熱硬化性ケイ素ホウ素含有共重合体及びその製法 | |
CN102234375A (zh) | 聚苯乙炔基硅氧硼烷及其制备方法 | |
CN85108006A (zh) | 聚碳硅烷的合成方法 | |
JPH04218535A (ja) | 繊維強化複合材料およびその製造方法 | |
JP2001521506A (ja) | ホウ素含有カルボシラン、ホウ素含有オリゴ−またはポリ−カルボシラザン及びシリコンボロカルボナイトライドセラミックス | |
CN105906658B (zh) | 一种碳硼烷有机硅单体及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17909628 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17909628 Country of ref document: EP Kind code of ref document: A1 |