WO2018205087A1 - Miroir d'absorption saturable à hétérojonction et son procédé de préparation, et laser à fibre pulsé - Google Patents

Miroir d'absorption saturable à hétérojonction et son procédé de préparation, et laser à fibre pulsé Download PDF

Info

Publication number
WO2018205087A1
WO2018205087A1 PCT/CN2017/083438 CN2017083438W WO2018205087A1 WO 2018205087 A1 WO2018205087 A1 WO 2018205087A1 CN 2017083438 W CN2017083438 W CN 2017083438W WO 2018205087 A1 WO2018205087 A1 WO 2018205087A1
Authority
WO
WIPO (PCT)
Prior art keywords
heterojunction
laser
saturable absorption
absorption mirror
atomic
Prior art date
Application number
PCT/CN2017/083438
Other languages
English (en)
Chinese (zh)
Inventor
闫培光
陈浩
邢凤飞
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2017/083438 priority Critical patent/WO2018205087A1/fr
Publication of WO2018205087A1 publication Critical patent/WO2018205087A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers

Definitions

  • the invention belongs to the field of laser technology, and in particular relates to a heterojunction saturable absorption mirror, a preparation method thereof and a pulsed fiber laser.
  • passive mode-locking technology is an effective way to achieve ultra-fast pulse output of fiber lasers, and the key technology of passive mode-locking is the need for saturable absorption in fiber laser resonators.
  • researchers have used a variety of saturable absorption effects to obtain passive mode-locked ultrafast pulse outputs in fiber lasers.
  • SESAM semiconductor saturable absorption mirrors
  • the technical problem to be solved by the present invention is to provide a heterojunction saturable absorption mirror, a preparation method thereof, and a pulsed fiber laser to solve the problem that the commercial SESAM used in the prior art is expensive, complicated in manufacturing process, and low in reliability. defect.
  • the present invention is achieved by a heterojunction saturable absorption mirror comprising a substrate, a gold film layer overlying the substrate, and an atom overlying the gold film layer Layer two-dimensional material film;
  • the atomic-level two-dimensional material film comprises an atomic-level two-dimensional material slow-saturated absorber heterojunction film, an isolating material and an atomic-level two-dimensional material fast saturable absorber heterojunction film.
  • the atomic level two-dimensional material heterojunction saturable absorption mirror further comprises a package protection layer, the package protection layer covering the atomic layer two-dimensional material film; the package protection layer is hexagonal boron nitride .
  • the gold film layer has a thickness of 30 to 300 nm.
  • the atomic level two-dimensional material slow saturable absorber heterojunction film includes at least one of molybdenum disulfide, molybdenum diselenide, zirconium diselenide, zirconium disulfide, tin disulfide, and tin diselenide.
  • molybdenum disulfide molybdenum diselenide
  • zirconium diselenide zirconium disulfide
  • tin disulfide zirconium disulfide
  • tin diselenide tin diselenide
  • the atomic-level two-dimensional material fast saturable absorber heterojunction film comprises graphene, tungsten disulfide, tungsten diselenide, tungsten disulfide, molybdenum disulfide, antimony disulfide, antimony diselenide At least one of bismuth selenide, bismuth disulfide, and indium selenide.
  • the invention also provides a preparation method of a heterojunction saturable absorption mirror, comprising the following steps:
  • the surface of the gold target is ionized to generate a plasma of gold, and the plasma of the gold is deposited on the substrate by magnetron sputtering deposition to form a gold film layer; by controlling deposition time and/or deposition temperature Bringing the gold film layer to a desired thickness;
  • An atomic-level two-dimensional material is transferred onto the gold film layer to form an atomic-level two-dimensional material film, and a heterojunction saturable absorption mirror is obtained.
  • preparation method further includes:
  • the heterojunction saturable absorption mirror is encapsulated using hexagonal boron nitride to obtain a package protective layer.
  • the present invention also provides a pulsed fiber laser comprising a sequentially connected semiconductor pump laser, an optical wavelength division multiplexer, a gain fiber, an optical coupler, an optical isolator, an optical circulator, and the like
  • the heterojunction saturable absorption mirror, and the optical circulator is connected to the optical wavelength division multiplexer to form an annular cavity structure; wherein the optical isolator is used to isolate the mode-locked laser, and only the lock is allowed a post-mode laser is unidirectionally outputted within the pulsed fiber laser;
  • the pump light generated by the semiconductor pump laser is coupled to the gain fiber through the optical wavelength division multiplexer to generate a laser pulse required for mode locking and amplify the laser pulse;
  • the optical coupler outputs a portion of the amplified laser pulse to the outside of the cavity and another portion to the optical circulator, and the laser pulse entering the optical circulator is coupled into the heterojunction.
  • the saturation absorption mirror performs mode locking, and the mode-locked laser pulse is returned to the optical wavelength division multiplexer via the optical circulator, and then amplified by the gain fiber and then outputted by the optical coupler. laser.
  • the pulsed fiber laser further includes a polarization controller located between the optical isolator and the optical circulator for controlling a polarization state of laser light in the annular cavity.
  • the present invention also provides a pulsed fiber laser comprising a sequentially connected semiconductor pump laser, an optical wavelength division multiplexer, a Bragg grating, a gain fiber, and the heterojunction saturable absorption mirror described above ;
  • the pump light generated by the semiconductor pump laser is coupled by an optical wavelength division multiplexer into a Bragg grating, which is transmitted through the Bragg grating and then enters the gain fiber to generate a laser pulse.
  • the heterojunction saturable absorption mirror locks the laser pulse.
  • the laser pulse after the mode-locking is returned to the gain fiber along the original path for amplification, and the amplified laser pulse is transmitted through the Bragg grating and then output by the optical wavelength division multiplexing laser.
  • the present invention has the beneficial effects that the heterojunction saturable absorption mirror provided by the embodiment of the present invention is alternately superposed by different two-dimensional atomic level materials to form a two-dimensional material heterojunction at the atomic level.
  • this new type of saturable absorption mirror can combine the excellent characteristics of the two-dimensional layered material itself, and realize the regulation of the band gap of the saturated absorbing material by using the heterojunction structure.
  • the specific two-dimensional material alternately superimposed structure can realize The fast and slow saturable absorber cascades to control the nonlinear characteristics (satutable modulation depth, saturated light intensity, etc.) of the saturable absorber.
  • FIG. 1 is a schematic structural view of a heterojunction saturable absorption mirror according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a pulsed fiber laser according to a third embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a pulsed fiber laser according to a fourth embodiment of the present invention.
  • a first embodiment of the present invention provides a heterojunction saturable absorption mirror 100 comprising a substrate 101, a gold film layer 102 overlying the substrate 101, and an atomic level two-dimensional layer overlying the gold film layer 102.
  • the atomic level two-dimensional material film comprises an atomic level two-dimensional material slow saturable absorber heterojunction film 103, an isolating material 104 and an atomic level two-dimensional material fast saturable absorber heterojunction film 105.
  • the atomic-level two-dimensional material film refers to a two-dimensional material film having a thickness of a single atomic layer, which is alternately superposed by using different two-dimensional atomic level materials.
  • a two-dimensional heterojunction saturable absorption mirror is formed at the atomic level. This new saturable absorption mirror can combine the excellent properties of the two-dimensional layered material itself, and the heterojunction structure can be used to control the band gap of the saturated absorbing material.
  • the specific two-dimensional material alternately superimposed structure can realize the cascade of fast and slow saturable absorbers, and realize the regulation of the nonlinear characteristics (satutable modulation depth, saturated light intensity, etc.) of the saturable absorber.
  • the substrate 101 is silicon or silicon carbide.
  • the spacer material 104 is a single layer or a plurality of layers of hexagonal boron nitride.
  • Hexagonal boron nitride is a wide-bandgap semiconductor material, which is used as an isolation material between an atomic-level two-dimensional material slow-saturated absorber heterojunction film and an atomic-level two-dimensional material fast-saturated absorber heterojunction film. Avoid the interaction of the two materials.
  • the atomic level two-dimensional material heterojunction saturable absorption mirror 100 further includes a package protection layer 106 overlying the atomic level two-dimensional material film; the package protection layer 106 is hexagonal boron nitride.
  • the function of the encapsulation protective layer 106 is to encapsulate the outermost layer of the heterojunction saturable absorption mirror 100 with an atomic layer of hexagonal boron nitride, so that the heterojunction saturable absorption mirror 100 is isolated from the air, thereby preventing it from being trapped in the air. Oxygen oxidation.
  • the gold film layer has a thickness of 30 to 300 nm.
  • the atomic level two-dimensional material film includes graphene and transition metal sulfide.
  • the transition metal sulfide includes tungsten disulfide, tungsten diselenide, molybdenum disulfide, molybdenum diselenide, tungsten dithide, molybdenum dichloride, antimony disulfide, antimony diselenide, zirconium diselenide, and At least one of zirconium sulfide, bismuth selenide, antimony disulfide, tin disulfide, and tin diselenide.
  • the atomic level two-dimensional material slow saturable absorber heterojunction film comprises the atomic level two-dimensional material slow saturable absorber heterojunction film including molybdenum disulfide, molybdenum diselenide, zirconium diselide At least one of zirconium disulfide, tin disulfide, and tin diselenide.
  • the atomic-level two-dimensional material fast saturable absorber heterojunction film includes graphene, tungsten disulfide, tungsten diselenide, tungsten disulfide, molybdenum disulfide, antimony disulfide, antimony diselenide, and selenium. At least one of bismuth oxide, bismuth disulfide, and indium selenide.
  • the constituent structures of the heterojunction saturable absorption mirror provided by the first embodiment of the present invention are simple in material, low in cost, and capable of wide-band modulation of light.
  • a second embodiment of the present invention provides a method for preparing an atomic level two-dimensional material heterojunction saturable absorption mirror, comprising the following steps:
  • S2 ionizing the surface of the gold target to generate a plasma of gold, depositing the plasma of the gold on the substrate by magnetron sputtering deposition to form a gold film layer; by controlling deposition time and/or a deposition temperature to bring the gold film layer to a desired thickness;
  • a method for preparing a heterojunction saturable absorption mirror (satutable absorber) according to a second embodiment of the present invention, first placing a gold target and a substrate in a vacuum chamber, and using a magnetron sputtering deposition method to surface the gold target A plasma is formed after ionization, and the plasma is deposited on the substrate to form a gold film.
  • the thickness of the deposited gold film is controlled by controlling the deposition time and/or the deposition temperature; transferring a single layer (or multiple layers) of the two-dimensional material onto the gold-plated substrate to prepare an atom Hierarchical two-dimensional material heterojunction and fast and slow saturable absorber cascade" saturable absorption mirror.
  • the transfer of the two-dimensional material onto the gold film layer is mainly carried out using an organic high molecular polymer such as polymethyl methacrylate (PMMA).
  • PMMA polymethyl methacrylate
  • the transfer process is as follows: 1) Preparation of two-dimensional materials (including fast absorbers and slow absorbers) of the desired atomic level using chemical vapor deposition on a sapphire/silicon substrate; 2) sapphire/silicon grown with material The surface of the substrate is covered with a suitable thickness of PMMA and placed in a drying oven to cure the PMMA into a film; 3) the substrate coated with the PMMA film is placed in a suitable concentration of NaOH solution to separate the PMMA film from the substrate (this) The atomic-scale two-dimensional material is transferred to the PMMA surface); 4) the PMMA film coated with the material is placed in an acetone solution to dissolve the PMMA; 5) the two-dimensional material of the atomic layer (including the fast absorber and the slow absorber) Transfer to the target substrate; 6) Isolation between the fast
  • the preparation method further includes
  • S4 The heterojunction saturable absorption mirror is encapsulated using hexagonal boron nitride to obtain a package protective layer.
  • the saturable absorber is packaged using a single layer (or multiple layers of hexagonal boron nitride) according to a specific structure alternately transferred.
  • the second embodiment of the present invention prepares a "atomic layer two-dimensional material heterojunction and a fast and slow saturable absorber cascade" saturable absorption with adjustable band gap of the optical band of the saturable absorber by different two-dimensional material alternate structures. Mirror to achieve modulation of visible to mid-infrared light.
  • a third embodiment of the present invention provides a pulsed fiber laser 200 including a sequentially connected semiconductor pump laser 1, an optical wavelength division multiplexer 2, a gain fiber 3, and an optical coupler 4.
  • the optical isolator 5, the optical circulator 7 and the heterojunction saturable absorption mirror 8 described above, and the optical circulator 7 is connected to the optical wavelength division multiplexer 2 to form an annular cavity structure; wherein the optical isolator 5 is used After isolating the mode-locked laser, only the mode-locked laser is allowed to output in one direction in the pulsed fiber laser 200;
  • the pump light generated by the semiconductor pump laser 1 is coupled via the optical wavelength division multiplexer 2 into the gain fiber 3 to generate a laser pulse required for mode locking and amplify the laser pulse;
  • the optical coupler 4 outputs a part of the amplified laser pulse to the outside of the cavity and another part to the optical circulator 7, and the laser pulse entering the optical circulator 7 is coupled to the heterojunction saturable absorption mirror 8 for performing.
  • the mode-locked laser pulse is returned to the optical wavelength division multiplexer 2 via the optical circulator 7, and then subjected to mode-locking amplification by the gain fiber 3, and then the pulsed laser is output through the optical coupler 4.
  • the pulsed fiber laser 200 provided by the third embodiment of the present invention includes the heterojunction saturable absorption mirror described above, and the "atomic level two-dimensional material heterojunction and fast and slow saturable absorber cascade" saturable absorption mirror
  • the working principle is as a high reflection mirror of the pulsed fiber laser 200, when the laser in the pulsed fiber laser 200 is saturated by the "atomic level two-dimensional material heterojunction and fast and slow saturable absorber cascade" saturable absorption mirror When reflected, the laser can be modulated by a "atomic level two-dimensional material heterojunction and a fast and slow saturable absorber cascade" saturable absorption mirror.
  • the atomic-level two-dimensional material fast absorber heterojunction is mainly used to realize the self-starting and pulse compression of the fiber laser
  • the atomic-level two-dimensional material slow absorber heterojunction is mainly used to suppress the noise in the cavity and improve the fiber laser cavity.
  • the "atomic level two-dimensional material heterojunction and fast and slow saturable absorber cascade" saturable absorption mirror has high reliability, strong modulation capability, high environmental compatibility, wide application range, low cost, and broadband for light. Modulation and other advantages, as a mirror of light, can be used as a key device for pulsed laser generation in laser systems.
  • the optical wavelength division multiplexer 2 couples the pump light generated by the semiconductor pump laser 1 into the gain fiber 3; the gain fiber 3 generates laser light required for mode locking and The mode-locking pulse is amplified; the heterojunction saturable absorption mirror 8 molds the laser, and the mode-locked laser is returned to the optical wavelength division multiplexer 2 via the optical circulator 7 and then passed through the gain fiber 3 After amplification, the pulsed laser light is output through the optical coupler 4.
  • the optical circulator 7 couples the laser light generated by the gain fiber 3 into the heterojunction saturable absorption mirror 8 of the "atomic level two-dimensional material heterojunction and fast and slow saturable absorber cascade", heterogeneous
  • the junction saturable absorption mirror 8 molds and reflects the laser light.
  • the mode-locked laser light is returned through the original optical path and amplified by the gain fiber 3; the amplified laser light is output through the optical coupler 4.
  • the pulsed fiber laser 200 further includes a polarization controller 6 connected between the optical isolator 5 and the optical circulator 7; the polarization controller 6 is used to control the polarization of the laser in the annular cavity status.
  • a fourth embodiment of the present invention provides another pulsed fiber laser 300 comprising a sequentially connected semiconductor pump laser 11, an optical wavelength division multiplexer 12, a Bragg grating 13, and a gain fiber 14. And the heterojunction saturable absorption mirror 15 described above; the pump light generated by the semiconductor pump laser 11 is coupled to the Bragg grating 13 via the optical wavelength division multiplexer 12, and then enters the gain fiber 14 to generate laser light, which is heterogeneous.
  • the junction saturable absorption mirror 15 molds the laser, and the mode-locked laser returns along the original path, and the pulsed laser is output via the optical wavelength division multiplexing laser 12.
  • a fourth embodiment of the present invention provides another pulsed fiber laser 300 comprising a sequentially connected semiconductor pump laser 11, an optical wavelength division multiplexer 12, a Bragg grating 13, and a gain fiber 14. And the heterojunction saturable absorption mirror 15 described above;
  • the pump light generated by the semiconductor pump laser 300 is coupled to the Bragg grating 13 via the optical wavelength division multiplexer 12, transmitted through the Bragg grating 13, and then enters the gain fiber 14 to generate a laser pulse, and the heterojunction saturable absorption mirror 15 pairs
  • the laser pulse is subjected to mode locking, and the mode-locked laser pulse is returned to the gain fiber 14 along the original path for amplification, and the amplified laser pulse is transmitted through the Bragg grating 13 and output by the optical wavelength division multiplexing laser 12.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

L'invention concerne un miroir d'absorption saturable à hétérojonction (100) et son procédé de préparation, et un laser à fibre pulsé. Le miroir d'absorption saturable à hétérojonction (100) comprend un substrat (101), une couche de film d'or (102) recouvrant le substrat (101), et un film de matériau bidimensionnel hiérarchique atomique recouvrant la couche de film d'or (102). Le film de matériau bidimensionnel hiérarchique atomique comprend un film mince à hétérojonction d'absorbeur saturable lent de matériau bidimensionnel hiérarchique atomique (103), un matériau d'isolation (104) et un film mince à hétérojonction d'absorbeur saturable rapide de matériau bidimensionnel hiérarchique atomique (105) qui sont agencés successivement. Le miroir d'absorption saturable à hétérojonction (100) forme un miroir d'absorption saturable à hétérojonction bidimensionnel hiérarchique atomique (100) au moyen de l'empilement alterné de différents matériaux hiérarchiques atomiques bidimensionnels, et en combinaison avec d'excellentes caractéristiques d'un matériau stratifié bidimensionnel lui-même, la régulation et la commande sur la caractéristique non linéaire d'un absorbeur saturable sont réalisées.
PCT/CN2017/083438 2017-05-08 2017-05-08 Miroir d'absorption saturable à hétérojonction et son procédé de préparation, et laser à fibre pulsé WO2018205087A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/083438 WO2018205087A1 (fr) 2017-05-08 2017-05-08 Miroir d'absorption saturable à hétérojonction et son procédé de préparation, et laser à fibre pulsé

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/083438 WO2018205087A1 (fr) 2017-05-08 2017-05-08 Miroir d'absorption saturable à hétérojonction et son procédé de préparation, et laser à fibre pulsé

Publications (1)

Publication Number Publication Date
WO2018205087A1 true WO2018205087A1 (fr) 2018-11-15

Family

ID=64104212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083438 WO2018205087A1 (fr) 2017-05-08 2017-05-08 Miroir d'absorption saturable à hétérojonction et son procédé de préparation, et laser à fibre pulsé

Country Status (1)

Country Link
WO (1) WO2018205087A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111416271A (zh) * 2020-02-29 2020-07-14 济南大学 基于二维材料异质结和主动调制开关双调制的可调频锁模激光器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449301B1 (en) * 1999-06-22 2002-09-10 The Regents Of The University Of California Method and apparatus for mode locking of external cavity semiconductor lasers with saturable Bragg reflectors
CN102208738A (zh) * 2011-04-21 2011-10-05 北京工业大学 石墨烯被动锁模光纤激光器
CN103493203A (zh) * 2011-03-22 2014-01-01 曼彻斯特大学 晶体管器件以及用于制造晶体管器件的材料
CN104218443A (zh) * 2014-08-20 2014-12-17 鲍小志 基于二维层状材料的实用化可饱和吸收器件及其制备方法
CN105372853A (zh) * 2015-12-15 2016-03-02 电子科技大学 基于石墨烯/二硫化钼异质结的微环谐振腔电光调制器
CN105896258A (zh) * 2016-06-16 2016-08-24 深圳大学 二维半导体可饱和吸收镜及其制备方法、脉冲光纤激光器
CN105896257A (zh) * 2016-06-02 2016-08-24 深圳大学 一种异质结可饱和吸收镜及其制备方法、锁膜光纤激光器
CN205992658U (zh) * 2016-06-02 2017-03-01 深圳大学 一种异质结可饱和吸收镜、锁模光纤激光器
CN106898940A (zh) * 2017-05-08 2017-06-27 深圳大学 一种异质结可饱和吸收镜及其制备方法、脉冲光纤激光器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449301B1 (en) * 1999-06-22 2002-09-10 The Regents Of The University Of California Method and apparatus for mode locking of external cavity semiconductor lasers with saturable Bragg reflectors
CN103493203A (zh) * 2011-03-22 2014-01-01 曼彻斯特大学 晶体管器件以及用于制造晶体管器件的材料
CN102208738A (zh) * 2011-04-21 2011-10-05 北京工业大学 石墨烯被动锁模光纤激光器
CN104218443A (zh) * 2014-08-20 2014-12-17 鲍小志 基于二维层状材料的实用化可饱和吸收器件及其制备方法
CN105372853A (zh) * 2015-12-15 2016-03-02 电子科技大学 基于石墨烯/二硫化钼异质结的微环谐振腔电光调制器
CN105896257A (zh) * 2016-06-02 2016-08-24 深圳大学 一种异质结可饱和吸收镜及其制备方法、锁膜光纤激光器
CN205992658U (zh) * 2016-06-02 2017-03-01 深圳大学 一种异质结可饱和吸收镜、锁模光纤激光器
CN105896258A (zh) * 2016-06-16 2016-08-24 深圳大学 二维半导体可饱和吸收镜及其制备方法、脉冲光纤激光器
CN106898940A (zh) * 2017-05-08 2017-06-27 深圳大学 一种异质结可饱和吸收镜及其制备方法、脉冲光纤激光器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111416271A (zh) * 2020-02-29 2020-07-14 济南大学 基于二维材料异质结和主动调制开关双调制的可调频锁模激光器

Similar Documents

Publication Publication Date Title
WO2018205086A1 (fr) Miroir d'absorption saturable à hétérojonction de matériau bidimensionnel et son procédé de préparation
WO2017063293A1 (fr) Miroir absorbant saturable au sulfure de métal de transition et laser à fibre à modes synchronisés
CN106898940A (zh) 一种异质结可饱和吸收镜及其制备方法、脉冲光纤激光器
Wang et al. Nanoimprinted perovskite nanograting photodetector with improved efficiency
WO2016095858A1 (fr) Miroir d'absorbant saturable d'isolant topologique et son procédé de fabrication
WO2005104317A1 (fr) Sources de lumiere a base de nitrure riche en silicium compatibles avec un processus cmos et structures laser a base de si
CN106911070A (zh) 一种二维材料异质结可饱和吸收镜及其制备方法
JP2020506556A (ja) 量子光光源素子およびその量子光学回路
WO2011021752A1 (fr) Procédé de fabrication d'une nanostructure anti-réfléchissante et procédé de fabrication d'un dispositif optique avec des nanostructures anti-réfléchissantes intégrées
Wang et al. Mixed‐Dimensional MoS2/Ge Heterostructure Junction Field‐Effect Transistors for Logic Operation and Photodetection
WO2018205087A1 (fr) Miroir d'absorption saturable à hétérojonction et son procédé de préparation, et laser à fibre pulsé
WO2017206137A1 (fr) Miroir absorbant saturable à hétérojonction et son procédé de préparation, et laser à fibre à modes bloqués
CN108831952A (zh) 一种单晶硅纳米薄膜柔性瞬态电子器件、制备方法和应用
Yang et al. A new wide bandgap semiconductor: carbyne nanocrystals
Chen et al. ZnO/a-Si distributed Bragg reflectors for light trapping in thin film solar cells from visible to infrared range
CN113193070A (zh) 一种二维二硒化钯柔性自驱动宽光谱光电传感器及其制备方法
TW201331990A (zh) 混合光電元件
DeSilva et al. Reflectivity of 88% for four-period hybrid Bragg mirror from spin coating process
JP6085805B2 (ja) 光半導体装置の製造方法
Pugliese et al. Highly Reflective Periodic Nanostructure Based on Thermal Evaporated Tungsten Oxide and Calcium Fluoride for Advanced Photonic Applications
CN114864709A (zh) 一种光电探测器及其制备方法和应用
JP2002076513A (ja) 温度無依存分布ブラッグ反射型ミラー及び面型光学素子
Shi et al. Solid‐State Optoelectronic Synapse Transistor Using a LaF3 Gate Dielectric
KR101933477B1 (ko) 황화 주석막 트랜스퍼 방법 및 이를 이용한 광전 소자
Shimizu et al. Giant Photo‐Induced Current Enhancement in a Core–Shell‐Type Quantum‐Dot Thin Film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17909012

Country of ref document: EP

Kind code of ref document: A1