TW201331990A - 混合光電元件 - Google Patents

混合光電元件 Download PDF

Info

Publication number
TW201331990A
TW201331990A TW102101410A TW102101410A TW201331990A TW 201331990 A TW201331990 A TW 201331990A TW 102101410 A TW102101410 A TW 102101410A TW 102101410 A TW102101410 A TW 102101410A TW 201331990 A TW201331990 A TW 201331990A
Authority
TW
Taiwan
Prior art keywords
iii
rmg
hybrid
layer
insulating layer
Prior art date
Application number
TW102101410A
Other languages
English (en)
Inventor
Yun-Chung Na
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Publication of TW201331990A publication Critical patent/TW201331990A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/125Composite devices with photosensitive elements and electroluminescent elements within one single body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1808Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only Ge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1872Recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Semiconductor Lasers (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一種混合光電元件,即與III-V族及Si組合使用在例如Si或絕緣層上矽(SOI)晶圓等低成本基板上之裝置,可提供一成本方面較便宜但性能方面相比僅以III-V族光電元件優秀之解決方案;並且,經由混合式光電元件實施之光子積體電路也可較便宜且更優於這些僅由III-V族光電元件所實施者。本發明所提之混合光電元件,係使用物理氣相沈積法製作快速熱熔再結晶(RMG)結構,故其表面平滑,可進一步於RMG結構上方製作一磊晶(RE)結構,主要之優點包括:無牽涉III-V族晶片,因此製程方面單晶;以及可調整感興趣之波長,因此材料方面可調整。藉此,使本發明之混合光電元件具產量大、良率高之優點,且其高光耦合效率係來自III-V族主動元件至Si被動元件,其組成將有益於光子積體電路,適合應用於未來高效能電子與光電元件之開發。

Description

混合光電元件
本發明係有關於一種混合光電元件,尤指涉及一種與三五(III-V)族及矽(Si)組合使用在例如Si或絕緣層上矽(Silicon-on-Insulator, SOI)晶圓等低成本基板上之裝置,特別係指使用物理原理製作快速熱熔再結晶(Rapid-Melt Growth, RMG)結構,能使其表面平滑而可進一步於其上方製作磊晶(Re-epitaxy, RE)結構之裝置。
現今半導體產業中,傳統之矽製程發展最成熟並且廣泛應用,因此矽材料仍為半導體產業之主流。但受限於物理上之限制,傳統矽製程終將面臨無法再縮小以求速度與成本降低之情況。所以近年提出發展III-V族半導體元素之材料,其優點為遷移率較矽高,並且在光通訊波長上相較矽有更大之光吸收係數。然而,III-V族裝置與Si裝置相較卻普遍較為昂貴,因為:(1)III-V族化合物屬比較稀有元素,故其材料少;(2)晶圓尺寸較小,故其產能小;以及(3)製程複雜,故其良率低。
儘管如此,諸如雷射(Laser)、發光二極體(Light-Emitting Diode, LED)、電致吸收光調變器(Electroabsorption Modulator, EMA)、光偵測器(photodetector, PD)及太陽能電池(Solar Cell)等裝置都需要強之電光訊號轉換,由於III-V族元素之直接能隙與大振盪子強度,使其成為仍是不可或缺之材料。因此將來可以利用III-V族元素相較於矽之優點,用以結合傳統矽製程並發展更加快速之元件。
據此,由Shu-Lu Chen等人於2010年發表之文獻(Shu-Lu Chen et al. , “Single-CrystalGaAsandGaSbonInsulatoronBulkSiSubstratesBasedonRapidMeltGrowth,” IEEE Electron Device Letters, VOL. 31, NO. 6, JUNE 2010)中(如第6、7圖所示),已提出在具有絕緣體(Insulator)31之矽基板30上,揭露以快速熱熔再結晶之單晶III-V族材料在該絕緣體31上使用Si晶種視窗並以氧化物層33完全封裝該III-V族材料去光阻接受熔/凝熱處理,藉此以獲得高品質且超薄之III-V族薄膜32。
然而,上述習知技術用於光電元件之III-V族磊晶基板,主要係以有機金屬化學氣相沉積(Metal Organic Chemical Vapor Deposition, MOCVD)及分子束磊晶(Molecular BeamEpitaxy, MBE)來製造,故其RMG表面粗糙,不會使人發想於其上做進一步磊晶堆疊。故,ㄧ般習用者係無法符合使用者於實際使用時之所需。

本發明之主要目的係在於,克服習知技藝所遭遇之上述問題並提供一種與III-V族及Si組合使用在例如Si或SOI晶圓等低成本基板上之裝置,經由使用物理原理製作RMG結構,能使其表面平滑而可進一步於其上方製作RE結構之混合光電元件。
本發明之次要目的係在於,提供一種無牽涉III-V族晶片,因此製程方面單晶,且可調整感興趣之波長,因此材料方面可調整之混合光電元件。
本發明之另一目的係在於,提供一種具產量大、良率高之優點,且其高光耦合效率係來自III-V族主動元件至Si被動元件(光存取),將其組成實施於光子積體電路(Photonic integrated circuits, PIC)能有益於降低成本,且性能亦可較僅以III​​-V族光電元件之優秀,適合應用於未來高效能電子與光電元件開發之混合光電元件。
為達以上之目的,本發明係一種混合光電元件,係包括一基板;一形成於該矽基板上之絕緣層;一形成於該絕緣層上之RMG III-V結構;及一形成於該RMG III-V結構上之RE III-V結構所構成。其中,該RMG III-V結構係經由使用物理氣相沈積法(Physical Vapor Deposition, PVD)使沉積上之非晶鍺利用快速熱熔再結晶之單晶III-V族在該絕緣層上使用Si晶種視窗接受熔/凝熱處理為單晶鍺而形成具有平滑表面之結構;該RE III-V結構係包括一緩衝層(Buffer Layer)、一主動層(Active Layer)及一披覆層(Cladding Layer)所組成。
於本發明一實施例中,該矽基板亦可為絕緣層上矽基板。
於本發明一實施例中,該絕緣層係為氮化物。
於本發明一實施例中,更包括一自該RMG III-V結構兩旁延伸形成於該絕緣層上,並與該RMG III-V結構之厚度齊高之保護層。
於本發明一實施例中,該RE III-V結構係以選擇性生長而僅局部性形成於該RMG III-V結構上。係,使該RE III-V結構圖案化形成於該RMG III-V結構上
於本發明一實施例中,該RE III-V結構係以非選擇性生長並配合圖案化蝕刻而形成於該RMG III-V結構上。
於本發明一實施例中,該緩衝層係可選自砷化鎵(GaAs)或磷化銦(InP)。
於本發明一實施例中,該主動層係可選自砷化銦鎵(InGaAs)、砷化銦(InAs)或砷化鋁鎵銦(AlGaInAs)。
於本發明一實施例中,該披覆層係可選自砷化鎵或磷化銦。
第1圖,係本發明混合光電元件之立體結構示意圖。
第2圖,係本發明混合光電元件之結構剖面示意圖。
第3圖,係本發明元件中RE III-V結構之磊晶態樣示意圖。
第4圖,係本發明之分佈布拉格反射型雷射結構示意圖。
第5圖,係本發明之分佈回饋型雷射結構示意圖。
第6圖,係習用混合光電元件之立體結構示意圖。
第7圖,係習用混合光電元件之結構剖面示意圖。

請參閱『第1圖~第3圖』所示,係分別為本發明混合光電元件之立體結構示意圖、本發明混合光電元件之結構剖面示意圖、及本發明元件中RE III-V結構之磊晶態樣示意圖。如圖所示:本發明係一種混合光電元件(Hybrid Optoelectronics, HOE),係包括一基板10、一絕緣層11、一RMG III-V結構12a及一RE III-V結構13所構成。
該絕緣層11係形成於該基板10上。
該RMG III-V結構12a係形成於該絕緣層11上。該RMG III-V結構12a係藉由物理氣相沈積法(Physical Vapor Deposition, PVD)使沉積上之非晶鍺利用一連串製程步驟來使其接觸初始材料之單晶矽,並將其快速加熱至熔點以上熔化,接著自然降溫凝固重新結晶(Rapid-Melt Growth, RMG)形成單晶鍺,而構成具有平滑表面之結構者。
該RE III-V結構13係形成於該RMG III-V結構12a上,包括一緩衝層131、一主動層132及一披覆層133所組成。
上述結構更包括一自該RMG III-V結構12a兩旁延伸形成於該絕緣層11上,並與該RMG III-V結構12a之厚度齊高之保護層14,如第3圖所示。
如是,藉由上述之結構構成一全新之混合光電元件。
本發明所提之混合光電元件,係製造在矽基板或絕緣層上矽(Silicon-on-Insulator, SOI)基板上,於一具體實施例中,以矽基板10為例,且該矽基板10上已依序沉積有氮化物之絕緣層11及III-V族材料之鍺(Ge)薄膜12。當製作RMG III-V結構12a時,本發明係藉由物理氣相沈積法使沉積上之非晶鍺薄膜12利用快速熱熔再結晶,使其單晶III-V族材料在該絕緣層11上使用矽晶種視窗並以氧化物作為保護層14且局部開窗,僅於其兩側壁封裝該III-V族材料去光阻而接受熔/凝熱處理,以形成單晶鍺,而獲得一層表面平滑之RMG III-V結構12a;繼之,再接續於此平滑表面上依序磊晶(Re-epitaxy, RE)以形成RE III-V結構13,其包括以砷化鎵(GaAs)作為緩衝層、以砷化銦鎵(InGaAs)作為主動層、以及以砷化鎵作為披覆層所組成。其中,該RE III-V結構13之磊晶態樣如第3圖所示,係可經由施以選擇性生長(Selective Growth)而僅局部性形成於該RMG III-V結構12a上;亦或經由施以非選擇性生長(Non-Selective Growth)並配合圖案化蝕刻而形成於該RMG III-V結構與部分保護層14上。
此外,本發明所提之混合光電元件,於另一具體實施例中,前述矽基板上亦可為已依序沉積絕緣層及III-V族材料之砷化鎵薄膜,同樣憑藉物理原理使沉積上之非晶砷化鎵薄膜利用快速熱熔再結晶,使其單晶III-V族材料在該絕緣層上使用矽晶種視窗接受熔/凝熱處理形成單晶砷化鎵,獲得一層表面平滑之RMG III-V結構,再接續於其上形成RE III-V結構,其包括以砷化銦(InAs)作為主動層、以及以砷化鎵作為披覆層所組成。於其中,在該RMG III-V結構與該主動層之間係可進一步包括一緩衝層,其可為砷化鎵。
另外,本發明所提之混合光電元件,於再一具體實施例中,前述矽基板上亦可為已依序沉積絕緣層及III-V族材料之磷化銦(InP)薄膜,同樣憑藉物理原理使沉積上之非晶磷化銦薄膜利用快速熱熔再結晶,使其單晶III-V族材料在該絕緣層上使用矽晶種視窗接受熔/凝熱處理形成單晶磷化銦,獲得一層表面平滑之RMG III-V結構,再接續於其上形成RE III-V結構,其包括以砷化鋁鎵銦(AlGaInAs)作為主動層、以及以磷化銦作為披覆層所組成。於其中,在該RMG III-V結構與該主動層之間係可進一步包括一緩衝層,其可為磷化銦。
請進一步參閱『第4圖及第5圖』所示,係分別為本發明之分佈布拉格反射型雷射結構示意圖、及本發明之分佈回饋型雷射結構示意圖。如圖所示:本發明之混合光電元件可普遍應用於電光訊號轉換裝置上,例如雷射、發光二極體、電致吸收光調變器、光偵測器及太陽能電池等各項上。於一實施態樣中,以雷射為例,第4圖及第5圖係兩種符合布拉格繞射之雷射結構,即分佈布拉格反射型(Distributed Bragg Reflector, DBR)雷射與分佈回饋型(Distributed Feedback, DFB)雷射。其中DBR雷射之光柵1係設在沿著共振腔方向之兩側或一側,而DFB雷射之光柵2係設在整個共振腔中。
本發明提出一種混合光電元件,即與III-V族及Si組合使用在例如Si或SOI晶圓等低成本基板上之裝置,可提供一成本方面較便宜但性能方面相比僅以III​​-V族光電元件優秀之解決方案;並且,經由混合式光電元件實施之光子積體電路(Photonic integrated circuits, PIC)也可較便宜且更優於這些僅由III​​-V族光電元件所實施者。本發明所提之混合光電元件,係使用物理氣相沈積法製作RMG結構,故其表面平滑,可進一步於RMG結構上方製作一RE結構,主要之優點包括:無牽涉III-V族晶片,因此製程方面單晶;以及可調整感興趣之波長,因此材料方面可調整。藉此,使本發明之混合光電元件具產量大、良率高之優點,且其高光耦合效率係來自III-V族主動元件至Si被動元件(光存取),其組成將有益於光子積體電路,適合應用於未來高效能電子與光電元件之開發。
綜上所述,本發明係一種混合光電元件,可有效改善習用之種種缺點,係使用物理氣相沈積法製作RMG結構,故其表面平滑,可進一步於RMG結構上方製作一RE結構,由於無牽涉III-V族晶片,因此製程方面單晶,並可調整感興趣之波長,因此材料方面係可調整,使本發明之混合光電元件具產量大、良率高之優點,且其高光耦合效率係來自III-V族主動元件至Si被動元件(光存取),其組成將有益於光子積體電路,進而使本發明之産生能更進步、更實用、更符合使用者之所須,確已符合發明專利申請之要件,爰依法提出專利申請。
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍;故,凡依本發明申請專利範圍及發明說明書內容所作之簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。

(本發明部分)
1、2...光柵
10...基板
11...絕緣層
12...鍺薄膜
12a...RMG III-V結構
13...RE III-V結構
131...緩衝層
132...主動層
133...披覆層
14...保護層
(習用部分)
30...矽基板
31...絕緣體
32...III-V族薄膜
33...氧化物層
10...基板
11...絕緣層
12...鍺薄膜
12a...RMG III-V結構
13...RE III-V結構
131...緩衝層
132...主動層
133...披覆層

Claims (10)

  1. 一種混合光電元件之製造方法,係至少包含下列步驟:
     (A)係提供一矽基板;
     (B)於該矽基板上沉積一絕緣層(Insulator);
     (C)於該絕緣層上沉積一III-V族之鍺(Ge)薄膜;
     (D)利用物理氣相沈積法(Physical Vapor Deposition, PVD)使沉積上之非晶鍺接觸初始材料之單晶矽,並將其快速加熱至熔點以上熔化,接著自然降溫凝固重新結晶(Rapid-Melt Growth, RMG),以形成單晶鍺,獲得一層表面平滑之RMG III-V結構;以及
     (E)於該RMG III-V結構上序磊晶(Re-epitaxy, RE)形成一RE III-V結構,其包括一緩衝層(Buffer Layer)、一主動層(Active Layer)及一披覆層(Cladding Layer)所組成。
  2. 依申請專利範圍第1項所述之混合光電元件之製造方法,其中,該矽基板亦可為絕緣層上矽(Silicon-on-Insulator, SOI)基板。
  3. 依申請專利範圍第1項所述之混合光電元件之製造方法,其中,該絕緣層係為氮化物。
  4. 依申請專利範圍第1項所述之混合光電元件之製造方法,其中,該步驟(E)係施以選擇性生長,使該RE III-V結構僅局部性形成於該RMG III-V結構上。
  5. 依申請專利範圍第1項所述之混合光電元件之製造方法,其中,該步驟(E)係施以非選擇性生長並配合蝕刻,使該RE III-V結構圖案化形成於該RMG III-V結構上。
  6. 依申請專利範圍第1項所述之混合光電元件之製造方法,其中,該緩衝層係可選自砷化鎵(GaAs)或磷化銦(InP)。
  7. 依申請專利範圍第1項所述之混合光電元件之製造方法,其中,該主動層係可選自砷化銦鎵(InGaAs)、砷化銦(InAs)或砷化鋁鎵銦(AlGaInAs)。
  8. 依申請專利範圍第1項所述之混合光電元件之製造方法,其中,該披覆層係可選自砷化鎵或磷化銦。
  9. 一種混合光電元件,係包括:
      一矽基板;
      一絕緣層,係形成於該矽基板上;
      一RMG III-V結構,係形成於該絕緣層上,該RMG III-V結構係經由使用物理氣相沈積法使沉積上之非晶鍺利用快速熱熔再結晶之單晶III-V族在該絕緣層上使用Si晶種視窗接受熔/凝熱處理為單晶鍺而形成具有平滑表面之結構;以及
      一RE III-V結構,係形成於該RMG III-V結構上,包括一緩衝層、一主動層及一披覆層所組成。
  10. 依申請專利範圍第9項所述之混合光電元件,其中,該矽基板亦可為絕緣層上矽基板。
TW102101410A 2012-01-31 2013-01-14 混合光電元件 TW201331990A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261593024P 2012-01-31 2012-01-31

Publications (1)

Publication Number Publication Date
TW201331990A true TW201331990A (zh) 2013-08-01

Family

ID=48870569

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102101410A TW201331990A (zh) 2012-01-31 2013-01-14 混合光電元件

Country Status (2)

Country Link
US (1) US20130196459A1 (zh)
TW (1) TW201331990A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI549259B (zh) * 2014-05-15 2016-09-11 國立清華大學 全集成主被動積體光學於矽基積體電路及其製作方法
US11698544B2 (en) 2016-10-26 2023-07-11 Openlight Photonics, Inc. Dissipating heat from an active region of an optical device
TWI813859B (zh) * 2019-12-27 2023-09-01 美商無蓋燈光電公司 具有改善之光電流均勻性之電吸收調變器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2532786A (en) 2014-11-28 2016-06-01 Ibm Method for manufacturing a semiconductor structure, semiconductor structure, and electronic device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3271291B2 (ja) * 1992-03-31 2002-04-02 ソニー株式会社 面発光型半導体レーザ
US6154475A (en) * 1997-12-04 2000-11-28 The United States Of America As Represented By The Secretary Of The Air Force Silicon-based strain-symmetrized GE-SI quantum lasers
DE19921545A1 (de) * 1999-05-11 2000-11-23 Angew Solarenergie Ase Gmbh Solarzelle sowie Verfahren zur Herstellung einer solchen
US6731663B1 (en) * 2000-03-28 2004-05-04 The Furukawa Electric Co., Ltd. Ridge waveguide type semiconductor laser device
JP4084620B2 (ja) * 2001-09-27 2008-04-30 信越半導体株式会社 発光素子及び発光素子の製造方法
US7405098B2 (en) * 2005-02-28 2008-07-29 Sharp Laboratories Of America, Inc. Smooth surface liquid phase epitaxial germanium
JP2006286809A (ja) * 2005-03-31 2006-10-19 Fujitsu Ltd 光半導体デバイス及びその製造方法
CN101926013B (zh) * 2008-03-28 2012-09-26 松下电器产业株式会社 氮化物半导体发光装置
US8148732B2 (en) * 2008-08-29 2012-04-03 Taiwan Semiconductor Manufacturing, Co., Ltd. Carbon-containing semiconductor substrate
US9014230B2 (en) * 2010-05-19 2015-04-21 The Trustees Of Princeton University Single-mode quantum cascade lasers having shaped cavities

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI549259B (zh) * 2014-05-15 2016-09-11 國立清華大學 全集成主被動積體光學於矽基積體電路及其製作方法
US11698544B2 (en) 2016-10-26 2023-07-11 Openlight Photonics, Inc. Dissipating heat from an active region of an optical device
TWI813859B (zh) * 2019-12-27 2023-09-01 美商無蓋燈光電公司 具有改善之光電流均勻性之電吸收調變器

Also Published As

Publication number Publication date
US20130196459A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
CN104769467B (zh) 半导体装置
Lee et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates
US7418166B1 (en) Device and approach for integration of optical devices and waveguides therefor
US9653639B2 (en) Laser using locally strained germanium on silicon for opto-electronic applications
Cong et al. Multilayer graphene–GeSn quantum well heterostructure SWIR light source
US20140077240A1 (en) Iv material photonic device on dbr
CN106953234B (zh) 硅基单片集成激光器及其制作方法
US20160018596A1 (en) Semiconductor device
CN102957091A (zh) 张应变半导体光子发射和检测装置和集成的光子学系统
CN111883524B (zh) 一种基于硅基量子点光子器件单片集成的方法
JPS58121006A (ja) 誘電体光導波路及びその形成方法
CN108054182B (zh) 一种化合物半导体硅基混合器件及其制备方法
CN102834990A (zh) 光半导体集成元件及其制造方法
TW201331990A (zh) 混合光電元件
CN105610047B (zh) GeSn多量子阱金属腔激光器及其制作方法
JPH09260710A (ja) 半導体装置
CN111987585B (zh) 一种硅波导输出激光器
CN206931836U (zh) 硅基单片集成激光器
CN107037534A (zh) 可集成光电器件及其制作方法、多个光电器件的集成方法
CN108400523B (zh) 一种高速集成dfb半导体激光器芯片及制备方法
Hu et al. Electrically-pumped 1.31 μm MQW lasers by direct epitaxy on wafer-bonded InP-on-SOI substrate
GB2507513A (en) Semiconductor device with epitaxially grown active layer adjacent an optically passive region
CN111262127B (zh) 一种硅基InGaAs激光器衬底的制备方法、衬底和激光器
JPH07321051A (ja) 化合物半導体装置、その製造方法及び半導体装置
Keyvaninia et al. Novel concept for heterogeneously integrated high-speed III-V photodetector on silicon nitride waveguide