WO2018203562A1 - Slit lamp microscope - Google Patents

Slit lamp microscope Download PDF

Info

Publication number
WO2018203562A1
WO2018203562A1 PCT/JP2018/017455 JP2018017455W WO2018203562A1 WO 2018203562 A1 WO2018203562 A1 WO 2018203562A1 JP 2018017455 W JP2018017455 W JP 2018017455W WO 2018203562 A1 WO2018203562 A1 WO 2018203562A1
Authority
WO
WIPO (PCT)
Prior art keywords
slit
light
opening
light source
lamp microscope
Prior art date
Application number
PCT/JP2018/017455
Other languages
French (fr)
Japanese (ja)
Inventor
清水 仁
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2018203562A1 publication Critical patent/WO2018203562A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/13Ophthalmic microscopes
    • A61B3/135Slit-lamp microscopes

Definitions

  • the present invention relates to an improvement of a slit lamp microscope.
  • a slit lamp microscope is widely used for ophthalmic examination as an ophthalmic apparatus that acquires an image of a cross-section of the cornea by cutting a light section of the cornea using slit light.
  • such a conventional slit lamp microscope has a light source that outputs illumination light, and has a pair of slit blades in which the arrangement interval of illumination light output from the light source is variable.
  • An illumination system that irradiates the subject's eye with slit light having an arbitrary width formed through the slit portion, an observation system that guides the return light of the slit light from the subject's eye to the imaging device, and the illumination system and the observation system And a controller for controlling the operation of the apparatus.
  • the cornea When observing and diagnosing the eye to be inspected using such a slit lamp microscope, the cornea is irradiated with slit light to observe the cornea, but more detailed observation is required depending on the circumstances. In some cases, it may be required to illuminate the cornea with high illuminance.
  • the present invention is to solve such a conventional problem, and the problem is to provide a slit lamp microscope that can improve observation accuracy without imposing a burden on a subject. .
  • the slit lamp microscope has a detecting means for detecting the condition of the illumination system, and controls the luminous intensity of the illumination light source based on the detection result of the detecting means. It is characterized by doing.
  • the invention according to claim 2 is characterized in that the condition of the illumination system is a light amount of a light source.
  • a light source that outputs illumination light, and the illumination light is subjected to observation light whose area is limited by passing through a light beam control unit capable of changing the area of the opening.
  • a slit lamp microscope comprising: an illumination system that irradiates an optometry; an observation system that observes return light of the observation light from the eye to be examined; and a control unit that controls at least the operation of the illumination system.
  • An opening area detecting unit for detecting the area of the light source, and the control unit controls the luminous intensity of the light source based on the opening area detected by the opening area detecting unit.
  • the light flux control unit has a slit portion, and the slit portion has at least a pair of slit blades whose arrangement interval is variable, and is formed so that the interval between the slit blades can be detected. It is characterized by being.
  • the light flux control unit has a field stop, and a plurality of apertures having different diameters are selectively disposed on the optical axis to thereby reduce the diameter of the light flux passing through the aperture. It is variable and formed so that the arranged opening can be detected.
  • the light beam control unit includes a slit portion and a field stop portion provided on the side opposite to the light source of the slit portion, and the field stop portion is Formed by a disc-shaped turret rotatably arranged in an orthogonal direction, and the opening comprises a plurality of circular openings arranged concentrically in the turret body and a single curved teardrop-shaped opening,
  • the curved teardrop-shaped opening includes a large-diameter arc end, a small-diameter arc end disposed concentrically facing the large-diameter arc end, and the small-diameter end from the large-diameter arc end.
  • a curved contour portion formed such that the width dimension gradually decreases toward the arc end, and the curved teardrop-shaped opening can continuously change and control the width of the light beam that has passed through the slit portion. It is characterized by.
  • the control unit detects the opening area.
  • a maximum luminous intensity value of the light source is determined based on an arrangement interval of the pair of slit blades detected by the unit and an aperture diameter of the field stop, and the luminous intensity value of the light source is set to be equal to or less than the maximum luminous intensity value. It is comprised by these.
  • the control unit has a storage unit, the storage unit is an opening area consisting of the set interval width of the pair of slit blades and the aperture diameter of the field stop unit,
  • the maximum luminous intensity value of an appropriate light source that does not exceed the fundus illuminance safety value even when the observation light corresponding to the arrangement interval of the pair of slit blades and the opening diameter of the field stop is irradiated on the fundus of the eye to be examined.
  • the control unit refers to the data in the storage unit, and refers to the data in the storage unit based on the slit width of the slit unit detected by the aperture area detection unit and the aperture diameter of the field stop unit. It is characterized by determining a maximum luminous intensity value.
  • the invention according to claim 9 is characterized in that the opening area detection unit acquires the slit width value by detecting an operation amount of the slit operation unit.
  • the invention according to claim 10 is characterized in that the opening area detector detects a slit width value by detecting a movement amount of the pair of slit blades.
  • the invention according to claim 11 is characterized in that the opening area detector detects an opening area based on an opening image of an anterior ocular segment image acquired by an imaging device arranged in an observation system.
  • the invention according to claim 12 is characterized in that the opening area detecting unit detects an opening diameter formed by the opening of the turret by measuring a step of a stepping motor that drives the turret. To do.
  • the invention according to claim 13 is characterized in that the opening area detecting means detects an opening diameter by detecting a rotation angle of the turret by means of a light detection unit.
  • the light intensity of the light source was controlled only by the voltage level, but the illuminance on the cornea and the illuminance on the fundus were different due to individual differences in the light source and slight positional deviation during installation. Even if the luminous intensity of the light source is adjusted so that it does not exceed the safe fundus illuminance value at the time of shipment from the factory under the worst conditions with respect to the fundus of the subject with the slit part and field stop part opened.
  • the adjustment in relation to the fundus illuminance value cannot be performed after the replacement.Therefore, the safety value of the fundus illuminance may be exceeded or sufficient illuminance may not be obtained. It was.
  • the light intensity of the illumination light source is controlled on the basis of the detection result of the detection means. Since it is configured to control the light intensity by monitoring the light amount of the light source instead of controlling by voltage etc., it is effective for situations where the safety value of fundus illuminance exceeds the safe value due to light source deterioration or light source replacement It becomes possible to prevent.
  • the maximum luminous intensity of the light source has been uniformly limited so as to keep the fundus illuminance below a safe value under all conditions, for example, even when the fundus illuminance reaches a safe value by narrowing the slit width, There was a problem that the luminous intensity could not be increased and the observation site could not be observed in more detail.
  • an opening area detection unit that detects the area of the opening
  • the control unit is configured to detect a light source based on the opening area detected by the opening area detection unit. Since it is configured to control the luminous intensity, the maximum luminous intensity can be made variable corresponding to the opening area set by the slit part and the field stop part. Within the range of the maximum luminous intensity, the luminous intensity of the light source can be freely increased, and more precise observation can be performed while eliminating the possibility of optical damage to the eye to be examined.
  • FIG. 1 is a block diagram showing an overall configuration of a slit lamp microscope according to an embodiment of the present invention. It is a figure which shows the flowchart in the case of performing the luminous intensity control of a light source based on the set slit width and field stop diameter in the slit lamp microscope which concerns on one embodiment of this invention.
  • the direction from the lens (objective lens) located closest to the subject to the subject is defined as the forward direction, and the opposite direction is defined as the backward direction.
  • the horizontal direction orthogonal to the front direction is the left-right direction.
  • the direction perpendicular to both the front-rear direction and the left-right direction is defined as the up-down direction.
  • FIGS. 1 and 2 The overall configuration of the slit lamp microscope according to the present embodiment will be described with reference to FIGS. 1 and 2.
  • a computer 100 is connected to the slit lamp microscope 1.
  • the computer 100 performs various control processes and arithmetic processes.
  • the slit lamp microscope 1 is placed on the table 2.
  • the computer 100 may be installed on another table or in another place.
  • the base 4 is configured to be movable in the horizontal direction via the moving mechanism unit 3.
  • the base 4 is moved by tilting the operation handle 5.
  • the support portion 15 is moved up and down with respect to the base 4 by rotating the operation handle 5 around the axis.
  • a support portion 15 that supports the observation system 6 and the illumination system 8 is provided on the upper surface of the base 4. Further, in the present embodiment, the support unit 15 supports the background illumination system 20 shown in FIG.
  • a support arm 16 that supports the observation system 6 is attached to the support unit 15 so as to be rotatable in the left-right direction.
  • a support arm 17 that supports the illumination system 8 and the background illumination system 20 is attached to the upper portion of the support arm 16 so as to be rotatable in the left-right direction.
  • the support arms 16 and 17 are independently coaxially rotatable.
  • the observation system 6 is moved by manually rotating the support arm 16.
  • the illumination system 8 and the background illumination system 20 are moved by manually rotating the support arm 17.
  • each of the support arms 16 and 17 may be configured to be rotated by an electric mechanism.
  • an actuator for generating a driving force for rotating the support arms 16 and 17 and a transmission mechanism for transmitting the driving force are provided.
  • the actuator is constituted by, for example, a stepping motor (pulse motor).
  • the transmission mechanism is constituted by, for example, a combination of gears, a rack and pinion, or the like.
  • the illumination system 8 irradiates the eye E with illumination light. As described above, the illumination system 8 can turn in the left-right direction around the rotation axis. Thereby, the irradiation direction of the illumination light to the eye E is changed.
  • the illumination system 8 may be configured to turn in the vertical direction, or may be configured to change the elevation angle and depression angle of the illumination light.
  • the intensity of the illumination light is changed using the illumination intensity operation unit 18 provided on the base 4.
  • the intensity of the background illumination light applied to the eye E by the background illumination system 20 may also be configured to be performed using the illumination intensity operation unit 18. It is also possible to change the intensity of the illumination light or the background illumination light so that it can be changed by another operation member.
  • operation members there are an operation member provided in the housing of the slit lamp microscope 1 and an operation member provided in the computer 100.
  • the observation system 6 has a pair of left and right optical systems that guide reflected light from the eye E to be examined with illumination light (and background illumination light).
  • This optical system is housed in the barrel main body 9.
  • the end of the lens barrel body 9 is an eyepiece 9a. The examiner looks at the eye E with the naked eye by looking into the eyepiece 9a.
  • the lens barrel body 9 can be rotated in the left-right direction by rotating the support arm 16. Thereby, the direction of the observation system 6 with respect to the eye E can be changed.
  • the reflected light of the illumination light includes various types of light that pass through the eye E such as scattered light, for example, and these various types of light are referred to as “reflected light”.
  • a chin rest 10 is disposed at a position facing the lens barrel body 9.
  • the chin rest 10 is provided with a chin rest 10a and a forehead rest 10b for stably arranging the face of the subject.
  • An observation magnification operation knob 11 for changing the observation magnification is disposed on the side surface of the barrel main body 9. Further, an imaging device 13 for photographing the eye E is connected to the barrel main body 9.
  • the imaging device 13 includes an imaging element.
  • the imaging element is a photoelectric conversion element that detects light and outputs an electrical signal (image signal).
  • the image signal is input to the computer 100.
  • As the imaging element for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor is used.
  • a mirror 12 that reflects the illumination light beam output from the illumination system 8 toward the eye E is disposed below the illumination system 8. The mirror 12 reflects the background illumination light output from the background illumination system 20 toward the eye E.
  • the configuration of the optical system of the slit lamp microscope 1 will be described with reference to FIG.
  • the slit lamp microscope 1 includes an observation system 6, an illumination system 8, and a background illumination system 20.
  • the observation system 6 includes a pair of left and right optical systems.
  • the left and right optical systems have substantially the same configuration.
  • the operator can observe the eye E to be examined with binocular eyes using the left and right optical systems.
  • FIG. 2 only one of the left and right optical systems of the observation system 6 is shown.
  • Reference numeral O ⁇ b> 1 is an optical axis (observation optical axis) of the observation system 6.
  • Each of the left and right optical systems of the observation system 6 includes an objective lens 31, a variable magnification optical system 32, a diaphragm 33, an imaging lens 35, a prism unit 36, and an eyepiece lens 37.
  • the beam splitter 34 is provided in one or both of the left and right optical systems.
  • the eyepiece lens 37 is provided in the pier portion 9a.
  • a symbol P indicates a position where an image of the observation site is formed by the imaging lens 35. This image is observed through the eyepiece lens 37.
  • Reference sign Ec represents the cornea of the eye E
  • reference sign Ep represents the iris
  • reference sign Er represents the fundus.
  • Reference Eo indicates the examiner's eye.
  • the variable magnification optical system 32 includes a plurality of (for example, two) variable magnification lenses 32a and 32b.
  • a plurality of variable power lens groups that can be selectively inserted into the optical path of the observation system 6 are provided. These variable power lens groups are configured to give different magnifications.
  • a variable power lens group disposed in the optical path of the observation system 6 is used as the variable power lenses 32a and 32b.
  • the magnification (field angle) of an observation image or a captured image of the eye E to be examined can be changed.
  • Changing the magnification that is, switching the zoom lens group disposed in the optical path of the observation system 6 is performed by operating the observation magnification operation knob 11.
  • the beam splitter 34 divides the light traveling along the observation optical axis O1 into two.
  • the light transmitted through the beam splitter 34 is guided to the examiner's eye Eo through the imaging lens 35, the prism unit 36, and the eyepiece lens 37.
  • the prism unit 36 includes two optical elements 36a and 36b.
  • the prism unit 36 can invert the image and change the width of the left and right observation optical axes according to the eye width of the examiner.
  • the light reflected by the beam splitter 34 is guided to the imaging element 43 of the imaging device 13 via the relay lens 41 and the mirror 42.
  • the image sensor 43 detects the reflected light and generates an image signal.
  • the illumination system 8 includes a light source 51, a relay lens 52, an illumination stop 56, a condenser lens 53, a slit portion 54, a field stop portion 60, and an imaging lens 55.
  • a symbol O2 indicates the optical axis of the illumination system 8 (illumination optical axis).
  • the light source 51 outputs illumination light.
  • a plurality of light sources may be provided in the illumination system 8.
  • a light source halogen lamp, LED, etc.
  • a light source xenon lamp, LED, etc.
  • a light source for corneal observation and a light source for fundus observation may be provided separately.
  • the light source 51 includes at least a visible light source that outputs visible light. The light intensity can be changed according to the magnitude of the power applied to the light source 51.
  • the illumination system 8 has the light beam control unit 70 that can change the area of the opening 71 through which the illumination light of the light source 51 passes, and the area by passing through the light beam control unit 70.
  • the eye E is irradiated with observation light that is limited.
  • the light beam control unit 70 detects the area of the slit 54, the field stop 60, and the area of the opening 71 formed by the slit 54 and the field stop 60.
  • the control unit 101 controls the light intensity of the light source 51 based on the opening area detected by the opening area detection unit.
  • the slit portion 54 is used for generating slit light (observation light).
  • the slit portion 54 has a pair of slit blades 54a and 54b disposed to face each other at a predetermined interval.
  • the interval between the slit blades 54a and 54b can be arbitrarily adjusted by manual operation. In this case, you may comprise so that the slit blades 54a and 54b may be electrically opened and closed.
  • the field stop 60 is disposed adjacent to the slit 54 on the side opposite to the light source 51 of the slit 54 and has a plurality of openings 62 having different sizes and shapes. And a turret 61 that rotates about the rotation center 66.
  • the turret 61 is a disk-like member that is rotatably arranged in a direction orthogonal to the illumination optical axis 02, and the opening 62 is It consists of four circular openings 63a, 63b, 63c, 63d and a single curved teardrop-shaped opening 64 arranged concentrically.
  • the circular openings 63a, 63b, 63c, and 63d are formed to have different diameters, and are arranged so that the centers of the openings are equally spaced from each other so that the diameter gradually increases in the clockwise direction. Therefore, it is possible to appropriately limit the illumination range of the observation surface by appropriately rotating the turret 61 to align the center of the arbitrary opening 62 with the illumination optical axis 02.
  • the smallest circular opening 63a is arranged on the illumination optical axis 02, it is possible to form aperture light having the smallest diameter than the diameter of the illumination light beam 65, and the largest circular opening 63d serves as the illumination optical axis 02.
  • the largest circular opening 63d serves as the illumination optical axis 02.
  • the curved teardrop-shaped opening 64 includes a large-diameter arc end portion 64a, a small-diameter arc end portion 64b arranged concentrically facing the large-diameter arc end portion 64a, and the large-diameter arc end portion.
  • the curved teardrop-shaped openings 64 are formed by curved contour portions 64c and 64d formed so that the width dimension gradually decreases from the end portion 64a to the small-diameter arc end portion 64b, as shown in FIG.
  • the width of the light beam that has passed through the slit portion 54 can be continuously changed and controlled.
  • the turret 61 is disposed with the centers of the plurality of openings 62 aligned with the illumination optical axis 02, and the examiner rotates the turret 61 appropriately to open the desired opening 62.
  • the portion 54 By selectively disposing the portion 54 with respect to the illumination optical axis 02 in a state where the portion 54 is opened, the observed portion can be illuminated in a circular shape. Further, by using the slit portion 54 in combination with the field stop portion 60 in a state where the interval between the slit blades 54a and 54b is narrowed, the observed portion can be illuminated in an oval shape.
  • an opening 62 having an arbitrary size is selectively disposed on the illumination optical axis 02, thereby limiting the illumination range on the surface to be observed, and the slit blade 54a of the slit portion 54,
  • the width of 54b and the diameter of the opening 62 of the field stop 60 it is possible to irradiate the observation surface with the limited width and length.
  • the curved teardrop-shaped opening 64 is arranged on the illumination optical axis 02 in a state where the interval between the slit portions 54 is narrowed, and the turret 61 is arranged with a large-diameter arc end 64a and a small-diameter arc.
  • the end portion 64b By rotating between the end portion 64b, the length L of the slit interval formed by the slit portion 54 is limited, and the slit length can be continuously reduced.
  • the turret 61 is configured to be driven to rotate by manual operation.
  • the turret 61 is provided with a click part (not shown) having an appropriate configuration at a position where the center of each circular opening 63 coincides with the illumination optical axis 02, and the examiner operates the operation part to
  • the desired circular opening 63 can be arranged and fixed on the illumination optical axis 02 by rotating the turret 61 so as to match the click portion.
  • a click portion (not shown) is provided at a position where the centers of the large-diameter arc end 64a and the small-diameter arc end 64b coincide with the illumination optical axis 02,
  • the click portion is not provided between the large-diameter arc end portion 64a and the small-diameter arc end portion 64b, and the turret 61 rotates at an arbitrary position between the large-diameter arc end portion 64a and the small-diameter arc end portion 64b.
  • the slit can be continuously reduced in length by stopping at an arbitrary position between the large-diameter arc end 64a and the small-diameter arc end 64b.
  • the turret 61 may be configured to rotate electrically.
  • a stepping motor as an actuator for driving the turret 61 and an appropriate driving force transmission mechanism are provided.
  • the control unit 101 is configured to detect the rotation angle of the turret 61 by light detection means, for example, a photointerpreter, by measuring the number of steps of the stepping motor.
  • the slit lamp microscope 1 has an opening area detection unit 59 provided with detection means for detecting the arrangement interval of the slit blades 54a and 54b of the slit unit 54 and the rotation angle of the turret 61 of the field stop unit 60. ing.
  • the control unit 101 determines the maximum luminous intensity value luminous intensity of the light source 51 based on the slit width detected by the opening area detection unit 59 and the opening area formed by the opening 62 of the turret 61.
  • the opening area detector 59 detects the width of the slit blade 54 a and the slit blade 54 b of the slit portion 54 and the opening diameter of the opening 62 of the field stop 60.
  • the width of the slit portion 54 the amount of rotation of a slit opening / closing knob (not shown) as a slit operation portion formed so as to be capable of rotating operation is detected by an encoder, and detection information is transmitted to the control portion 101.
  • the opening area detector 59 may be configured to detect the slit width value by detecting the amount of movement of the pair of slit blades 54a and 54b by an appropriate detecting means.
  • the amount of movement of the slit blades 54a and 54b can be measured by detecting the rotational speed of the drive shaft of an actuator that drives the slit blades 54a and 54b.
  • the rotation angle of the turret 61 having the plurality of openings 62 is determined by the light detection means in the case of manual operation and by the appropriate detection means in the case of electric operation. Are detected by measuring the number of steps, and each opening 63a, 63b, 63c, 63d, 64 corresponding to the rotation angle is specified to obtain the opening diameter.
  • the aperture area detector 59 can obtain a composite aperture area from the combination of the slit width of the slit 54 and the aperture diameter of the aperture 62 of the field stop 60 obtained from the rotation angle of the turret 61.
  • the opening area detection unit 59 may be configured to detect the opening area based on the opening image of the anterior ocular segment image acquired by the imaging device 43 arranged in the observation system 6. In this case, it is necessary to detect and feed back the magnification of the zooming system.
  • the illumination diaphragm 56 is configured to be able to change the size of the translucent portion.
  • the illumination stop 56 is particularly effective in fundus observation.
  • the illumination stop 56 has applications such as reducing the reflection of illumination light by the cornea Ec or the crystalline lens and adjusting the brightness of the illumination light.
  • the background illumination light 20 irradiates the eye E with background illumination light.
  • the background illumination light is applied to a region around the irradiation region of the illumination light applied to the eye E by the illumination system 8.
  • the background illumination light irradiation region only needs to include at least the surrounding region.
  • the irradiation area of the background illumination light may overlap with at least a part of the irradiation area by the illumination system 8.
  • the background illumination system 20 includes a light source (background light source).
  • the background light source includes at least a visible light source that outputs visible light. This visible light is used, for example, for visual observation and photographing.
  • the background light source may include an infrared light source that outputs infrared light. This infrared light is used, for example, for observation and photographing of the meibomian glands.
  • the background illumination system 20 may include one or more lenses that focus the light output from the background light source.
  • Reference symbol O3 indicates the optical axis of the background illumination system 20 (background illumination optical axis).
  • the light output from the background light source is reflected by the mirror 12 (after being collected by the lens) and applied to the eye E.
  • the irradiation area of the background illumination light includes an area around the irradiation area of the eye E to be examined by the illumination system 8.
  • Control system configuration A control system of the slit lamp microscope 1 will be described with reference to FIG.
  • the control system of the slit lamp microscope 1 is configured around the control unit 101. Note that at least a part of the configuration of the control system may be included in the computer 100.
  • the control unit 101 controls each unit of the slit lamp microscope 1.
  • the control unit 101 controls the observation system 6, the illumination system 8, and the background illumination system 20.
  • Control of the observation system 6 includes control of the variable power optical system 32, control of the diaphragm 33, control of charge accumulation time, sensitivity, frame rate, etc. of the image sensor 43.
  • Control of the illumination system 8 includes control of the light source 51, the light source luminous intensity detection unit 58, the slit unit 54 constituting the light beam control unit 70, the field stop unit 60 and the aperture area detection unit 59, and the illumination stop 56.
  • Control of the background illumination system 20 includes control of a background light source.
  • the control unit 101 includes a microprocessor, a RAM, a ROM, a hard disk drive, and the like.
  • a control program is stored in advance in a storage device such as a ROM or a hard disk drive.
  • the operation of the control unit 101 is realized by the cooperation of this control program and hardware.
  • the control unit 101 is disposed in the apparatus main body (for example, in the base 4) of the slit lamp microscope 1 or the computer 100.
  • the display unit 102 displays various information under the control of the control unit 101.
  • the display unit 102 includes a display device such as a flat panel display such as an LCD.
  • the display unit 102 may be provided in the apparatus main body of the slit lamp microscope 1 or may be provided in the computer 100.
  • the operation unit 103 includes an operation device and an input device.
  • the operation unit 103 includes buttons and switches (for example, the operation handle 5 and the illumination intensity operation unit 18) provided on the slit lamp microscope 1 and operation devices (such as a mouse and a keyboard) provided on the computer 100.
  • the operation unit 103 may include an arbitrary operation device or input device such as a trackball, an operation panel, a switch, a button, or a dial.
  • the display unit 102 and the operation unit 103 are shown separately, but at least a part of them can be configured integrally.
  • a touch screen can be used.
  • the luminous intensity of the light source 51 is substantially correlated with the applied power, it is possible to control the luminous intensity of the light source 51 by limiting the applied power, but as shown in FIG. 2, in the slit lamp microscope 1 according to the present embodiment.
  • the light source luminous intensity detection unit 58 is configured to directly monitor the luminous intensity of the light source 51. When the light quantity is directly monitored in this way, the light quantity varies or the light quantity decreases due to deterioration of the light source. Even if it exists, the slit image of appropriate illumination intensity can be projected.
  • the light source luminous intensity detection unit 58 may be configured by a photodetector, arranged near the light source 51, and configured to receive the scattered light component of the light source 51.
  • a photodetector arranged near the light source 51, and configured to receive the scattered light component of the light source 51.
  • One end may be arranged, the scattered light of the light source may be taken in from the end face of the optical fiber, and a photodetector may be arranged near the other end.
  • a mirror that reflects a part of the light beam may be disposed in the optical path 02, and the reflected light may be received by the photodetector.
  • Illumination light from the light source 51 is collected by a condenser lens 53 and passes through an opening 71 combined with a slit 54 and a field stop 60 to form a light source image near the mirror 12 from the imaging lens 55.
  • the light source image is formed near the fundus Er of the eye E via the mirror 12.
  • the image of the opening 71 is formed on the observation site via the mirror 12 by the imaging lens 55.
  • the illuminance of the aperture image formed on the cornea Ec does not change even when the aperture area of the aperture 71 is changed.
  • the illuminance of the light source image on the fundus Er decreases as the aperture area decreases, and increases as the aperture area increases.
  • the opening area of the opening 71 is a combination of the width of the slit portion 54 and the diameter of the field stop 60, and is arbitrarily set by the examiner depending on the observation site and the observation method.
  • the light intensity of the light source 51 is increased (brightened), and the illuminance of the aperture image on the test portion is increased for observation.
  • most of the irradiated light beam passes through the cornea Ec to reach the fundus Er and illuminates the fundus Er. Therefore, conventionally, the safe value of fundus illuminance is not exceeded under any illumination conditions.
  • the fundus illuminance can have a margin with respect to the safe value.
  • the luminous intensity of the light source 51 can be increased to increase the illuminance of the aperture image on the cornea Ec.
  • the fundus illuminance exceeds the safe value, so the luminous intensity of the light source 51 must be lowered.
  • the light intensity of the light source 51 is set so that the illuminance of the fundus oculi Er is suppressed to a safe value or less with the opening fully opened, so that there is a margin with respect to the fundus safe value with the slit portion 54 narrowed. Even under certain conditions, bright observation was not possible. Therefore, in the present invention, the width of the slit portion 54 and the diameter of the field stop 60 are detected, and the maximum luminous intensity of the light source 51 is made variable in accordance with the detected and combined aperture area.
  • the control unit detects the slit of the slit unit 54 detected by the aperture area detection unit 59. Based on the width and the field stop diameter selected in the field stop 60, the aperture area of the opening 71 obtained in combination is obtained, the maximum light intensity value of the light source 51 is set, and the light intensity value of the light source 51 is the maximum light intensity value. It is configured not to be set beyond this.
  • the control unit 101 includes a storage unit 101 a, and the storage unit 101 a generates observation light corresponding to the opening area based on the slit width value and the field stop diameter set by the examiner. Even when the eye fundus Er is irradiated, data including a maximum light intensity value of an appropriate light source that does not exceed the safe illuminance with respect to the eye fundus to be examined is stored in advance.
  • the control unit 101 determines the maximum luminous intensity value of the light source 51 with reference to the data in the storage unit 101a based on the aperture area including the slit width and the selected field stop diameter detected by the aperture area detection unit 59.
  • the examiner performs observation by appropriately operating the opening / closing of the slit portion 54 and the opening diameter of the field stop portion 60 as necessary, but the width of the slit portion 54 set by the examiner and the field stop portion are set.
  • the maximum light intensity value of the light source 51 corresponding to the opening area value is determined by the control unit 101 according to the opening area having the opening diameter of 60, and the examiner appropriately adjusts the light intensity of the light source 51 if it is equal to or less than the maximum light intensity value. Necessary observation and inspection can be performed by changing the operation, and the luminous intensity of the light source 51 cannot be increased beyond the maximum luminous intensity value corresponding to the determined opening area value.
  • the operator sets or changes the width of the slit portion 54 and the field stop diameter of the field stop portion 60 in accordance with the specific circumstances of the optometry (S1).
  • the aperture area detector 59 detects the set or changed slit width and field stop diameter, and sends a detection signal to the controller 101 (S2).
  • control unit 101 obtains an opening area obtained by combining the slit width and the field stop diameter, and the set opening area stored in the storage unit 101a and the observation light corresponding to the opening area are obtained from the eye to be examined.
  • the maximum luminous intensity value of the light source 51 corresponding to the obtained aperture area is acquired from the data table including the appropriate maximum luminous intensity value of the light source that does not exceed the safe value of the fundus illuminance even when the fundus is irradiated. (S3).
  • control unit 101 detects the actual light intensity of the light source 51 set or changed by the light source light intensity detection part 58, and acquires the light intensity (S4). Then, the control unit 101 determines whether or not the light intensity of the light source 51 detected and acquired in S4 is equal to or less than the maximum light intensity value acquired from the storage unit 101a in S3 (S5).
  • control unit 101 determines that the light intensity of the light source 51 is equal to or less than the maximum light intensity value acquired from the storage unit 101a in S3, the control unit 101 allows and determines the light intensity set or changed by the examiner and ends the control. (S6).
  • the control unit 101 determines that the luminous intensity of the light source 51 is not less than or equal to the maximum luminous intensity value acquired from the storage unit 101a in S3, the luminous intensity of the light source 51 is set to the set or changed aperture area. The maximum light intensity value of the corresponding light source is set and the control ends.
  • the present invention is not limited to the above embodiment, and the background illumination system 20 may not be provided.
  • the present invention relates to the slit lamp microscope, it has wide industrial applicability.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

[Problem] To provide a slit lamp microscope capable of improving test precision without burdening a subject. [Solution] A slit lamp microscope comprising: an illumination system that has a light source for outputting illumination light, and shines, upon a subject eye, observation light of limited area by passing the illumination light through a beam controlling part, the area of an opening of which can be altered; an observational system for observing observation light returning from the subject eye; and a control unit for controlling at least the operation of the illumination system; the microscope comprising a slit opening area detector for detecting the area of the opening; and the control unit controlling the intensity of the light source on the basis of the opening area detected by the opening area detector.

Description

スリットランプ顕微鏡Slit lamp microscope
 本発明は、スリットランプ顕微鏡の改良に関する。 The present invention relates to an improvement of a slit lamp microscope.
 一般に、スリットランプ顕微鏡は、スリット光を用いて角膜の光切片を切り取ることにより角膜の断面の画像を取得する眼科装置として広く眼科検診に使用されている。 Generally, a slit lamp microscope is widely used for ophthalmic examination as an ophthalmic apparatus that acquires an image of a cross-section of the cornea by cutting a light section of the cornea using slit light.
 特許文献1に開示されているように、このような従来のスリットランプ顕微鏡は、照明光を出力する光源を有し、光源から出力された照明光が配置間隔が可変な一対のスリット刃を有するスリット部を介することにより形成された任意の幅のスリット光を被検眼に照射する照明系と、前記スリット光の被検眼からの戻り光を撮像素子に導く観察系と、前記照明系及び観察系の作動を制御する制御部とを備えている。 As disclosed in Patent Document 1, such a conventional slit lamp microscope has a light source that outputs illumination light, and has a pair of slit blades in which the arrangement interval of illumination light output from the light source is variable. An illumination system that irradiates the subject's eye with slit light having an arbitrary width formed through the slit portion, an observation system that guides the return light of the slit light from the subject's eye to the imaging device, and the illumination system and the observation system And a controller for controlling the operation of the apparatus.
 このようなスリットランプ顕微鏡を使用して被検眼の観察、診断を行う場合、スリット光を角膜に照射して角膜を観察するものであるが、事情に応じてより詳細な観察が必要とされる場合は、高い照度で角膜を照明することが要請される場合がある。 When observing and diagnosing the eye to be inspected using such a slit lamp microscope, the cornea is irradiated with slit light to observe the cornea, but more detailed observation is required depending on the circumstances. In some cases, it may be required to illuminate the cornea with high illuminance.
 この場合、角膜に照射された光の一部は角膜において反射されるが、大部分の光は角膜を透過して眼底へ至ることとなるため、高い照度で角膜を照明した場合には、眼底への光障害に対する安全値を超えてしまう場合がある。 In this case, a part of the light irradiated to the cornea is reflected by the cornea, but most of the light passes through the cornea and reaches the fundus. Therefore, when the cornea is illuminated with high illuminance, The safety value for light damage to the camera may be exceeded.
 従って、従来より、被検者に負担を与えることなく観察精度を向上させることが可能なスリットランプ顕微鏡が要請されていた。
特許公開第2014-108339号公報
Therefore, conventionally, there has been a demand for a slit lamp microscope that can improve observation accuracy without imposing a burden on the subject.
Patent Publication No. 2014-108339
 本発明はこのような従来からの不具合を解決するためのものであって、その課題は、被検者に負担を与えることなく観察精度を向上させることができるスリットランプ顕微鏡を提供することにある。 The present invention is to solve such a conventional problem, and the problem is to provide a slit lamp microscope that can improve observation accuracy without imposing a burden on a subject. .
 上記課題達成のため、請求項1記載の発明にあっては、スリットランプ顕微鏡において、照明系の条件を検知する検知手段を有し、前記検知手段の検知結果に基づき、照明光源の光度を制御することを特徴とする。
 請求項2記載の発明にあっては、前記照明系の条件は光源の光量であることを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, the slit lamp microscope has a detecting means for detecting the condition of the illumination system, and controls the luminous intensity of the illumination light source based on the detection result of the detecting means. It is characterized by doing.
The invention according to claim 2 is characterized in that the condition of the illumination system is a light amount of a light source.
 請求項3記載の発明にあっては、照明光を出力する光源を有し、前記照明光が開口部の面積を変更可能な光束制御部を通過することにより面積が制限された観察光を被検眼に照射する照明系と、前記観察光の被検眼からの戻り光を観察する観察系と、少なくとも前記照明系の作動を制御する制御部とを備えたスリットランプ顕微鏡であって、前記開口部の面積を検知する開口面積検知部を有し、前記制御部は前記開口面積検知部により検知された開口面積に基づき光源の光度を制御することを特徴とする。 According to a third aspect of the present invention, there is provided a light source that outputs illumination light, and the illumination light is subjected to observation light whose area is limited by passing through a light beam control unit capable of changing the area of the opening. A slit lamp microscope comprising: an illumination system that irradiates an optometry; an observation system that observes return light of the observation light from the eye to be examined; and a control unit that controls at least the operation of the illumination system. An opening area detecting unit for detecting the area of the light source, and the control unit controls the luminous intensity of the light source based on the opening area detected by the opening area detecting unit.
 請求項4記載の発明にあっては、前記光束制御部はスリット部を有し、前記スリット部は少なくとも配置間隔が可変な一対のスリット刃を有し、前記スリット刃の間隔を検知可能に形成されていることを特徴とする。 According to a fourth aspect of the present invention, the light flux control unit has a slit portion, and the slit portion has at least a pair of slit blades whose arrangement interval is variable, and is formed so that the interval between the slit blades can be detected. It is characterized by being.
 請求項5記載の発明にあっては、前記光束制御部は視野絞り部を有し、複数の径の異なる開口を選択的に光軸上に配置することにより開口を通過する前記光束の径を可変とし、配置された開口を検知可能に形成されていることを特徴とする。 According to a fifth aspect of the present invention, the light flux control unit has a field stop, and a plurality of apertures having different diameters are selectively disposed on the optical axis to thereby reduce the diameter of the light flux passing through the aperture. It is variable and formed so that the arranged opening can be detected.
 請求項6記載の発明にあっては、前記光束制御部は、スリット部と、前記スリット部の反光源側に設けられた視野絞り部とを備え、前記視野絞り部は、前記光束に対して直交する方向において回転可能に配置された円盤状のターレットにより形成され、前記開口は前記ターレット本体において同心円上に配置された複数の円形開口部と単一の湾曲涙滴状開口部とからなり、前記湾曲涙滴状開口部は、大径円弧端部と、前記大径円弧端部に同心円の円周方向に対向して配置された小径円弧端部と、前記大径円弧端部から前記小径円弧端部にかけて徐々に幅寸法が小さくなるように形成された湾曲輪郭部とにより形成され、前記湾曲涙滴状開口部は前記スリット部を通過した光束の幅を連続的に変更制御しうることを特徴とする。 In the invention of claim 6, the light beam control unit includes a slit portion and a field stop portion provided on the side opposite to the light source of the slit portion, and the field stop portion is Formed by a disc-shaped turret rotatably arranged in an orthogonal direction, and the opening comprises a plurality of circular openings arranged concentrically in the turret body and a single curved teardrop-shaped opening, The curved teardrop-shaped opening includes a large-diameter arc end, a small-diameter arc end disposed concentrically facing the large-diameter arc end, and the small-diameter end from the large-diameter arc end. A curved contour portion formed such that the width dimension gradually decreases toward the arc end, and the curved teardrop-shaped opening can continuously change and control the width of the light beam that has passed through the slit portion. It is characterized by.
 請求項7記載の発明にあっては、検者によって前記スリット部の一対のスリット刃の配置間隔及び前記視野絞り部の開口径が操作設定された場合には、前記制御部は前記開口面積検知部により検知された前記一対のスリット刃の配置間隔及び前記視野絞り部の開口径に基づき前記光源の最大光度値を決定すると共に、前記光源の光度値は前記最大光度値以下に設定されるように構成されていることを特徴とする。 According to the seventh aspect of the present invention, when the arrangement interval between the pair of slit blades of the slit portion and the opening diameter of the field stop portion are set by the examiner, the control unit detects the opening area. A maximum luminous intensity value of the light source is determined based on an arrangement interval of the pair of slit blades detected by the unit and an aperture diameter of the field stop, and the luminous intensity value of the light source is set to be equal to or less than the maximum luminous intensity value. It is comprised by these.
 請求項8記載の発明にあっては、前記制御部は記憶部を有し、前記記憶部は、設定された一対のスリット刃の配置間隔幅及び視野絞り部の開口径からなる開口面積と、前記一対のスリット刃の配置間隔及び視野絞り部の開口径に対応した前記観察光が被検眼の眼底に照射された場合であっても眼底照度安全値を超えない適切な光源の最大光度値とからなるデータを格納しており、前記制御部は、前記記憶部のデータを参照して、前記開口面積検知部により検知されたスリット部のスリット幅及び視野絞り部の開口径に基づき前記光源の最大光度値を決定することを特徴とする。 In the invention according to claim 8, the control unit has a storage unit, the storage unit is an opening area consisting of the set interval width of the pair of slit blades and the aperture diameter of the field stop unit, The maximum luminous intensity value of an appropriate light source that does not exceed the fundus illuminance safety value even when the observation light corresponding to the arrangement interval of the pair of slit blades and the opening diameter of the field stop is irradiated on the fundus of the eye to be examined. The control unit refers to the data in the storage unit, and refers to the data in the storage unit based on the slit width of the slit unit detected by the aperture area detection unit and the aperture diameter of the field stop unit. It is characterized by determining a maximum luminous intensity value.
 請求項9記載の発明にあっては、前記開口面積検知部は、スリット操作部の操作量を検知することにより前記スリット幅値を取得することを特徴とする。
 請求項10記載の発明にあっては、前記開口面積検知部は、前記一対のスリット刃の移動量を検知することによりスリット幅値を検知することを特徴とする。
 請求項11記載の発明にあっては、前記開口面積検知部は、観察系に配置された撮像装置により取得された前眼部画像の開口像に基づき開口面積を検知することを特徴とする。
The invention according to claim 9 is characterized in that the opening area detection unit acquires the slit width value by detecting an operation amount of the slit operation unit.
The invention according to claim 10 is characterized in that the opening area detector detects a slit width value by detecting a movement amount of the pair of slit blades.
The invention according to claim 11 is characterized in that the opening area detector detects an opening area based on an opening image of an anterior ocular segment image acquired by an imaging device arranged in an observation system.
 請求項12記載の発明にあっては、前記開口面積検知部は、前記ターレットを駆動するステッピングモータのステップを計測することにより前記ターレットの開口部により形成される開口径を検知することを特徴とする。
 請求項13記載の発明にあっては、前記開口面積検知手段は、光検知部により前記ターレットの回転角度を検出することにより開口径を検知することを特徴とする。
The invention according to claim 12 is characterized in that the opening area detecting unit detects an opening diameter formed by the opening of the turret by measuring a step of a stepping motor that drives the turret. To do.
The invention according to claim 13 is characterized in that the opening area detecting means detects an opening diameter by detecting a rotation angle of the turret by means of a light detection unit.
 従来、スリットランプ顕微鏡においては、光源の光度を電圧の高低のみにより制御していたが、光源の個体差や設置時の僅かな位置ズレによって角膜上の照度、眼底上の照度に差異が生じ、スリット部及び視野絞り部が開放された、被検者の眼底に対して最も悪い条件下で工場出荷時に眼底照度安全値を超えないように光源の光度を調整した場合であっても、事後的にユーザーが光源を交換した場合には交換後に眼底照度値との関係での調整はできないため、眼底照度の安全値を超えてしまう場合が発生したり、充分な照度が得られない虞があった。 Conventionally, in the slit lamp microscope, the light intensity of the light source was controlled only by the voltage level, but the illuminance on the cornea and the illuminance on the fundus were different due to individual differences in the light source and slight positional deviation during installation. Even if the luminous intensity of the light source is adjusted so that it does not exceed the safe fundus illuminance value at the time of shipment from the factory under the worst conditions with respect to the fundus of the subject with the slit part and field stop part opened. When the user replaces the light source, the adjustment in relation to the fundus illuminance value cannot be performed after the replacement.Therefore, the safety value of the fundus illuminance may be exceeded or sufficient illuminance may not be obtained. It was.
 しかしながら、請求項1及び2記載の発明にあっては、光源の光度を検知する検知手段を有し、検知手段の検知結果に基づき照明光源の光度を制御するように構成され、光度の調整を電圧等によりコントロールするのではなく、光源の光量をモニタして光度を制御するように構成されていることから、光源の劣化や光源の交換により眼底照度の安全値を超えてしまう事態を有効に防止することが可能となる。 However, in the first and second aspects of the invention, the light intensity of the illumination light source is controlled on the basis of the detection result of the detection means. Since it is configured to control the light intensity by monitoring the light amount of the light source instead of controlling by voltage etc., it is effective for situations where the safety value of fundus illuminance exceeds the safe value due to light source deterioration or light source replacement It becomes possible to prevent.
 また、従来は眼底照度を全ての条件で安全値以下に抑えるように光源の最大光度が均一に制限されていたため、例えば、スリット幅を狭め眼底照度が安全値に至る場合であっても光源の光度を上昇させることができず、観察部位をより詳細に観察することができない、という不具合があった。 In addition, since the maximum luminous intensity of the light source has been uniformly limited so as to keep the fundus illuminance below a safe value under all conditions, for example, even when the fundus illuminance reaches a safe value by narrowing the slit width, There was a problem that the luminous intensity could not be increased and the observation site could not be observed in more detail.
 しかしながら、請求項3~13記載の発明にあっては、前記開口部の面積を検知する開口面積検知部を有し、前記制御部は前記開口面積検知部により検知された開口面積に基づき光源の光度を制御するように構成されていることから、スリット部及び視野絞り部により設定された開口面積に対応して最大光度を可変にすることができることから、検者は設定された開口面積に応じた最大光度の範囲内であれば自由に光源の光度を上げることができ、被検眼に対する光障害の可能性を排除しつつ、より精密な観察を行うことが可能となる。 However, in the inventions according to claims 3 to 13, an opening area detection unit that detects the area of the opening is provided, and the control unit is configured to detect a light source based on the opening area detected by the opening area detection unit. Since it is configured to control the luminous intensity, the maximum luminous intensity can be made variable corresponding to the opening area set by the slit part and the field stop part. Within the range of the maximum luminous intensity, the luminous intensity of the light source can be freely increased, and more precise observation can be performed while eliminating the possibility of optical damage to the eye to be examined.
本発明の一実施の形態に係るスリットランプ顕微鏡の全体構成を示す概念図である。It is a conceptual diagram which shows the whole structure of the slit lamp microscope which concerns on one embodiment of this invention. 本発明の一実施の形態に係るスリットランプ顕微鏡の全体構成を示す概念図である。It is a conceptual diagram which shows the whole structure of the slit lamp microscope which concerns on one embodiment of this invention. 本発明の一実施の形態に係るスリットランプ顕微鏡に装備される視野絞り部の構成を示す概念図である。It is a conceptual diagram which shows the structure of the field stop part with which the slit lamp microscope which concerns on one embodiment of this invention is equipped. 本発明の一実施の形態に係るスリットランプ顕微鏡に装備される視野絞り部の構成を示す概念図である。It is a conceptual diagram which shows the structure of the field stop part with which the slit lamp microscope which concerns on one embodiment of this invention is equipped. 本発明の一実施の形態に係るスリットランプ顕微鏡の全体構成を示すブロック図である。1 is a block diagram showing an overall configuration of a slit lamp microscope according to an embodiment of the present invention. 本発明の一実施の形態に係るスリットランプ顕微鏡において、設定されたスリット幅及び視野絞り径に基づき光源の光度制御を行う場合のフローチャートを示す図である。It is a figure which shows the flowchart in the case of performing the luminous intensity control of a light source based on the set slit width and field stop diameter in the slit lamp microscope which concerns on one embodiment of this invention.
 以下、添付図面に示す実施の形態に基づき、本発明に係るスリットランプ顕微鏡を詳細に説明する。 Hereinafter, a slit lamp microscope according to the present invention will be described in detail based on embodiments shown in the accompanying drawings.
 本実施の形態に係る装置光学系において、最も被検者側に位置するレンズ(対物レンズ)から被検者に向かう方向を前方向とし、その反対方向を後方向とする。また、前方向に直交する水平方向を左右方向とする。前後方向と左右方向の双方に直交する方向を上下方向とする。以上の方向の定義を前提として説明を行う。 In the apparatus optical system according to the present embodiment, the direction from the lens (objective lens) located closest to the subject to the subject is defined as the forward direction, and the opposite direction is defined as the backward direction. The horizontal direction orthogonal to the front direction is the left-right direction. The direction perpendicular to both the front-rear direction and the left-right direction is defined as the up-down direction. The description will be made on the assumption of the above definition of direction.
[全体構成]
 本実施形態に係るスリットランプ顕微鏡の全体構成について図1及び図2を参照しながら説明する。スリットランプ顕微鏡1には、コンピュータ100が接続されている。コンピュータ100は、各種の制御処理や演算処理を行う。
[overall structure]
The overall configuration of the slit lamp microscope according to the present embodiment will be described with reference to FIGS. 1 and 2. A computer 100 is connected to the slit lamp microscope 1. The computer 100 performs various control processes and arithmetic processes.
 なお、顕微鏡本体(光学系等を格納する筐体)とは別にコンピュータ100を設ける代わりに、顕微鏡本体に同様のコンピュータを搭載した構成を適用することも可能である。 In addition, instead of providing the computer 100 separately from the microscope main body (housing for storing the optical system or the like), a configuration in which the same computer is mounted on the microscope main body can be applied.
 スリットランプ顕微鏡1はテーブル2上に載置される。なお、コンピュータ100は他のテーブル上またはその他の場所に設置されていてもよい。基台4は、移動機構部3を介して水平方向に移動可能に構成されている。基台4は、操作ハンドル5を傾倒操作することにより移動される。操作ハンドル5を軸周りに回転することで支持部15は基台4に対して上下に移動される。 The slit lamp microscope 1 is placed on the table 2. The computer 100 may be installed on another table or in another place. The base 4 is configured to be movable in the horizontal direction via the moving mechanism unit 3. The base 4 is moved by tilting the operation handle 5. The support portion 15 is moved up and down with respect to the base 4 by rotating the operation handle 5 around the axis.
 基台4の上面には、観察系6および照明系8を支持する支持部15が設けられている。また、本実施の形態にあっては、支持部15には、図2に示す背景照明系20が支持されている。 A support portion 15 that supports the observation system 6 and the illumination system 8 is provided on the upper surface of the base 4. Further, in the present embodiment, the support unit 15 supports the background illumination system 20 shown in FIG.
 支持部15には、観察系6を支持する支持アーム16が左右方向に回動可能に取り付けられている。支持アーム16の上部には、照明系8および背景照明系20を支持する支持アーム17が左右方向に回動可能に取り付けられている。支持アーム16、17は、それぞれ独立に同軸で回動可能とされている。 A support arm 16 that supports the observation system 6 is attached to the support unit 15 so as to be rotatable in the left-right direction. A support arm 17 that supports the illumination system 8 and the background illumination system 20 is attached to the upper portion of the support arm 16 so as to be rotatable in the left-right direction. The support arms 16 and 17 are independently coaxially rotatable.
 観察系6は、支持アーム16を手動で回動させることで移動される。照明系8および背景照明系20は、支持アーム17を手動で回動させることで移動される。 The observation system 6 is moved by manually rotating the support arm 16. The illumination system 8 and the background illumination system 20 are moved by manually rotating the support arm 17.
 なお、各支持アーム16、17は、電気的な機構によって回動されるように構成されていてもよい。その場合、各支持アーム16、17を回動させるための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とが設けられる。アクチュエータは、たとえばステッピングモータ(パルスモータ)により構成される。伝達機構は、たとえば歯車の組み合わせやラック・アンド・ピニオンなどによって構成される。 Note that each of the support arms 16 and 17 may be configured to be rotated by an electric mechanism. In that case, an actuator for generating a driving force for rotating the support arms 16 and 17 and a transmission mechanism for transmitting the driving force are provided. The actuator is constituted by, for example, a stepping motor (pulse motor). The transmission mechanism is constituted by, for example, a combination of gears, a rack and pinion, or the like.
 照明系8は、被検眼Eに照明光を照射する。照明系8は、前述のように、回動軸を中心に左右方向に旋回することができる。それにより被検眼Eに対する照明光の照射方向が変更される。照明系8は上下方向にも旋回するように構成されていてもよく、照明光の仰角や俯角を変更できるように構成されていてもよい。 The illumination system 8 irradiates the eye E with illumination light. As described above, the illumination system 8 can turn in the left-right direction around the rotation axis. Thereby, the irradiation direction of the illumination light to the eye E is changed. The illumination system 8 may be configured to turn in the vertical direction, or may be configured to change the elevation angle and depression angle of the illumination light.
 照明光の強度の変更は、基台4上に設けられた照明強度操作部18を用いて行われる。なお、背景照明系20により被検眼Eに照射される背景照明光の強度についても、照明強度操作部18を用いて行えるように構成されていてもよい。
 また、照明光や背景照明光の強度の変更を、他の操作部材により行えるように構成することも可能である。他の操作部材としては、スリットランプ顕微鏡1の筐体に設けられた操作部材や、コンピュータ100に設けられた操作部材がある。
The intensity of the illumination light is changed using the illumination intensity operation unit 18 provided on the base 4. Note that the intensity of the background illumination light applied to the eye E by the background illumination system 20 may also be configured to be performed using the illumination intensity operation unit 18.
It is also possible to change the intensity of the illumination light or the background illumination light so that it can be changed by another operation member. As other operation members, there are an operation member provided in the housing of the slit lamp microscope 1 and an operation member provided in the computer 100.
 観察系6は、照明光(および背景照明光)の被検眼Eからの反射光を案内する左右一対の光学系を有する。この光学系は鏡筒本体9内に収納されている。鏡筒本体9の終端は接眼部9aである。検者は接眼部9aをのぞき込むことで被検眼Eを肉眼で観察する。 The observation system 6 has a pair of left and right optical systems that guide reflected light from the eye E to be examined with illumination light (and background illumination light). This optical system is housed in the barrel main body 9. The end of the lens barrel body 9 is an eyepiece 9a. The examiner looks at the eye E with the naked eye by looking into the eyepiece 9a.
 前述のように、支持アーム16を回動させることにより鏡筒本体9を左右方向に回動させることができる。それにより被検眼Eに対する観察系6の向きを変更することができる。
 なお、照明光の反射光には、たとえば散乱光のように被検眼Eを経由した各種の光が含まれるが、これら各種の光を含めて「反射光」と呼ぶ。
As described above, the lens barrel body 9 can be rotated in the left-right direction by rotating the support arm 16. Thereby, the direction of the observation system 6 with respect to the eye E can be changed.
The reflected light of the illumination light includes various types of light that pass through the eye E such as scattered light, for example, and these various types of light are referred to as “reflected light”.
 鏡筒本体9に対峙する位置には顎受け台10が配置されている。顎受け台10には、被検者の顔を安定配置させるための顎受部10aと額当て10bが設けられている。 A chin rest 10 is disposed at a position facing the lens barrel body 9. The chin rest 10 is provided with a chin rest 10a and a forehead rest 10b for stably arranging the face of the subject.
 鏡筒本体9の側面には、観察倍率を変更するための観察倍率操作ノブ11が配置されている。更に、鏡筒本体9には、被検眼Eを撮影するための撮像装置13が接続されている。
 撮像装置13は撮像素子を含んで構成されている。
 撮像素子は、光を検出して電気信号(画像信号)を出力する光電変換素子である。画像信号はコンピュータ100に入力される。撮像素子としては、たとえばCCD(Charge Coupled Device)イメージセンサや、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサが用いられる。照明系8の下方位置には、照明系8から出力される照明光束を被検眼Eに向けて反射するミラー12が配置されている。また、ミラー12は、背景照明系20から出力される背景照明光を被検眼Eに向けて反射する。
An observation magnification operation knob 11 for changing the observation magnification is disposed on the side surface of the barrel main body 9. Further, an imaging device 13 for photographing the eye E is connected to the barrel main body 9.
The imaging device 13 includes an imaging element.
The imaging element is a photoelectric conversion element that detects light and outputs an electrical signal (image signal). The image signal is input to the computer 100. As the imaging element, for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor is used. A mirror 12 that reflects the illumination light beam output from the illumination system 8 toward the eye E is disposed below the illumination system 8. The mirror 12 reflects the background illumination light output from the background illumination system 20 toward the eye E.
[光学系の構成]
 スリットランプ顕微鏡1の光学系の構成について、図2を参照しながら説明する。スリットランプ顕微鏡1は、観察系6と、照明系8と、背景照明系20とを有する。
[Configuration of optical system]
The configuration of the optical system of the slit lamp microscope 1 will be described with reference to FIG. The slit lamp microscope 1 includes an observation system 6, an illumination system 8, and a background illumination system 20.
〔観察系〕
 観察系6は左右一対の光学系を備えている。左右の光学系は、ほぼ同様の構成を有する。操作者は、この左右の光学系により被検眼Eを双眼で観察することができる。なお、図2には、観察系6の左右の光学系の一方のみが示されている。符号O1は観察系6の光軸(観察光軸)である。
[Observation system]
The observation system 6 includes a pair of left and right optical systems. The left and right optical systems have substantially the same configuration. The operator can observe the eye E to be examined with binocular eyes using the left and right optical systems. In FIG. 2, only one of the left and right optical systems of the observation system 6 is shown. Reference numeral O <b> 1 is an optical axis (observation optical axis) of the observation system 6.
 観察系6の左右の各光学系は、対物レンズ31、変倍光学系32、絞り33、結像レンズ35、プリズムユニット36および接眼レンズ37を有する。ビームスプリッタ34は、左右の光学系の一方にまたは双方に設けられる。接眼レンズ37は接岸部9a内に設けられている。符号Pは、結像レンズ35により観察部位の像が結像する位置を示している。この像を接眼レンズ37を介して観察する。符号Ecは被検眼Eの角膜を、符号Epは虹彩を、符号Erは眼底をそれぞれ示している。符号Eoは検者眼を示している。 Each of the left and right optical systems of the observation system 6 includes an objective lens 31, a variable magnification optical system 32, a diaphragm 33, an imaging lens 35, a prism unit 36, and an eyepiece lens 37. The beam splitter 34 is provided in one or both of the left and right optical systems. The eyepiece lens 37 is provided in the pier portion 9a. A symbol P indicates a position where an image of the observation site is formed by the imaging lens 35. This image is observed through the eyepiece lens 37. Reference sign Ec represents the cornea of the eye E, reference sign Ep represents the iris, and reference sign Er represents the fundus. Reference Eo indicates the examiner's eye.
 変倍光学系32は、複数(たとえば2枚)の変倍レンズ32a、32bを含んで構成される。この実施形態では、観察系6の光路に対して選択的に挿入可能な複数の変倍レンズ群が設けられている。
 これら変倍レンズ群は、それぞれ異なる倍率を付与するように構成されている。観察系6の光路に配置された変倍レンズ群が変倍レンズ32a、32bとして用いられる。それにより、被検眼Eの接眼レンズによる観察像や撮影画像の倍率(画角)を変更できる。倍率の変更、即ち観察系6の光路に配置される変倍レンズ群の切り替えは、観察倍率操作ノブ11を操作することにより行われる。また、図示しないスイッチ等を用いて電動で倍率を変更するように構成してもよい。
The variable magnification optical system 32 includes a plurality of (for example, two) variable magnification lenses 32a and 32b. In this embodiment, a plurality of variable power lens groups that can be selectively inserted into the optical path of the observation system 6 are provided.
These variable power lens groups are configured to give different magnifications. A variable power lens group disposed in the optical path of the observation system 6 is used as the variable power lenses 32a and 32b. Thereby, the magnification (field angle) of an observation image or a captured image of the eye E to be examined can be changed. Changing the magnification, that is, switching the zoom lens group disposed in the optical path of the observation system 6 is performed by operating the observation magnification operation knob 11. Moreover, you may comprise so that a magnification may be electrically changed using a switch etc. which are not illustrated.
 ビームスプリッタ34は、観察光軸O1に沿って進む光を二分割する。ビームスプリッタ34を透過した光は、結像レンズ35、プリズムユニット36および接眼レンズ37を介して検者眼Eoに導かれる。プリズムユニット36は、2つの光学素子36a、36bを含み、像を反転すると共に検者の眼幅に合わせて左右観察光軸の幅を変更することができる。 The beam splitter 34 divides the light traveling along the observation optical axis O1 into two. The light transmitted through the beam splitter 34 is guided to the examiner's eye Eo through the imaging lens 35, the prism unit 36, and the eyepiece lens 37. The prism unit 36 includes two optical elements 36a and 36b. The prism unit 36 can invert the image and change the width of the left and right observation optical axes according to the eye width of the examiner.
 他方、ビームスプリッタ34により反射された光は、リレーレンズ41およびミラー42を介して、撮像装置13の撮像素子43に導かれる。撮像素子43は、この反射光を検出して画像信号を生成する。 On the other hand, the light reflected by the beam splitter 34 is guided to the imaging element 43 of the imaging device 13 via the relay lens 41 and the mirror 42. The image sensor 43 detects the reflected light and generates an image signal.
〔照明系〕
 照明系8は、光源51、リレーレンズ52、照明絞り56、コンデンサレンズ53、スリット部54、視野絞り部60、および結像レンズ55を有する。符号O2は、照明系8の光軸(照明光軸)を示す。
[Lighting system]
The illumination system 8 includes a light source 51, a relay lens 52, an illumination stop 56, a condenser lens 53, a slit portion 54, a field stop portion 60, and an imaging lens 55. A symbol O2 indicates the optical axis of the illumination system 8 (illumination optical axis).
 光源51は照明光を出力する。なお、照明系8に複数の光源を設けてもよい。たとえば、定常光を出力する光源(ハロゲンランプ、LED等)と、フラッシュ光を出力する光源(キセノンランプ、LED等)の双方を光源51として設けることができる。また、角膜観察用の光源と眼底観察用の光源とを別々に設けてもよい。光源51は、可視光を出力する可視光源を少なくとも含む。光源51への印加電力の大きさにより光度が変更可能に構成されている。 The light source 51 outputs illumination light. Note that a plurality of light sources may be provided in the illumination system 8. For example, both a light source (halogen lamp, LED, etc.) that outputs steady light and a light source (xenon lamp, LED, etc.) that outputs flash light can be provided as the light source 51. Further, a light source for corneal observation and a light source for fundus observation may be provided separately. The light source 51 includes at least a visible light source that outputs visible light. The light intensity can be changed according to the magnitude of the power applied to the light source 51.
〔光束制御部〕
 本実施の形態にあっては、照明系8は光源51の照明光が通過する開口部71の面積を変更可能な光束制御部70を有しており、光束制御部70を通過することにより面積を制限した観察光を被検眼Eに照射する。
(Flux control part)
In the present embodiment, the illumination system 8 has the light beam control unit 70 that can change the area of the opening 71 through which the illumination light of the light source 51 passes, and the area by passing through the light beam control unit 70. The eye E is irradiated with observation light that is limited.
 即ち、本実施の形態にあっては光束制御部70は、スリット部54と、視野絞り部60と、スリット部54及び視野絞り部60により形成される開口部71の面積を検知する開口面積検知部59とを有しており、制御部101は開口面積検知部により検知された開口面積に基づき光源51の光度を制御する。 That is, in the present embodiment, the light beam control unit 70 detects the area of the slit 54, the field stop 60, and the area of the opening 71 formed by the slit 54 and the field stop 60. The control unit 101 controls the light intensity of the light source 51 based on the opening area detected by the opening area detection unit.
<スリット部>
 スリット部54は、スリット光(観察光)を生成するために用いられる。スリット部54は、互いに所定間隔をおいて対向して配置された一対のスリット刃54a、54bを有する。これらスリット刃54a、54bの配置間隔(スリット幅)を変更することによりスリット光の幅が変更される。手動操作により任意にスリット刃54a、54bの配置間隔を調整することができる。この場合、スリット刃54a、54bを電動により開閉するように構成してもよい。
<Slit part>
The slit portion 54 is used for generating slit light (observation light). The slit portion 54 has a pair of slit blades 54a and 54b disposed to face each other at a predetermined interval. By changing the arrangement interval (slit width) of the slit blades 54a and 54b, the width of the slit light is changed. The interval between the slit blades 54a and 54b can be arbitrarily adjusted by manual operation. In this case, you may comprise so that the slit blades 54a and 54b may be electrically opened and closed.
<視野絞り部>
 図2、図3及び図4に示すように、視野絞り部60は、スリット部54の反光源51側においてスリット部54に近接して配置され、異なる大きさ及び形状の複数の開口62を有し、回転中心66を中心として回転動するターレット61を有している。
<Field stop>
As shown in FIGS. 2, 3, and 4, the field stop 60 is disposed adjacent to the slit 54 on the side opposite to the light source 51 of the slit 54 and has a plurality of openings 62 having different sizes and shapes. And a turret 61 that rotates about the rotation center 66.
 図3及び図4に示すように、本実施の形態にあっては、ターレット61は照明光軸02に対して直交する方向において回転可能に配置された円盤状部材であって、開口62は、同心円上に配置された4つの円形開口部63a、63b、63c、63dと単一の湾曲涙滴状開口部64とからなる。円形開口部63a、63b、63c、63dは、それぞれ異なる径に形成され、時計回り方向に次第に大径となるように、互いに開口中心が等間隔となるように配置されている。
 従って、ターレット61を適宜回転させることにより任意の開口62の中心を照明光軸02に合わせることにより観察面の照明範囲を適宜制限することが可能となる。
As shown in FIGS. 3 and 4, in the present embodiment, the turret 61 is a disk-like member that is rotatably arranged in a direction orthogonal to the illumination optical axis 02, and the opening 62 is It consists of four circular openings 63a, 63b, 63c, 63d and a single curved teardrop-shaped opening 64 arranged concentrically. The circular openings 63a, 63b, 63c, and 63d are formed to have different diameters, and are arranged so that the centers of the openings are equally spaced from each other so that the diameter gradually increases in the clockwise direction.
Therefore, it is possible to appropriately limit the illumination range of the observation surface by appropriately rotating the turret 61 to align the center of the arbitrary opening 62 with the illumination optical axis 02.
 最小の円形開口部63aが照明光軸02上に配置された場合には、照明光束65の径よりも最も小径の絞り光を形成することができ、最大の円形開口部63dが照明光軸02上に配置された場合には、照明光束65の径と同一の最大径の絞り光を形成することができる。 When the smallest circular opening 63a is arranged on the illumination optical axis 02, it is possible to form aperture light having the smallest diameter than the diameter of the illumination light beam 65, and the largest circular opening 63d serves as the illumination optical axis 02. When arranged on the top, it is possible to form aperture light having the same maximum diameter as that of the illumination light beam 65.
 また、前記湾曲涙滴状開口部64は、大径円弧端部64aと、大径円弧端部64aに同心円の円周方向に対向して配置された小径円弧端部64bと、前記大径円弧端部64aから小径円弧端部64bにかけて徐々に幅寸法が小さくなるように形成された湾曲輪郭部64c、64dとにより形成されており、図4に示すように、湾曲涙滴状開口部64はスリット部54を通過した光束の幅を連続的に変更制御しうるように構成されている。 The curved teardrop-shaped opening 64 includes a large-diameter arc end portion 64a, a small-diameter arc end portion 64b arranged concentrically facing the large-diameter arc end portion 64a, and the large-diameter arc end portion. The curved teardrop-shaped openings 64 are formed by curved contour portions 64c and 64d formed so that the width dimension gradually decreases from the end portion 64a to the small-diameter arc end portion 64b, as shown in FIG. The width of the light beam that has passed through the slit portion 54 can be continuously changed and controlled.
 図3に示すように、ターレット61は、複数の開口62の中心を照明光軸02に合致させて配設されており、検者はターレット61を適宜回転させることにより所望の開口62を、スリット部54を開放した状態で照明光軸02に対して選択的に配置することにより、被観察部を円形に照明することができる。また、スリット部54を、スリット刃54a、54bの間隔を狭めた状態で、視野絞り部60と併せて使用することにより、被観察部を小判状に照明することもできる。 As shown in FIG. 3, the turret 61 is disposed with the centers of the plurality of openings 62 aligned with the illumination optical axis 02, and the examiner rotates the turret 61 appropriately to open the desired opening 62. By selectively disposing the portion 54 with respect to the illumination optical axis 02 in a state where the portion 54 is opened, the observed portion can be illuminated in a circular shape. Further, by using the slit portion 54 in combination with the field stop portion 60 in a state where the interval between the slit blades 54a and 54b is narrowed, the observed portion can be illuminated in an oval shape.
 従って、ターレット61を回転することにより、任意の大きさの開口62を選択的に照明光軸02上に配置することで、被観察面における照明範囲を制限し、スリット部54のスリット刃54a、54bの幅と視野絞り部60の開口62の径を組み合わせることで幅と長さを制限した観察光を被観察面に照射することができる。 Accordingly, by rotating the turret 61, an opening 62 having an arbitrary size is selectively disposed on the illumination optical axis 02, thereby limiting the illumination range on the surface to be observed, and the slit blade 54a of the slit portion 54, By combining the width of 54b and the diameter of the opening 62 of the field stop 60, it is possible to irradiate the observation surface with the limited width and length.
 また、図4に示すように、湾曲涙滴状開口部64に関しては、スリット部54の間隔を狭めた状態で照明光軸02上に配置し、ターレット61を大径円弧端部64aと小径円弧端部64bとの間において回動させることにより、スリット部54により形成されるスリット間隔の長さLを制限し、スリットの長さの絞りを連続的に行うことができる。 Further, as shown in FIG. 4, the curved teardrop-shaped opening 64 is arranged on the illumination optical axis 02 in a state where the interval between the slit portions 54 is narrowed, and the turret 61 is arranged with a large-diameter arc end 64a and a small-diameter arc. By rotating between the end portion 64b, the length L of the slit interval formed by the slit portion 54 is limited, and the slit length can be continuously reduced.
 本実施の形態にあっては、ターレット61は手動操作により回転駆動させるように構成されている。ターレット61には、各円形開口部63の中心が照明光軸02に一致する位置に適宜構成のクリック部(図示せず)が設けられており、検者は、操作部を操作することにより、クリック部に合わせるようにしてターレット61を回転操作することにより所望の円形開口部63を照明光軸02上に配置固定することができる。 In this embodiment, the turret 61 is configured to be driven to rotate by manual operation. The turret 61 is provided with a click part (not shown) having an appropriate configuration at a position where the center of each circular opening 63 coincides with the illumination optical axis 02, and the examiner operates the operation part to The desired circular opening 63 can be arranged and fixed on the illumination optical axis 02 by rotating the turret 61 so as to match the click portion.
 湾曲涙滴状開口部64にあっては、大径円弧端部64a及び小径円弧端部64bの中心が照明光軸02に一致する位置にクリック部(図示せず)が設けられている一方、大径円弧端部64aと小径円弧端部64bとの間においてはクリック部は設けられておらず、大径円弧端部64aと小径円弧端部64bとの間の任意の位置においてターレット61の回転を停止させることが可能である。従って、大径円弧端部64aと小径円弧端部64bとの間の任意の位置において停止させて連続的にスリットの長さを絞ることができる。 In the curved teardrop-shaped opening 64, a click portion (not shown) is provided at a position where the centers of the large-diameter arc end 64a and the small-diameter arc end 64b coincide with the illumination optical axis 02, The click portion is not provided between the large-diameter arc end portion 64a and the small-diameter arc end portion 64b, and the turret 61 rotates at an arbitrary position between the large-diameter arc end portion 64a and the small-diameter arc end portion 64b. Can be stopped. Accordingly, the slit can be continuously reduced in length by stopping at an arbitrary position between the large-diameter arc end 64a and the small-diameter arc end 64b.
 また、ターレット61は電動により回転するように構成してもよい。この場合には、ターレット61を駆動するアクチュエータとしてのステッピングモータ及び適宜の駆動力伝達機構が設けられる。制御部101は、ステッピングモータのステップ数を計測することによりターレット61の回転角度を光検知手段、例えば、フォトインタプラタにより検知するように構成する。 Further, the turret 61 may be configured to rotate electrically. In this case, a stepping motor as an actuator for driving the turret 61 and an appropriate driving force transmission mechanism are provided. The control unit 101 is configured to detect the rotation angle of the turret 61 by light detection means, for example, a photointerpreter, by measuring the number of steps of the stepping motor.
<開口面積検知部>      
 本実施の形態に係るスリットランプ顕微鏡1はスリット部54のスリット刃54a、54bの配置間隔及び視野絞り部60のターレット61の回転角度を検知する検知手段を備えた開口面積検知部59を有している。制御部101は開口面積検知部59により検知されたスリット幅及びターレット61の開口62により形成される開口面積に基づき光源51の最大光度値光度を決定する。
<Opening area detector>
The slit lamp microscope 1 according to the present embodiment has an opening area detection unit 59 provided with detection means for detecting the arrangement interval of the slit blades 54a and 54b of the slit unit 54 and the rotation angle of the turret 61 of the field stop unit 60. ing. The control unit 101 determines the maximum luminous intensity value luminous intensity of the light source 51 based on the slit width detected by the opening area detection unit 59 and the opening area formed by the opening 62 of the turret 61.
 開口面積検知部59は、スリット部54のスリット刃54a及びスリット刃54bの幅及び視野絞り部60の開口部62の開口径を各々検出する。
 スリット部54の幅については、回転操作可能に形成されたスリット操作部としてのスリット開閉ノブ(図示せず)の回転量を、エンコーダにより検知して検知情報を制御部101に送信する。
The opening area detector 59 detects the width of the slit blade 54 a and the slit blade 54 b of the slit portion 54 and the opening diameter of the opening 62 of the field stop 60.
As for the width of the slit portion 54, the amount of rotation of a slit opening / closing knob (not shown) as a slit operation portion formed so as to be capable of rotating operation is detected by an encoder, and detection information is transmitted to the control portion 101.
 この場合、開口面積検知部59を、一対のスリット刃54a、54bの移動量適宜の検知手段により検知することによりスリット幅値を検知するように構成してもよい。例えば、スリット刃54a、54bを駆動するアクチュエータの駆動軸の回転数を検知することによりスリット刃54a、54bの移動量を計測することもできる。 In this case, the opening area detector 59 may be configured to detect the slit width value by detecting the amount of movement of the pair of slit blades 54a and 54b by an appropriate detecting means. For example, the amount of movement of the slit blades 54a and 54b can be measured by detecting the rotational speed of the drive shaft of an actuator that drives the slit blades 54a and 54b.
 視野絞り部60に関しては、上記のように、複数の開口62を有するターレット61の回転角度を、手動操作による場合には光検知手段により、また電動操作の場合には適宜の検知手段によりステッピングモータのステップ数を計測することにより検出し、当該回転角度に対応した各開口部63a、63b、63c、63d、64を特定して開口径を得る。
 その結果、開口面積検知部59は、スリット部54のスリット幅とターレット61の回転角度から得られた視野絞り部60の開口62の開口径の組み合わせから、複合された開口面積を得ることができる。
Regarding the field stop 60, as described above, the rotation angle of the turret 61 having the plurality of openings 62 is determined by the light detection means in the case of manual operation and by the appropriate detection means in the case of electric operation. Are detected by measuring the number of steps, and each opening 63a, 63b, 63c, 63d, 64 corresponding to the rotation angle is specified to obtain the opening diameter.
As a result, the aperture area detector 59 can obtain a composite aperture area from the combination of the slit width of the slit 54 and the aperture diameter of the aperture 62 of the field stop 60 obtained from the rotation angle of the turret 61. .
 また、開口面積検知部59において、観察系6に配置された撮像装置43により取得された前眼部画像の開口像に基づき開口面積を検知するように構成してもよい。この場合には、変倍系の倍率を検知してフィードバックすることが必要となる。 Further, the opening area detection unit 59 may be configured to detect the opening area based on the opening image of the anterior ocular segment image acquired by the imaging device 43 arranged in the observation system 6. In this case, it is necessary to detect and feed back the magnification of the zooming system.
 照明絞り56は、その透光部のサイズを変更可能に構成されている。照明絞り56は、特に眼底観察において有効である。たとえば、照明絞り56には、角膜Ecや水晶体による照明光の反射を低減させ、照明光の明るさを調整する等の用途がある。 The illumination diaphragm 56 is configured to be able to change the size of the translucent portion. The illumination stop 56 is particularly effective in fundus observation. For example, the illumination stop 56 has applications such as reducing the reflection of illumination light by the cornea Ec or the crystalline lens and adjusting the brightness of the illumination light.
〔背景照明系〕
 背景照明光20は、被検眼Eに背景照明光を照射する。背景照明光は、照明系8による被検眼Eに対する照明光の照射領域の周囲の領域に照射される。なお、背景照明光の照射領域は、少なくともこの周囲領域を含むものであればよい。たとえば、背景照明光の照射領域は、照明系8による照射領域の少なくとも一部と重複していてもよい。
[Background lighting system]
The background illumination light 20 irradiates the eye E with background illumination light. The background illumination light is applied to a region around the irradiation region of the illumination light applied to the eye E by the illumination system 8. Note that the background illumination light irradiation region only needs to include at least the surrounding region. For example, the irradiation area of the background illumination light may overlap with at least a part of the irradiation area by the illumination system 8.
 背景照明系20は、光源(背景光源)を含む。背景光源は、可視光を出力する可視光源を少なくとも含む。この可視光は、たとえば肉眼観察や撮影に用いられる。背景光源は、赤外光を出力する赤外光源を含んでいてもよい。この赤外光は、たとえばマイボーム腺の観察や撮影に用いられる。 The background illumination system 20 includes a light source (background light source). The background light source includes at least a visible light source that outputs visible light. This visible light is used, for example, for visual observation and photographing. The background light source may include an infrared light source that outputs infrared light. This infrared light is used, for example, for observation and photographing of the meibomian glands.
 背景照明系20が可視光源と背景光源の双方を含む場合、これら光源はたとえば択一的に使用される。背景照明系20は、背景光源から出力された光を集束させる1つ以上のレンズを含んでいてもよい。符号O3は、背景照明系20の光軸(背景照明光軸)を示す。 When the background illumination system 20 includes both a visible light source and a background light source, these light sources are used alternatively, for example. The background illumination system 20 may include one or more lenses that focus the light output from the background light source. Reference symbol O3 indicates the optical axis of the background illumination system 20 (background illumination optical axis).
 背景光源から出力された光は、(上記レンズによって集光された後、)ミラー12により反射されて被検眼Eに照射される。この背景照明光の照射領域は、照明系8による被検眼Eの照射領域の周囲の領域を含む。 The light output from the background light source is reflected by the mirror 12 (after being collected by the lens) and applied to the eye E. The irradiation area of the background illumination light includes an area around the irradiation area of the eye E to be examined by the illumination system 8.
[制御系の構成]
 スリットランプ顕微鏡1の制御系について、図5を参照しながら説明する。
 スリットランプ顕微鏡1の制御系は、制御部101を中心に構成されている。なお、制御系の構成の少なくとも一部がコンピュータ100に含まれていてもよい。
[Control system configuration]
A control system of the slit lamp microscope 1 will be described with reference to FIG.
The control system of the slit lamp microscope 1 is configured around the control unit 101. Note that at least a part of the configuration of the control system may be included in the computer 100.
〔制御部〕
 制御部101は、スリットランプ顕微鏡1の各部を制御する。
 制御部101は、観察系6の制御、照明系8の制御、背景照明系20の制御を行う。観察系6の制御としては、変倍光学系32の制御、絞り33の制御、撮像素子43の電荷蓄積時間、感度、フレームレート等の制御などがある。照明系8の制御としては、光源51、光源光度検知部58、光束制御部70を構成するスリット部54、視野絞り部60及び開口面積検知部59、照明絞り56の制御などがある。背景照明系20の制御としては、背景光源の制御などがある。
(Control part)
The control unit 101 controls each unit of the slit lamp microscope 1.
The control unit 101 controls the observation system 6, the illumination system 8, and the background illumination system 20. Control of the observation system 6 includes control of the variable power optical system 32, control of the diaphragm 33, control of charge accumulation time, sensitivity, frame rate, etc. of the image sensor 43. Control of the illumination system 8 includes control of the light source 51, the light source luminous intensity detection unit 58, the slit unit 54 constituting the light beam control unit 70, the field stop unit 60 and the aperture area detection unit 59, and the illumination stop 56. Control of the background illumination system 20 includes control of a background light source.
 制御部101は、マイクロプロセッサ、RAM、ROM、ハードディスクドライブ等を含んで構成される。ROMやハードディスクドライブ等の記憶装置には、制御プログラムがあらかじめ記憶されている。制御部101の動作は、この制御プログラムとハードウェアとが協働することによって実現される。制御部101は、スリットランプ顕微鏡1の装置本体(たとえば基台4内)やコンピュータ100に配置される。 The control unit 101 includes a microprocessor, a RAM, a ROM, a hard disk drive, and the like. A control program is stored in advance in a storage device such as a ROM or a hard disk drive. The operation of the control unit 101 is realized by the cooperation of this control program and hardware. The control unit 101 is disposed in the apparatus main body (for example, in the base 4) of the slit lamp microscope 1 or the computer 100.
〔表示部〕
 表示部102は、制御部101の制御を受けて各種の情報を表示する。表示部102は、LCD等のフラットパネルディスプレイなどの表示デバイスを含んで構成される。表示部102は、スリットランプ顕微鏡1の装置本体に設けられていてもよいし、コンピュータ100に設けられていてもよい。
[Display section]
The display unit 102 displays various information under the control of the control unit 101. The display unit 102 includes a display device such as a flat panel display such as an LCD. The display unit 102 may be provided in the apparatus main body of the slit lamp microscope 1 or may be provided in the computer 100.
〔操作部〕
 操作部103は、操作デバイスや入力デバイスを含んで構成される。操作部103には、スリットランプ顕微鏡1に設けられたボタンやスイッチ(たとえば操作ハンドル5、照明強度操作部18等)や、コンピュータ100に設けられた操作デバイス(マウス、キーボード等)が含まれる。また、操作部103は、トラックボール、操作パネル、スイッチ、ボタン、ダイアルなど、任意の操作デバイスや入力デバイスを含んでいてもよい。
[Operation section]
The operation unit 103 includes an operation device and an input device. The operation unit 103 includes buttons and switches (for example, the operation handle 5 and the illumination intensity operation unit 18) provided on the slit lamp microscope 1 and operation devices (such as a mouse and a keyboard) provided on the computer 100. The operation unit 103 may include an arbitrary operation device or input device such as a trackball, an operation panel, a switch, a button, or a dial.
 図5では、表示部102と操作部103とを別々に表しているが、これらの少なくとも一部を一体的に構成することも可能である。その具体例として、タッチスクリーンを用いることができる。 In FIG. 5, the display unit 102 and the operation unit 103 are shown separately, but at least a part of them can be configured integrally. As a specific example, a touch screen can be used.
〔光源光度検知部〕
 光源51の光度は印加電力にほぼ相関するため、印加電力を制限することで光源51の光度を制御することもできるが、図2に示すように、本実施の形態に係るスリットランプ顕微鏡1においては、光源51の光度を測定検知する光源光度検知部58が設けられている。
 この光源光度検知部58は、光源51の光度を直接モニタするように構成されており、このように光量を直接にモニタすることで光源のバラツキや、光源の劣化による光量低下が起きた場合であっても、適切な照度のスリット像を投影することができる。
[Light source intensity detector]
Since the luminous intensity of the light source 51 is substantially correlated with the applied power, it is possible to control the luminous intensity of the light source 51 by limiting the applied power, but as shown in FIG. 2, in the slit lamp microscope 1 according to the present embodiment. Is provided with a light source light intensity detector 58 for measuring and detecting the light intensity of the light source 51.
The light source luminous intensity detection unit 58 is configured to directly monitor the luminous intensity of the light source 51. When the light quantity is directly monitored in this way, the light quantity varies or the light quantity decreases due to deterioration of the light source. Even if it exists, the slit image of appropriate illumination intensity can be projected.
 この場合、光源光度検知部58をフォトディテクターにより構成し、光源51の近傍に配置し、光源51の散乱光成分を受光するように構成してもよく、また、光源51の近傍に光ファイバの一方端部を配置し、光ファイバの端面から光源の散乱光を取り込み、他方端部近傍にフォトディテクターを配置しても良い。さらに、光路02中に光束の一部を反射するミラーを配置し、反射光をフォトディテクターにより受光するようにしても良い。 In this case, the light source luminous intensity detection unit 58 may be configured by a photodetector, arranged near the light source 51, and configured to receive the scattered light component of the light source 51. One end may be arranged, the scattered light of the light source may be taken in from the end face of the optical fiber, and a photodetector may be arranged near the other end. Further, a mirror that reflects a part of the light beam may be disposed in the optical path 02, and the reflected light may be received by the photodetector.
〔開口部の開口面積による光源の光度制御〕
 以下に、本発明における「スリット幅及び視野絞り径に基づく光源の最大光度値制御」の趣旨及び意義について説明する。
[Light intensity control of light source by opening area of opening]
The meaning and significance of “maximum luminous intensity value control of light source based on slit width and field stop diameter” in the present invention will be described below.
 光源51からの照明光はコンデンサレンズで53により集光され、スリット部54と視野絞り部60の組み合わされた開口部71を透過して結像レンズ55からミラー12の近傍に光源像を結像する。
 光源像はミラー12を介して被検眼Eの眼底Er付近に結像する。前記開口部71の像は結像レンズ55によりミラー12を介して観察部位に結像する。角膜Ecを観察する場合は角膜Ecがこの観察位置に合致するようにアライメントを行う。
Illumination light from the light source 51 is collected by a condenser lens 53 and passes through an opening 71 combined with a slit 54 and a field stop 60 to form a light source image near the mirror 12 from the imaging lens 55. To do.
The light source image is formed near the fundus Er of the eye E via the mirror 12. The image of the opening 71 is formed on the observation site via the mirror 12 by the imaging lens 55. When the cornea Ec is observed, alignment is performed so that the cornea Ec matches the observation position.
 光源51の光度が一定の場合には開口部71の開口の面積を変化させた場合であっても角膜Ec上に結像する開口像の照度は変化しない。しかしながら、眼底Er上の光源像の照度は開口面積が狭くなると低くなり、開口面積が広がると高くなる。 When the light intensity of the light source 51 is constant, the illuminance of the aperture image formed on the cornea Ec does not change even when the aperture area of the aperture 71 is changed. However, the illuminance of the light source image on the fundus Er decreases as the aperture area decreases, and increases as the aperture area increases.
 開口部71の開口面積はスリット部54の幅と視野絞り部60の径の組み合わせからなり、観察部位や観察方法によって検者が任意に設定する。観察部位をよりよく、詳細に観察しようとする場合、光源51の光度を上げ(明るくして)被検部上の開口像の照度を高めて観察することとなる。
 この時、照射した光束のほとんどは角膜Ecを透過して眼底Erに達し、眼底Erを照明してしまうため、従来は、どのような照明条件であっても眼底照度の安全値を超えないよう光量ボリュウムに制限がかけられているか、又は警告を報知するように構成されたものも存在した。
The opening area of the opening 71 is a combination of the width of the slit portion 54 and the diameter of the field stop 60, and is arbitrarily set by the examiner depending on the observation site and the observation method. In order to observe the observation site better and in detail, the light intensity of the light source 51 is increased (brightened), and the illuminance of the aperture image on the test portion is increased for observation.
At this time, most of the irradiated light beam passes through the cornea Ec to reach the fundus Er and illuminates the fundus Er. Therefore, conventionally, the safe value of fundus illuminance is not exceeded under any illumination conditions. Some have been configured to limit the amount of light volume or to alert a warning.
 しかしながら、光源51の光度が一定であっても開口部71の開口面積を変更すると眼底照度は変化するため、ある開口面積の時、眼底照度が安全値の上限に達していた場合であっても、開口面積を狭めれば眼底照度は安全値に対して余裕を持つことができる。この場合に、更に角膜Ec上を明るく観察したいという場合には光源51の光度を上げて角膜Ec上の開口像の照度を上げることができる。逆に、開口面積を拡大した場合は眼底照度が安全値を超えてしまうため、光源51の光度を下げなければならない。 However, even if the luminous intensity of the light source 51 is constant, changing the opening area of the opening 71 changes the fundus illuminance. Therefore, even when the fundus illuminance reaches the upper limit of the safe value at a certain opening area, If the opening area is narrowed, the fundus illuminance can have a margin with respect to the safe value. In this case, if it is desired to observe the cornea Ec brighter, the luminous intensity of the light source 51 can be increased to increase the illuminance of the aperture image on the cornea Ec. On the contrary, when the opening area is enlarged, the fundus illuminance exceeds the safe value, so the luminous intensity of the light source 51 must be lowered.
 従来においては、開口を最大に開いた状態で眼底Erの照度を安全値以下に抑えるように光源51の光度を設定していたため、スリット部54を狭めた状態で眼底安全値に対して余裕がある状態であっても明るく観察することができなかった。
 そこで、本件発明にあってはスリット部54の幅及び視野絞り60の径を各々検出して、検出され複合された開口面積に応じて光源51の最大光度を可変にするものである。
Conventionally, the light intensity of the light source 51 is set so that the illuminance of the fundus oculi Er is suppressed to a safe value or less with the opening fully opened, so that there is a margin with respect to the fundus safe value with the slit portion 54 narrowed. Even under certain conditions, bright observation was not possible.
Therefore, in the present invention, the width of the slit portion 54 and the diameter of the field stop 60 are detected, and the maximum luminous intensity of the light source 51 is made variable in accordance with the detected and combined aperture area.
 本実施の形態に係るスリットランプ顕微鏡1にあっては、検者によってスリット幅及び視野絞り径が操作設定された場合には、制御部は開口面積検知部59により検知されたスリット部54のスリット幅と視野絞り60において選択された視野絞り径に基づき複合して得られる開口部71の開口面積を求め、前記光源51の最大光度値を設定すると共に、光源51の光度値は最大光度値を超えては設定できないように構成されている。 In the slit lamp microscope 1 according to the present embodiment, when the slit width and the field stop diameter are set by the examiner, the control unit detects the slit of the slit unit 54 detected by the aperture area detection unit 59. Based on the width and the field stop diameter selected in the field stop 60, the aperture area of the opening 71 obtained in combination is obtained, the maximum light intensity value of the light source 51 is set, and the light intensity value of the light source 51 is the maximum light intensity value. It is configured not to be set beyond this.
 図5に示すように、制御部101は記憶部101aを有し、記憶部101aは、検者が設定したスリット幅の値と視野絞り径とにより、開口面積に対応した観察光が被検眼Eの眼底Erに照射された場合であっても被検眼眼底に対する安全照度を超えない適切な光源の最大光度値からなるデータをあらかじめ格納している。
 制御部101は、開口面積検知部59により検知された、スリット幅及び選択された視野絞り径からなる開口面積に基づき、記憶部101aのデータを参照して光源51の最大光度値を決定する。
As shown in FIG. 5, the control unit 101 includes a storage unit 101 a, and the storage unit 101 a generates observation light corresponding to the opening area based on the slit width value and the field stop diameter set by the examiner. Even when the eye fundus Er is irradiated, data including a maximum light intensity value of an appropriate light source that does not exceed the safe illuminance with respect to the eye fundus to be examined is stored in advance.
The control unit 101 determines the maximum luminous intensity value of the light source 51 with reference to the data in the storage unit 101a based on the aperture area including the slit width and the selected field stop diameter detected by the aperture area detection unit 59.
 従って、検者は、診察において、必要に応じ適宜スリット部54の開閉及び視野絞り部60の開口径を操作して観察を行うが、検者により設定されたスリット部54の幅と視野絞り部60の開口径からなる開口面積に応じて、制御部101により開口面積値に対応する光源51の最大光度値が決定され、検者は、最大光度値以下であれば適宜、光源51の光度を操作変更して必要な観察、検査を行うことができ、かつ、決定された開口面積値に対応する最大光度値以上には光源51の光度を上げることはできないように構成されている。 Accordingly, in the examination, the examiner performs observation by appropriately operating the opening / closing of the slit portion 54 and the opening diameter of the field stop portion 60 as necessary, but the width of the slit portion 54 set by the examiner and the field stop portion are set. The maximum light intensity value of the light source 51 corresponding to the opening area value is determined by the control unit 101 according to the opening area having the opening diameter of 60, and the examiner appropriately adjusts the light intensity of the light source 51 if it is equal to or less than the maximum light intensity value. Necessary observation and inspection can be performed by changing the operation, and the luminous intensity of the light source 51 cannot be increased beyond the maximum luminous intensity value corresponding to the determined opening area value.
 検者が最大光度値以上に光源51の光度を設定しようとした場合には、「最大光度値に達している」旨の警告を表示部102に表示するか、又は音声により検者に警告してもよい。 When the examiner tries to set the luminous intensity of the light source 51 to be greater than or equal to the maximum luminous intensity value, a warning that “the maximum luminous intensity value has been reached” is displayed on the display unit 102 or the auditor is warned by voice. May be.
〔作動説明〕
 本実施の形態に係るスリットランプ顕微鏡1を使用して検眼するに際し、開口面積に基づく光源51の光度制御を行う場合の手順について図6のフローチャートを参照しながら説明する。
[Description of operation]
A procedure for performing light intensity control of the light source 51 based on the aperture area when performing eye examination using the slit lamp microscope 1 according to the present embodiment will be described with reference to the flowchart of FIG.
 操作者は、スリットランプ顕微鏡1を使用するに際し、検眼の個別具体的事情に応じてスリット部54の幅、及び視野絞り部60の視野絞り径を設定または変更する(S1)。 When using the slit lamp microscope 1, the operator sets or changes the width of the slit portion 54 and the field stop diameter of the field stop portion 60 in accordance with the specific circumstances of the optometry (S1).
 次に、開口面積検知部59は、設定または変更されたスリット幅、及び視野絞り径を検知し、検知信号を制御部101へ送る(S2)。 Next, the aperture area detector 59 detects the set or changed slit width and field stop diameter, and sends a detection signal to the controller 101 (S2).
 次に、制御部101はスリット幅と視野絞り径を複合した開口面積を求め、記憶部101aに格納されている、設定された開口面積と、当該開口面積に対応した前記観察光が被検眼の眼底に照射された場合であっても眼底照度の安全値を超えない適切な光源の最大光度値とからなるデータテーブルから、上記得られた開口面積に対応する光源51の最大光度値を取得する(S3)。 Next, the control unit 101 obtains an opening area obtained by combining the slit width and the field stop diameter, and the set opening area stored in the storage unit 101a and the observation light corresponding to the opening area are obtained from the eye to be examined. The maximum luminous intensity value of the light source 51 corresponding to the obtained aperture area is acquired from the data table including the appropriate maximum luminous intensity value of the light source that does not exceed the safe value of the fundus illuminance even when the fundus is irradiated. (S3).
 次に、制御部101は光源光度検知部58により光源51の、設定または変更された実際の光度を検知し、光度を取得する(S4)。そして、制御部101は、S4において検知、取得された光源51の光度がS3において記憶部101aから取得された最大光度値以下であるか否か、を判断する(S5)。 Next, the control unit 101 detects the actual light intensity of the light source 51 set or changed by the light source light intensity detection part 58, and acquires the light intensity (S4). Then, the control unit 101 determines whether or not the light intensity of the light source 51 detected and acquired in S4 is equal to or less than the maximum light intensity value acquired from the storage unit 101a in S3 (S5).
 制御部101は、光源51の光度がS3において記憶部101aから取得された最大光度値以下であると判断した場合には、検者により設定または変更された光度を許容し決定して制御を終了する(S6)。 When the control unit 101 determines that the light intensity of the light source 51 is equal to or less than the maximum light intensity value acquired from the storage unit 101a in S3, the control unit 101 allows and determines the light intensity set or changed by the examiner and ends the control. (S6).
 一方、制御部101は、光源51の光度がS3において記憶部101aから取得された最大光度値以下ではない、と判断した場合には、光源51の光度を、設定または変更された当該開口面積に対応する光源の最大光度値に設定して制御を終了する。 On the other hand, if the control unit 101 determines that the luminous intensity of the light source 51 is not less than or equal to the maximum luminous intensity value acquired from the storage unit 101a in S3, the luminous intensity of the light source 51 is set to the set or changed aperture area. The maximum light intensity value of the corresponding light source is set and the control ends.
 本実施の形態にあっては、背景照明系20が設けられている場合を例に説明したが、上記実施の形態に限定されず、背景照明系20が設けられていなくてもよい。 In the present embodiment, the case where the background illumination system 20 is provided has been described as an example, but the present invention is not limited to the above embodiment, and the background illumination system 20 may not be provided.
 本発明はスリットランプ顕微鏡に係ることから、広く産業上の利用可能性を有している。 Since the present invention relates to the slit lamp microscope, it has wide industrial applicability.
01 観察光軸
02 照明光軸
03 背景照明光軸
1 スリットランプ顕微鏡
2 テーブル
3 移動機構部
4 基台
5 操作ハンドル
6 観察系
8 照明系
9 鏡筒本体
9a 接眼部
10 顎受け台
10a 顎受け部
10b 額当て
11 観察倍率操作ノブ
12 反射ミラー 
15 支持部
16 支持アーム
17 支持アーム
18 照明強度操作部
20 背景照明系
31 対物レンズ
32 変倍光学系
33 絞り
34 ビームスプリッタ
35 リレーレンズ
36 プリズム
36a 光学素子
36b 光学素子
37 接眼レンズ
41 リレーレンズ
42 ミラー
43 撮像素子
51 光源
52 リレーレンズ
53 コンデンサレンズ
54 スリット部(光束制御部)
54a スリット刃
54b スリット刃
55 コンデンサレンズ
56 照明絞り
58 光源光度検知部
59 開口面積検知部(光束制御部)
60 視野絞り部(光束制御部)
61 ターレット
62 開口
63a 円形開口部
63b 円形開口部
63c 円形開口部
63d 円形開口部
64 湾曲涙滴状開口部
65 照明光束
70 光束制御部
71 開口部
100 コンピュータ
101 制御部
101a 記憶部 
102 表示部
103 操作部
E 被検眼
Ec 角膜
Ep 虹彩
Er 眼底
P 光の結像位置
L スリット間隔の長さ
01 Observation Optical Axis 02 Illumination Optical Axis 03 Background Illumination Optical Axis 1 Slit Lamp Microscope 2 Table 3 Movement Mechanism 4 Base 5 Operation Handle 6 Observation System 8 Illumination System 9 Lens Body 9a Eyepiece 10 Jaw Base 10a Jaw Base Part 10b Forehead rest 11 Observation magnification operation knob 12 Reflection mirror
DESCRIPTION OF SYMBOLS 15 Support part 16 Support arm 17 Support arm 18 Illumination intensity operation part 20 Background illumination system 31 Objective lens 32 Variable magnification optical system 33 Diaphragm 34 Beam splitter 35 Relay lens 36 Prism 36a Optical element 36b Optical element 37 Eyepiece 41 Relay lens 42 Mirror 43 Image sensor 51 Light source 52 Relay lens 53 Condenser lens 54 Slit part (light flux control part)
54a Slit blade 54b Slit blade 55 Condenser lens 56 Illumination stop 58 Light source luminous intensity detection unit 59 Opening area detection unit (light flux control unit)
60 Field stop (beam controller)
61 turret 62 opening 63a circular opening 63b circular opening 63c circular opening 63d circular opening 64 curved teardrop-shaped opening 65 illumination light beam 70 light beam control unit 71 opening unit 100 computer 101 control unit 101a storage unit
102 Display unit 103 Operation unit E Eye Ec Cornea Ep Iris Er Fundus P Light imaging position L Length of slit interval

Claims (13)

  1.  スリットランプ顕微鏡において、照明系の条件を検知する検知手段を有し、前記検知手段の検知結果に基づき照明光源の光度を制御することを特徴とするスリットランプ。 In a slit lamp microscope, a slit lamp characterized by having a detecting means for detecting a condition of an illumination system, and controlling a luminous intensity of an illumination light source based on a detection result of the detecting means.
  2.  前記照明系の条件は光源の光量であることを特徴とする請求項1に記載のスリットランプ顕微鏡。 The slit lamp microscope according to claim 1, wherein the illumination system condition is a light amount of a light source.
  3.  照明光を出力する光源を有し、前記照明光が開口部の面積を変更可能な光束制御部を通過することにより面積が制限された観察光を被検眼に照射する照明系と、前記観察光の被検眼からの戻り光を観察する観察系と、少なくとも前記照明系の作動を制御する制御部とを備えたスリットランプ顕微鏡であって、
     前記開口部の面積を検知する開口面積検知部を有し、前記制御部は前記開口面積検知部により検知された開口面積に基づき光源の光度を制御することを特徴とするスリットランプ顕微鏡。
    An illumination system that has a light source that outputs illumination light, and that irradiates the subject's eye with observation light whose area is limited by passing through a light beam control unit capable of changing the area of the opening; and the observation light A slit lamp microscope comprising an observation system for observing return light from the subject eye, and a control unit for controlling at least the operation of the illumination system,
    A slit lamp microscope comprising: an opening area detection unit that detects an area of the opening, wherein the control unit controls the light intensity of the light source based on the opening area detected by the opening area detection unit.
  4.  前記光束制御部はスリット部を有し、前記スリット部は少なくとも配置間隔が可変な一対のスリット刃を有し、前記スリット刃の間隔を検知可能に形成されていることを特徴とする請求項3に記載のスリットランプ顕微鏡。 The said light beam control part has a slit part, and the said slit part has a pair of slit blade with which arrangement | positioning space | interval is variable at least, It is formed so that the space | interval of the said slit blade can be detected. A slit lamp microscope described in 1.
  5.  前記光束制御部は視野絞り部を有し、複数の径の異なる開口を選択的に光軸上に配置することにより開口を通過する前記光束の径を可変とし、配置された開口を検知可能に形成されていることを特徴とする請求項3に記載のスリットランプ顕微鏡。 The luminous flux control unit has a field stop, and by selectively arranging a plurality of apertures with different diameters on the optical axis, the diameter of the luminous flux passing through the aperture can be made variable so that the arranged aperture can be detected. The slit lamp microscope according to claim 3, wherein the slit lamp microscope is formed.
  6.  前記光束制御部は、スリット部と、前記スリット部の反光源側に設けられた視野絞り部とを備え、前記視野絞り部は、前記光束に対して直交する方向において回転可能に配置された円盤状のターレットにより形成され、前記開口は前記ターレット本体において同心円上に配置された複数の円形開口部と単一の湾曲涙滴状開口部とからなり、前記湾曲涙滴状開口部は、大径円弧端部と、前記大径円弧端部に同心円の円周方向に対向して配置された小径円弧端部と、前記大径円弧端部から前記小径円弧端部にかけて徐々に幅寸法が小さくなるように形成された湾曲輪郭部とにより形成され、前記湾曲涙滴状開口部は前記スリット部を通過した光束の幅を連続的に変更制御しうることを特徴とする請求項3記載のスリットランプ顕微鏡。 The light beam control unit includes a slit part and a field stop part provided on the side opposite to the light source of the slit part, and the field stop part is disposed so as to be rotatable in a direction orthogonal to the light beam. The opening is composed of a plurality of circular openings arranged concentrically in the turret body and a single curved teardrop-shaped opening, and the curved teardrop-shaped opening has a large diameter. An arc end, a small-diameter arc end concentrically arranged on the large-diameter arc end, and a width dimension gradually decreases from the large-diameter arc end to the small-diameter arc end. The slit lamp according to claim 3, wherein the curved teardrop-shaped opening can continuously change and control the width of the light beam that has passed through the slit. microscope.
  7.  検者によって前記スリット部の一対のスリット刃の配置間隔及び前記視野絞り部の開口径が操作設定された場合には、前記制御部は前記開口面積検知部により検知された前記一対のスリット刃の配置間隔及び前記視野絞り部の開口径に基づき前記光源の最大光度値を決定すると共に、前記光源の光度値は前記最大光度値以下に設定されるように構成されていることを特徴とする請求項3乃至6のいずれか1項に記載のスリットランプ顕微鏡。 When the examiner sets the arrangement interval of the pair of slit blades of the slit portion and the opening diameter of the field stop portion, the control unit detects the pair of slit blades detected by the opening area detector. The maximum light intensity value of the light source is determined based on the arrangement interval and the aperture diameter of the field stop, and the light intensity value of the light source is set to be equal to or less than the maximum light intensity value. Item 7. The slit lamp microscope according to any one of Items 3 to 6.
  8.  前記制御部は記憶部を有し、前記記憶部は、設定された一対のスリット刃の配置間隔幅及び視野絞り部の開口径からなる開口面積と、前記一対のスリット刃の配置間隔及び視野絞り部の開口径に対応した前記観察光が被検眼の眼底に照射された場合であっても眼底照度安全値を超えない適切な光源の最大光度値とからなるデータを格納しており、前記制御部は、前記記憶部のデータを参照して、前記開口面積検知部により検知されたスリット部のスリット幅及び視野絞り部の開口径に基づき前記光源の最大光度値を決定することを特徴とする請求項3乃至7のいずれか1項に記載のスリットランプ顕微鏡。 The control unit includes a storage unit, and the storage unit includes an opening area composed of a set arrangement interval width of the pair of slit blades and an opening diameter of the field stop unit, an arrangement interval of the pair of slit blades, and a field stop. Storing the data including the maximum luminous intensity value of an appropriate light source that does not exceed the fundus illuminance safety value even when the observation light corresponding to the opening diameter of the unit is irradiated on the fundus of the eye to be examined. The unit refers to the data of the storage unit, and determines the maximum luminous intensity value of the light source based on the slit width of the slit unit detected by the aperture area detection unit and the aperture diameter of the field stop unit. The slit lamp microscope according to any one of claims 3 to 7.
  9.  前記開口面積検知部は、スリット操作部の操作量を検知することにより前記スリット幅値を取得することを特徴とする請求項3乃至8のいずれか1項に記載のスリットランプ顕微鏡。 The slit lamp microscope according to any one of claims 3 to 8, wherein the opening area detection unit acquires the slit width value by detecting an operation amount of the slit operation unit.
  10.  前記開口面積検知部は、前記一対のスリット刃の移動量を検知することによりスリット幅値を検知することを特徴とする請求項3乃至8のいずれか1項に記載のスリットランプ顕微鏡。 The slit lamp microscope according to any one of claims 3 to 8, wherein the opening area detector detects a slit width value by detecting a movement amount of the pair of slit blades.
  11.  前記開口面積検知部は、観察系に配置された撮像装置により取得された前眼部画像の開口像に基づき開口面積を検知することを特徴とする請求項3乃至8のいずれか1項に記載のスリットランプ顕微鏡。 The opening area detection unit detects an opening area based on an opening image of an anterior ocular segment image acquired by an imaging device arranged in an observation system. Slit lamp microscope.
  12.  前記開口面積検知部は、前記ターレットを駆動するステッピングモータのステップを計測することにより前記ターレットの開口部により形成される開口径を検知することを特徴とする請求項3乃至8のいずれか1項に記載のスリットランプ顕微鏡。 The said opening area detection part detects the opening diameter formed of the opening part of the said turret by measuring the step of the stepping motor which drives the said turret, The any one of Claims 3 thru | or 8 characterized by the above-mentioned. A slit lamp microscope described in 1.
  13.  前記開口面積検知手段は、光検知部により前記ターレットの回転角度を検出することにより開口径を検知することを特徴とする請求項3乃至8のいずれか1項に記載のスリットランプ顕微鏡。 The slit lamp microscope according to any one of claims 3 to 8, wherein the opening area detection means detects an opening diameter by detecting a rotation angle of the turret by a light detection unit.
PCT/JP2018/017455 2017-05-02 2018-05-01 Slit lamp microscope WO2018203562A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-091876 2017-05-02
JP2017091876A JP6904776B2 (en) 2017-05-02 2017-05-02 Slit lamp microscope

Publications (1)

Publication Number Publication Date
WO2018203562A1 true WO2018203562A1 (en) 2018-11-08

Family

ID=64016145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017455 WO2018203562A1 (en) 2017-05-02 2018-05-01 Slit lamp microscope

Country Status (2)

Country Link
JP (1) JP6904776B2 (en)
WO (1) WO2018203562A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114431825A (en) * 2022-04-12 2022-05-06 万灵帮桥医疗器械(广州)有限责任公司 Slit-lamp microscope and filtering adjusting structure thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7204546B2 (en) * 2019-03-15 2023-01-16 株式会社トプコン Ophthalmic device and method of operation thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067852A (en) * 2014-10-02 2016-05-09 株式会社イナミ Slit lamp
JP2016165535A (en) * 2011-06-14 2016-09-15 株式会社トプコン Slit lamp microscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016165535A (en) * 2011-06-14 2016-09-15 株式会社トプコン Slit lamp microscope
JP2016067852A (en) * 2014-10-02 2016-05-09 株式会社イナミ Slit lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114431825A (en) * 2022-04-12 2022-05-06 万灵帮桥医疗器械(广州)有限责任公司 Slit-lamp microscope and filtering adjusting structure thereof

Also Published As

Publication number Publication date
JP6904776B2 (en) 2021-07-21
JP2018187064A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6118442B2 (en) Slit lamp microscope
US8205988B2 (en) Stereomicroscope
JP2012228309A (en) Meibomian gland observation apparatus
JP2016179004A (en) Slit lamp microscope and control method thereof
US10039449B2 (en) Slit lamp microscope
JP6518126B2 (en) Slit lamp microscope
WO2018203562A1 (en) Slit lamp microscope
JP6431562B2 (en) Slit lamp microscope
JP2010200905A (en) Ophthalmic apparatus
EP2695571A1 (en) Slit lamp microscope
EP2695572B1 (en) Slit lamp microscope
JP6784550B2 (en) Ophthalmic device and method of displaying the eye to be inspected
JP6585377B2 (en) Slit lamp microscope
JP2019155147A (en) Ophthalmologic system including slit lamp microscope
JP2016174759A (en) Slit lamp microscope
JP2016174758A (en) Slit lamp microscope
JP7117120B2 (en) ophthalmic equipment
JP7035231B2 (en) Slit lamp microscope
JP6761503B2 (en) Visual function test device
JP2020062380A (en) Slit-lamp microscope
JP2014033734A (en) Slit-lamp microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794504

Country of ref document: EP

Kind code of ref document: A1