WO2018201879A1 - 一种通信方法、相关设备和系统 - Google Patents

一种通信方法、相关设备和系统 Download PDF

Info

Publication number
WO2018201879A1
WO2018201879A1 PCT/CN2018/083096 CN2018083096W WO2018201879A1 WO 2018201879 A1 WO2018201879 A1 WO 2018201879A1 CN 2018083096 W CN2018083096 W CN 2018083096W WO 2018201879 A1 WO2018201879 A1 WO 2018201879A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
data
demodulation reference
time
frequency resource
Prior art date
Application number
PCT/CN2018/083096
Other languages
English (en)
French (fr)
Inventor
王婷
窦圣跃
李元杰
钱锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710732932.9A external-priority patent/CN108809599B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019023006A priority Critical patent/BR112019023006A2/pt
Priority to EP18794509.2A priority patent/EP3614607B1/en
Publication of WO2018201879A1 publication Critical patent/WO2018201879A1/zh
Priority to US16/674,186 priority patent/US10756861B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication method, related device, and system.
  • MIMO Multiple-Input Multiple-Output
  • multiple sources and/or destinations eg, corresponding to each antenna
  • Data, control signaling, and/or other information can be used to transmit and receive between devices in the communication system Data, control signaling, and/or other information.
  • each of the illustrated transmissions associated with a MIMO communication system uses multiple sources and/or destinations to produce higher data rates, improved signal quality, and the like than single-input single-output communication systems. advantage.
  • An example of a MIMO communication system is a Coordinate Multipoint Transmission (CoMP) system in which multiple Transmission Points (TPs) can cooperate to communicate with one or more receiving points (Reception Point). ) Exchange information.
  • CoMP Coordinate Multipoint Transmission
  • TPs Transmission Points
  • Reception Point receiving points
  • DMRS DeModulation Reference Signal
  • the receiving point can receive a demodulation reference according to the transmission point.
  • the signal estimates the channel, and then receives the data transmitted by the transmission point and demodulates the data.
  • the present application provides a communication method, related device and system, which can improve data reception performance of a receiving point.
  • the first aspect provides a communication method, including: receiving, by a receiving point, first indication information, where the first indication information is used to indicate a time-frequency resource location of a first demodulation reference signal of the first data; Receiving second indication information, where the second indication information is used to indicate a time-frequency resource location of the second demodulation reference signal; and the receiving point determines the first according to a time-frequency resource location of the second demodulation reference signal a time-frequency resource location of the data, and demodulating the first data according to the first demodulation reference signal.
  • the second indication information is used to indicate a time-frequency resource location of the second demodulation reference signal, and the second indication information is used to indicate the second data. And demodulating a time-frequency resource position of the reference signal, where the second demodulation reference signal is used for demodulating the second data.
  • the first data and the first demodulation reference signal are sent by a first transmission point
  • the second data and the second demodulation reference signal The second transmission point is sent by the second transmission point, and the first transmission point and the second transmission point are in a cooperative relationship.
  • the receiving point receives high layer signaling, where the high layer signaling carries related information of a time-frequency resource location of the second demodulation reference signal and is related to the The identifier corresponding to the information; the receiving point receives the second indication information, where the receiving point receives the second indication information by using physical layer signaling, where the second indication information includes at least one first identifier, where And identifying an information related to a time-frequency resource location of the at least one set of second demodulation reference signals.
  • the receiving point receives the second indication information, including:
  • the receiving point receives the second indication information by using physical layer signaling, where the second indication information includes related information of a time-frequency resource location of the second demodulation reference signal.
  • the receiving point determines a time-frequency resource location of the first data according to a time-frequency resource location of the second demodulation reference signal, including: the receiving point is according to The time-frequency resource location of the second demodulation reference signal determines a time-frequency resource location of data related to a time-frequency resource location of the second demodulation reference signal in the first data, and the second demodulation
  • the data related to the time-frequency resource location of the reference signal includes the codeword included in the first data, the data of the layer corresponding to the codeword included in the first data, and the antenna port data corresponding to the layer included in the first data. At least one data.
  • the related information of the time-frequency resource location of the second demodulation reference signal includes a pattern of the second demodulation reference signal and/or an antenna related to the second demodulation reference signal.
  • the antenna port information includes a port number of the antenna port and/or a number of antenna ports.
  • the related information of the time-frequency resource location of the second demodulation reference signal includes information of an antenna port group corresponding to the second demodulation reference signal.
  • the receiving point receives third indication information, where the third indication information is used to indicate a time-frequency resource location of the third demodulation reference signal;
  • the time-frequency resource location of the second demodulation reference signal and the time-frequency resource location of the third demodulation reference signal determine a time-frequency resource location of the first data.
  • the receiving point receives fourth indication information, where the fourth indication information is used to indicate a time-frequency resource location of a fourth demodulation reference signal of the first data;
  • the receiving point performs demodulation processing on the first data according to the first demodulation reference signal and the fourth demodulation reference signal.
  • the third indication information is used to indicate a time-frequency resource location of the third demodulation reference signal, where the third indication information is used to indicate the second data. And demodulating a time-frequency resource position of the reference signal, wherein the third demodulation reference signal is used to perform demodulation processing on the second data.
  • the method further includes: the first data and the fourth demodulation reference signal are sent by a first transmission point, and the second data and the third solution The tone reference signal is sent by the second transmission point, and the first transmission point and the second transmission point are in a cooperative relationship.
  • the receiving point receives high layer signaling, where the high layer signaling carries related information of a time-frequency resource location of the third demodulation reference signal and is related to the The identifier corresponding to the information; the receiving point receives the third indication information, where the receiving point receives the third indication information by using physical layer signaling, where the third indication information includes at least one second identifier, where the The second identifier corresponds to related information of a time-frequency resource location of the at least one group of third demodulation reference signals.
  • the receiving point receives the third indication information, where the receiving point receives the third indication information by using physical layer signaling, where the third indication information includes Information about the location of the time-frequency resource of the third demodulation reference signal.
  • the receiving point determines the first data according to a time-frequency resource location of the second demodulation reference signal and a time-frequency resource location of the third demodulation reference signal.
  • the time-frequency resource location includes: the receiving point determining, according to the time-frequency resource location of the second demodulation reference signal, data related to a time-frequency resource location of the second demodulation reference signal in the first data.
  • the data related to the time-frequency resource location of the second demodulation reference signal includes a codeword included in the first data, a layer of data corresponding to the codeword included in the first data, and the first data includes At least one of the antenna port data corresponding to the layer, the data related to the time-frequency resource location of the third demodulation reference signal includes a codeword included in the first data, and the first data includes Data word corresponding layer, the at least one data layer corresponding to antenna port of the first data included in the data.
  • the related information of the time-frequency resource location of the third demodulation reference signal includes a pattern of the third demodulation reference signal and/or an antenna related to the third demodulation reference signal.
  • the antenna port information includes a port number of the antenna port and/or a number of antenna ports.
  • the related information of the time-frequency resource location of the third demodulation reference signal includes information of an antenna port group corresponding to the third demodulation reference signal.
  • the terminal device determines a time-frequency resource location of the third demodulation reference signal according to a time-frequency resource location of the second demodulation reference signal, where the third There is a preset mapping relationship between the time-frequency resource location of the demodulation reference signal and the time-frequency resource location of the second demodulation reference signal.
  • a second aspect provides a communication method, including: determining, by a first transmission point, a time-frequency resource location of the first data according to a time-frequency resource location of the second demodulation reference signal; and transmitting, by the first transmission point, to the receiving point And an indication information, where the first indication information is used to indicate a time-frequency resource location of the first demodulation reference signal of the first data.
  • the first transmission point receives the second indication information sent by the second transmission point, where the second indication information is used to indicate the time-frequency resource of the second demodulation reference signal. position.
  • the first transmission point sends high-layer signaling to a receiving point, where the high-layer signaling carries information about a time-frequency resource location of the first demodulation reference signal. And an identifier corresponding to the related information; the first transmission point sends physical layer signaling to the receiving point, where the physical layer signaling carries the first indication information, where the first indication information includes at least And a first identifier corresponding to the related information of the time-frequency resource location of the at least one first demodulation reference signal.
  • the first transmission point sends the first indication information by using physical layer signaling, where the first indication information includes a time frequency of the first demodulation reference signal. Information about the location of the resource.
  • the related information of the time-frequency resource location of the first demodulation reference signal includes a pattern of the first demodulation reference signal and/or an antenna related to the first demodulation reference signal.
  • the antenna port information includes a port number of the antenna port and/or a number of antenna ports.
  • the related information of the time-frequency resource location of the first demodulation reference signal includes information of an antenna port group corresponding to the first demodulation reference signal.
  • a communication method including: sending, by a second transmission point, second indication information to a receiving point, where the second indication information is used to indicate a time-frequency resource location of the second demodulation reference signal.
  • the second transmission point sends the second indication information to the first transmission point.
  • the second indication information is used to indicate a time-frequency resource location of a second demodulation reference signal of the second data, where the second demodulation reference signal is used for The second data is subjected to demodulation processing.
  • the second transmission point sends high-layer signaling to the receiving point, where the high-layer signaling carries information about a time-frequency resource location of the second demodulation reference signal. And an identifier corresponding to the related information; the second transmission point sends physical layer signaling to the receiving point, where the physical layer signaling carries the second indication information, and the second indication information includes at least And a second identifier corresponding to the related information of the time-frequency resource location of the at least one group of the second demodulation reference signals.
  • the second transmission point sends the second indication information by using physical layer signaling, where the second indication information includes a time frequency of the second demodulation reference signal. Information about the location of the resource.
  • the data related to the time-frequency resource location of the second demodulation reference signal in the first data includes a codeword included in the first data, and the At least one of the data of the layer corresponding to the codeword included in the data and the antenna port data corresponding to the layer included in the first data.
  • the related information of the time-frequency resource location of the second demodulation reference signal includes a pattern of the second demodulation reference signal and/or an antenna related to the second demodulation reference signal.
  • the antenna port information includes a port number of the antenna port and/or a number of antenna ports.
  • the related information of the time-frequency resource location of the second demodulation reference signal includes information of an antenna port group corresponding to the second demodulation reference signal.
  • the second transmission point sends third indication information to the receiving point, where the third indication information is used to indicate a time-frequency resource location of the third demodulation reference information. .
  • the second transmission point sends the third indication information to the first transmission point.
  • the third indication information is used to indicate a time-frequency resource location of a third demodulation reference signal of the second data, where the third demodulation reference signal is used for The second data is subjected to demodulation processing.
  • the second transmission point sends high-layer signaling to a receiving point, where the high-layer signaling carries information about a time-frequency resource location of the third demodulation reference signal.
  • An identifier corresponding to the related information the second transmission point sends physical layer signaling to the receiving point, where the physical layer signaling carries the third indication information, and the third indication information includes at least And a second identifier corresponding to the related information of the time-frequency resource location of the at least one group of the third demodulation reference signals.
  • the second transmission point sends the third indication information by using physical layer signaling, where the third indication information includes a time frequency of the third demodulation reference signal. Information about the location of the resource.
  • the data related to the time-frequency resource location of the second demodulation reference signal in the first data includes a codeword included in the first data, and the At least one of the data of the layer corresponding to the codeword included in the data and the antenna port data corresponding to the layer included in the first data.
  • the related information of the time-frequency resource location of the third demodulation reference signal includes a pattern of the third demodulation reference signal and/or an antenna related to the third demodulation reference signal.
  • the antenna port information includes a port number of the antenna port and/or a number of antenna ports.
  • the related information of the time-frequency resource location of the third demodulation reference signal includes information of an antenna port group corresponding to the third demodulation reference signal.
  • the receiving point provided by the present application may include a module for performing the receiving point behavior in the above method design.
  • the module can be software and/or hardware.
  • the first transmission point provided by the present application may include a module for performing the first transmission point behavior in the above method design.
  • the module can be software and/or hardware.
  • the second transmission point provided by the present application may include a module for performing the second transmission point behavior in the above method design.
  • the module can be software and/or hardware.
  • Yet another aspect of the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • Yet another aspect of the present application provides a collaborative multipoint transmission system capable of performing the methods described in the above aspects.
  • the device included in the system can be referred to the device described in the above aspect.
  • FIG. 1 is a schematic structural diagram of a cooperative multipoint transmission system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of locations of RE bearer data and a second demodulation reference signal when receiving data is received by some receiving points according to an embodiment of the present application;
  • FIG. 5 is a schematic flowchart of still another communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of still another communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of locations of RE bearer data and a second demodulation reference signal when a transmission point performs data mapping according to an embodiment of the present disclosure
  • FIG. 8 is a schematic flowchart of a communication method according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of locations of RE bearer data and a third demodulation reference signal when receiving data is received by some receiving points according to another embodiment of the present application;
  • FIG. 10 is a schematic flowchart diagram of another communication method according to another embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart of still another communication method according to another embodiment of the present application.
  • FIG. 12 is a schematic flowchart diagram of still another communication method according to another embodiment of the present application.
  • FIG. 13 is a schematic diagram of locations of RE bearer data and a third demodulation reference signal when a transmission point performs data mapping according to another embodiment of the present application;
  • FIG. 14 is a schematic flowchart of a communication method according to still another embodiment of the present application.
  • FIG. 15 is a schematic flowchart diagram of another communication method according to still another embodiment of the present application.
  • 16 is a schematic flowchart of still another communication method according to still another embodiment of the present application.
  • FIG. 17 is a schematic flowchart diagram of still another communication method according to still another embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a receiving point as a terminal according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a transmission point being a network device according to an embodiment of the present application.
  • FIG. 1 illustrates a collaborative multipoint transmission system 100 in accordance with the present application.
  • the cooperative multipoint transmission system includes transmission points 101-A to 101-D and a reception point 103.
  • the system 100 is capable of implementing the method embodiments in the embodiments of the present application.
  • transmission points 101-A through 101-D may be network devices and receiving point 103 is a terminal.
  • transmission points 101-A through 101-D may also be terminals, and receiving point 103 is a network device.
  • the network device described in the embodiments of the present application may refer to a device in the access network that communicates with the wireless terminal through one or more sectors on the air interface.
  • the base station can be used to convert the received air frame to an Internet Protocol (IP) packet as a router between the terminal and the rest of the access network, wherein the remainder of the access network can include an IP network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may include an evolved base station (eNB or e-NodeB, evolutional Node B) in an LTE system or an evolved LTE system (LTE-A), or a small base station in an LTE system or an LTE-A system (micro/pico eNB), or may include a next generation node B (gNB) in the NR system, or a transmission point (TP), or a transmission and receiver point (transmission and receiver point, TRP), etc.
  • eNB evolved base station
  • LTE-A evolved LTE system
  • micro/pico eNB small base station in an LTE system or an LTE-A system
  • gNB next generation node B
  • TP transmission point
  • TRP transmission and receiver point
  • the terminal described in the embodiment of the present application is a device that provides voice and/or data connectivity to a user, and may include, for example, a handheld device having a wireless connection function or a processing device connected to a wireless modem.
  • the terminal can communicate with the core network via a Radio Access Network (RAN) to exchange voice and/or data with the RAN.
  • the terminal may include an access point (AP), a user equipment (User Equipment, UE), a wireless terminal, a mobile terminal, a subscriber unit (Subscriber Unit), a subscriber station (Subscriber Station), a mobile station (Mobile Station), Mobile, Remote Station, Access Point (AP), Remote Terminal, Access Terminal, User Terminal, User Agent ), or User Equipment, etc.
  • a mobile phone or "cellular” phone
  • a computer with a mobile terminal a portable, pocket, handheld, computer built-in or in-vehicle mobile device, smart wearable device, and the like.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Smart Watches smart helmets, smart glasses, smart bracelets and other equipment.
  • the terminals may be distributed in the coordinated multi-point transmission system 100, or may be distributed at the edge positions of the cells covered by the two network devices.
  • the terminal can be either stationary or mobile.
  • a cooperative relationship is established between at least two transmission points of the transmission points 101-A to 101-D for at least one reception point, and data can be transmitted to the reception point 103 based on the cooperation protocol, Signaling and other information.
  • the transmission points 101-A to 101-D and the receiving point 103 are configured with one or more antenna ports, which enable signal transmission using MIMO technology.
  • the data transmitted by any one of the transmission points 101-A to 101-D to the receiving point may include a code word (CW), or a layer corresponding to the code word, or a code word corresponding to the code word. Layers are divided into data belonging to each antenna port.
  • the data of the layer corresponding to the codeword refers to that after the codeword is processed (for example, code block division, code block concatenation, scrambling, modulation), layer mapping is performed, and the codeword is mapped to at least one layer, that is, the code.
  • Each layer to which the word is mapped includes all or a portion of the data of the codeword.
  • the data belonging to each antenna port corresponding to the layer corresponding to the codeword means that one layer of the codeword mapping corresponds to at least one antenna port, that is, each antenna port corresponding to the layer includes all or a part of the data of the layer.
  • the transmission points 101-A to 101-D can cooperatively transmit data.
  • the transmission point 101-A and the transmission point 101-B can cooperatively transmit different code words in the data, and the data includes the first code word and the second code.
  • the transmission point 101-A can transmit the first codeword by cooperation, and correspondingly, the transmission point 101-B can transmit the second codeword; or, the transmission point 101-A and the transmission point 101-B can cooperate to transmit data.
  • Data of different layers of the same codeword for example, a codeword mapping has data of the first layer and data of the second layer, then the data of the first layer of the codeword mapping can be transmitted through the transmission point 101-A, The transmission point 101-B transmits the data of the second layer of the codeword mapping; or, the transmission point 101-A and the transmission point 101-B can cooperate to transmit different antenna ports corresponding to the same layer in the same codeword in the data.
  • Data for example, the data of the first layer mapped by one codeword belongs to the first antenna port and the second antenna port, then the transmission point 101-A transmits data belonging to the first antenna port, and the transmission point 101-B transmits Data belonging to the second antenna port.
  • the transmission point 101-A sends data to the receiving point 130.
  • the time-frequency resource occupied by the data may be a resource block (RB), and the resource block includes multiple resource elements.
  • the transmission point 101-B sends a demodulation reference signal to the receiving point 103.
  • the time-frequency resource occupied by the demodulation reference signal may be one or more discrete resource elements (Resource Element, RE); the resource element refers to a frequency one. Subcarriers are a symbol on the time domain. Where RE is the smallest time-frequency resource unit for transmitting data or signals.
  • RE is the smallest time-frequency resource unit for transmitting data or signals.
  • the demodulation reference signal transmitted by the receiving point 103 through the transmission point 101-B can estimate the signal for receiving the data transmitted by the transmission point 101-B, thereby receiving the data transmitted by the transmission point 101-B.
  • the time-frequency resource occupied by the transmission point 101-A for transmitting data conflicts with the time-frequency resource occupied by the transmission point 101-B for transmitting the demodulation reference signal, that is, the RE occupied by the demodulation reference signal may be in the RB occupied by the data, which
  • the data transmitted by the transmission point 101-A and the demodulation reference signal transmitted by the transmission point 101-B interfere with each other, and the receiving point 103 cannot correctly receive the demodulation reference signal transmitted by the transmission point 101-B.
  • the transmission channel estimation of the transmission point 101-B is inaccurate, which in turn causes the receiving point 103 to fail to correctly receive the data transmitted by the transmission point 101-B, and the performance of the system 100 is degraded.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application. As shown in FIG. 2, the method includes at least the following steps.
  • step S201 the transmission point A sends the first indication information to the receiving point, where the first indication information is used to indicate a time-frequency resource location of the first demodulation reference signal of the first data, and the receiving point receives the first indication information.
  • the transmission point A sends first indication information to the receiving point, where the first indication information is used to indicate a time-frequency resource location of the first demodulation reference signal of the first data.
  • the first data is data that the transmission point A needs to send to the receiving point.
  • the receiving point can receive the first indication information, and can determine the time-frequency resource location of the first demodulation reference signal according to the first indication information, and further receive the first demodulation according to the time-frequency resource location of the first demodulation reference signal.
  • the reference signal is subjected to demodulation processing on the first data according to the first demodulation reference signal.
  • the transmission point A may send the first indication information to the receiving point while transmitting data (such as the first data) to the receiving point; or, the transmission point A may receive the data before or after transmitting the first data to the receiving point.
  • the first indication information is sent by the point.
  • the sending time of the first indication information sent by the transmission point A is not specifically limited in this embodiment.
  • the first indication information may be carried in the data sent by the transmission point A to the receiving point (such as the first data), or the first indication information may be carried in the control signaling sent by the transmission point A to the receiving point, for example,
  • the transmission point is a base station
  • the downlink control information (Downlink Control Information (DCI) transmitted by the transmission point A to the receiving point carries the first indication information.
  • DCI Downlink Control Information
  • Step S202 The receiving point receives the second indication information, where the second indication information is used to indicate a time-frequency resource location of the second demodulation reference signal.
  • the receiving point is capable of receiving second indication information, the second indication information being used to indicate a time-frequency resource location of the second demodulation reference signal.
  • the second demodulation reference signal may be at least one data that is transmitted to the local receiving point for at least one transmission point in the coordinated multi-point transmission system; for example, the second demodulation reference signal may be for cooperation The second data transmitted by the transmission point B to the receiving point in the point transmission system; the second demodulation reference signal may also be the third data transmitted to the receiving point for the transmission point A, the third data being different from the first data, wherein The difference between the third data and the first data includes that the third data is different from the time-frequency resource occupied by the first data, or the third data is different from the data content of the first data.
  • the second demodulation reference signal may not be for data, and the time-frequency resource location of the second demodulation reference signal is predefined by the coordinated multi-point transmission system, that is, the time-frequency resource location of the second demodulation reference signal is not targeted.
  • a certain specific transmission data is common to the transmission data, and the time-frequency resource location of the second demodulation reference signal may be common to one or more transmission points in the coordinated multi-point transmission system.
  • the second indication information that is received by the receiving point and used to indicate the time-frequency resource location of the second demodulation reference signal may be sent by a transmission point that needs to transmit data, for example, the transmission point B needs to be Transmitting the second data, the second demodulation reference signal is used to perform demodulation processing on the second data, and the transmission point B sends the second indication information to the receiving point; or the plurality of coordinated transmission points may be used to indicate the information once or each time.
  • the transmission request is sent by a transmission point after the protocol is sent.
  • the transmission point of the second indication information is not specifically limited in this embodiment of the present application.
  • the receiving point may request to acquire the second indication information from the transmission point A or the transmission point that has a cooperative relationship with the transmission point A; or
  • the transmission point that has a cooperative relationship with the transmission point A knows that the transmission point A needs to send the first data to the receiving point, and then triggers the transmission point to send the second indication information to the receiving point; or, the transmission with the transmission point A has a cooperative relationship
  • the point receives the request of the transmission point A, triggers the transmission point to send the second indication information to the receiving point; or, after the transmission point A sends the first indication information, sends the second indication information to the receiving point.
  • Step S203 the transmission point A sends the first demodulation reference signal to the receiving point, and the receiving point receives the first demodulation at the time-frequency resource location of the first demodulation reference signal according to the first indication information. Reference signal.
  • the receiving point can determine the time-frequency resource location of the first demodulation reference signal according to the first indication information, and the transmission point A can send the first to the receiving point.
  • Demodulating the reference signal the receiving point is capable of receiving the first demodulation reference signal at the corresponding time-frequency resource location according to the time-frequency resource location of the learned first demodulation reference signal.
  • the receiving point receives the first demodulation reference signal to estimate the received signal of the first data.
  • the receiving point may also determine the time frequency of the first data according to the cell reference signal indicated by the transmission point A (Cell Reference Signal). Resource location.
  • Step S204 The receiving point determines a time-frequency resource location of the first data according to a time-frequency resource location of the second demodulation reference signal.
  • the receiving point after receiving the second indication information, can determine the time-frequency resource location of the second demodulation reference signal according to the second indication information, and further, the receiving point can be based on the second demodulation reference signal.
  • the time-frequency resource location determines the time-frequency resource location of the first data.
  • the time-frequency resource location at which the receiving point determines the first data is exemplified herein with reference to A in FIG. 3 and B in FIG. 3. As shown in A of FIG. 3, the receiving point can determine the RB position of the first data, and the RB includes RE1 to RE9, wherein RE1 to RE9 jointly carry the first data.
  • the receiving point has determined that the RE6 carries the second demodulation reference signal, that is, the time-frequency resource location of the second demodulation reference signal is RE6. That is to say, the RE6 carries the data in the first data and also carries the second demodulation reference signal.
  • the receiving point determines the time-frequency resource locations of the first data as RE1 to RE5 and RE7 to RE9. After the receiving point determines the time-frequency resource location of the first data, the data at the time-frequency resource locations is received. As shown in B of FIG. 3, the receiving point can determine the RB position of the first data, and the RB includes RE1 to RE9, wherein the REs other than RE6 jointly carry the first data, and the receiving point has determined that the RE6 carries the second.
  • the demodulation reference signal that is, the time-frequency resource position of the second demodulation reference signal is RE6. Then, the receiving point determines that the time-frequency resource locations of the first data are RE1 to RE5 and RE7 to RE9. After the receiving point determines the time-frequency resource location of the first data, the data at the time-frequency resource locations is received. In summary, if the receiving point receives the second indication information, it can be known that the second demodulation reference signal is carried on the RE6, and the first data is not mapped to the RE6, thereby preventing the receiving point from receiving the first data in the RE6. , normal data rate matching is performed to improve data reception performance.
  • the receiving point may first determine data related to a time-frequency resource location of the second demodulation reference signal, thereby determining a time-frequency resource location of the related data. If the first data includes a plurality of codewords, that is, the smallest data unit of the first data is a codeword, one or more codewords related to the time-frequency resource location of the second demodulation reference signal may be first determined, and then according to the second The time-frequency resource location of the reference signal is demodulated to determine the time-frequency resource location of the one or more codewords.
  • the data of one or more layers related to the time-frequency resource location of the second demodulation reference signal may be first determined. And determining, according to the time-frequency resource location of the second demodulation reference signal, a time-frequency resource location of the data of the one or more layers. If the first data includes antenna port data corresponding to multiple layers, that is, the minimum data unit of the first data is an antenna port, one or more antenna port data related to the time-frequency resource location of the second demodulation reference signal may be first determined. And determining, according to the time-frequency resource location of the second demodulation reference signal, a time-frequency resource location of the one or more antenna port data.
  • the transmission point may be requested to be retransmitted, or the transmission point is requested to map the data at the time-frequency resource location to other time-frequency. At the resource location, or choose to ignore the data at the location of the time-frequency resource. Further optionally, after receiving the first data, sending a reception report to the transmission point to notify that the data on the transmission point RE6 is not received.
  • Step S205 the receiving point performs demodulation processing on the first data according to the first demodulation reference signal.
  • the receiving point may perform demodulation processing on the first data according to the first demodulation reference signal.
  • the sequence of the execution steps involved is not specifically limited.
  • the transmission point B may receive the first indication information and the second indication information at the same time, that is, step S201 and step S202 are performed in parallel; or Step S204 is performed before step S203 and the like.
  • the receiving point can determine the time-frequency resource location of the first demodulation reference signal of the first data by receiving the first indication information; and the receiving point can determine the second by receiving the second indication information.
  • Demodulating a time-frequency resource position of the reference signal the receiving point is capable of determining a time-frequency resource position of the first data according to a time-frequency resource position of the second demodulation reference signal, so that the time-frequency resource position of the first data is circumvented by the second demodulation
  • the time-frequency resource location of the reference signal can further avoid receiving interference of the first data and the second demodulation reference signal by the receiving point, clarify the time-frequency resource location of the first data, perform correct data rate matching, and improve receiving of the receiving point. performance.
  • FIG. 4 is a schematic flowchart diagram of another communication method according to an embodiment of the present application. As shown in FIG. 4, the method includes the following steps.
  • step S401 the transmission point A sends the first indication information to the receiving point, where the first indication information is used to indicate a time-frequency resource location of the first demodulation reference signal of the first data, and the receiving point receives the first indication information.
  • Step S402 the transmission point B sends the high layer signaling to the receiving point, where the high layer signaling carries the related information of the time-frequency resource location of the second demodulation reference signal and the identifier corresponding to the related information.
  • Step S403 the transmission point B sends physical layer signaling to the receiving point, and the receiving point receives the second indication information by using the physical layer signaling, where the second indication information includes at least one first identifier, the first identifier Corresponding to the related information of the time-frequency resource location of the at least one set of second demodulation reference signals.
  • the transmission point B may first send high-level signaling, such as Radio Resource Control (RRC) signaling, and broadcast signaling, to the receiving point, where the high-level signaling carries the second demodulation.
  • RRC Radio Resource Control
  • the first high-level signaling carries related information of a time-frequency resource location of the second demodulation reference signal and an identifier corresponding to the related information.
  • the first high-level signaling may carry the information about the time-frequency resource location of the at least one second demodulation reference signal, and the identifier corresponding to the related information.
  • the relationship between the related information and the identifier is not specific to the embodiment of the present application. For example, each group of related information corresponds to one identifier, or multiple sets of related information correspond to one identifier or the like.
  • the first high-level signaling may carry related information of all time-frequency resource locations of the second demodulation reference signal, or the time-frequency resource location of the first high-level signaling may carry a group of second demodulation reference signals.
  • the related information, or the first high layer signaling may carry related information of a time-frequency resource location of one or more sets of second demodulation reference signals related to the first data.
  • the receiving point After receiving the related information carried by the first high-level signaling and the identifier corresponding to the related information, the receiving point may store the identifier corresponding to the related information and the related information.
  • the first high layer signaling corresponds to the at least one physical layer signaling, and the at least one identifier carried by the first high layer signaling is included in the physical layer signaling corresponding to the first high layer signaling. That is, the receiving point receives the second indication information by using physical layer signaling, where the second indication information includes at least one identifier.
  • the receiving point may determine related information corresponding to the identifier according to the received at least one identifier, and further determine a time-frequency resource location of the second demodulation reference signal according to the determined correlation information.
  • the physical layer signaling may be control signaling such as DCI.
  • the second higher layer signaling can carry one or more groups of related information of the time-frequency resource location of the at least one demodulation reference signal
  • a second higher layer signaling may carry the first One or more sets of related information of a time-frequency resource location of the reference signal and one or more sets of related information of a time-frequency resource location of the second demodulation reference signal are demodulated.
  • the second higher layer signaling can carry one or more groups of related information of time-frequency resource locations of all demodulation reference signals transmitted by transmission points in the coordinated multi-point transmission system, the second higher layer signaling Negotiating by the transmission point, one or more sets of related information carrying the time-frequency resource location of the demodulation reference signal are uniformly transmitted at one transmission point.
  • the receiving point may store the identifier corresponding to the related information and the related information.
  • the second higher layer signaling corresponds to at least one physical layer signaling.
  • the physical layer signaling corresponding to the second higher layer signaling includes at least one identifier, and optionally, an identifier of the demodulation reference signal associated with the at least one identifier.
  • one physical layer signaling corresponding to the second higher layer signaling may include a first identifier and a first demodulation reference signal identifier, and indicate that the first identifier is related to the first demodulation reference signal; and may include the second identifier And identifying a second demodulation reference signal and indicating that the second identifier is associated with the second demodulation reference signal. That is to say, the receiving point can receive the first indication information and the second indication information simultaneously through physical layer signaling.
  • the receiving point may determine related information corresponding to the identifier according to the received at least one identifier, and further determine a time-frequency resource location of the first demodulation reference signal and the second demodulation reference signal according to the determined correlation information.
  • the physical layer signaling may be control signaling such as DCI.
  • one or more sets of data resource mapping indication (PDSCH-RE-MappingConfig) information where the data resource mapping indication information includes a data resource mapping indication Information about the identification information of the information (pdsch-RE-MappingConfigId) and the time-frequency resource location of the second DMRS (second demodulation reference signal), the related information may for example indicate a DMRS pattern of the demodulation reference signal and/or Demodulate the antenna port (DMRS port) of the reference signal, and so on.
  • the data resource mapping indication information includes a data resource mapping indication Information about the identification information of the information (pdsch-RE-MappingConfigId) and the time-frequency resource location of the second DMRS (second demodulation reference signal)
  • the related information may for example indicate a DMRS pattern of the demodulation reference signal and/or Demodulate the antenna port (DMRS port) of the reference signal, and so on.
  • a specific signaling implementation is as follows:
  • the data resource mapping indication information includes identification information (pdsch-RE-MappingConfigId) of the data resource mapping indication information and related information of a time-frequency resource location of the second DMRS, where the related information includes DMRS ports and/or DMRS patterns; or DMRS Port group.
  • the DMRS ports represent antenna port information of the DMRS (for example, the antenna port information herein includes the port number of the antenna port); the DMRS pattern represents the DMRS pattern; or the DMRS port group represents the information of the DMRS antenna port group.
  • the time-frequency resource location of the second DMRS refer to the detailed description below in this application.
  • the DCI specifically indicates which group of data resource mapping indication information used by the RRC configuration.
  • the data resource mapping indication information configured in the RRC signaling may be indicated by the bits of the PDSCH RE Mapping and Quasi-Co-Location Indicator (PQI) in the DCI.
  • Identification information (for example, pdsch-RE-MappingConfigId).
  • Table 1 illustrates the data resource mapping and quasi-co-location indication fields by 2 bits.
  • the data resource mapping and the quasi-co-location indication field can also be understood as a specific implementation manner of the second indication information carried by the DCI.
  • the second indication information can determine the related information of the time-frequency resource location of the second demodulation reference signal corresponding to the identifier in the RRC by indicating the corresponding identifier.
  • the identifier information of the data resource mapping indication information is the identifier 1
  • the bit value of the data resource mapping and the quasi-co-location indication field in the DCI is “00”
  • the DCI indication identifier 1 may be determined.
  • the receiving point acquires the time-frequency resource location of the second DMRS in the data resource mapping indication information, that is, the data is not mapped to the time-frequency resource location of the second DMRS. That is, data reception is not performed at the time-frequency resource location of the second DMRS.
  • the high layer signaling received by the receiving point may be the first high layer signaling or the second high layer signaling, which is not specifically limited herein.
  • the physical layer signaling received by the receiving point is physical layer signaling corresponding to the higher layer signaling.
  • the transmission point B may also receive the second indication information by using physical layer signaling, where the second indication information includes information about a time-frequency resource location of the second demodulation reference signal.
  • the physical layer signaling can indicate related information of the time-frequency resource location of the second demodulation reference signal. It should be understood that the physical layer signaling may only include related information of time-frequency resource locations of one or more sets of second demodulation reference signals; the physical layer signaling may also include one or more sets of other demodulation reference signals. Information about the location of the time-frequency resource, for example, the physical layer signaling may simultaneously include information about the location of the time-frequency resource of one or more sets of first demodulation reference signals and one or more sets of second demodulation reference signals Information about the location of the time-frequency resource.
  • the related information indicating the location of the time-frequency resource of the second demodulation reference signal in the physical layer signaling may be indicated by the data mapping indication information field.
  • the data mapping indication information field may be "DMRS pattern and / or port (s) for PDSCH RE mapping".
  • the DMRS pattern and/or DMRS port information is indicated by the bit value in the field.
  • the first indication information and the second indication information may be sent by the transmission point A, or may be sent by the transmission point B, or the transmission point A may send the first indication information, and the transmission may be performed.
  • the point B sends the second indication information
  • the transmission point A sends the second indication information
  • the transmission B sends the first indication information, which may be sent by the transmission point C.
  • it is not limited herein.
  • the information about the time-frequency resource location of the second demodulation reference signal may include a pattern of the second demodulation reference signal (DMRS Pattern) and/or a second demodulation reference signal.
  • DMRS Pattern a pattern of the second demodulation reference signal
  • DMRS Port Antenna port information.
  • the antenna port information includes the port number of the antenna port and/or the number of antenna ports.
  • the high layer signaling may carry any one of the pattern of the second demodulation reference signal or the antenna port information, and an identifier corresponding thereto.
  • any one of the pattern or antenna port information of the second demodulation reference signal is carried directly by the physical layer signaling.
  • the pattern 1 of the second demodulation reference signal corresponds to the port number ⁇ 7, 8, 11, 13 ⁇ of the antenna port
  • the pattern 2 of the second demodulation reference signal is matched with the antenna port.
  • the port number ⁇ 9, 10, 12, 14 ⁇ corresponds.
  • the port number of the pattern or the antenna port can be indicated by 1 bit.
  • pattern 1 can be indicated by bit “0” in physical layer signaling, and pattern 2 is indicated by bit “1". Of course, other indications may also be included, such as bit “0" to indicate pattern 2, and pattern 1 to indicate pattern 1.
  • Table 2B in the physical layer signaling, the port number of the antenna port ⁇ 7, 8, 11, 13 ⁇ can be indicated by the bit “0", and the port number of the antenna port is indicated by the bit “1” ⁇ 9 , 10, 12, 14 ⁇ . Of course, other indication manners are also included. For example, in the physical layer signaling, the port number of the antenna port ⁇ 7, 8, 11, 13 ⁇ can be indicated by the bit “1", and the port number of the antenna port is indicated by the bit "0". 9,10,12,14 ⁇ .
  • the corresponding relationship between the bit value, the indication information, and the bit value and the indication information is only an example. Other bit values, indication information, and correspondence between the bit value and the indication information may be used, and are not specifically limited herein.
  • the related information in the high layer signaling or the physical layer signaling needs to include the port number of the DMRS pattern and the DMRS antenna port at the same time.
  • the port numbers of the DMRS pattern and the DMRS antenna port may be separately indicated, or the port numbers of the DMRS pattern and the DMRS antenna port may be jointly indicated. The following is an example of the separate indication and the joint indication.
  • the DMRS pattern can be indicated by 1 bit, see Table 3A, pattern 1 is indicated by bit “0", and pattern 2 is indicated by bit “1". Or, pattern 1 is indicated by bit “1", and pattern 2 is indicated by bit “0".
  • the antenna port information of the DMRS can be indicated by 2 bits. Referring to Table 3B, the port number ⁇ 7 ⁇ is indicated by the bit “00" or the number of the indicated port is one; the port number ⁇ 7, 8 ⁇ is indicated by the bit “01” or the number of the indicated port is two; “10” to indicate the port number ⁇ 7, 8, 9, 10 ⁇ or the number of indicated ports is four; the port number is indicated by the bit "11", or the number of ports is indicated. It is 5.
  • This 1 bit and 2 bits are used to indicate the port number of the DMRS pattern and the DMRS antenna port, respectively.
  • the 1 bit and 2 bits may be adjacent in physical layer signaling or may not be adjacent.
  • the corresponding relationship between the bit value, the indication information, and the bit value and the indication information is only an example. Other bit values, indication information, and correspondence between the bit value and the indication information may be used, and are not specifically limited herein.
  • Bit value DMRS antenna port information (port number/port number) 00 7/1 01 7,8/2 10 7,8,9,10/4 11 7,8,9,10,11/5
  • the DMRS pattern and the DMRS antenna port information may be jointly indicated by 3 bits or 4 bits. Taking 3 bits as an example, as shown in Table 4, Table 4 shows a 4-bit bit value and a correspondence between DMRS patterns and DMRS antenna port information. The corresponding relationship between the bit value, the indication information, and the bit value and the indication information is only an example. Other bit values, indication information, and correspondence between the bit value and the indication information may be used, and are not specifically limited herein.
  • the related information of the time-frequency resource location of the second demodulation reference signal may also include information of the antenna port group corresponding to the second demodulation reference signal.
  • the antenna ports are grouped and the correspondence between the antenna port group and each transmission point or quasi-co-location information is determined.
  • the transmission point A uses the antenna port of the antenna port number 7 or 8 to transmit the first demodulation reference signal, and can determine that the antenna port of the antenna port numbers 7 and 8 is an antenna port group, and the group number of the antenna port group is an antenna.
  • the transmission point B uses the antenna port of the antenna port number 9 or 10 to transmit the second demodulation reference signal, and can determine that the antenna port of the antenna port number 9 and 10 is a port group, and the group number of the antenna port group is Antenna port group 2.
  • the receiving point can determine the time-frequency resource position of the demodulation reference signal corresponding to the information of the antenna port group according to the antenna port group. For example, when the receiving point receives the antenna port group 1, the time-frequency resource position of the second demodulation reference signal is determined.
  • the information of the antenna port group may be a group number of the antenna port group, or may be other information of the antenna port group.
  • the information about the antenna port group of the second demodulation reference signal may be indicated by 1 bit or 2 bits in the physical layer signaling, or the information about the antenna port group of the second demodulation reference signal may be indicated by higher layer signaling.
  • the indications of the DMRS pattern and/or the DMRS antenna port can be referred to, and are not limited herein.
  • the grouping of the antenna port group may be predefined, that is, the receiving point is known to the transmission point in the system, and the transmission point may notify the receiving point by signaling, which is not limited herein.
  • the specific physical layer signaling may be exemplified as follows: the transmission point sends an indication information to the receiving point, where the indication information may be indication information of the data mapping, where the indication information includes information of an antenna port group of the second demodulation reference signal.
  • the receiving point receives the indication information through the DCI signaling, and when the receiving point receives the indication information, it can determine that the data mapping is not performed on the time-frequency resource location corresponding to the DMRS antenna port in the DMRS antenna port group, that is, No data reception is performed.
  • the information of the DMRS antenna port group is notified by 1 or 2 bits of information. details as follows:
  • the receiving point determines, according to the time-frequency resource location of the second demodulation reference signal, the time-frequency resource location in the first data that is related to the time-frequency resource location of the second demodulation reference signal.
  • the time-frequency resource location of the data, the data related to the time-frequency resource location of the second demodulation reference signal includes a codeword included in the first data, a layer-layer data corresponding to the codeword included in the first data,
  • the first data includes at least one of antenna port data corresponding to a layer.
  • the data mapping indication information of the information related to the time-frequency resource location of the second demodulation reference signal is taken as an example to describe related information of the time-frequency resource location of the second demodulation reference signal and the first data (for example, The relationship between codeword/layer/DMRS port).
  • the relationship between the information about the time-frequency resource location of the second demodulation reference signal and the first data may be predefined or indicated, and the specific indication signaling is specified. It can be high layer signaling or physical layer signaling.
  • the correspondence between the data mapping indication information and the codeword is as an example, for example, the correspondence between the two data mapping indication information and the two codewords, for example, the first data mapping indication information corresponds to the data of the first codeword. Mapping, the second data mapping indication information corresponds to the data mapping of the second codeword, and vice versa;
  • the data mapping indicates the correspondence between the information and the layer, and the correspondence between the two data mapping indication information and the layer is taken as an example.
  • the first data mapping indication information corresponds to the data mapping of the first layer data
  • the two data mapping indication information corresponds to the data mapping of the second layer data
  • the first data mapping indication information corresponds to the data mapping of the first layer and the second layer data
  • the second data mapping indication information corresponds to Data mapping of the third layer data
  • the first data mapping indication information corresponds to the data mapping of the first layer data
  • the second data mapping indication information corresponds to the data of the second layer and the third layer data.
  • the first data mapping indication information corresponds to the data mapping of the first layer and the second layer data
  • the second data mapping indication information corresponds to the data mapping of the third layer and the fourth layer data
  • the first data mapping indication information corresponds to the data mapping of the first layer data
  • the second data mapping indication information corresponds to the second layer, Data mapping of the third layer and the fourth layer data
  • the first data mapping indication information corresponds to the data mapping of the first layer, the second layer, and the third layer data
  • the second data mapping indication corresponds to the data mapping of the fourth layer data; the other layers are similar, and are not specifically limited herein.
  • the mapping between the data mapping indication information and the antenna port is exemplified by the correspondence between the two data mapping indication information and the antenna port.
  • the first data mapping indication information corresponds to the first antenna port.
  • Data mapping of the data corresponds to the data mapping of the data of the second antenna port, and vice versa;
  • the first data mapping indication information corresponds to the first and second Data mapping of data of the antenna ports
  • the second data mapping indication information corresponds to the data mapping of the data of the third antenna port; or if there are 3 antenna ports
  • the first data mapping indication information corresponds to the first antenna port
  • the second data mapping indication information corresponds to the data mapping of the data of the second and third antenna ports; if there are 4 antenna ports, the first data mapping indication information corresponds to the first and the Data mapping of data of two antenna ports, and second data mapping indication information corresponding to the third and fourth antenna ports According to the data mapping; or if there are 4 antenna ports, the first data data mapping indication information corresponds to the first and the Data mapping of data of two antenna ports, and
  • the time-frequency resource location of the first data is determined according to the time-frequency resource location of the second demodulation reference signal, and specific examples are as follows:
  • the data mapping indication information below is used to carry related information of the time-frequency resource location of the second demodulation reference signal.
  • the first case is when multiple transmission points cooperatively transmit multiple layers from one codeword, that is, multiple layers of one codeword are respectively from multiple transmission points.
  • the transmission point may respectively indicate information about a set of second DMRS time-frequency resource locations of the terminal device for each layer/each antenna port of one codeword.
  • the data mapping indication information in a high-level signaling identifies information related to a set of second DMRS time-frequency resource locations, and configures identifiers of multiple data mapping indication information in the DCI. For example, if two layers/two antenna ports are configured, two data mapping indication information identifiers are configured in the DCI, and the first data mapping indication information identifier corresponds to the first layer data transmission (or the data of the first antenna port). Transmission), the second data mapping indication information identifies a second layer data transmission (or a data transmission of the second antenna port).
  • the data mapping indication information in a high-level signaling identifies information related to the location of the plurality of sets of second DMRS time-frequency resources, and configures one data mapping indication information identifier in the DCI.
  • the terminal device can determine the location of the second DMRS time-frequency resource according to the data mapping indication information identifier in the DCI, and further determine the time-frequency resource location of the data according to the correspondence between the data mapping indication information and the data. For example, if two layers/two antenna ports are configured, one data mapping indication information identifier is configured correspondingly, and the identifier includes information about two groups of second DMRS time-frequency resource locations.
  • the information about the location of the first group of the second DMRS time-frequency resource corresponds to the first layer data transmission (or the data transmission of the first antenna port), and the information about the second group of the second DMRS time-frequency resource location corresponds to the second data.
  • the mapping indication information identifies a second layer data transmission (or a data transmission of the second antenna port).
  • a data mapping indication information in the signaling in the RRC identifies information related to multiple sets of second DMRS time-frequency resource locations, and an exemplary signaling implementation manner is as follows:
  • the related information of the time-frequency resource positions of the two groups of the second DMRSs may be expressed by the mode (1); or the information about the time-frequency resource locations of the two groups of the second DMRSs is expressed by the mode (2). .
  • the second indication information is carried by the physical layer signaling, and the second indication information may include related information of the time-frequency resource location of the one or more groups of the second demodulation reference signals.
  • the second indication information may include information about time-frequency resource positions of the two groups of second demodulation reference signals, and the time-frequency of the first group of second demodulation reference signals.
  • the related information of the resource location corresponds to the first layer data transmission (or the data transmission of the first antenna port)
  • the related information of the time-frequency resource location of the second group of second demodulation reference signals corresponds to the second layer data transmission (or the second Data transmission of antenna ports).
  • the receiving point After receiving the information, the receiving point can know that the layer or antenna port of a codeword corresponds to different data mapping indication information, and then the data of different layers or antenna ports of the codeword are respectively received on different time-frequency resources. .
  • Embodiment 1 The data mapping indication information in a high-level signaling identifies information about a set of second DMRS time-frequency resource locations, and configures multiple data mapping indication information identifiers in the DCI. For example, the default supports up to two data mapping indications. information. If two codewords are configured, two data mapping indication information identifiers are configured correspondingly, the first data mapping indication information identifier corresponds to the first codeword, and the second data mapping indication information identifier corresponds to the second codeword.
  • the data mapping indication information in a high-level signaling identifies information related to the location of the plurality of sets of second DMRS time-frequency resources, and configures one data mapping indication information identifier in the DCI.
  • the terminal device can determine the location of the second DMRS time-frequency resource according to the data mapping indication information identifier in the DCI, and further determine the time-frequency resource location of the data according to the correspondence between the data mapping indication information and the data. For example, if two codewords are configured, one data mapping indication information identifier is configured correspondingly, and the identifier includes information about two groups of second DMRS time-frequency resource locations.
  • the information about the location of the first DMRS time-frequency resource corresponds to the data transmission of the first codeword
  • the information about the location of the second DMRS time-frequency resource corresponds to the second data mapping indication information identifier corresponding to the second Data transfer of codewords.
  • the specific RRC information is as described in the foregoing embodiment, and details are not described herein again.
  • the second indication information is carried by the physical layer signaling, and the second indication information may include related information of the time-frequency resource location of the one or more groups of the second demodulation reference signals.
  • the second indication information may include information about time-frequency resource locations of the two sets of second demodulation reference signals, and the time-frequency resource locations of the first group of second demodulation reference signals.
  • the related information corresponds to the first codeword data transmission, and the related information of the time-frequency resource location of the second group of second demodulation reference signals corresponds to the data transmission of the first codeword.
  • the receiving point After receiving the information, the receiving point can know that different layer or port of different codewords correspond to different data mapping indication information, and then receive data of different codewords on different time-frequency resources.
  • the embodiment of the present application is applicable to a case where only one transmission point transmits data at a scheduling time, and is also applicable to a case where multiple transmission points transmit data at one scheduling time. It is applicable to the case of data transmission with only one codeword or layer or antenna port at one scheduling time, and also applies to the case of data transmission with multiple codewords or layers or antenna ports at one scheduling time.
  • the following is an example of a transmission point as a network device and a reception point as a terminal.
  • the receiving point may determine time-frequency resource location information of data of different codewords/layers/antenna ports according to a predefined rule. For example, if the scheduled resource locations of the two codewords indicated in one downlink control information overlap, the data frame of the DMRS corresponding to the two codewords may be defaulted without any data mapping. For another example, if the scheduled resource locations for two layers or ports in one DCI overlap, then there may be no data mapping by default on the overlapping two layers or the location of the DMRS corresponding to the port.
  • the receiving point may determine time-frequency resource location information of data of different codewords/layers/antenna ports according to a predefined rule. For example, if the scheduled resource locations of the two data indicated in the two downlink control information overlap, the data frame of the DMRS corresponding to the two data may be defaulted without any data mapping. For example, regardless of whether the scheduled resource locations of the two data overlap, the receiving point may default to the time-frequency resource location of the DMRS corresponding to the two data, and there is no data mapping. Whether it is related to the overlapping of the resource locations may be predefined, or the transmission point may notify the receiving point by signaling, which is not limited herein.
  • different transmission points may separately send downlink control information for data scheduling and transmission, so that different transmission points may not know whether the scheduling data is unknown to each other.
  • the other transmission point does not transmit a signal. Therefore, corresponding data mapping can be performed according to different DMRS antenna port groups.
  • QCL quadsi-co-location
  • different transmission points use different antenna ports in different DMRS antenna port groups for data transmission, so according to the DMRS port.
  • the antenna port group information determines the time-frequency resource location of the data.
  • the DMRS antenna port group information or the predefined DMRS antenna port group information in the high layer signaling it may be clarified that different transmission points use different antenna ports in different DMRS antenna port groups to transmit data, and then according to physical layer signaling.
  • the DMRS antenna port group information to which the DMRS antenna port of the data transmission belongs can determine that data mapping is not performed on the time-frequency resource location corresponding to the DMRS antenna port in the other DMRS antenna port group.
  • the data transmission unit is a codeword
  • the data for the data transmission is layer-like data or the data of the antenna port is similar, and details are not described herein again.
  • codeword 1 is transmitted using the DMRS antenna port in the DMRS antenna port group 1
  • codeword 2 is transmitted using the DMRS antenna port in the DMRS antenna port group 2.
  • the receiving point may determine that the data of the codeword 1 is not mapped on the time-frequency resource corresponding to the DMRS antenna port in the DMRS antenna port group 2, and the data of the codeword 2 is not in the time-frequency resource corresponding to the DMRS antenna port in the DMRS antenna port group 1. Map on.
  • the time-frequency resource location of the data is related to the location of the scheduling resource of the data.
  • the frequency band transmitted by codeword 1 includes frequency band 1 and frequency band 2
  • the frequency band transmitted by code word 2 includes frequency band 1 and frequency band 3, then codeword 2 and codeword 2 overlap in band 1, and code 1 has no code in band 2.
  • code word 2 there is no data of code word 1 in band 3 of code word 2.
  • codeword 1 when performing data mapping for codeword 1, codeword 1 does not perform data mapping on the time-frequency resource corresponding to the DMRS antenna port in the DMRS antenna port group 2 in the frequency band 1; the DMRS antenna port of the codeword 1 in the band 2 Data mapping can be performed on the time-frequency resources corresponding to the DMRS antenna ports in Group 2.
  • codeword 2 When data mapping is performed for codeword 2, codeword 2 does not perform data mapping on the time-frequency resource corresponding to the DMRS antenna port in the DMRS antenna port group 1 in the band 1, and the DMRS antenna port group of the codeword 2 in the band 3 Data mapping can be performed on the time-frequency resource corresponding to the DMRS antenna port in 1.
  • the embodiment of the present application is optional.
  • the second mode the time-frequency resource location of the data is independent of the scheduling resource location of the data, such as the DMRS antenna port of the codeword 1 in the DMRS antenna port 2 regardless of whether the scheduling resources of the two codewords overlap. No data mapping is performed on the corresponding time-frequency resources, and codeword 2 does not perform data mapping on the time-frequency resources corresponding to the DMRS antenna ports in the DMRS antenna port 1.
  • the time-frequency resource location of the data may be determined by using the mode 1 or the mode 2, which may be a predefined manner, and the network device and the terminal may be known, or the network device may notify the UE by using signaling.
  • the signaling may be physical layer signaling or high layer signaling. The specific embodiments are not limited herein.
  • the terminal may pre-define that there is no data transmission at the time-frequency resource location corresponding to the DMRS antenna port in the two DMRS antenna port groups.
  • network devices can negotiate the grouping of specific DMRS antenna port groups and the DMRS antenna ports used by them, and in subsequent coordinated transmissions, when the two sets of DMRS antenna ports correspond Only the DMRS corresponding to the respective antenna port group is transmitted at the frequency resource location without transmitting data.
  • the pre-defined base station does not map data on the time-frequency resources corresponding to the antenna ports of the neighboring base station DMRS antenna port group, and the terminal is in the antenna port corresponding to the DMRS antenna port group, because the data is not scheduled to be scheduled.
  • On the time-frequency resource only the DMRS is received according to the indication, and no data is received.
  • the transmission between the transmission points is good.
  • the transmission point A uses the DMRS antenna port (and/or pattern) corresponding to the DMRS antenna port group 1
  • the transmission point B uses the DMRS antenna port corresponding to the DMRS antenna port group 2 ( And/or pattern)
  • the transmission point A does not perform data mapping of the receiving point on the time-frequency resource of the DMRS antenna port corresponding to the DMRS antenna port group 2
  • the transmission point B is in the DMRS antenna port corresponding to the DMRS antenna port group 1
  • the data mapping of the receiving point is not performed on the frequency resource.
  • the receiving point When the receiving point receives the data of the transmission point A (or when receiving the data transmitted by the DMRS antenna port corresponding to the DMRS antenna port group 1), the data is not performed on the time-frequency resource of the DMRS antenna port corresponding to the DMRS antenna port group 2.
  • Receiving; when the receiving point receives the data of the transmission point B (or when receiving the data transmitted by the DMRS antenna port corresponding to the DMRS antenna port group 2) it does not perform on the time-frequency resource of the DMRS antenna port corresponding to the DMRS antenna port group 1 Data reception.
  • the transmission point A sends the first indication information to the receiving point in step S401
  • a specific implementation of the second indication information transmitted by the transmission point B to the receiving point There are no restrictions here.
  • Step S404 the transmission point A sends a first demodulation reference signal to the receiving point, and the receiving point receives the first demodulation reference signal at the time-frequency resource location of the first demodulation reference signal according to the first indication information.
  • Step S405 The receiving point determines a time-frequency resource location of the first data according to a time-frequency resource location of the second demodulation reference signal.
  • Step S406 the receiving point performs demodulation processing on the first data according to the first demodulation reference signal.
  • the transmission point B may also send a second demodulation reference signal to the receiving point, where the receiving point can be based on the second indication information, and the time-frequency resource location of the second demodulation reference signal.
  • the receiving point is capable of determining a time-frequency resource location of the second data according to a time-frequency resource location of the first demodulation reference signal, that is, the receiving point determines a time-frequency of the second data.
  • the time-frequency resource location of the first demodulation reference signal can be circumvented, that is, the receiving point can not receive the second data at the time-frequency resource location of the first demodulation reference signal, thereby not affecting the first solution of the receiving point pair. Adjust the reception of the reference signal.
  • the receiving point can perform demodulation processing on the second data according to the second demodulation reference signal.
  • FIG. 5 is a schematic flowchart of still another communication method according to an embodiment of the present application. As shown in FIG. 5, the method can include the following steps.
  • step S501 the transmission point C sends the first indication information to the receiving point, where the first indication information is used to indicate the time-frequency resource location of the first demodulation reference signal of the first data that needs to be transmitted by the transmission point A, and the receiving point receiving station The first indication information is described.
  • Step S502 the transmission point C sends the second indication information to the receiving point, where the second indication information is used to indicate the time-frequency resource location of the second demodulation reference signal of the second data that the transmission point B needs to transmit, and the receiving point receiving station The second indication information is described.
  • Step S503 the transmission point A sends a first demodulation reference signal to the receiving point, and the receiving point receives the first demodulation reference signal according to the first indication information.
  • Step S504 the receiving point determines a time-frequency resource location of the first data according to a time-frequency resource location of the second demodulation reference signal.
  • Step S505 the receiving point performs demodulation processing on the first data according to the first demodulation reference signal.
  • Step S506 the transmission point B sends a second demodulation reference signal to the receiving point, and the receiving point receives the second demodulation reference signal according to the second indication information.
  • Step S507 the receiving point determines the time-frequency resource location of the second data according to the time-frequency resource location of the first demodulation reference signal.
  • Step S508 the receiving point performs demodulation processing on the second data according to the second demodulation reference signal.
  • the indication information is uniformly managed and transmitted by a transmission point in the coordinated multi-point transmission system.
  • the transmission point C can know that the transmission point A needs to send the first data, and the transmission point B needs to send the second data, and further, the transmission point C is the receiving point configuration indication information, the first indication information indicates the time-frequency resource location of the first demodulation reference signal of the first data, and the second indication information indicates The time-frequency resource location of the second demodulation reference signal of the second data.
  • the transmission point A when the transmission point A sends the first demodulation reference signal and the first data to the receiving point, the transmission point A determines the time frequency of the first data according to the time-frequency resource location of the second demodulation reference signal.
  • the resource location, including transmission point A does not map the first data at the time-frequency resource location of the second demodulation reference signal.
  • the transmission point B when the transmission point B sends the second demodulation reference signal and the second data to the receiving point, the transmission point B determines the time-frequency resource of the second data according to the time-frequency resource location of the first demodulation reference signal.
  • the location, including transmission B does not map the second data at the time-frequency resource location of the first demodulation reference signal.
  • the first data transmitted by the transmission point A and the second data transmitted by the transmission point B may be different codewords; or may be data of different layers corresponding to the same codeword, for example, one codeword corresponds to two layers of data,
  • the first data represents data of the first layer
  • the second data represents data of the second layer; or data of different antenna ports corresponding to the same layer, for example, data of the first layer of one codeword corresponds to the first antenna port.
  • Data and second antenna port data, the first data may represent first antenna port data
  • the second data may represent second antenna port data.
  • the first data and the second data may be sent at the same time according to the negotiation, or may be sent at different times, and are not specifically limited herein.
  • FIG. 6 is a schematic flowchart diagram of still another communication method according to an embodiment of the present application. As shown in Figure 6, the method includes the following steps.
  • Step S601 the transmission point B sends the second indication information to the transmission point A, where the second indication information is used to indicate the time-frequency resource location of the second demodulation reference signal, and the transmission point A receives the second indication information.
  • Step S602 the transmission point A determines the time-frequency resource location of the first data according to the time-frequency resource location of the second demodulation reference signal.
  • Step S603 the transmission point A sends the first indication information to the receiving point, where the first indication information is used to indicate a time-frequency resource location of the first demodulation reference signal of the first data, and the receiving point receives the first indication information.
  • Step S604 the receiving point performs demodulation processing on the first data according to the first demodulation reference signal.
  • the transmission point B sends the second indication information to the transmission point A, where the second indication information is used to indicate the time-frequency resource location of the second demodulation reference signal.
  • the transmission point B may be: after receiving the request of the transmission point A for the second indication information, sending the second indication information to the transmission point A; or the transmission point B may also be the knowledge that the transmission point A needs to determine the first data.
  • the second indication information is sent to the transmission point A, or the transmission point B triggers the second indication information to be transmitted to the transmission point A by other means.
  • the transmission point A can determine the time-frequency resource location of the first data according to the time-frequency resource of the second demodulation reference signal, for example, the time-frequency resource location of the first data does not include the second demodulation reference.
  • the time-frequency resource location of the signal that is, the first data is not mapped on the time-frequency resource location of the second demodulation reference signal, and the time-frequency resource location of the first data is determined by the transmission point A in conjunction with FIG. 7.
  • FIG. 7 In FIG.
  • the transmission point A may allocate RBs for the first data, where the RBs include RE1 to RE9, and after receiving the second indication information, the transmission point A can determine that the time-frequency resource location of the second demodulation reference signal is RE3,
  • the transmission point maps the first data to the RE the first data may be mapped at at least one of RE1 to RE2 and RE4 to RE9. Therefore, when the first data mapping process is performed, the transmission point A can circumvent the time-frequency resource location of the second demodulation reference signal, thereby ensuring that the first data and the second demodulation reference signal do not occur at the same time-frequency resource location. interference.
  • the transmission point A sends the first indication information to the receiving point, where the first indication information is used to indicate the time-frequency resource location of the demodulation reference signal of the first data.
  • the receiving point is capable of receiving the first demodulation reference signal according to the first indication information, and receiving and demodulating the first data according to the first demodulation reference signal.
  • the receiving point does not need to determine whether the first data occupies a resource conflict with other demodulation reference signals, and improves the performance of receiving data at the receiving point.
  • a well-known manner is determined between the coordinated transmission points or between the transmission point and the reception point, and the data transmitted by the transmission point to the receiving point and the transmission point are sent to the receiving point.
  • the time-frequency resource position of the demodulation reference signal is different; or it is determined that the receiving point does not receive the data when the data and the demodulation reference signal exist simultaneously when detecting a time-frequency resource location, and so on.
  • the types of the first demodulation reference signal and the second demodulation reference signal in the method shown in FIG. 2 to FIG. 7 may include at least the following cases, which is not specifically limited in the present application.
  • the first demodulation reference signal is front loaded DMRS, and the second demodulation reference signal is front loaded DMRS; the first demodulation reference signal is additional DMRS, and the second demodulation reference signal is additional DMRS;
  • the first demodulation reference signal is a front loaded DMRS, and the second demodulation reference signal is an additional DMRS;
  • the first demodulation reference signal is additional DMRS, and the second demodulation reference signal is front loaded DMRS;
  • the first demodulation reference signal is additional DMRS
  • the second demodulation reference signal is additional DMRS.
  • front loaded DMRS can also be called a basic demodulation reference signal (DMRS), which can be placed at the beginning or relatively front position of the data.
  • Additional DMRS may also be referred to as an additional DMRS.
  • the basic DMRS and the additional DMRS may be carried in different symbol positions of the same scheduling unit, and the same scheduling unit includes at least one of a subframe, a time slot, or a minislot. Specially limited.
  • FIG. 8 is a schematic flowchart of a communication method according to another embodiment of the present application. As shown in FIG. 8, the method includes at least the following steps.
  • Step S801 the transmission point A sends the first indication information to the receiving point, where the first indication information is used to indicate a time-frequency resource location of the first demodulation reference signal of the first data, and the receiving point receives the first indication information.
  • Step S802 the receiving point receives the second indication information, where the second indication information is used to indicate a time-frequency resource location of the second demodulation reference signal.
  • Step S803 the transmission point A sends the first demodulation reference signal to the receiving point, and the receiving point receives the first demodulation reference signal at the time-frequency resource location of the first demodulation reference signal according to the first indication information.
  • steps S801 to S803 are consistent with the steps S201 to S203 in the method shown in FIG. 2, and the specific descriptions of the steps S801 to S803 are referred to the steps S201 to S203. For brevity, details are not described herein again.
  • Step S804 the receiving point receives third indication information, where the third indication information is used to indicate a time-frequency resource location of the third demodulation reference signal.
  • the receiving point is capable of receiving third indication information, the third indication information being used to indicate a time-frequency resource location of the third demodulation reference signal.
  • the third demodulation reference signal may be at least one data that is transmitted to the local receiving point for at least one transmission point in the coordinated multi-point transmission system; for example, the third demodulation reference signal may be for coordinated The second data transmitted by the transmission point B to the receiving point in the point transmission system; the third demodulation reference signal may also be the third data transmitted to the receiving point for the transmission point A, the third data being different from the first data, wherein The difference between the third data and the first data includes that the third data is different from the time-frequency resource occupied by the first data, or the third data is different from the data content of the first data.
  • the third demodulation reference signal may not be for data, and the time-frequency resource location of the third demodulation reference signal is predefined by the coordinated multi-point transmission system, that is, the time-frequency resource location of the third demodulation reference signal is not targeted.
  • a certain specific transmission data is common to the transmission data, and the time-frequency resource location of the third demodulation reference signal may be common to one or more transmission points in the coordinated multi-point transmission system.
  • the third indication information that is received by the receiving point and used to indicate the time-frequency resource location of the third demodulation reference signal may be sent by a transmission point that needs to transmit data, for example, the transmission point B needs to be Transmitting the second data, the third demodulation reference signal is used to perform demodulation processing on the second data, and then the transmission point B sends the third indication information to the receiving point; or the plurality of coordinated transmission points may be used to indicate the information once or each time.
  • the transmission request is sent by a transmission point after the protocol is sent.
  • the transmission point of the third indication information is not specifically limited in this embodiment of the present application.
  • Step 805 The receiving point determines a time-frequency resource location of the first data according to a time-frequency resource location of the second demodulation reference signal and a time-frequency resource location of the third demodulation reference signal.
  • the receiving point after receiving the second indication information and the third indication information, can determine the time-frequency resource location of the second demodulation reference signal according to the second indication information, and can be configured according to the third indication information. Determining a time-frequency resource location of the third demodulation reference signal, and further, the receiving point is capable of determining a time-frequency of the first data according to a time-frequency resource location of the second demodulation reference signal and a time-frequency resource location of the third demodulation reference signal Resource location.
  • the time-frequency resource position at which the receiving point determines the first data is exemplified herein with reference to A in FIG. 9 and B in FIG. As shown in A of FIG.
  • the receiving point can determine the RB position of the first data, and the RB includes RE1 to RE12, wherein RE1 to RE12 jointly carry the first data.
  • the receiving point has determined that the RE5 carries the second demodulation reference signal, and has determined that the RE8 carries the third demodulation reference signal, that is, the time-frequency resource position of the second demodulation reference signal is RE5, and the third demodulation reference
  • the time-frequency resource location of the signal is RE8. That is to say, the RE5 carries both the data in the first data and the second demodulation reference signal, and the RE8 carries both the data in the first data and the third demodulation reference signal.
  • the receiving point determines the time-frequency resource locations of the first data to be RE1 to RE4, RE6 to RE7, and RE9 to RE12. After the receiving point determines the time-frequency resource location of the first data, the data at the time-frequency resource locations is received. As shown in B of FIG. 9, the receiving point can determine the RB position of the first data, and the RB includes RE1 to RE12, wherein the REs other than RE5 and RE8 jointly carry the first data, and the receiving point has determined that the RE5 bears
  • the second demodulation reference signal, RE8 carries a third demodulation reference signal, that is, the time-frequency resource position of the second demodulation reference signal is RE5, and the time-frequency resource position of the third demodulation reference signal is RE8.
  • the receiving point determines the time-frequency resource locations of the first data to be RE1 to RE4, RE6 to RE7, and RE9 to RE12. After the receiving point determines the time-frequency resource location of the first data, the data at the time-frequency resource locations is received.
  • the receiving point receives the second indication information and the third indication information, it can be known that the second demodulation reference signal is carried on the RE5, and the third demodulation reference signal is carried on the RE8, and the first data is received. It is not mapped to RE5 and RE8, thereby avoiding the receiving point receiving the first data in RE5 and RE8, performing normal data rate matching, and improving data receiving performance.
  • the receiving point may first determine data related to the time-frequency resource location of the second demodulation reference signal and the time-frequency resource location of the third demodulation reference signal, respectively, to determine the time-frequency resource location of the related data. If the first data includes a plurality of codewords, that is, the minimum data unit of the first data is a codeword, the time-frequency resource location of the second demodulation reference signal and the time-frequency resource location of the third demodulation reference signal may be separately determined first.
  • Correlating one or more codewords and further determining a time-frequency resource location of one or more codewords associated with a time-frequency resource location of the second demodulation reference signal according to a time-frequency resource location of the second demodulation reference signal, And determining, according to the time-frequency resource location of the third demodulation reference signal, a time-frequency resource location of the one or more codewords associated with the time-frequency resource location of the third demodulation reference signal. If the first data includes data of a layer corresponding to the plurality of codewords, that is, the minimum data unit of the first data is a layer, the time-frequency resource position of the second demodulation reference signal and the third demodulation reference signal may be separately determined first.
  • the first data includes antenna port data corresponding to multiple layers, that is, the minimum data unit of the first data is an antenna port, the time-frequency resource position of the second demodulation reference signal and the third demodulation reference signal may be separately determined first.
  • One or more antenna port data related to the time-frequency resource location and further determining one or more antenna port data related to the time-frequency resource location of the second demodulation reference signal according to the time-frequency resource location of the second demodulation reference signal The time-frequency resource location, and determining the time-frequency resource location of the one or more antenna port data associated with the time-frequency resource location of the third demodulation reference signal based on the time-frequency resource location of the third demodulation reference signal.
  • the receiving point may jointly determine data related to a time-frequency resource location of the second demodulation reference signal and a time-frequency resource location of the third demodulation reference signal, thereby determining a time-frequency resource location of the related data. If the first data includes a plurality of codewords, that is, the smallest data unit of the first data is a codeword, the joint determining the time-frequency resource location of the second demodulation reference signal and the time-frequency resource location of the third demodulation reference signal may be jointly determined.
  • One or more codewords and further determining a time-frequency resource location and a third time of the second demodulation reference signal according to a time-frequency resource location of the second demodulation reference signal and a time-frequency resource location of the third demodulation reference signal Demodulating the time-frequency resource location of one or more codewords associated with the time-frequency resource location of the reference signal. If the first data includes data of a layer corresponding to the plurality of codewords, that is, the minimum data unit of the first data is a layer, the time-frequency resource position and the third demodulation reference signal of the second demodulation reference signal may be jointly determined.
  • the time-frequency resource location of the data of one or more layers associated with the resource location and the time-frequency resource location of the third demodulation reference signal may be jointly determined.
  • one or more antenna port data related to the frequency resource location and determining the time frequency of the second demodulation reference signal according to the time-frequency resource location of the second demodulation reference signal and the time-frequency resource location of the third demodulation reference signal The time-frequency resource location of the one or more antenna port data associated with the resource location and the time-frequency resource location of the third demodulation reference signal.
  • the transmission point may be requested to be retransmitted, or the transmission point is requested to map the data at the time-frequency resource location to other time-frequency. At the resource location, or choose to ignore the data at the location of the time-frequency resource. Further optionally, after receiving the first data, sending a reception report to the transmission point to notify that the data on the transmission point RE8 is not received.
  • Step S806 the receiving point performs demodulation processing on the first data according to the first demodulation reference signal.
  • the receiving point may perform demodulation processing on the first data according to the first demodulation reference signal.
  • the sequence of the execution steps involved is not specifically limited.
  • the transmission point B may receive the first indication information, the second indication information, and the third indication information, that is, step S801 and step S802. Executing in parallel with S804; or, step S805 is performed before step S803 and the like.
  • the receiving point can determine the time-frequency resource location of the first demodulation reference signal of the first data by receiving the first indication information; and the receiving point can determine the second by receiving the second indication information.
  • Demodulating the time-frequency resource position of the reference signal, and the receiving point can determine the time-frequency resource position of the third demodulation reference signal by receiving the third indication information, and the receiving point can be based on the time-frequency resource position of the second demodulation reference signal and
  • the time-frequency resource location of the third demodulation reference signal determines a time-frequency resource location of the first data, such that the time-frequency resource location of the first data circumvents the time-frequency resource location of the second demodulation reference signal and the third demodulation reference signal
  • the time-frequency resource location can further avoid the receiving interference of the receiving point on the first data and the second demodulation reference signal, and can avoid the receiving interference of the receiving point on the first data and the third demodulation reference signal, and clarify the first data. Time-frequency resource location, correct data
  • FIG. 10 is a schematic flowchart diagram of another communication method according to another embodiment of the present application. As shown in FIG. 10, the method includes the following steps.
  • step S901 the transmission point A sends the first indication information to the receiving point, where the first indication information is used to indicate the time-frequency resource location of the first demodulation reference signal of the first data, and the receiving point receives the first indication information.
  • Step S902 The transmission point B sends the high layer signaling to the receiving point, where the high layer signaling carries the related information of the time-frequency resource location of the second demodulation reference signal and the identifier corresponding to the related information.
  • Step S903 the transmission point B sends the physical layer signaling to the receiving point, and the receiving point receives the second indication information by using the physical layer signaling, where the second indication information includes at least one first identifier, the first identifier and the at least one Corresponding information of the time-frequency resource position of the second demodulation reference signal corresponds to the group.
  • steps S901 to S903 are consistent with the steps S401 to S403 in the method shown in FIG. 4, and the specific description of the steps S901 to S903 is referred to the steps S401 to S403. For brevity, details are not described herein again.
  • Step S904 the transmission point B sends the high layer signaling to the receiving point, where the high layer signaling carries the related information of the time-frequency resource location of the third demodulation reference signal and the identifier corresponding to the related information.
  • Step S905 the transmission point B sends the physical layer signaling to the receiving point, and the receiving point receives the third indication information by using the physical layer signaling, where the third indication information includes at least one second identifier, the second identifier and the at least one The related information of the time-frequency resource position of the third demodulation reference signal corresponds to the group.
  • the transmission point B may first send high-level signaling, such as radio resource control (RRC) signaling, and broadcast signaling, to the receiving point, where the high-level signaling carries the third demodulation.
  • high-level signaling such as radio resource control (RRC) signaling
  • RRC radio resource control
  • the high-level signaling carries related information of a time-frequency resource location of the third demodulation reference signal and an identifier corresponding to the related information.
  • the high-level signaling may carry the information about the time-frequency resource location of the at least one group of the third demodulation reference signals, and the identifier corresponding to the related information.
  • the relationship between the related information and the identifier is not specifically limited in the embodiment of the present application. For example, each group of related information corresponds to one identifier, or multiple sets of related information correspond to one identifier or the like.
  • the high-level signaling may carry related information of all time-frequency resource locations of the third demodulation reference signal, or the high-level signaling may carry related information of a time-frequency resource location of the third demodulation reference signal, Or the high-level signaling may carry related information of a time-frequency resource location of one or more sets of third demodulation reference signals related to the data.
  • the receiving point After receiving the relevant information carried by the high-level signaling and the identifier corresponding to the related information, the receiving point may store the identifier corresponding to the related information and the related information.
  • the high layer signaling corresponds to at least one physical layer signaling, and the physical layer signaling corresponding to the high layer signaling includes at least one identifier carried by the high layer signaling. That is, the receiving point receives the third indication information by using physical layer signaling, where the third indication information includes at least one identifier. The receiving point may determine related information corresponding to the identifier according to the received at least one identifier, and further determine a time-frequency resource location of the third demodulation reference signal according to the determined correlation information.
  • the physical layer signaling may be control signaling such as DCI.
  • one or more sets of data resource mapping indication (PDSCH-RE-MappingConfig) information where the data resource mapping indication information includes a data resource mapping indication Information about the identification information of the information (pdsch-RE-MappingConfigId) and the time-frequency resource location of the third DMRS (third demodulation reference signal), for example, the related information may indicate a pattern of the demodulation reference signal (DMRS pattern) and / Or demodulate the antenna port (DMRS port) of the reference signal, and so on.
  • DMRS pattern the demodulation reference signal
  • DMRS port demodulate the antenna port
  • a specific signaling implementation is as follows:
  • the data resource mapping indication information includes identification information (pdsch-RE-MappingConfigId) of the data resource mapping indication information and related information of a time-frequency resource location of the third DMRS, where the related information includes DMRS ports and/or DMRS patterns; or DMRS Port group.
  • the DMRS ports represent antenna port information of the DMRS (for example, the antenna port information herein includes the port number of the antenna port); the DMRS pattern represents the DMRS pattern; or the DMRS port group represents the information of the DMRS antenna port group.
  • the time-frequency resource location of the third DMRS refer to the detailed description below in this application.
  • the DCI specifically indicates which group of data resource mapping indication information used by the RRC configuration.
  • the data resource mapping indication information configured in the RRC signaling may be indicated by the bits of the PDSCH RE Mapping and Quasi-Co-Location Indicator (PQI) in the DCI.
  • Identification information (for example, pdsch-RE-MappingConfigId).
  • Table 5 illustrates the data resource mapping and the quasi-co-location indication field by 2 bits.
  • the data resource mapping and the quasi-co-location indication field can also be understood as a specific implementation manner of the third indication information carried by the DCI.
  • the third indication information can determine the related information of the time-frequency resource location of the third demodulation reference signal corresponding to the identifier in the RRC by indicating the corresponding identifier.
  • the identifier information of the data resource mapping indication information is the identifier 1
  • the bit value of the data resource mapping and the quasi-co-location indication field in the DCI is “00”
  • the DCI indication identifier 1 may be determined.
  • the receiving point acquires the time-frequency resource location of the third DMRS in the data resource mapping indication information, that is, the data is not mapped to the time-frequency resource location of the third DMRS. That is, data reception is not performed at the time-frequency resource location of the third DMRS.
  • the physical layer signaling received by the receiving point is physical layer signaling corresponding to the higher layer signaling.
  • the transmission point B may also receive the third indication information by using physical layer signaling, where the third indication information includes information about a time-frequency resource location of the third demodulation reference signal. That is, the physical layer signaling can indicate related information of the time-frequency resource location of the third demodulation reference signal.
  • the physical layer signaling may only include related information of time-frequency resource locations of one or more sets of third demodulation reference signals; the physical layer signaling may also include one or more sets of other demodulation reference signals.
  • Information about the location of the time-frequency resource for example, the physical layer signaling may simultaneously include information about the location of the time-frequency resource of one or more sets of fourth demodulation reference signals and one or more sets of third demodulation reference signals Information about the location of the time-frequency resource.
  • the related information indicating the location of the time-frequency resource of the third demodulation reference signal in the physical layer signaling may be indicated by using the data mapping indication information field.
  • the data mapping indication information field may be "DMRS pattern and / or port (s) for PDSCH RE mapping".
  • the DMRS pattern and/or DMRS port information is indicated by the bit value in the field.
  • the first indication information, the second indication information, and the third indication information may all be sent by the transmission point A, or may be sent by the transmission point B, or may be sent by the transmission point A.
  • An indication information, the transmission point B sends the second indication information and the third indication information, or the transmission point A may send the second indication information, and the transmission B sends the first indication information and the third indication information, or may be sent by the transmission point A.
  • the third indication information, the transmission point B sends the first indication information and the second indication information, which are not limited herein.
  • the related information of the time-frequency resource position of the third demodulation reference signal may include a pattern of the third demodulation reference signal (DMRS Pattern) and/or a third demodulation reference signal.
  • the antenna port information includes the port number of the antenna port and/or the number of antenna ports.
  • the high layer signaling may carry any one of the pattern of the third demodulation reference signal or the antenna port information, and an identifier corresponding thereto.
  • any one of the pattern of the third demodulation reference signal or the antenna port information is directly carried by the physical layer signaling.
  • the pattern 1 of the third demodulation reference signal corresponds to the port number ⁇ 7, 8, 11, 13 ⁇ of the antenna port
  • the pattern 2 (pattern 2) of the third demodulation reference signal and the antenna port The port number ⁇ 9, 10, 12, 14 ⁇ corresponds.
  • the port number of the pattern or the antenna port can be indicated by 1 bit.
  • pattern 1 can be indicated by bit “0” in physical layer signaling
  • pattern 2 can be indicated by bit “1”.
  • other indications may also be included, such as bit “0” to indicate pattern 2, and pattern 1 to indicate pattern 1.
  • the port number of the antenna port ⁇ 7, 8, 11, 13 ⁇ can be indicated by the bit “0”
  • the port number of the antenna port is indicated by the bit "1” ⁇ 9 , 10, 12, 14 ⁇ .
  • other indication manners are also included.
  • the port number of the antenna port ⁇ 7, 8, 11, 13 ⁇ can be indicated by the bit “1”
  • the port number of the antenna port is indicated by the bit "0". 9,10,12,14 ⁇ .
  • the corresponding relationship between the bit value, the indication information, and the bit value and the indication information is only an example. Other bit values, indication information, and correspondence between the bit value and the indication information may be used, and are not specifically limited herein.
  • the related information in the high layer signaling or the physical layer signaling needs to include the port number of the DMRS pattern and the DMRS antenna port at the same time.
  • the port numbers of the DMRS pattern and the DMRS antenna port may be separately indicated, or the port numbers of the DMRS pattern and the DMRS antenna port may be jointly indicated. The following is an example of the separate indication and the joint indication.
  • the DMRS pattern can be indicated by 1 bit, see Table 7A, pattern 1 is indicated by bit “0", and pattern 2 is indicated by bit “1". Or, pattern 1 is indicated by bit “1", and pattern 2 is indicated by bit “0".
  • the antenna port information of the DMRS can be indicated by 2 bits. Referring to Table 7B, the port number ⁇ 7 ⁇ is indicated by the bit “00" or the number of indicated ports is one; the port number ⁇ 7, 8 ⁇ is indicated by the bit “01” or the number of the indicated ports is two; “10” to indicate the port number ⁇ 7, 8, 9, 10 ⁇ or the number of indicated ports is four; the port number is indicated by the bit "11", or the number of ports is indicated. It is 5.
  • This 1 bit and 2 bits are used to indicate the port number of the DMRS pattern and the DMRS antenna port, respectively.
  • the 1 bit and 2 bits may be adjacent in physical layer signaling or may not be adjacent.
  • the corresponding relationship between the bit value, the indication information, and the bit value and the indication information is only an example. Other bit values, indication information, and correspondence between the bit value and the indication information may be used, and are not specifically limited herein.
  • Bit value DMRS antenna port information (port number/port number) 00 7/1
  • the DMRS pattern and the DMRS antenna port information may be jointly indicated by 3 bits or 4 bits. Taking 3 bits as an example, as shown in Table 4, Table 8 shows a 4-bit bit value and a correspondence between DMRS patterns and DMRS antenna port information. The corresponding relationship between the bit value, the indication information, and the bit value and the indication information is only an example. Other bit values, indication information, and correspondence between the bit value and the indication information may be used, and are not specifically limited herein.
  • the related information of the time-frequency resource location of the third demodulation reference signal may also include information of the antenna port group corresponding to the third demodulation reference signal.
  • the antenna ports are grouped and the correspondence between the antenna port group and each transmission point or quasi-co-location information is determined.
  • the transmission point A uses the antenna port of the antenna port number 7 or 8 to transmit the fourth demodulation reference signal, and can determine that the antenna port of the antenna port numbers 7 and 8 is an antenna port group, and the group number of the antenna port group is an antenna.
  • the transmission point B uses the antenna port of the antenna port number 9 or 10 to transmit the third demodulation reference signal, and can determine that the antenna port of the antenna port number 9 and 10 is a port group, and the group number of the antenna port group is Antenna port group 2.
  • the receiving point can determine the time-frequency resource position of the demodulation reference signal corresponding to the information of the antenna port group according to the antenna port group. For example, when the receiving point receives the antenna port group 1, the time-frequency resource position of the third demodulation reference signal is determined.
  • the information of the antenna port group may be a group number of the antenna port group, or may be other information of the antenna port group.
  • the information about the antenna port group of the third demodulation reference signal may be indicated by 1 bit or 2 bits in the physical layer signaling, or the information about the antenna port group of the third demodulation reference signal may be indicated by higher layer signaling.
  • the indications of the DMRS pattern and/or the DMRS antenna port can be referred to, and are not limited herein.
  • the grouping of the antenna port group may be predefined, that is, the receiving point is known to the transmission point in the system, and the transmission point may notify the receiving point by signaling, which is not limited herein.
  • the specific physical layer signaling may be exemplified as follows: the transmission point sends an indication information to the receiving point, where the indication information may be indication information of the data mapping, where the indication information includes information of an antenna port group of the third demodulation reference signal.
  • the receiving point receives the indication information through the DCI signaling, and when the receiving point receives the indication information, it can determine that the data mapping is not performed on the time-frequency resource location corresponding to the DMRS antenna port in the DMRS antenna port group, that is, No data reception is performed.
  • the information of the DMRS antenna port group is notified by 1 or 2 bits of information. details as follows:
  • the receiving point determines the first data and the second demodulation according to the time-frequency resource location of the second demodulation reference signal and the time-frequency resource location of the third demodulation reference signal, respectively.
  • a time-frequency resource location of data related to a time-frequency resource location of the reference signal a time-frequency resource location of data in the first data related to a time-frequency resource location of the third demodulation reference signal, and the second demodulation reference
  • the data related to the time-frequency resource location of the signal includes the codeword included in the first data, the data of the layer corresponding to the codeword included in the first data, and at least one data in the antenna port data corresponding to the layer included in the first data.
  • the data related to the time-frequency resource location of the third demodulation reference signal includes a codeword included in the first data, a layer of data corresponding to the codeword included in the first data, and a layer corresponding to the layer included in the first data. At least one of the antenna port data.
  • the data mapping indication information of the information related to the time-frequency resource location of the third demodulation reference signal is taken as an example to describe related information of the time-frequency resource location of the third demodulation reference signal and the first data (for example, The relationship between codeword/layer/DMRS port).
  • the relationship between the related information of the time-frequency resource location of the third demodulation reference signal and the first data may be predefined or indicated, and specific indication signaling It can be high layer signaling or physical layer signaling.
  • the correspondence between the data mapping indication information and the codeword is as an example, for example, the correspondence between the two data mapping indication information and the two codewords, for example, the first data mapping indication information corresponds to the data of the first codeword. Mapping, the second data mapping indication information corresponds to the data mapping of the second codeword, and vice versa;
  • the data mapping indicates the correspondence between the information and the layer, and the correspondence between the two data mapping indication information and the layer is taken as an example.
  • the first data mapping indication information corresponds to the data mapping of the first layer data
  • the two data mapping indication information corresponds to the data mapping of the second layer data
  • the first data mapping indication information corresponds to the data mapping of the first layer and the second layer data
  • the second data mapping indication information corresponds to Data mapping of the third layer data
  • the first data mapping indication information corresponds to the data mapping of the first layer data
  • the second data mapping indication information corresponds to the data of the second layer and the third layer data.
  • the first data mapping indication information corresponds to the data mapping of the first layer and the second layer data
  • the second data mapping indication information corresponds to the data mapping of the third layer and the fourth layer data
  • the first data mapping indication information corresponds to the data mapping of the first layer data
  • the second data mapping indication information corresponds to the second layer, Data mapping of Layer 3 and Layer 4 data
  • the first data mapping indication information corresponds to the data mapping of the first layer, the second layer and the third layer data
  • the second data mapping indication information Data mapping corresponding to the fourth layer of data; the situation of other layers is similar, and is not specifically limited herein.
  • the mapping between the data mapping indication information and the antenna port is exemplified by the correspondence between the two data mapping indication information and the antenna port.
  • the first data mapping indication information corresponds to the first antenna port.
  • Data mapping of the data corresponds to the data mapping of the data of the second antenna port, and vice versa;
  • the first data mapping indication information corresponds to the first and second Data mapping of data of the antenna ports
  • the second data mapping indication information corresponds to the data mapping of the data of the third antenna port; or if there are 3 antenna ports
  • the first data mapping indication information corresponds to the first antenna port
  • the second data mapping indication information corresponds to the data mapping of the data of the second and third antenna ports; if there are 4 antenna ports, the first data mapping indication information corresponds to the first and the Data mapping of data of two antenna ports, and second data mapping indication information corresponding to the third and fourth antenna ports According to the data mapping; or if there are 4 antenna ports, the first data data mapping indication information corresponds to the first and the Data mapping of data of two antenna ports, and
  • the time-frequency resource location of the first data is determined according to the time-frequency resource location of the third demodulation reference signal, and specific examples are as follows:
  • the data mapping indication information below is used to carry related information of the time-frequency resource location of the third demodulation reference signal.
  • the first case is when multiple transmission points cooperatively transmit multiple layers from one codeword, that is, multiple layers of one codeword are respectively from multiple transmission points.
  • the transmission point may respectively indicate information about a set of third DMRS time-frequency resource locations of the terminal device for each layer/each antenna port of one codeword.
  • the data mapping indication information in a high-level signaling identifies information related to a set of third DMRS time-frequency resource locations, and configures identifiers of multiple data mapping indication information in the DCI. For example, if two layers/two antenna ports are configured, two data mapping indication information identifiers are configured in the DCI, and the first data mapping indication information identifier corresponds to the first layer data transmission (or the data of the first antenna port). Transmission), the second data mapping indication information identifies a second layer data transmission (or a data transmission of the second antenna port).
  • the data mapping indication information in a high-level signaling identifies information related to the location of the plurality of third DMRS time-frequency resources, and configures one data mapping indication information identifier in the DCI.
  • the terminal device can determine the location of the plurality of third DMRS time-frequency resource according to the data mapping indication information identifier in the DCI, and further determine the time-frequency resource location of the data according to the correspondence between the data mapping indication information and the data. For example, if two layers/two antenna ports are configured, one data mapping indication information identifier is configured correspondingly, and the identifier includes information about two groups of third DMRS time-frequency resource locations.
  • the related information of the first group of the third DMRS time-frequency resource location corresponds to the first layer data transmission (or the data transmission of the first antenna port), and the information about the second group of the third DMRS time-frequency resource location corresponds to the second data.
  • the mapping indication information identifies a second layer data transmission (or a data transmission of the second antenna port).
  • a data mapping indication information in the signaling in the RRC identifies information related to multiple sets of third DMRS time-frequency resource locations, and an exemplary signaling implementation manner is as follows:
  • related information of time-frequency resource locations of two sets of third DMRSs may be expressed by mode (1); or information about time-frequency resource locations of two sets of third DMRSs may be expressed by mode (2) .
  • the third indication information is carried by the physical layer signaling, and the third indication information may include related information of a time-frequency resource location of one or more groups of the third demodulation reference signals.
  • the third indication information may include information about time-frequency resource positions of two groups of third demodulation reference signals, and time-frequency of the first group of third demodulation reference signals.
  • the related information of the resource location corresponds to the first layer data transmission (or the data transmission of the first antenna port)
  • the related information of the time-frequency resource location of the second group of the third demodulation reference signal corresponds to the second layer data transmission (or the second Data transmission of antenna ports).
  • the receiving point After receiving the information, the receiving point can know that the layer or antenna port of a codeword corresponds to different data mapping indication information, and then the data of different layers or antenna ports of the codeword are respectively received on different time-frequency resources. .
  • Embodiment 1 A data mapping indication information in a high-level signaling identifies information related to a set of third DMRS time-frequency resource locations, and multiple data mapping indication information identifiers are configured in the DCI, for example, a maximum of two data mapping indications are supported by default. information. If two codewords are configured, two data mapping indication information identifiers are configured correspondingly, the first data mapping indication information identifier corresponds to the first codeword, and the second data mapping indication information identifier corresponds to the second codeword.
  • the data mapping indication information in a high-level signaling identifies information related to the location of the plurality of third DMRS time-frequency resources, and configures one data mapping indication information identifier in the DCI.
  • the terminal device can determine the location of the plurality of third DMRS time-frequency resource according to the data mapping indication information identifier in the DCI, and further determine the time-frequency resource location of the data according to the correspondence between the data mapping indication information and the data. For example, if two codewords are configured, one data mapping indication information identifier is configured correspondingly, and the identifier includes information about two groups of third DMRS time-frequency resource locations.
  • the related information of the first group of the third DMRS time-frequency resource location corresponds to the data transmission of the first codeword
  • the related information of the second group of the third DMRS time-frequency resource location corresponds to the second data mapping indication information identifier corresponding to the second Data transfer of codewords.
  • the third indication information is carried by the physical layer signaling, and the third indication information may include related information of a time-frequency resource location of one or more groups of the third demodulation reference signals.
  • the third indication information may include information about time-frequency resource locations of the two sets of third demodulation reference signals, and the time-frequency resource locations of the first group of third demodulation reference signals.
  • the related information corresponds to the first codeword data transmission, and the related information of the time-frequency resource location of the second group of third demodulation reference signals corresponds to the data transmission of the first codeword.
  • the receiving point After receiving the information, the receiving point can know that different layer or port of different codewords correspond to different data mapping indication information, and then receive data of different codewords on different time-frequency resources.
  • the embodiment of the present application is applicable to a case where only one transmission point transmits data at a scheduling time, and is also applicable to a case where multiple transmission points transmit data at one scheduling time. It is applicable to the case of data transmission with only one codeword or layer or antenna port at one scheduling time, and also applies to the case of data transmission with multiple codewords or layers or antenna ports at one scheduling time.
  • the receiving point jointly determines the first data and the second demodulation according to the time-frequency resource position of the second demodulation reference signal and the time-frequency resource position of the third demodulation reference signal.
  • the frequency resource location related data includes at least one of a codeword included in the first data, a layer of data corresponding to the codeword included in the first data, and antenna port data corresponding to a layer included in the first data.
  • the following is an example of a transmission point as a network device and a reception point as a terminal.
  • the receiving point may determine time-frequency resource location information of data of different codewords/layers/antenna ports according to a predefined rule. For example, if the scheduled resource locations of the two codewords indicated in one downlink control information overlap, the data frame of the DMRS corresponding to the two codewords may be defaulted without any data mapping. For another example, if the scheduled resource locations for two layers or ports in one DCI overlap, then there may be no data mapping by default on the overlapping two layers or the location of the DMRS corresponding to the port.
  • the receiving point may determine time-frequency resource location information of data of different codewords/layers/antenna ports according to a predefined rule. For example, if the scheduled resource locations of the two data indicated in the two downlink control information overlap, the data frame of the DMRS corresponding to the two data may be defaulted without any data mapping. For example, regardless of whether the scheduled resource locations of the two data overlap, the receiving point may default to the time-frequency resource location of the DMRS corresponding to the two data, and there is no data mapping. Whether it is related to the overlapping of the resource locations may be predefined, or the transmission point may notify the receiving point by signaling, which is not limited herein.
  • different transmission points may separately send downlink control information for data scheduling and transmission, so that different transmission points may not know whether the scheduling data is unknown to each other.
  • the other transmission point does not transmit a signal. Therefore, corresponding data mapping can be performed according to different DMRS antenna port groups.
  • QCL quadsi-co-location
  • different transmission points use different antenna ports in different DMRS antenna port groups for data transmission, so according to the DMRS port.
  • the antenna port group information determines the time-frequency resource location of the data.
  • the DMRS antenna port group information or the predefined DMRS antenna port group information in the high layer signaling it may be clarified that different transmission points use different antenna ports in different DMRS antenna port groups to transmit data, and then according to physical layer signaling.
  • the DMRS antenna port group information to which the DMRS antenna port of the data transmission belongs can determine that data mapping is not performed on the time-frequency resource location corresponding to the DMRS antenna port in the other DMRS antenna port group.
  • the data transmission unit is a codeword
  • the data for the data transmission is layer-like data or the data of the antenna port is similar, and details are not described herein again.
  • codeword 1 is transmitted using the DMRS antenna port in the DMRS antenna port group 1
  • codeword 2 is transmitted using the DMRS antenna port in the DMRS antenna port group 2.
  • the receiving point may determine that the data of the codeword 1 is not mapped on the time-frequency resource corresponding to the DMRS antenna port in the DMRS antenna port group 2, and the data of the codeword 2 is not in the time-frequency resource corresponding to the DMRS antenna port in the DMRS antenna port group 1. Map on.
  • the time-frequency resource location of the data is related to the location of the scheduling resource of the data.
  • the frequency band transmitted by codeword 1 includes frequency band 1 and frequency band 2
  • the frequency band transmitted by code word 2 includes frequency band 1 and frequency band 3, then codeword 2 and codeword 2 overlap in band 1, and code 1 has no code in band 2.
  • code word 2 there is no data of code word 1 in band 3 of code word 2.
  • codeword 1 when performing data mapping for codeword 1, codeword 1 does not perform data mapping on the time-frequency resource corresponding to the DMRS antenna port in the DMRS antenna port group 2 in the frequency band 1; the DMRS antenna port of the codeword 1 in the band 2 Data mapping can be performed on the time-frequency resources corresponding to the DMRS antenna ports in Group 2.
  • codeword 2 When data mapping is performed for codeword 2, codeword 2 does not perform data mapping on the time-frequency resource corresponding to the DMRS antenna port in the DMRS antenna port group 1 in the band 1, and the DMRS antenna port group of the codeword 2 in the band 3 Data mapping can be performed on the time-frequency resource corresponding to the DMRS antenna port in 1.
  • the embodiment of the present application is optional.
  • the second mode the time-frequency resource location of the data is independent of the scheduling resource location of the data, such as the DMRS antenna port of the codeword 1 in the DMRS antenna port 2 regardless of whether the scheduling resources of the two codewords overlap. No data mapping is performed on the corresponding time-frequency resources, and codeword 2 does not perform data mapping on the time-frequency resources corresponding to the DMRS antenna ports in the DMRS antenna port 1.
  • the time-frequency resource location of the data may be determined by using the mode 1 or the mode 2, which may be a predefined manner, and the network device and the terminal may be known, or the network device may notify the UE by using signaling.
  • the signaling may be physical layer signaling or high layer signaling. The specific embodiments are not limited herein.
  • the terminal may pre-define that there is no data transmission at the time-frequency resource location corresponding to the DMRS antenna port in the two DMRS antenna port groups.
  • network devices can negotiate the grouping of specific DMRS antenna port groups and the DMRS antenna ports used by them, and in subsequent coordinated transmissions, when the two sets of DMRS antenna ports correspond Only the DMRS corresponding to the respective antenna port group is transmitted at the frequency resource location without transmitting data.
  • the pre-defined base station does not map data on the time-frequency resources corresponding to the antenna ports of the neighboring base station DMRS antenna port group, and the terminal is in the antenna port corresponding to the DMRS antenna port group, because the data is not scheduled to be scheduled.
  • On the time-frequency resource only the DMRS is received according to the indication, and no data is received.
  • the transmission between the transmission points is good.
  • the transmission point A uses the DMRS antenna port (and/or pattern) corresponding to the DMRS antenna port group 1
  • the transmission point B uses the DMRS antenna port corresponding to the DMRS antenna port group 2 ( And/or pattern)
  • the transmission point A does not perform data mapping of the receiving point on the time-frequency resource of the DMRS antenna port corresponding to the DMRS antenna port group 2
  • the transmission point B is in the DMRS antenna port corresponding to the DMRS antenna port group 1
  • the data mapping of the receiving point is not performed on the frequency resource.
  • the receiving point When the receiving point receives the data of the transmission point A (or when receiving the data transmitted by the DMRS antenna port corresponding to the DMRS antenna port group 1), the data is not performed on the time-frequency resource of the DMRS antenna port corresponding to the DMRS antenna port group 2.
  • Receiving; when the receiving point receives the data of the transmission point B (or when receiving the data transmitted by the DMRS antenna port corresponding to the DMRS antenna port group 2) it does not perform on the time-frequency resource of the DMRS antenna port corresponding to the DMRS antenna port group 1 Data reception.
  • the transmission point A sends the fourth indication information to the receiving point in step S801
  • Step S906 the transmission point A sends a first demodulation reference signal to the receiving point, and the receiving point receives the first demodulation reference signal at the time-frequency resource location of the first demodulation reference signal according to the first indication information.
  • Step S907 the receiving point determines the time-frequency resource location of the first data according to the time-frequency resource location of the second demodulation reference signal and the time-frequency resource location of the third demodulation reference signal.
  • Step S908 the receiving point performs demodulation processing on the first data according to the first demodulation reference signal.
  • the transmission point B may also send the second demodulation reference signal and the third demodulation reference signal to the receiving point, where the receiving point can be based on the second indication information and the third indication information.
  • Receiving the second demodulation reference signal at a time-frequency resource position of the second demodulation reference signal, and receiving the third demodulation reference signal at a time-frequency resource position of the third demodulation reference signal the receiving point being capable of being according to the first Demodulating the time-frequency resource location of the reference signal to determine the time-frequency resource location of the second data, that is, when the receiving point determines the time-frequency resource location of the second data, the time-frequency resource location of the first demodulation reference signal can be circumvented That is, the receiving point can not receive the second data at the time-frequency resource location of the first demodulation reference signal, thereby not affecting the reception of the first demodulation reference signal by the receiving point. And, the receiving point is capable of demodulating the second data according to the second demodulation reference signal and the
  • FIG. 11 is a schematic flowchart diagram of still another communication method according to another embodiment of the present application. As shown in FIG. 11, the method may include the following steps.
  • step S1001 the transmission point C sends the first indication information to the receiving point, where the first indication information is used to indicate the time-frequency resource location of the first demodulation reference signal of the first data that needs to be transmitted by the transmission point A, and the receiving point receives the first An indication message.
  • Step S1002 The transmission point C sends the second indication information to the receiving point, where the second indication information is used to indicate the time-frequency resource location of the second demodulation reference signal of the second data that needs to be transmitted by the transmission point B, and the receiving point receives the first Two instructions.
  • Step S1003 The transmission point C sends the third indication information to the receiving point, where the third indication information is used to indicate the time-frequency resource location of the third demodulation reference signal of the second data that the transmission point B needs to transmit, and the receiving point receives the first Three instructions.
  • Step S1004 The transmission point A sends a first demodulation reference signal to the receiving point, and the receiving point receives the first demodulation reference signal according to the first indication information.
  • Step S1005 The receiving point determines a time-frequency resource location of the first data according to a time-frequency resource location of the second demodulation reference signal and a time-frequency resource location of the third demodulation reference signal.
  • Step S1006 The receiving point performs demodulation processing on the first data according to the first demodulation reference signal.
  • Step S1007 The transmission point B sends a second demodulation reference signal to the receiving point, and the receiving point receives the second demodulation reference signal according to the second indication information.
  • Step S1008 The transmission point B sends a third demodulation reference signal to the receiving point, and the receiving point receives the third demodulation reference signal according to the third indication information.
  • Step S1009 The receiving point determines a time-frequency resource location of the second data according to a time-frequency resource location of the first demodulation reference signal.
  • Step S1010 The receiving point performs demodulation processing on the second data according to the second demodulation reference signal and the third demodulation reference signal.
  • the indication information is uniformly managed and transmitted by a transmission point in the coordinated multi-point transmission system.
  • the transmission point C can know that the transmission point A needs to send the first data, and the transmission point B needs to send the second data, and further, the transmission point C is the receiving point configuration indication information, the first indication information indicates the time-frequency resource location of the first demodulation reference signal of the first data, and the second indication information indicates The second demodulation of the second data demodulates the time-frequency resource location of the reference signal, and the third indication information indicates the time-frequency resource location of the third demodulation reference signal of the second data.
  • the transmission point C sends the indication information to the receiving point, refer to the above embodiment.
  • the transmission point A when the transmission point A sends the first demodulation reference signal and the first data to the receiving point, the transmission point A is based on the time-frequency resource position of the second demodulation reference signal and the third demodulation reference signal.
  • the time-frequency resource location determines the time-frequency resource location of the first data, including the transmission point A not mapping the first data on the time-frequency resource location of the second demodulation reference signal and the time-frequency resource location of the third demodulation reference signal.
  • the transmission point B when the transmission point B sends the second demodulation reference signal, the third demodulation reference signal, and the second data to the receiving point, the transmission point B is determined according to the time-frequency resource location of the first demodulation reference signal.
  • the time-frequency resource location of the second data including the transmission B, does not map the second data on the time-frequency resource location of the first demodulation reference signal.
  • the first data transmitted by the transmission point A and the second data transmitted by the transmission point B may be different codewords; or may be data of different layers corresponding to the same codeword, for example, one codeword corresponds to two layers of data,
  • the first data represents data of the first layer
  • the second data represents data of the second layer; or data of different antenna ports corresponding to the same layer, for example, data of the first layer of one codeword corresponds to the first antenna port.
  • Data and second antenna port data, the first data may represent first antenna port data
  • the second data may represent second antenna port data.
  • the first data and the second data may be sent at the same time according to the negotiation, or may be sent at different times, and are not specifically limited herein.
  • FIG. 12 is a schematic flowchart diagram of still another communication method according to another embodiment of the present application. As shown in FIG. 12, the method includes the following steps.
  • Step S1101 The transmission point B sends the second indication information to the transmission point A, where the second indication information is used to indicate the time-frequency resource location of the second demodulation reference signal, and the transmission point A receives the second indication information.
  • Step S1102 The transmission point B sends the third indication information to the transmission point A, where the third indication information is used to indicate the time-frequency resource location of the third demodulation reference signal, and the transmission point A receives the third indication information.
  • Step S1103 The transmission point A determines the time-frequency resource location of the first data according to the time-frequency resource location of the second demodulation reference signal and the time-frequency resource location of the third demodulation reference signal.
  • step S1104 the transmission point A sends the first indication information to the receiving point, where the first indication information is used to indicate the time-frequency resource location of the first demodulation reference signal of the first data, and the receiving point receives the first indication information.
  • Step S1105 The receiving point performs demodulation processing on the first data according to the first demodulation reference signal.
  • the transmission point B sends the second indication information and the third indication information to the transmission point A, where the second indication information is used to indicate a time-frequency resource location of the second demodulation reference signal, the third indication The information is used to indicate the time-frequency resource location of the third demodulation reference signal.
  • the transmission point B may be, after receiving the request of the transmission point A for the second indication information, sending the second indication information to the transmission point A, and after receiving the request of the transmission point A for the third indication information, Sending the third indication information to the transmission point A; or the transmission point B may also be the second transmission information and the third indication information sent to the transmission point A after the transmission point A needs to determine the time-frequency resource location of the first data, or The transmission point B triggers sending the second indication information and the third indication information to the transmission point A by other means. After receiving the second indication information and the third indication information, the transmission point A can determine the time-frequency resource location of the first data according to the time-frequency resource of the second demodulation reference signal and the time-frequency resource of the third demodulation reference signal.
  • the time-frequency resource location of the first data does not include the time-frequency resource location of the second demodulation reference signal and the time-frequency resource location of the third demodulation reference signal, that is, not at the time-frequency resource location of the second demodulation reference signal.
  • the first data is mapped on the time-frequency resource position of the third demodulation reference signal, and the time-frequency resource location of the first data is determined by the transmission point A in conjunction with FIG.
  • the transmission point A may allocate RBs for the first data, where the RBs include RE1 to RE12, and after receiving the second indication information and the third indication information, the transmission point A can determine the time frequency of the second demodulation reference signal.
  • the resource location is RE4, and the time-frequency resource location of the third demodulation reference signal is RE6.
  • the transmission point maps the first data to the RE
  • the first data may be mapped in RE1 to RE3, RE5, and RE7 to RE12. At least one location. Therefore, when performing the first data mapping process, the transmission point A can circumvent the time-frequency resource position of the second demodulation reference signal and the time-frequency resource position of the third demodulation reference signal, thereby ensuring the first data and the second solution.
  • the tuning reference signal and the third demodulation reference signal do not interfere with the same time-frequency resource location.
  • the transmission point A sends the first indication information to the receiving point, where the first indication information is used to indicate the time-frequency resource location of the demodulation reference signal of the first data.
  • the receiving point is capable of receiving the first demodulation reference signal according to the first indication information, and receiving and demodulating the first data according to the first demodulation reference signal.
  • the receiving point does not need to determine whether the first data occupies a resource conflict with other demodulation reference signals, and improves the performance of receiving data at the receiving point.
  • FIG. 14 is a schematic flowchart diagram of a communication method according to still another embodiment of the present application. As shown in FIG. 14, the method includes at least the following steps.
  • Step S1201 The transmission point A sends the first indication information to the receiving point, where the first indication information is used to indicate a time-frequency resource location of the first demodulation reference signal of the first data, and the receiving point receives the first indication information.
  • Step S1202 The receiving point receives the second indication information, where the second indication information is used to indicate a time-frequency resource location of the second demodulation reference signal.
  • Step S1203 The transmission point A sends the first demodulation reference signal to the receiving point, and the receiving point receives the first demodulation reference signal at the time-frequency resource location of the first demodulation reference signal according to the first indication information.
  • Step S1204 The receiving point receives third indication information, where the third indication information is used to indicate a time-frequency resource location of the third demodulation reference signal (for example, an example of additional DMRS).
  • the third indication information is used to indicate a time-frequency resource location of the third demodulation reference signal (for example, an example of additional DMRS).
  • Step S1205 The receiving point determines a time-frequency resource location of the first data according to a time-frequency resource location of the second demodulation reference signal and a time-frequency resource location of the third demodulation reference signal.
  • steps S1201 to S1205 are consistent with the steps S801 to S805 in the method shown in FIG. 8.
  • steps S1201 to S1205 refer to steps S801 to S805.
  • steps S801 to S805 are not described herein again.
  • Step S1206 The transmission point A sends fourth indication information to the receiving point, where the fourth indication information is used to indicate a time-frequency resource location of the fourth demodulation reference signal of the first data, and the receiving point receives the four indication information.
  • the transmission point A sends a fourth indication information to the receiving point, where the fourth indication information is used to indicate a time-frequency resource location of the fourth demodulation reference signal of the first data.
  • the first data is data that the transmission point A needs to send to the receiving point.
  • the receiving point can receive the fourth indication information, and can determine the time-frequency resource location of the fourth demodulation reference signal according to the fourth indication information, and further receive the fourth demodulation according to the time-frequency resource location of the fourth demodulation reference signal. Reference signal.
  • the transmission point A may send the fourth indication information to the receiving point while transmitting data (such as the first data) to the receiving point; or, the transmission point A may receive the data before or after transmitting the first data to the receiving point.
  • the fourth indication information is sent by the point.
  • the sending time of the fourth indication information sent by the transmission point A is not specifically limited in this embodiment of the present application.
  • the fourth indication information may be carried in the data sent by the transmission point A to the receiving point (such as the first data), or the fourth indication information may be carried in the control signaling sent by the transmission point A to the receiving point, for example,
  • the transmission point is a base station
  • the downlink control information (Downlink Control Information (DCI) transmitted by the transmission point A to the receiving point carries the fourth indication information.
  • DCI Downlink Control Information
  • the fourth indication information may be indicated by the high layer signaling or the physical layer signaling, which is not limited herein.
  • Step S1207 the transmission point A sends the fourth demodulation reference signal to the receiving point, and the receiving point receives the fourth demodulation reference signal at the time-frequency resource location of the fourth demodulation reference signal according to the fourth indication information.
  • the receiving point can determine the time-frequency resource location of the fourth demodulation reference signal according to the fourth indication information, and the transmission point A can send the fourth to the receiving point.
  • the receiving point is capable of receiving the fourth demodulation reference signal at the corresponding time-frequency resource position according to the time-frequency resource position of the learned fourth demodulation reference signal.
  • Step S1208 The receiving point performs demodulation processing on the first data according to the first demodulation reference signal and the fourth demodulation reference signal.
  • the receiving point may perform demodulation processing on the first data according to the first demodulation reference signal and the fourth demodulation reference signal.
  • first indication information and the fourth indication information are transmitted by the transmission point A as an example.
  • the embodiment of the present application is not limited thereto, for example, the first indication information, the second indication information, and The third indication information and the fourth indication information may be sent by the transmission point A, and may also be sent by the transmission point B. This embodiment of the present application does not specifically limit this.
  • the receiving point can determine the time-frequency resource location of the first demodulation reference signal of the first data by receiving the first indication information, and the receiving point can determine the first by receiving the fourth indication information.
  • the time-frequency resource location of the fourth demodulation reference signal of the data the receiving point can determine the time-frequency resource location of the second demodulation reference signal by receiving the second indication information, and the receiving point can determine the third by receiving the third indication information Demodulating a time-frequency resource location of the reference signal, the receiving point being capable of determining a time-frequency resource location of the first data according to a time-frequency resource location of the second demodulation reference signal and a time-frequency resource location of the third demodulation reference signal, so that the The time-frequency resource location of a data circumvents the time-frequency resource location of the second demodulation reference signal and the time-frequency resource location of the third demodulation reference signal, thereby preventing reception of the first data and the second demodulation reference signal by the receiving point Interference,
  • FIG. 15 is a schematic flowchart diagram of another communication method according to still another embodiment of the present application. As shown in Figure 15, the method includes the following steps.
  • step S1301 the transmission point A sends the first indication information to the receiving point, where the first indication information is used to indicate the time-frequency resource location of the first demodulation reference signal of the first data, and the receiving point receives the first indication information.
  • Step S1302 The transmission point B sends the high layer signaling to the receiving point, where the high layer signaling carries the related information of the time-frequency resource location of the second demodulation reference signal and the identifier corresponding to the related information.
  • Step S1303 The transmission point B sends physical layer signaling to the receiving point, and the receiving point receives the second indication information by using the physical layer signaling, where the second indication information includes at least one first identifier, the first identifier and the at least one Corresponding information of the time-frequency resource position of the second demodulation reference signal corresponds to the group.
  • Step S1304 The transmission point B sends the high layer signaling to the receiving point, where the high layer signaling carries the related information of the time-frequency resource location of the third demodulation reference signal and the identifier corresponding to the related information.
  • Step S1305 The transmission point B sends physical layer signaling to the receiving point, and the receiving point receives the third indication information by using the physical layer signaling, where the third indication information includes at least one second identifier, the second identifier and the at least one The related information of the time-frequency resource position of the third demodulation reference signal corresponds to the group.
  • Step S1306 the transmission point A sends a first demodulation reference signal to the receiving point, and the receiving point receives the first demodulation reference signal at the time-frequency resource location of the first demodulation reference signal according to the first indication information.
  • Step S1307 The receiving point determines the time-frequency resource location of the first data according to the time-frequency resource location of the second demodulation reference signal and the time-frequency resource location of the third demodulation reference signal.
  • step S1308 the transmission point A sends the fourth indication information to the receiving point, where the fourth indication information is used to indicate the time-frequency resource location of the fourth demodulation reference signal of the first data, and the receiving point receives the fourth indication information.
  • Step S1309 the transmission point A sends a fourth demodulation reference signal to the receiving point, and the receiving point receives the fourth demodulation reference signal at the time-frequency resource position of the fourth demodulation reference signal according to the fourth indication information.
  • Step 1310 The receiving point performs demodulation processing on the first data according to the first demodulation reference signal and the fourth demodulation reference signal.
  • steps S1301 to S1307 are consistent with the steps S901 to S907 in the method shown in FIG. 10, and the specific descriptions of the steps S1301 to S1307 are referred to the steps S901 to S907. For brevity, details are not described herein again.
  • steps S1308 to S1310 are the same as the steps S1206 to S1208 in the method shown in FIG. 14.
  • steps S1308 to S1310 refer to steps S1206 to S1208.
  • steps S1206 to S1208 For brevity, details are not described herein again.
  • the transmission point B may also send the second demodulation reference signal and the third demodulation reference signal to the receiving point, where the receiving point can be based on the second indication information and the third indication information.
  • Receiving the second demodulation reference signal at a time-frequency resource position of the second demodulation reference signal, and receiving the third demodulation reference signal at a time-frequency resource position of the third demodulation reference signal the receiving point being capable of being according to the first Demodulating the time-frequency resource location of the reference signal to determine the time-frequency resource location of the second data, that is, when the receiving point determines the time-frequency resource location of the second data, the time-frequency resource location of the first demodulation reference signal can be circumvented That is, the receiving point can not receive the second data at the time-frequency resource location of the first demodulation reference signal, thereby not affecting the reception of the first demodulation reference signal by the receiving point. And, the receiving point is capable of demodulating the second data according to the second demodulation reference signal and the
  • the transmission point B may also send the second demodulation reference signal and the third demodulation reference signal to the receiving point, where the receiving point can be based on the second indication information and the third indication information.
  • Receiving the second demodulation reference signal at a time-frequency resource position of the second demodulation reference signal, and receiving the third demodulation reference signal at a time-frequency resource position of the third demodulation reference signal the receiving point being capable of being according to the first Demodulating a time-frequency resource location of the reference signal and a time-frequency resource location of the fourth demodulation reference signal to determine a time-frequency resource location of the second data, that is, when the receiving point determines a time-frequency resource location of the second data, Having circumvent the time-frequency resource position of the first demodulation reference signal and the time-frequency resource position of the fourth demodulation reference signal, that is, the receiving point can be at the time-frequency resource position of the first demodulation reference signal and the fourth demodulation reference signal
  • the second data is not received at the
  • FIG. 16 is a schematic flowchart diagram of still another communication method according to another embodiment of the present application. As shown in FIG. 16, the method may include the following steps.
  • step S1401 the transmission point C sends the first indication information to the receiving point, where the first indication information is used to indicate the time-frequency resource location of the first demodulation reference signal of the first data that needs to be transmitted by the transmission point A, and the receiving point receives the first An indication message.
  • Step S1402 the transmission point C sends the second indication information to the receiving point, where the second indication information is used to indicate the time-frequency resource location of the second demodulation reference signal of the second data that the transmission point B needs to transmit, and the receiving point receives the first Two instructions.
  • step S1403 the transmission point C sends the third indication information to the receiving point, where the third indication information is used to indicate the time-frequency resource location of the third demodulation reference signal of the second data that needs to be transmitted by the transmission point B, and the receiving point receives the first Three instructions.
  • Step S1404 The transmission point C sends the fourth indication information to the receiving point, where the fourth indication information is used to indicate the time-frequency resource location of the fourth demodulation reference signal of the first data that needs to be transmitted by the transmission point A, and the receiving point receives the first Four instructions.
  • Step S1405 the transmission point A sends a first demodulation reference signal to the receiving point, and the receiving point receives the first demodulation reference signal according to the first indication information.
  • Step S1406 The transmission point A sends a fourth demodulation reference signal to the receiving point, and the receiving point receives the fourth demodulation reference signal according to the fourth indication information.
  • Step S1407 The receiving point determines a time-frequency resource location of the first data according to a time-frequency resource location of the second demodulation reference signal and a time-frequency resource location of the third demodulation reference signal.
  • Step S1408 The receiving point performs demodulation processing on the first data according to the first demodulation reference signal and the fourth demodulation reference signal.
  • Step S1409 the transmission point B sends a second demodulation reference signal to the receiving point, and the receiving point receives the second demodulation reference signal according to the second indication information.
  • Step S1410 The transmission point B sends a third demodulation reference signal to the receiving point, and the receiving point receives the third demodulation reference signal according to the third indication information.
  • Step S1411 The receiving point determines a time-frequency resource location of the second data according to the time-frequency resource location of the first demodulation reference signal and the time-frequency resource location of the fourth demodulation reference signal.
  • Step S1412 The receiving point performs demodulation processing on the second data according to the second demodulation reference signal and the third demodulation reference signal.
  • steps S1401 to S1403, S1405, S1407, S1409, S1410, and S1412 are consistent with steps S1001 to S1005, S1007 to S1010 in the method shown in FIG. 11, and steps S1401 to S1403, S1405, S1407, and S1409 are satisfied.
  • steps S1410 and S1412 refer to steps S1001 to S1005 and S1007 to S1010. For brevity, details are not described herein again.
  • steps S1404, S1406, and S1411 are the same as the steps S1206 to S1208 in the method shown in FIG. 14.
  • steps S1404, S1406, and S1411 refer to steps S1206 to S1208.
  • steps S1206 to S1208 For brevity, details are not described herein again.
  • FIG. 17 is a schematic flowchart diagram of still another communication method according to another embodiment of the present application. As shown in Figure 17, the method includes the following steps.
  • Step S1501 The transmission point B sends the second indication information to the transmission point A, where the second indication information is used to indicate the time-frequency resource location of the second demodulation reference signal, and the transmission point A receives the second indication information.
  • step S1502 the transmission point B sends the third indication information to the transmission point A, where the third indication information is used to indicate the time-frequency resource location of the third demodulation reference signal, and the transmission point A receives the third indication information.
  • Step S1503 The transmission point A determines the time-frequency resource location of the first data according to the time-frequency resource location of the second demodulation reference signal and the time-frequency resource location of the third demodulation reference signal.
  • step S1504 the transmission point A sends the first indication information to the receiving point, where the first indication information is used to indicate the time-frequency resource location of the first demodulation reference signal of the first data, and the receiving point receives the first indication information.
  • step S1505 the transmission point A sends the fourth indication information to the receiving point, where the fourth indication information is used to indicate the time-frequency resource location of the fourth demodulation reference signal of the first data, and the receiving point receives the fourth indication information.
  • Step S1506 The receiving point performs demodulation processing on the first data according to the first demodulation reference signal and the fourth demodulation reference signal.
  • steps S1501 to S1504 are consistent with the steps S1101 to S1104 in the method shown in FIG. 12, and the specific description of the steps S1501 to S1504 is referred to the steps S1101 to S1104. For brevity, details are not described herein again.
  • steps S1505 and S1506 are the same as the steps S1206 and S1208 in the method shown in FIG. 14.
  • steps S1505 and S1506 refer to steps S1206 and S1208.
  • steps S1206 and S1208 For brevity, details are not described herein again.
  • the method shown in FIG. 8 to FIG. 17 indicates that the time-frequency resource location of the second demodulation reference signal is indicated by the second indication information, and the third indication information is indicated by the third indication information.
  • the time-frequency resource position of the third demodulation reference signal is taken as an example for description.
  • the embodiment of the present application is not limited thereto.
  • the time-frequency resource location indicating the second demodulation reference signal and the time-frequency resource location of the third demodulation reference signal may be indicated by only one indication information.
  • the second demodulation reference signal is a front loaded DMRS
  • the third demodulation reference signal is an additional DMRS, for example, a data mapping indication information identifier corresponding to the high layer signaling (such as RRC signaling, MAC signaling)
  • RRC signaling such as RRC signaling, MAC signaling
  • An exemplary signaling implementation manner of the time-frequency resource location of one or more sets of second demodulation reference signals and information about one or more sets of third DMRS time-frequency resource locations is as follows:
  • one data mapping indication information identifier is configured in physical layer signaling (such as DCI).
  • the terminal device may determine one or more sets of second demodulation reference signal time-frequency resource locations according to a data mapping indication information identifier in the DCI, and may also determine one or more groups of third DMRS time-frequency resource locations. .
  • the related information indicating the time-frequency resource location of the second demodulation reference signal and the time-frequency resource location of the third demodulation reference signal in the physical layer signaling may be indicated by using a data mapping indication information field, for example,
  • the data mapping indication information field may be "DMRS pattern and/or port(s) for PDSCH RE mapping".
  • the DMRS pattern and/or DMRS port information is indicated by the bit value in the field.
  • the transmission point sends an indication information to the receiving point, where the indication information may be indication information of the data mapping, where the indication information includes information of an antenna port group of the second demodulation reference signal and a third demodulation reference signal.
  • Information about the antenna port group For example, the receiving point receives the indication information through the DCI signaling, and when the receiving point receives the indication information, it can determine that the data mapping is not performed on the time-frequency resource location corresponding to the DMRS antenna port in the DMRS antenna port group, that is, No data reception is performed. For example, the information of the DMRS antenna port group is notified by 1 or 2 bits of information. details as follows:
  • the method shown in FIG. 8 to FIG. 12 includes a transmission point transmitting a first demodulation reference signal (for example, an example of front loaded DMRS) and a second demodulation reference signal (for example, an example of front loaded DMRS) to a receiving point. And a scheme of the third demodulation reference signal.
  • a first demodulation reference signal for example, an example of front loaded DMRS
  • a second demodulation reference signal for example, an example of front loaded DMRS
  • first demodulation reference signal the second demodulation reference signal
  • third demodulation reference signal the types of the first demodulation reference signal, the second demodulation reference signal, and the third demodulation reference signal in the foregoing methods shown in FIG. 8 to FIG. 12 may be:
  • the first demodulation reference signal is front loaded DMRS
  • the second demodulation reference signal is front loaded DMRS
  • the third demodulation reference signal is additional DMRS.
  • the method shown in FIG. 14 to FIG. 17 includes a scheme in which a transmission point transmits a first demodulation reference signal, a second demodulation reference signal, a third demodulation reference signal, and a fourth demodulation reference signal to a receiving point.
  • the types of the first demodulation reference signal, the second demodulation reference signal, the third demodulation reference signal, and the fourth demodulation reference signal in the foregoing method shown in FIG. 14 to FIG. 17 may be:
  • the first demodulation reference signal is front loaded DMRS
  • the second demodulation reference signal is front loaded DMRS
  • the third demodulation reference signal is additional DMRS
  • the fourth demodulation reference signal is additional DMRS.
  • the method further includes: transmitting, by the transmission point, the first demodulation reference signal, the second demodulation reference signal, and the fourth demodulation reference signal to the receiving point, and the specific scheme description may refer to The scheme description of the first demodulation reference signal, the second demodulation reference signal, and the fourth demodulation reference signal transmitted by the transmission point to the receiving point in the foregoing FIG. 14 to FIG. 17 is omitted here for brevity.
  • the first demodulation reference signal, the second demodulation reference signal, and the fourth demodulation reference in a case where the transmission point transmits the first demodulation reference signal, the second demodulation reference signal, and the fourth demodulation reference signal to the receiving point
  • the type of signal can be:
  • the first demodulation reference signal is a front loaded DMRS
  • the second demodulation reference signal is an additional DMRS
  • the fourth demodulation reference signal is an additional DMRS.
  • the time-frequency resource location of the third demodulation reference signal may be indicated by the third indication information, but the application is not limited thereto.
  • the time-frequency resource location of the third demodulation reference signal can also be indicated by other means. The details will be described below.
  • the receiving point receives a second demodulation reference signal (eg, an example of a front loaded DMRS) and a third demodulation reference signal (eg, an example of an additional DMRS), where the second demodulation reference signal There is a preset mapping relationship between the time-frequency resource location and the time-frequency resource location of the third demodulation reference signal.
  • a second demodulation reference signal eg, an example of a front loaded DMRS
  • a third demodulation reference signal eg, an example of an additional DMRS
  • the receiving point may determine the third demodulation reference according to the time-frequency resource location of the second demodulation reference signal and the preset mapping relationship. The time-frequency resource location of the signal.
  • a preset mapping relationship between a time-frequency resource location of the second demodulation reference signal and a time-frequency resource location of the third demodulation reference signal may be: a third demodulation reference signal
  • the time-frequency resource location is shifted to the left or right by N symbols relative to the time-frequency resource position of the second demodulation reference signal in the time domain (for example, N may be 3), and the time-frequency of the third demodulation reference signal
  • the resource location has no offset in the frequency domain relative to the time-frequency resource location of the second demodulation reference signal; or
  • the time-frequency resource position of the third demodulation reference signal is shifted to the left or right by L symbols relative to the time-frequency resource position of the second demodulation reference signal in the time domain (for example, L may be 3), and the third solution Adjusting the time-frequency resource position of the reference signal in the frequency domain, the subcarrier position is shifted upward or downward by M subcarriers relative to the time-frequency resource position of the second demodulation reference signal (for example, M may be 3); or
  • the correlation information of the time-frequency resource position of the third demodulation reference signal has a mapping relationship with the related information of the time-frequency resource position of the second demodulation reference signal, and the related information may, for example, indicate a DMRS pattern of the demodulation reference signal and/or Or demodulation of the antenna port (DMRS port) of the reference signal and/or information of the DMRS antenna port group, and the like.
  • the pattern of the third demodulation reference signal is the same as the pattern of the second demodulation reference signal; for example, the pattern of the second demodulation reference signal is pattern 1, and the pattern of the third demodulation reference signal is pattern 1; The pattern of the second demodulation reference signal is pattern 2, and the pattern of the third demodulation reference signal is pattern 2; or
  • the antenna port of the third demodulation reference signal is the same as the antenna port of the second demodulation reference signal; for example, the antenna port information of the second demodulation reference signal is port 7, 8, and the antenna port information of the third demodulation reference signal is Port 7,8; for example, the antenna port information of the second demodulation reference signal is port 9, 10, and the antenna port information of the third demodulation reference signal is port 9, 10; or
  • the antenna port group information of the third demodulation reference signal is the same as the antenna port group information of the second demodulation reference signal; for example, the antenna port group information of the second demodulation reference signal is group 1, and the antenna of the third demodulation reference signal
  • the port group information is group 1; for example, the antenna port group information of the second demodulation reference signal is group 2, and the antenna port group information of the third demodulation reference signal is group 2; or
  • the antenna port group information of the third demodulation reference signal is different from the antenna port group information of the second demodulation reference signal. For example, if the antenna port group information of the second demodulation reference signal is group 1, the antenna port group information of the third demodulation reference signal is group 2; for example, the antenna port group information of the second demodulation reference signal is group 2, then The antenna port group information of the three demodulation reference signals is group 1 and the like.
  • N, L, M can be an integer greater than or equal to 0.
  • N can take values of 0, 3, 5, 6, etc.
  • L can take values of 0, 3, 4, 5, 6, 7, etc.
  • M can take values of 0, 1, 2, 3, and so on.
  • the value of N, M may be predefined by a protocol, or the base station notifies the receiving point by signaling.
  • the possible value range of the receiving point is notified by the high layer signaling, and the specific value of the receiving point is notified by another high layer signaling or physical layer signaling.
  • the higher-level signaling (such as RRC signaling) is used to inform the receiving point N and/or the set of possible values of L and/or M, and/or B and/or C, which may include 3, 5, etc., B. It may include 3, 5, etc., and C may include 1, 2, 3, and the like.
  • a specific value in the set is indicated in higher layer signaling (such as RRC signaling or MAC signaling) or physical layer signal (such as DCI).
  • the receiving point may determine the third demodulation according to the time-frequency resource location of the second demodulation reference signal and the preset mapping relationship. The time-frequency resource location of the reference signal.
  • the mapping relationship may be notified to the receiving point by any one of the transmission points; or the mapping relationship may also be based on the system pre-defined; or, the time-frequency resource positions of different demodulation reference signals are between the symbols in the time domain.
  • the offset may be signaled to the receiving point by any one of the transmission points, and the offset of the time-frequency resource position of the different demodulation reference signals between the sub-carriers in the frequency domain may be based on system pre-defined; or different demodulation
  • the offset between the symbols of the time-frequency resource position of the reference signal in the time domain may be based on a system pre-defined, and the offset between the sub-carriers in the frequency domain of the time-frequency resource position of different demodulation reference signals may be Any one transmission point is signaled to the receiving point.
  • the foregoing description is only taken as an example of determining a time-frequency resource location of the third demodulation reference signal by using a mapping relationship preset by the receiving point according to the time-frequency resource location of the second demodulation reference signal and the preset mapping relationship;
  • the receiving point may also determine the time-frequency resource location of the second demodulation reference signal according to the time-frequency resource location of the third demodulation reference signal and the preset mapping relationship of the preset mapping relationship, which is not specifically limited in this application.
  • the foregoing description is only taken as an example of determining a time-frequency resource location of the third demodulation reference signal by using a mapping relationship preset by the receiving point according to the time-frequency resource location of the second demodulation reference signal and the preset mapping relationship;
  • the receiving point may further determine the time-frequency resource location of the fourth demodulation reference signal according to the time-frequency resource location of the first demodulation reference signal and the preset mapping relationship of the preset mapping relationship, which is not specifically limited in this application.
  • the foregoing description is only taken as an example of determining a time-frequency resource location of the third demodulation reference signal by using a mapping relationship preset by the receiving point according to the time-frequency resource location of the second demodulation reference signal and the preset mapping relationship;
  • the receiving point may further determine the time-frequency resource location of the first demodulation reference signal according to the time-frequency resource location of the fourth demodulation reference signal and the preset mapping relationship of the preset mapping relationship, which is not specifically limited in this application.
  • a receiving point receives a first demodulation reference signal (eg, an example of a front loaded DMRS) transmitted by a transmission point A (eg, an example of a base station), and the receiving point receives the transmission point
  • the second demodulation reference signal transmitted by B may be different for different demodulation reference signals (for example, the first demodulation reference signal and the second demodulation reference signal) transmitted by different transmission points.
  • the time-frequency resource position of another demodulation reference signal is determined by the time-frequency resource position of one of the two different demodulation reference signals. For the sake of brevity, it will not be repeated here.
  • the transmission point it is not necessary for the transmission point to send an additional DMRS to the receiving point.
  • the receiving point can determine whether the transmission point sends an additional DMRS by the method described below.
  • the receiving point can determine whether it is currently in the coordinated multi-point transmission mode. Specifically, the receiving point can be determined in the following manners.
  • Manner 1 The number of the received physical downlink control channel (PDCCH) is determined by the receiving point. When the number of PDCCH configurations is greater than or equal to 2, the receiving point determines that the current coordinated mode is in the coordinated mode.
  • PDCCH physical downlink control channel
  • the receiving point determines the number of configurations of the control resource set (CORESET) according to the received control resource set (CORESET). When the number of configurations of the CORESET is greater than or equal to 2, the receiving point determines that the current multipoint coordinated transmission mode is present.
  • the receiving point determines the number of configured DMRS ports. When the number of configured DMRS ports is greater than or equal to 2, the receiving point determines that it is currently in the coordinated multi-point transmission mode. In the case that the receiving point determines that the multipoint coordinated transmission mode is currently in use, the receiving point may further determine that those transmission points in the coordinated multi-point transmission mode may send an additional DMRS. Specifically, the receiving point may be determined in the following manners.
  • each of the multiple transmission points in the system predefined cooperative transmission mode does not send an additional DMRS
  • the receiving point does not receive the additional DMRS sent by any one of the transmission points in the coordinated multi-point transmission mode
  • each of the multiple transmission points in the system predefined cooperation mode sends an additional DMRS; or some of the multiple transmission points send an additional DMRS.
  • all transmission points send additional DMRS to the receiving point.
  • the receiving point determines that it is currently in the multi-point coordinated transmission mode according to any one of the above methods 1 to 3, it can be pre-processed according to the system.
  • the defined transmission mode determines the additional DMRS sent by all transmission points in the received multipoint coordinated transmission mode.
  • the transmission point A and the transmission point C send the additional DMRS to the receiving point, and when the receiving point determines that the current multi-point coordinated transmission mode is determined according to any one of the foregoing manners 1 to 3,
  • the system pre-defined transmission mode determining to receive only the additional DMRS sent by transmission point A and transmission point C; or
  • the receiving point receives signaling sent from a transmission point, where the signaling is used to indicate to the receiving point that the transmission point in the coordinated multi-point transmission mode transmits an additional DMRS, for example, the signaling direction
  • the receiving point indicates that the transmission point does not send the additional DMRS to the receiving point; or the transmission point A and the transmission point B send the additional DMRS to the receiving point; or all the transmission points send the additional DMRS to the receiving point.
  • the receiving point determines, according to the signaling, a case where the transmission point in the coordinated multi-point transmission mode transmits the additional DMRS.
  • the embodiment of the present application further provides an apparatus embodiment for implementing the steps and methods in the foregoing method embodiments.
  • the method, the steps, the technical details, the technical effects and the like of the foregoing method embodiments are also applicable to the device embodiments, and will not be described in detail later.
  • FIG. 18 is a schematic structural diagram of a terminal 103.
  • the structure of the receiving point is exemplified by the terminal 103 shown in FIG. 18 as a receiving point, and the terminal 103 can be applied to the system shown in FIG. 1.
  • FIG. 18 shows only the main components of the terminal 103.
  • the terminal 103 includes a processor, a memory, a control circuit or an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling the entire terminal, executing software programs, and processing data of the software programs.
  • the memory is mainly used to store software programs and data, such as related information for storing demodulation reference signals of the higher layer signaling configuration in the above embodiment.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit and the antenna together may also be called a transceiver.
  • the terminal 103 may include one or more sets of antennas, and is mainly used for transmitting and receiving radio frequency signals in the form of electromagnetic waves.
  • the input and output device such as a touch screen, a display screen or a keyboard, is mainly used for receiving data input by a user and outputting data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 18 shows only one memory and processor for ease of illustration. In an actual terminal, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process communication protocols and communication data, and the central processing unit is mainly used to control the entire terminal and execute the software.
  • the processor in FIG. 18 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal may include multiple baseband processors to accommodate different network standards.
  • the terminal may include multiple central processors to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 801 of the terminal 103, and the processor having the processing function is regarded as the processing unit 802 of the terminal 103.
  • the terminal 103 includes a transceiver unit 801 and a processing unit 802.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, or a transceiver.
  • the device for implementing the receiving function in the transceiver unit 801 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 801 is regarded as a sending unit, that is, the transceiver unit 801 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver or a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit.
  • the foregoing terminal 103 can be used to implement the method in the foregoing method embodiment, specifically:
  • the transceiver unit 801 is configured to receive first indication information, where the first indication information is used to indicate a time-frequency resource location of the first demodulation reference signal of the first data.
  • the transceiver unit 801 is configured to receive second indication information, where the second indication information is used to indicate a time-frequency resource location of the second demodulation reference signal;
  • the processing unit 802 is configured to determine a time-frequency resource location of the first data according to a time-frequency resource location of the second demodulation reference signal, and solve the first data according to the first demodulation reference signal Adjustment processing.
  • the transceiver unit 801 is further configured to receive high layer signaling, where the high layer signaling carries related information of a time-frequency resource location of the second demodulation reference signal and an identifier corresponding to the related information;
  • the transceiver unit 801 is further configured to receive the second indication information by using physical layer signaling, where the second indication information includes at least one first identifier, the first identifier, and the at least one group of second demodulation reference signals Corresponding information about the location of the time-frequency resource.
  • the transceiver unit 801 is further configured to receive the second indication information by using physical layer signaling, where the second indication information includes related information of a time-frequency resource location of the second demodulation reference signal.
  • the processing unit 802 is further configured to determine, according to the time-frequency resource location of the second demodulation reference signal, data related to a time-frequency resource location of the second demodulation reference signal in the first data.
  • the time-frequency resource location, the data related to the time-frequency resource location of the second demodulation reference signal includes a codeword included in the first data, a layer-layer data corresponding to the codeword included in the first data, and the The first data includes at least one of antenna port data corresponding to the layer.
  • the transceiver unit 801 is further configured to receive third indication information, where the third indication information is used to indicate a time-frequency resource location of the third demodulation reference signal of the first data;
  • the processing unit 802 is further configured to determine a time-frequency resource location of the first data according to a time-frequency resource location of the second demodulation reference signal and a time-frequency resource location of the third demodulation reference signal.
  • the transceiver unit 801 is further configured to receive fourth indication information, where the fourth indication information is used to indicate a time-frequency resource location of the fourth demodulation reference signal of the first data;
  • the processing unit 802 is further configured to perform demodulation processing on the first data according to the first demodulation reference signal and the fourth demodulation reference signal.
  • FIG. 19 is a schematic structural diagram of a network device.
  • the structure of the transmission point is exemplified by the network device shown in FIG. 19 as a transmission point, wherein the structures of the first transmission point and the second transmission point are both Reference may be made to the network device structure shown in FIG.
  • the network device can be applied to the system as shown in FIG.
  • the structure of the network devices 101-A to 101-D in the system shown in FIG. 1 can refer to the structure of the network device shown in FIG.
  • the network device 101 includes one or more remote radio units (RRUs) 901 and one or more baseband units (BBUs) 902.
  • RRUs remote radio units
  • BBUs baseband units
  • the RRU 901 may be referred to as a transceiver unit, a transceiver, a transceiver circuit or a transceiver, etc., which may include at least one antenna 9011 and a radio frequency unit 9012.
  • the RRU 901 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting signaling indications or reference signals in the above embodiments to the terminal.
  • the BBU 902 part is mainly used for baseband processing, network device control, and the like.
  • the RRU 901 and the BBU 902 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 902 is a control center of a network device, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, and spreading.
  • the BBU 902 may be composed of one or more boards, and multiple boards may jointly support a single access standard radio access network (such as a 5G network), or may separately support wireless access of different access systems. network.
  • the BBU 902 also includes a memory 9021 and a processor 9022.
  • the memory 9021 is used to store necessary instructions and data.
  • the processor 9022 is configured to control the network device to perform necessary actions.
  • Memory 9021 and processor 9022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits are also provided on each board.
  • the foregoing network device may be used to implement the method of the method embodiment performed by the foregoing first transmission point, specifically:
  • a processor configured to determine a time-frequency resource location of the first data according to a time-frequency resource location of the second demodulation reference signal
  • a transceiver configured to send first indication information to the receiving point, where the first indication information is used to indicate a time-frequency resource location of the first demodulation reference signal of the first data.
  • the foregoing network device may also be used to implement the method of the method embodiment performed by the foregoing second transmission point, specifically:
  • a transceiver configured to send second indication information to the receiving point, where the second indication information is used to indicate a time-frequency resource location of the second demodulation reference signal.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Abstract

本申请实施例公开了一种通信方法、相关设备及系统。方法包括:接收点接收第一指示信息,所述第一指示信息用于指示第一数据的第一解调参考信号的时频资源位置;所述接收点接收第二指示信息,所述第二指示信息用于指示第二解调参考信号的时频资源位置;所述接收点根据所述第二解调参考信号的时频资源位置确定所述第一数据的时频资源位置,并根据所述第一解调参考信号对所述第一数据进行解调处理。能够提升接收点的接收性能。二基站不发生资源冲突的前提下使用第二基站分配的时频资源与终端设备之间进行通信。

Description

一种通信方法、相关设备和系统
本申请要求于2017年08月24日提交中国专利局、申请号为201710732932.9、申请名称为“一种通信方法、相关设备和系统”及2017年05月05日提交中国专利局、申请号为201710323434.9、申请名称为“一种通信方法、相关设备和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法、相关设备和系统。
背景技术
在多输入多输出(Multiple-Input Multiple-Output,MIMO)通信系统中,可以使用(例如,与各天线相对应的)多个源和/或目的在该通信系统中的设备之间发送和接收数据、控制信令和/或其它信息。在一些情况中,与单输入单输出通信系统相比,所示出的与MIMO通信系统有关的各传输使用多个源和/或目的能产生更高的数据速率、改善的信号质量和其它类似优点。
MIMO通信系统的一个例子是协作式多点传输(Coordinate Multipoint Transmission,CoMP)系统,在该传输系统中,多个传输点(Transmission Point,TP)可以协作以便与一个或多个接收点(Reception Point)交换信息。其中,多个传输点协作为接收点传输数据时,一个传输点可以向该接收点发送用户专用的解调参考信号(DeModulation Reference Signal,DMRS),接收点能够根据该传输点发送的解调参考信号,对信道进行估计,进而接收该传输点发送的数据并对该数据进行解调处理。现有技术中,有可能会出现该传输点向该接收点发送的DMRS所映射的时频资源位置与另一协作传输点向该接收点发送的数据所映射的时频资源位置相重叠的情况,这会导致接收点无法正确接收该DMRS,进而会导致接收点无法正确估计信道,接收点的数据接收性能下降,系统性能降低。
发明内容
本申请提供了一种通信方法、相关设备和系统,能够提升接收点的数据接收性能。
第一方面,提供了一种通信方法,包括:接收点接收第一指示信息,所述第一指示信息用于指示第一数据的第一解调参考信号的时频资源位置;所述接收点接收第二指示信息,所述第二指示信息用于指示第二解调参考信号的时频资源位置;所述接收点根据所述第二解调参考信号的时频资源位置确定所述第一数据的时频资源位置,并根据所述第一解调参考信号对所述第一数据进行解调处理。
通过上述方案,能够提升接收点的数据接收性能。
结合第一方面,在一些可能的实现方式中,所述第二指示信息用于指示第二解调参考信号的时频资源位置,包括:所述第二指示信息用于指示第二数据的第二解调参考信号的 时频资源位置,所述第二解调参考信号用于对所述第二数据进行解调处理。
结合第一方面,在一些可能的实现方式中,所述第一数据和所述第一解调参考信号是由第一传输点发送的,所述第二数据和所述第二解调参考信号是由第二传输点发送的,所述第一传输点与所述第二传输点为协作关系。
结合第一方面,在一些可能的实现方式中,所述接收点接收高层信令,所述高层信令携带有所述第二解调参考信号的时频资源位置的相关信息和与所述相关信息对应的标识;所述接收点接收第二指示信息,包括:所述接收点通过物理层信令接收所述第二指示信息,所述第二指示信息包括至少一个第一标识,所述第一标识与所述至少一组第二解调参考信号的时频资源位置的相关信息对应。
结合第一方面,在一些可能的实现方式中,所述接收点接收第二指示信息,包括:
所述接收点通过物理层信令接收所述第二指示信息,所述第二指示信息包括所述第二解调参考信号的时频资源位置的相关信息。
结合第一方面,在一些可能的实现方式中,所述接收点根据所述第二解调参考信号的时频资源位置确定所述第一数据的时频资源位置,包括:所述接收点根据所述第二解调参考信号的时频资源位置确定所述第一数据中与所述第二解调参考信号的时频资源位置相关的数据的时频资源位置,所述与第二解调参考信号的时频资源位置相关的数据包括所述第一数据包括的码字、所述第一数据包括的码字对应的层的数据、所述第一数据包括的层对应的天线端口数据中的至少一个数据。
结合第一方面,在一些可能的实现方式中,所述第二解调参考信号的时频资源位置的相关信息包括第二解调参考信号的图案和/或第二解调参考信号相关的天线端口信息,所述天线端口信息包括天线端口的端口号和/或天线端口的个数。
结合第一方面,在一些可能的实现方式中,所述第二解调参考信号的时频资源位置的相关信息包括与所述第二解调参考信号对应的天线端口组的信息。
结合第一方面,在一些可能的实现方式中,所述接收点接收第三指示信息,所述第三指示信息用于指示第三解调参考信号的时频资源位置;所述接收点根据第二解调参考信号的时频资源位置和所述第三解调参考信号的时频资源位置确定所述第一数据的时频资源位置。
结合第一方面,在一些可能的实现方式中,所述接收点接收第四指示信息,所述第四指示信息用于指示所述第一数据的第四解调参考信号的时频资源位置;所述接收点根据所述第一解调参考信号和所述第四解调参考信号对所述第一数据进行解调处理。
结合第一方面,在一些可能的实现方式中,所述第三指示信息用于指示第三解调参考信号的时频资源位置,包括:所述第三指示信息用于指示第二数据的第三解调参考信号的时频资源位置,所述第三解调参考信号用于对所述第二数据进行解调处理。
结合第一方面,在一些可能的实现方式中,还包括:所述第一数据和所述第四解调参考信号是由第一传输点发送的,所述第二数据和所述第三解调参考信号是由第二传输点发送的,所述第一传输点与所述第二传输点为协作关系。
结合第一方面,在一些可能的实现方式中,所述接收点接收高层信令,所述高层信令携带有所述第三解调参考信号的时频资源位置的相关信息和与所述相关信息对应的标识;所述接收点接收第三指示信息,包括:所述接收点通过物理层信令接收所述第三指示信息, 所述第三指示信息包括至少一个第二标识,所述第二标识与所述至少一组第三解调参考信号的时频资源位置的相关信息对应。
结合第一方面,在一些可能的实现方式中,所述接收点接收第三指示信息,包括:所述接收点通过物理层信令接收所述第三指示信息,所述第三指示信息包括所述第三解调参考信号的时频资源位置的相关信息。
结合第一方面,在一些可能的实现方式中,所述接收点根据第二解调参考信号的时频资源位置和所述第三解调参考信号的时频资源位置确定所述第一数据的时频资源位置,包括:所述接收点根据所述第二解调参考信号的时频资源位置确定所述第一数据中与所述第二解调参考信号的时频资源位置相关的数据的时频资源位置,并且根据所述第三解调参考信号的时频资源位置确定所述第一数据中与所述第三解调参考信号的时频资源位置相关的数据的时频资源位置,所述与第二解调参考信号的时频资源位置相关的数据包括所述第一数据包括的码字、所述第一数据包括的码字对应的层的数据、所述第一数据包括的层对应的天线端口数据中的至少一个数据,所述与第三解调参考信号的时频资源位置相关的数据包括所述第一数据包括的码字、所述第一数据包括的码字对应的层的数据、所述第一数据包括的层对应的天线端口数据中的至少一个数据。
结合第一方面,在一些可能的实现方式中,所述第三解调参考信号的时频资源位置的相关信息包括第三解调参考信号的图案和/或第三解调参考信号相关的天线端口信息,所述天线端口信息包括天线端口的端口号和/或天线端口的个数。
结合第一方面,在一些可能的实现方式中,所述第三解调参考信号的时频资源位置的相关信息包括与所述第三解调参考信号对应的天线端口组的信息。
结合第一方面,在一些可能的实现方式中,所述终端设备根据所述第二解调参考信号的时频资源位置确定所述第三解调参考信号的时频资源位置,所述第三解调参考信号的时频资源位置与所述第二解调参考信号的时频资源位置之间存在预设的映关系。
第二方面,提供了一种通信方法,包括:第一传输点根据第二解调参考信号的时频资源位置确定第一数据的时频资源位置;所述第一传输点向接收点发送第一指示信息,所述第一指示信息用于指示所述第一数据的第一解调参考信号的时频资源位置。
结合第二方面,在一些可能的实现方式中,所述第一传输点接收第二传输点发送的第二指示信息,所述第二指示信息用于指示第二解调参考信号的时频资源位置。
结合第二方面,在一些可能的实现方式中,所述第一传输点向接收点发送高层信令,所述高层信令携带有所述第一解调参考信号的时频资源位置的相关信息和与所述相关信息对应的标识;所述第一传输点向所述接收点发送物理层信令,所述物理层信令携带有所述第一指示信息,所述第一指示信息包括至少一个第一标识,所述第一标识与所述至少一组第一解调参考信号的时频资源位置的相关信息对应。
结合第二方面,在一些可能的实现方式中,所述第一传输点通过物理层信令发送所述第一指示信息,所述第一指示信息包括所述第一解调参考信号的时频资源位置的相关信息。
结合第二方面,在一些可能的实现方式中,所述第一解调参考信号的时频资源位置的相关信息包括第一解调参考信号的图案和/或第一解调参考信号相关的天线端口信息,所述天线端口信息包括天线端口的端口号和/或天线端口的个数。
结合第二方面,在一些可能的实现方式中,所述第一解调参考信号的时频资源位置的相关信息包括与所述第一解调参考信号对应的天线端口组的信息。
第三方面,提供了一种通信方法,包括:第二传输点向接收点发送第二指示信息,所述第二指示信息用于指示第二解调参考信号的时频资源位置。
结合第三方面,在一些可能的实现方式中,所述第二传输点向第一传输点发送所述第二指示信息。
结合第三方面,在一些可能的实现方式中,所述第二指示信息用于指示第二数据的第二解调参考信号的时频资源位置,所述第二解调参考信号用于对所述第二数据进行解调处理。
结合第三方面,在一些可能的实现方式中,所述第二传输点向接收点发送高层信令,所述高层信令携带有所述第二解调参考信号的时频资源位置的相关信息和与所述相关信息对应的标识;所述第二传输点向所述接收点发送物理层信令,所述物理层信令携带有所述第二指示信息,所述第二指示信息包括至少一个第二标识,所述第二标识与所述至少一组第二解调参考信号的时频资源位置的相关信息对应。
结合第三方面,在一些可能的实现方式中,所述第二传输点通过物理层信令发送所述第二指示信息,所述第二指示信息包括所述第二解调参考信号的时频资源位置的相关信息。
结合第三方面,在一些可能的实现方式中,所述第一数据中与所述第二解调参考信号的时频资源位置相关的数据包括所述第一数据包括的码字、所述第一数据包括的码字对应的层的数据、所述第一数据包括的层对应的天线端口数据中的至少一个数据。
结合第三方面,在一些可能的实现方式中,所述第二解调参考信号的时频资源位置的相关信息包括第二解调参考信号的图案和/或第二解调参考信号相关的天线端口信息,所述天线端口信息包括天线端口的端口号和/或天线端口的个数。
结合第三方面,在一些可能的实现方式中,所述第二解调参考信号的时频资源位置的相关信息包括与所述第二解调参考信号对应的天线端口组的信息。
结合第三方面,在一些可能的实现方式中,所述第二传输点向所述接收点发送第三指示信息,所述第三指示信息用于指示第三解调参考信息的时频资源位置。
结合第三方面,在一些可能的实现方式中,所述第二传输点向所述第一传输点发送所述第三指示信息。
结合第三方面,在一些可能的实现方式中,所述第三指示信息用于指示第二数据的第三解调参考信号的时频资源位置,所述第三解调参考信号用于对所述第二数据进行解调处理。
结合第三方面,在一些可能的实现方式中,所述第二传输点向接收点发送高层信令,所述高层信令携带有所述第三解调参考信号的时频资源位置的相关信息和与所述相关信息对应的标识;所述第二传输点向所述接收点发送物理层信令,所述物理层信令携带有所述第三指示信息,所述第三指示信息包括至少一个第二标识,所述第二标识与所述至少一组第三解调参考信号的时频资源位置的相关信息对应。
结合第三方面,在一些可能的实现方式中,所述第二传输点通过物理层信令发送所述第三指示信息,所述第三指示信息包括所述第三解调参考信号的时频资源位置的相关信 息。
结合第三方面,在一些可能的实现方式中,所述第一数据中与所述第二解调参考信号的时频资源位置相关的数据包括所述第一数据包括的码字、所述第一数据包括的码字对应的层的数据、所述第一数据包括的层对应的天线端口数据中的至少一个数据。
结合第三方面,在一些可能的实现方式中,所述第三解调参考信号的时频资源位置的相关信息包括第三解调参考信号的图案和/或第三解调参考信号相关的天线端口信息,所述天线端口信息包括天线端口的端口号和/或天线端口的个数。
结合第三方面,在一些可能的实现方式中,所述第三解调参考信号的时频资源位置的相关信息包括与所述第三解调参考信号对应的天线端口组的信息。
在一个可能的设计中,本申请提供的接收点可以包含用于执行上述方法设计中接收点行为相对应的模块。所述模块可以是软件和/或是硬件。
在一个可能的设计中,本申请提供的第一传输点可以包含用于执行上述方法设计中第一传输点行为相对应的模块。所述模块可以是软件和/或是硬件。
在一个可能的设计中,本申请提供的第二传输点可以包含用于执行上述方法设计中第二传输点行为相对应的模块。所述模块可以是软件和/或是硬件。
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种协作式多点传输系统,该系统能够执行上述各方面所述的方法。该系统包括的装置可以参见上述方面所述的装置。
附图说明
图1是本申请实施例涉及的一种协作式多点传输系统的架构示意图;
图2是本申请实施例提供的一种通信方法的流程示意图;
图3是本申请实施例提供的一些接收点接收数据时RE承载数据和第二解调参考信号的位置示意图;
图4是本申请实施例提供的另一种通信方法的流程示意图;
图5是本申请实施例提供的又一种通信方法的流程示意图;
图6是本申请实施例提供的又一种通信方法的流程示意图;
图7是本申请实施例提供的传输点进行数据映射时RE承载数据和第二解调参考信号的位置示意图;
图8是本申请另一实施例提供的一种通信方法的流程示意图;
图9是本申请另一实施例提供的一些接收点接收数据时RE承载数据和第三解调参考信号的位置示意图;
图10是本申请另一实施例提供的另一种通信方法的流程示意图;
图11是本申请另一实施例提供的又一种通信方法的流程示意图;
图12是本申请另一实施例提供的又一种通信方法的流程示意图;
图13是本申请另一实施例提供的传输点进行数据映射时RE承载数据和第三解调参 考信号的位置示意图;
图14是本申请再一实施例提供的一种通信方法的流程示意图;
图15是本申请再一实施例提供的另一种通信方法的流程示意图;
图16是本申请再一实施例提供的又一种通信方法的流程示意图;
图17是本申请再一实施例提供的又一种通信方法的流程示意图;
图18是本申请实施例提供的一种接收点为终端的结构示意图;
图19是本申请实施例提供的一种传输点为网络设备的结构示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
为了便于了解本申请实施例,首先介绍本申请实施例涉及的协作式多点传输系统及相关应用场景。
请参见图1,图1示出了本申请涉及的一种协作式多点传输系统100。协作式多点传输系统包括传输点101-A至101-D和接收点103。该系统100能够实施本申请实施例中的方法实施例。
在本申请的一些实施例中,传输点101-A至101-D可以是网络设备,接收点103是终端。
在本申请的另一些实施例中,传输点101-A至101-D也可以是终端,接收点103是网络设备。
本申请实施例中所描述的网络设备,例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括LTE系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(eNB或e-NodeB,evolutional Node B),或LTE系统或LTE-A系统中的小基站(micro/pico eNB),或者也可以包括NR系统中的下一代节点B(next generation node B,gNB),或者是传输点(transmission point,TP),也可以是收发节点(transmission and receiver point,TRP),等等,本申请实施例并不限定。
本申请实施例所描述的终端,是指向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端可以经无线接入网(Radio Access Network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端可以包括接入点(Access Point,AP)、用户设备(User Equipment,UE)、无线终端、移动终端、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point,AP)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、或用户装备(User Device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(Personal Communication  Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、智能手表、智能头盔、智能眼镜、智能手环等设备。终端可以分布在协作式多点传输系统100中,也可以分布在两个网络设备覆盖的小区的边缘位置。终端可以是静止的,也可以是移动的。
在该协作式多点传输系统100中,传输点101-A至101-D中的至少两个传输点之间针对至少一个接收点建立了协作关系,可以基于协作协议向接收点103传输数据、信令等信息。传输点101-A至101-D及接收点103配置有一个或多个天线端口,能够实现利用MIMO技术进行信号传输。传输点101-A至101-D中的任意一个传输点向接收点传输的数据可以包括码字(Code Word,CW),或者码字对应的层(layer)的数据,或者,码字对应的层(layer)下分属于各天线端口(port)的数据。这里,码字对应的层的数据是指码字经过处理(例如,码块分割、码块级联、加扰、调制)后,进行层映射,将码字映射至至少一个层上,即码字映射到的每个层上包括码字的全部或者一部分数据。这里,码字对应的层下分属于各天线端口的数据是指码字映射的一个层对应至少一个天线端口,即与该层对应的每个天线端口包括层的数据的全部或者一部分。当然,传输点101-A至101-D可以协作传输数据,例如,传输点101-A与传输点101-B能够协作传输数据中的不同码字,数据中包括第一码字和第二码字时,通过协作,传输点101-A可以传输第一码字,相应的,传输点101-B可以传输第二码字;或者,传输点101-A与传输点101-B能够协作传输数据中相同码字的不同层的数据,例如,一个码字映射有第一层的数据和第二层的数据,那么可以通过传输点101-A传输该码字映射的第一层的数据,通过传输点101-B传输该码字映射的第二层的数据;或者,传输点101-A与传输点101-B能够协作传输数据中相同码字中的相同层所对应的不同的天线端口的数据,例如,一个码字所映射的第一层的数据分属于第一天线端口和第二天线端口,那么,传输点101-A传输分属于第一天线端口的数据,传输点101-B传输分属于第二天线端口的数据。
现有技术中,传输点101-A向接收点130发送数据,该数据占用的时频资源可以是资源块(Resource Block,RB),资源块包括多个资源元素。
传输点101-B向接收点103发送解调参考信号,该解调参考信号占用的时频资源可以是一个或多个离散的资源元素(Resource Element,RE);该资源元素是指频率上一个子载波及时域上一个符号。其中,RE是传输数据或信号的最小时频资源单位。接收点103通过传输点101-B发送的解调参考信号能够对用于接收传输点101-B发送的数据的信号进行估计,进而接收传输点101-B发送的数据。
传输点101-A传输数据所占用的时频资源与传输点101-B传输解调参考信号所占用的时频资源冲突,即解调参考信号所占用的RE可能在数据占用的RB中,这种场景下,导致传输点101-A所传输的数据和传输点101-B所传输的解调参考信号互相干扰,接收点103无法正确接收传输点101-B所传输的解调参考信号,会对传输点101-B的传输信道估计不准确,进而导致接收点103无法正确接收传输点101-B传输的数据,该系统100的性能下降。
针对上述应用场景及存在的技术缺陷,下面结合附图描述本申请实施例的技术方案。
请参阅图2,图2是本申请实施例提供的一种通信方法的流程示意图。如图2所示,该方法至少包括以下步骤。
步骤S201,传输点A向接收点发送第一指示信息,所述第一指示信息用于指示第一数据的第一解调参考信号的时频资源位置;接收点接收所述第一指示信息。
在一些可能的实现方式中,传输点A向接收点发送第一指示信息,该第一指示信息用于指示第一数据的第一解调参考信号的时频资源位置。其中,第一数据是传输点A需要向接收点发送的数据。接收点能够接收第一指示信息,并且能够根据该第一指示信息,确定第一解调参考信号的时频资源位置,进而根据第一解调参考信号的时频资源位置接收该第一解调参考信号,并根据该第一解调参考信号对第一数据进行解调处理。
其中,传输点A可以在向接收点传输数据(如第一数据)的同时,向接收点发送第一指示信息;或者,传输点A可以在向接收点传输第一数据之前或之后,向接收点发送第一指示信息,本申请实施例对传输点A发送第一指示信息的发送时间不做具体限定。
传输点A向接收点发送的数据(如第一数据)中可以携带有该第一指示信息,或者,传输点A向接收点发送的控制信令中可以携带有该第一指示信息,例如,传输点为基站时,传输点A向接收点发送的下行控制信息(Downlink Control Information,DCI)中携带有第一指示信息。
步骤S202,接收点接收第二指示信息,所述第二指示信息用于指示第二解调参考信号的时频资源位置。
在一些可能的实施例中,接收点能够接收第二指示信息,该第二指示信息用于指示第二解调参考信号的时频资源位置。本申请实施例中,第二解调参考信号可以是针对协作式多点传输系统中至少一个传输点向本接收点传输的至少一个数据;例如,第二解调参考信号可以是针对协作式多点传输系统中传输点B向接收点传输的第二数据;第二解调参考信号也可以是针对传输点A向接收点传输的第三数据,第三数据与第一数据不同,其中,第三数据与第一数据不同包括第三数据与第一数据所占用的时频资源位置不同,或者,第三数据与第一数据的数据内容不同等。或者,第二解调参考信号也可以不针对数据,第二解调参考信号的时频资源位置是协作式多点传输系统预定义的,即第二解调参考信号的时频资源位置不针对某一次特定的传输数据,是传输数据通用的,第二解调参考信号的时频资源位置可以是针对协作式多点传输系统中一个或多个传输点通用的。
在一些可能的实现方式中,接收点接收到的用于指示第二解调参考信号的时频资源位置的第二指示信息可以是由需要传输数据的传输点发送的,例如,传输点B需要传输第二数据,第二解调参考信号用于对第二数据进行解调处理,则传输点B向接收点发送第二指示信息;也可以是多个协作传输点针对一次或每次指示信息的发送需求进行协议后由一个传输点统一发送的。本申请实施例对传输上述第二指示信息的传输点不作具体限定。
在一些可能的实现方式中,当接收点接收到传输点A发送的第一指示信息后,接收点可以向传输点A或者与传输点A存在协作关系的传输点请求获取第二指示信息;或者,与传输点A存在协作关系的传输点获知传输点A需要向接收点发送第一数据后,触发该传输点向接收点发送第二指示信息;又或者,与传输点A存在协作关系的传输点接收到传输点A的请求,触发该传输点向接收点发送第二指示信息;又或者,传输点A发送第一指示信息后,向接收点发送第二指示信息。
步骤S203,传输点A向接收点发送所述第一解调参考信号,接收点根据所述第一指示信息,在所述第一解调参考信号的时频资源位置接收所述第一解调参考信号。
在一些可能的实现方式中,当接收点接收到第一指示信息后,接收点能够根据第一指示信息确定第一解调参考信号的时频资源位置,传输点A可以向接收点发送第一解调参考信号,接收点能够根据获知的第一解调参考信号的时频资源位置,在对应的时频资源位置上接收第一解调参考信号。接收点接收第一解调参考信号以对第一数据的接收信号进行估计,可选的,接收点也可以结合传输点A指示的小区专用参考信号(Cell Reference Signal)确定第一数据的时频资源位置。
步骤S204,接收点根据所述第二解调参考信号的时频资源位置确定所述第一数据的时频资源位置。
在一些可能的实现方式中,接收点在接收到第二指示信息后,能够根据第二指示信息确定第二解调参考信号的时频资源位置,进而,接收点能够根据第二解调参考信号的时频资源位置确定第一数据的时频资源位置。在此结合图3中的A和图3中的B对接收点确定第一数据的时频资源位置进行示例性说明。如图3中的A所示,接收点能够确定第一数据的RB位置,该RB包括RE1至RE9,其中,RE1至RE9共同承载有第一数据。其中,接收点已确定RE6承载有第二解调参考信号,即第二解调参考信号的时频资源位置为RE6。也就是说,RE6即承载有第一数据中的数据,也承载有第二解调参考信号。接收点确定第一数据的时频资源位置为RE1至RE5和RE7至RE9。在接收点确定出第一数据的时频资源位置后,对这些时频资源位置上的数据进行接收。如图3中的B所示,接收点能够确定第一数据的RB位置,该RB包括RE1至RE9,其中,除RE6外的RE共同承载有第一数据,接收点已确定RE6承载有第二解调参考信号,即第二解调参考信号的时频资源位置为RE6。那么接收点确定第一数据的时频资源位置为RE1至RE5和RE7至RE9。在接收点确定出第一数据的时频资源位置后,对这些时频资源位置上的数据进行接收。综上,如果接收点收到第二指示信息,便可以得知RE6上承载的是第二解调参考信号,并且第一数据没有映射到RE6上,进而避免了接收点在RE6接收第一数据,进行正常的数据的速率匹配,提高数据接收性能。
可选的,接收点可以首先确定与第二解调参考信号的时频资源位置相关的数据,进而确定相关的数据的时频资源位置。如果第一数据包括多个码字,即第一数据的最小数据单元为码字,可以首先确定与第二解调参考信号的时频资源位置相关的一个或多个码字,进而根据第二解调参考信号的时频资源位置,确定这一个或多个码字的时频资源位置。如果第一数据包括多个码字对应的层的数据,即第一数据的最小数据单元为层,可以首先确定与第二解调参考信号的时频资源位置相关的一个或多个层的数据,进而根据第二解调参考信号的时频资源位置,确定这一个或多个层的数据的时频资源位置。如果第一数据包括多个层对应的天线端口数据,即第一数据的最小数据单元为天线端口,可以首先确定与第二解调参考信号的时频资源位置相关的一个或多个天线端口数据,进而根据第二解调参考信号的时频资源位置,确定这一个或多个天线端口数据的时频资源位置。
在一些可能的实现方式中,如果接收点确定RE6承载有数据,该数据属于第一数据,则可以请求传输点重发,或者请求传输点将该时频资源位置上的数据映射到其他时频资源位置上,又或者选择忽略该时频资源位置上的数据。进一步可选的,在接收第一数据后,向传输点发送接收报告,以告知传输点RE6上的数据未被接收。
步骤S205,接收点根据所述第一解调参考信号对所述第一数据进行解调处理。
在一些可能的实现方式中,接收点接收到第一数据后,可以根据第一解调参考信号对第一数据进行解调处理。
需要说明的是,本申请实施例对所涉及的执行步骤的顺序不作具体限定,例如,传输点B可以同时接收第一指示信息和第二指示信息,即步骤S201和步骤S202并行执行;或者,步骤S204在步骤S203之前执行等。
可以得知,本申请实施例中,接收点通过接收第一指示信息,能够确定第一数据的第一解调参考信号的时频资源位置;接收点通过接收第二指示信息,能够确定第二解调参考信号的时频资源位置,接收点能够根据第二解调参考信号的时频资源位置确定第一数据的时频资源位置,以使第一数据的时频资源位置规避第二解调参考信号的时频资源位置,进而能够避免接收点对第一数据和第二解调参考信号的接收干扰,明确第一数据的时频资源位置,进行正确的数据速率匹配,提升接收点的接收性能。
请参阅图4,图4是本申请实施例提供的另一种通信方法的流程示意图。如图4所示,该方法包括以下步骤。
步骤S401,传输点A向接收点发送第一指示信息,所述第一指示信息用于指示第一数据的第一解调参考信号的时频资源位置,接收点接收所述第一指示信息。
步骤S402,传输点B向接收点发送高层信令,所述高层信令携带有所述第二解调参考信号的时频资源位置的相关信息和与所述相关信息对应的标识。
步骤S403,传输点B向接收点发送物理层信令,接收点通过所述物理层信令接收所述第二指示信息,所述第二指示信息包括至少一个第一标识,所述第一标识与所述至少一组第二解调参考信号的时频资源位置的相关信息对应。
在一些可能的实现方式中,传输点B首先可以向接收点发送高层信令,例如无线资源控制(Radio Resource Control,RRC)信令、广播信令,该高层信令中携带有第二解调参考信号的时频资源位置的相关信息和与所述相关信息对应的标识。
在一些可能的实现方式中,第一高层信令中携带有第二解调参考信号的时频资源位置的相关信息和与该相关信息对应的标识。其中,第一高层信令中可以携带至少一组第二解调参考信号的时频资源位置的相关信息,和与相关信息对应的标识,本申请实施例对相关信息与标识的关系不做具体限定,例如,每组相关信息对应一个标识,或者多组相关信息对应一个标识等。例如,第一高层信令中可以携带有第二解调参考信号的全部的时频资源位置的相关信息,或者第一高层信令中可以携带有一组第二解调参考信号的时频资源位置的相关信息,或者第一高层信令中可以携带有与第一数据相关的一组或多组第二解调参考信号的时频资源位置的相关信息。接收点在接收到第一高层信令携带的相关信息和相关信息对应的标识后,可以存储上述相关信息和相关信息对应的标识。
第一高层信令对应至少一个物理层信令,在与该第一高层信令对应的物理层信令中包括该第一高层信令携带的至少一个标识。也就是说,接收点通过物理层信令接收第二指示信息,该第二指示信息包括至少一个标识。接收点根据接收到的至少一个标识可以确定该标识对应的相关信息,进而根据所确定的相关信息来确定第二解调参考信号的时频资源位置。在此,如果传输点为基站,那么物理层信令可以是DCI等控制信令。
在一些可能的实现方式中,第二高层信令能够携带有至少一个解调参考信号的时频资源位置的一组或多组相关信息,例如,一个第二高层信令中可以携带有第一解调参考信号 的时频资源位置的一组或多组相关信息和第二解调参考信号的时频资源位置的一组或多组相关信息。又例如,该第二高层信令能够携带有协作式多点传输系统中的传输点所发送的全部解调参考信号的时频资源位置的一组或多组相关信息,该第二高层信令由传输点进行协商,统一在一个传输点传输携带有解调参考信号的时频资源位置的一组或多组相关信息。接收点在接收到第二高层信令携带的相关信息和相关信息对应的标识后,可以存储上述相关信息和相关信息对应的标识。
第二高层信令对应至少一个物理层信令。在于该第二高层信令对应的物理层信令中包括至少一个标识,可选的,也可以包括与至少一个标识相关的解调参考信号的标识。例如,与第二高层信令对应的一个物理层信令可以包括第一标识和第一解调参考信号标识,并指示该第一标识与第一解调参考信号相关;同时可以包括第二标识和第二解调参考信号标识,并指示该第二标识与第二解调参考信号相关。也就是说,接收点通过物理层信令能够同时接收第一指示信息和第二指示信息。接收点根据接收到的至少一个标识可以确定该标识对应的相关信息,进而根据所确定的相关信息来确定第一解调参考信号和第二解调参考信号的时频资源位置。在此,如果传输点为基站,那么物理层信令可以是DCI等控制信令。
本申请实施例中可选的,在高层信令,比如RRC信令,中包括一组或者多组数据资源映射指示(PDSCH-RE-MappingConfig)信息,数据资源映射指示信息包括了数据资源映射指示信息的标识信息(pdsch-RE-MappingConfigId)和第二DMRS(第二解调参考信号)的时频资源位置的相关信息,相关信息可以比如指示解调参考信号的图案(DMRS pattern)和/或者解调参考信号的天线端口(DMRS port)等等。
一种具体的信令实现方式如下:
Figure PCTCN2018083096-appb-000001
基于上述信令实现方式,示出了RRC信令中的一种数据资源映射指示信息所包括的内容。该数据资源映射指示信息包括了数据资源映射指示信息的标识信息(pdsch-RE-MappingConfigId)和第二DMRS的时频资源位置的相关信息,这里相关信息包括DMRS ports和/或DMRS pattern;或者DMRS port group。这里,DMRS ports表示DMRS的天线端口信息(例如,这里天线端口信息包括天线端口的端口号);DMRS pattern表示DMRS图案;或者DMRS port group表示DMRS天线端口组的信息。对于第二DMRS的时频资源位置的相关信息,可参见本申请下文中的具体描述。
本申请实施例中可选的,DCI中具体指示使用RRC配置的哪组数据资源映射指示信息。举例来说,可以是通过DCI中通过数据资源映射和准共址指示域(PDSCH RE Mapping  and Quasi-Co-Location Indicator,PQI)的比特位来指示RRC信令中配置的数据资源映射指示信息的标识信息(例如,pdsch-RE-MappingConfigId)。一种具体的实现方式可以参见表1,表1中示例以2个bit表示数据资源映射和准共址指示域进行举例说明。
Figure PCTCN2018083096-appb-000002
表1
在此,数据资源映射和准共址指示域也可以理解为DCI携带的第二指示信息的一种具体实现方式。该第二指示信息通过指示对应的标识,进而能够确定RRC中与该标识对应的第二解调参考信号的时频资源位置的相关信息。例如,上述示例性的RRC信令中,数据资源映射指示信息的标识信息为标识1,DCI中数据资源映射和准共址指示域的比特取值为“00”,则可以确定DCI指示标识1中的第二解调参考信号的时频资源位置的相关信息,进而可以确定相关信息为DMRS ports ENUMERATED{7,8,9,10,11,12,13,14,spare1},和/或DMRS pattern ENUMERATED{pattern 1,pattern 2};或者DMRS port group ENUMERATED{group编号1,group编号2,…}。
可以得知,接收点获取数据资源映射指示信息中的第二DMRS的时频资源位置,即可知道数据不映射到所述第二DMRS的时频资源位置。即不会在所述第二DMRS的时频资源位置上进行数据接收。本申请实施例中,接收点接收的高层信令可以是第一高层信令,也可以是第二高层信令,在此不作具体限定。接收点接收的物理层信令是与高层信令对应的物理层信令。可选的,传输点B也可以直接通过物理层信令来接收第二指示信息,该第二指示信息包括第二解调参考信号的时频资源位置的相关信息。即物理层信令即能够指示第二解调参考信号的时频资源位置的相关信息。应当理解的,该物理层信令可以仅包括一组或多组第二解调参考信号的时频资源位置的相关信息;该物理层信令也可以包括一组或多组其他解调参考信号的时频资源位置的相关信息,例如,该物理层信令可以同时包括一组或多组第一解调参考信号的时频资源位置的相关信息以及一组或多组第二解调参考信号的时频资源位置的相关信息。
本申请实施例中可选的,在物理层信令中指示第二解调参考信号的时频资源位置的相关信息可以是通过数据映射指示信息域进行指示,例如,数据映射指示信息域可以为“DMRS pattern和/或port(s)for PDSCH RE mapping”。通过该域中的比特值来指示DMRS pattern和/或DMRS port信息来实现,具体的信令举例如下:
-DMRS pattern和/或port(s)for PDSCH RE mapping
本申请实施例中可选的,第一指示信息和第二指示信息可以都是传输点A发送的,也可以都是传输点B发送的,也可以是传输点A发送第一指示信息,传输点B发送第二指示信息,也可以是传输点A发送第二指示信息,传输B发送第一指示信息,也可以是由 传输点C发送的,具体的,在此不做限定。
综上,在一些可能的实现方式中,第二解调参考信号的时频资源位置的相关信息可以包括第二解调参考信号的图案(DMRS Pattern)和/或第二解调参考信号相关的天线端口(DMRS Port)信息。其中,天线端口信息又包括天线端口的端口号和/或天线端口的个数。
具体实现中,如果第二解调参考信号的图案与天线端口信息对应,则高层信令可以携带第二解调参考信号的图案或天线端口信息中的任意一个,以及与其对应的标识。或者,直接由物理层信令携带有第二解调参考信号的图案或天线端口信息中的任意一个。举例说明,第二解调参考信号的图案1(pattern 1)与天线端口的端口号{7,8,11,13}对应,第二解调参考信号的图案2(pattern 2)与天线端口的端口号{9,10,12,14}对应。则在物理层信令中可以通过1比特(bit)来指示图案或天线端口的端口号。如表2A中所示,物理层信令中可以通过比特“0”来指示图案1,通过比特“1”来指示图案2。当然,还可以包括其他指示方式,例如比特“0”来指示图案2,通过比特“1”来指示图案1。又如表2B中所示,物理层信令中可以通过比特“0”来指示天线端口的端口号{7,8,11,13},通过比特“1”来指示天线端口的端口号{9,10,12,14}。当然,还包括其他指示方式,例如物理层信令中可以通过比特“1”来指示天线端口的端口号{7,8,11,13},通过比特“0”来指示天线端口的端口号{9,10,12,14}。在此比特值,指示信息以及比特值与指示信息的对应关系仅是举例,也可以采用其他的比特值,指示信息以及比特值与指示信息的对应关系,在此不做具体限定。
比特值 DMRS图案
0 Pattern 1
1 Pattern 2
表2A
比特值 DMRS天线端口的端口号
0 7,8,11,13
1 9,10,12,14
表2B
具体实现中,如果DMRS图案和DMRS天线端口的端口号不对应,则在高层信令或在物理层信令中的相关信息需要同时包括DMRS图案和DMRS天线端口的端口号。其中,可以分开指示DMRS图案和DMRS天线端口的端口号,也可以联合指示DMRS图案和DMRS天线端口的端口号。下面对分开指示与联合指示两种情况分别举例进行说明。
例如,在物理层信令中,可以通过1bit来指示DMRS图案,参见表3A,通过比特“0”来指示图案1,通过比特“1”来指示图案2。或者通过比特“1”来指示图案1,通过比特“0”来指示图案2。可以通过2个bit来指示DMRS的天线端口信息。参见表3B,通过比特“00”来指示端口号{7}或者指示端口个数为1个;通过比特“01”来指示端口号{7,8}或者指示端口个数为2个;通过比特“10”来指示端口号{7,8,9,10}或者指示端口个数为4个;通过比特“11”来指示端口号{7,8,9,10,11}或者指示端口个数为5个。这1个bit和2个bit分别用来 指示DMRS图案和DMRS天线端口的端口号。这1个bit和2个bit在物理层信令中可以是相邻的,也可以是不相邻的。在此比特值,指示信息以及比特值与指示信息的对应关系仅是举例,也可以采用其他的比特值,指示信息以及比特值与指示信息的对应关系,在此不做具体限定。
比特值 DMRS图案
0 Pattern 1
1 Pattern 2
表3A
比特值 DMRS天线端口信息(端口号/端口个数)
00 7/1
01 7,8/2
10 7,8,9,10/4
11 7,8,9,10,11/5
表3B
例如,在物理层信令中,可以通过3个bit或4个bit来联合指示DMRS图案和DMRS天线端口信息。以3个bit为例,如表4所示,表4示出了一种4个bit的比特值和DMRS图案和DMRS天线端口信息的对应关系。在此比特值,指示信息以及比特值与指示信息的对应关系仅是举例,也可以采用其他的比特值,指示信息以及比特值与指示信息的对应关系,在此不做具体限定。
Figure PCTCN2018083096-appb-000003
表4
在一些可能的实现方式中,第二解调参考信号的时频资源位置的相关信息也可以包括第二解调参考信号对应的天线端口组的信息。其中,将天线端口进行分组并确定天线端口组与各传输点或者准共址信息的对应关系。例如,传输点A使用天线端口号7或8的天线 端口来发送第一解调参考信号,可以确定天线端口号7、8的天线端口为一个天线端口组,该天线端口组的组号为天线端口组1;传输点B使用天线端口号9或10的天线端口来发送第二解调参考信号,可以确定天线端口号9、10的天线端口为一个端口组,该天线端口组的组号为天线端口组2。接收点在接收到天线端口组的信息时,即能够根据天线端口组确定与天线端口组的信息对应的解调参考信号的时频资源位置。例如,接收点接收到天线端口组1,则确定第二解调参考信号的时频资源位置。这里,天线端口组的信息可以是天线端口组的组号,也可以是天线端口组的其他信息。关于第二解调参考信号的天线端口组的信息可以通过物理层信令中的1bit或2bit进行指示,或者,关于第二解调参考信号的天线端口组的信息可以是通过高层信令进行指示,或者也可以通过高层信令和物理层信令联合指示,比如可以参考DMRS图案和/或DMRS天线端口的指示方式,在此不做限定。对于天线端口组的分组可以是预定义的,即接收点与系统中的传输点共知的,也可以是传输点通过信令告知接收点的,具体的在此不做限定。
具体的物理层信令可以举例如下:传输点向接收点发送一种指示信息,该指示信息可以是数据映射的指示信息,该指示信息包括第二解调参考信号的天线端口组的信息。比如接收点通过DCI信令中接收该指示信息,当接收点接收到该指示信息时,即可确定在该DMRS天线端口组中的DMRS天线端口对应的时频资源位置上不进行数据映射,即不进行数据接收。比如用1或者2个比特信息通知DMRS天线端口组的信息。具体如下:
-DMRS port group for PDSCH RE mapping---1bit or 2bits。
本申请实施例中可选的,所述接收点根据所述第二解调参考信号的时频资源位置确定所述第一数据中与所述第二解调参考信号的时频资源位置相关的数据的时频资源位置,所述与第二解调参考信号的时频资源位置相关的数据包括所述第一数据包括的码字、所述第一数据包括的码字对应的层的数据、所述第一数据包括的层对应的天线端口数据中的至少一个数据。
具体的比如,以携带第二解调参考信号的时频资源位置相关的信息的数据映射指示信息为例,来说明第二解调参考信号的时频资源位置的相关信息与第一数据(比如码字/层/DMRS port)的关系。具体的,第二解调参考信号的时频资源位置的相关信息与第一数据(比如码字/层/DMRS port)的关系可以是预定义的,也可以是指示的,具体的指示信令可以是高层信令或者物理层信令等。
预定义的比如,数据映射指示信息与码字的对应关系,以2个数据映射指示信息与2个码字的对应关系为例,比如第一个数据映射指示信息对应第一个码字的数据映射,第二个数据映射指示信息对应第二个码字的数据映射,反之亦可;
数据映射指示信息与层的对应关系,以2个数据映射指示信息与层的对应关系为例,比如如果有2层数据,则第一个数据映射指示信息对应第一层数据的数据映射,第二个数据映射指示信息对应第二层数据的数据映射;如果有3层数据,则第一个数据映射指示信息对应第一层和第二层数据的数据映射,第二个数据映射指示信息对应第三层数据的数据映射;或者如果有3层数据,则第一个数据映射指示信息对应第一层数据的数据映射,第二个数据映射指示信息对应第二层和第三层数据的数据映射;如果有4层数据,则第一个数据映射指示信息对应第一层和第二层数据的数据映射,第二个数据映射指示信息对应第三层和第四层数据的数据映射;或者如果有4层数据,则第一个数据映射指示信息对应第 一层数据的数据映射,第二个数据映射指示信息对应第二层、第三层和第四层数据的数据映射;或者如果有4层数据,则第一个数据映射指示信息对应第一层、第二层和第三层数据的数据映射,第二个数据映射指示信息对应第四层数据的数据映射;其他层的情况也类似,在此不做具体限定。
数据映射指示信息与天线端口的对应关系,以2个数据映射指示信息与天线端口的对应关系为例,比如如果有2个天线端口,则第一个数据映射指示信息对应第一个天线端口的数据的数据映射,第二个数据映射指示信息对应第二个天线端口的数据的数据映射,反之亦可;如果有3个天线端口,则第一个数据映射指示信息对应第一个和第二个天线端口的数据的数据映射,第二个数据映射指示信息对应第三个天线端口的数据的数据映射;或者如果有3个天线端口,则第一个数据映射指示信息对应第一个天线端口的数据的数据映射,第二个数据映射指示信息对应第二个和第三个天线端口的数据的数据映射;如果有4个天线端口,则第一个数据映射指示信息对应第一个和第二个天线端口的数据的数据映射,第二个数据映射指示信息对应第三个和第四个天线端口的数据的数据映射;或者如果有4个天线端口,则第一个数据映射指示信息对应第一个天线端口的数据的数据映射,第二个数据映射指示信息对应第二个、第三个和第四个天线端口的数据的数据映射;或者如果有4个天线端口,则第一个数据映射指示信息对应第一个、第二个和第三个天线端口的数据的数据映射,第二个数据映射指示信息对应第四个天线端口的数据的数据映射;其他层的情况也类似,在此不做具体限定。
本申请实施例中可选的,多个传输点协作为一个终端设备传输数据时,具体的根据第二解调参考信号的时频资源位置确定第一数据的时频资源位置,具体的举例如下:其中下面的数据映射指示信息用于携带第二解调参考信号的时频资源位置的相关信息。
第一种情况为,当多个传输点协作传输来自一个码字的多层时,即一个码字的多层是分别来自多个传输点。此时传输点可以针对一个码字的每层/每个天线端口分别指示终端设备一组第二DMRS时频资源位置的相关信息。
针对第一种情况,可以存在至少以下三种示例性的实现方式。
实现方式一:一个高层信令中数据映射指示信息标识对应一组第二DMRS时频资源位置的相关信息,在DCI中配置多个数据映射指示信息的标识。比如:如果配置了2层/2个天线端口,则对应在DCI中配置2个数据映射指示信息标识,第一个数据映射指示信息标识对应第一层数据传输(或者第一个天线端口的数据传输),第二个数据映射指示信息标识对应第二层数据传输(或者第二个天线端口的数据传输)。
实现方式二:一个高层信令中的数据映射指示信息标识对应多组第二DMRS时频资源位置的相关信息,在DCI中配置1个数据映射指示信息标识。终端设备根据DCI中的一个数据映射指示信息标识,即可确定出多组第二DMRS时频资源位置,进一步根据数据映射指示信息与数据的对应关系,既可以确定数据的时频资源位置。比如:如果配置了2层/2个天线端口,则对应配置1个数据映射指示信息标识,该标识包括2组第二DMRS时频资源位置的相关信息。则第一组第二DMRS时频资源位置的相关信息对应第一层数据传输(或者第一个天线端口的数据传输),第二组第二DMRS时频资源位置的相关信息对应第二个数据映射指示信息标识对应第二层数据传输(或者第二个天线端口的数据传输)。
比如RRC中信令中一个数据映射指示信息标识对应多组第二DMRS时频资源位置的相关信息,一种示例性的信令实现方式如下:
Figure PCTCN2018083096-appb-000004
在上述信令实现方式中,可以通过方式(1)表达两组第二DMRS的时频资源位置的相关信息;或者,通过方式(2)表达两组第二DMRS的时频资源位置的相关信息。
实现方式三:通过物理层信令携带第二指示信息,第二指示信息可以包括一组或者多组第二解调参考信号的时频资源位置的相关信息。比如:如果配置了2层/2个天线端口,则第二指示信息中可以包括2组第二解调参考信号的时频资源位置的相关信息,第一组第二解调参考信号的时频资源位置的相关信息对应第一层数据传输(或者第一个天线端口的数据传输),第二组第二解调参考信号的时频资源位置的相关信息对应第二层数据传输(或者第二个天线端口的数据传输)。
当接收点接收到该信息后,即可知一个码字的层或天线端口对应不同的数据映射指示信息,进而对该码字的不同层或者天线端口的数据在不同的时频资源上分别进行接收。
第二种情况为,当多个传输点协作传输,不同的传输点传输不同的码字。则针对每个码字指示1组第二DMRS时频资源位置的相关信息。
针对第二种情况,可以存在至少以下三种示例性的实现方式。
实现方式一:一个高层信令中的数据映射指示信息标识对应一组第二DMRS时频资源位置的相关信息,在DCI中配置多个数据映射指示信息标识,比如默认最多支持2个数据映射指示信息。如果配置了2个码字,则对应配置2个数据映射指示信息标识,第一个数据映射指示信息标识对应第一个码字,第二个数据映射指示信息标识对应第二个码字。
实现方式二:一个高层信令中的数据映射指示信息标识对应多组第二DMRS时频资源位置的相关信息,在DCI中配置1个数据映射指示信息标识。终端设备根据DCI中的一个数据映射指示信息标识,即可确定出多组第二DMRS时频资源位置,进一步根据数据映射指示信息与数据的对应关系,既可以确定数据的时频资源位置。比如:如果配置了2个码字,则对应配置1个数据映射指示信息标识,该标识包括2组第二DMRS时频资源位置的相关信息。则第一组第二DMRS时频资源位置的相关信息对应第一个码字的数据传输,第二组第二DMRS时频资源位置的相关信息对应第二个数据映射指示信息标识对应第二个码字的数据传输。具体的RRC信息如上实施例中的描述,在此不再赘述。
实现方式三:通过物理层信令携带第二指示信息,第二指示信息可以包括一组或者多组第二解调参考信号的时频资源位置的相关信息。比如:如果配置了2个码字,则第二指示信息中可以包括2组第二解调参考信号的时频资源位置的相关信息,第一组第二解调参考信号的时频资源位置的相关信息对应第个码字数据传输,第二组第二解调参考信号的时频资源位置的相关信息对应第个码字的数据传输。
当接收点接收到该信息后,即可知道针对不同码字的层或port对应不同的数据映射指示信息,进而对不同码字的数据在不同的时频资源上分别进行接收。
本申请实施例可选的,适用于一个调度时刻仅有一个传输点传输数据的情况,也适用于一个调度时刻有多个传输点传输数据的情况。适用于一个调度时刻仅有一个码字或者层或者天线端口的数据传输的情况,也适用于一个调度时刻有多个码字或者层或者天线端口的数据传输的情况。
下面以传输点为网络设备,接收点为终端进行举例说明。
本申请实施例可选的,接收点可以按照预定义的规则,确定不同码字/层/天线端口的数据的时频资源位置信息。比如如果一个下行控制信息中指示的两个码字的调度的资源位置重叠,则可以默认在两个码字对应的DMRS的时频资源位置上,都没有任何数据映射。又比如如果一个DCI中针对两个层或者port的调度的资源位置重叠,则可以默认在重叠的两个层或者port对应的DMRS的位置上,都没有任何数据映射。
本申请实施例可选的,接收点可以按照预定义的规则,确定不同码字/层/天线端口的数据的时频资源位置信息。比如如果两个下行控制信息中指示的两个数据的调度的资源位置重叠,则可以默认在两个数据对应的DMRS的时频资源位置上,都没有任何数据映射。又比如不管两个数据的调度的资源位置是否重叠,接收点可以默认在两个数据对应的DMRS的时频资源位置上,都没有任何数据映射。或者是否与资源位置重叠相关可以是预定义的,也可以是传输点通过信令告知接收点,具体的在此不做限定。
本申请实施例可选的,针对非理想回传(backhaul)情况下,不同的传输点可以分别发送下行控制信息进行数据的调度和传输,因此会出现不同的传输点是否调度数据彼此不知的情况,为了提高接收点信道估计的准确性,在一个传输点发送DMRS的位置上,另一传输点不发送信号。因此可以根据不同的DMRS天线端口组进行对应的数据映射,协作下为了QCL(准共址)指示,不同传输点会采用不同DMRS天线端口组中的天线端口进行数据的发送,因此可以根据DMRS port天线端口组信息确定数据的时频资源位置。
具体的比如:根据高层信令中的DMRS天线端口组信息或者预定义的DMRS天线端口组信息,可以明确不同传输点采用不同的DMRS天线端口组中的天线端口发送数据,再根据物理层信令中传输数据的DMRS天线端口所属的DMRS天线端口组信息,即可确定在其他DMRS天线端口组中的DMRS天线端口对应的时频资源位置上不进行数据映射。
下面以数据传输的单位为码字的情况举例说明,而针对数据传输的单位为层的数据或者天线端口的数据类似,在此不再赘述。
比如针对码字1采用DMRS天线端口组1中的DMRS天线端口进行传输,码字2采用DMRS天线端口组2中的DMRS天线端口进行传输。则接收点可以确定码字1的数据不在DMRS天线端口组2中的DMRS天线端口对应的时频资源上映射,码字2的数据不 在DMRS天线端口组1中的DMRS天线端口对应的时频资源上映射。
本申请实施例可选的,方式一:数据的时频资源位置与数据的调度资源位置相关,比如两个码字传输时只有重叠的调度资源上采用上述实施例确定数据的时频资源位置,比如码字1传输的频段包括频段1和频段2,码字2传输的频段包括频段1和频段3,则码字2和码字2在频段1重叠,而码字1的频段2上没有码字2的数据,码字2的频段3上没有码字1的数据。因此针对码字1进行数据映射时,码字1在频段1中的DMRS天线端口组2中的DMRS天线端口对应的时频资源上不进行数据映射;码字1在频段2中的DMRS天线端口组2中的DMRS天线端口对应的时频资源上可以进行数据映射。针对码字2进行数据映射时,码字2在频段1中的DMRS天线端口组1中的DMRS天线端口对应的时频资源上不进行数据映射,码字2在频段3中的DMRS天线端口组1中的DMRS天线端口对应的时频资源上可以进行数据映射。
本申请实施例可选的,方式二:数据的时频资源位置与数据的调度资源位置无关,比如不管两个码字的调度资源是否重叠,码字1在DMRS天线端口2中的DMRS天线端口对应的时频资源上都不进行数据映射,码字2在DMRS天线端口1中的DMRS天线端口对应的时频资源上都不进行数据映射。
本申请实施例可选的,具体采用方式一还是方式二确定数据的时频资源位置,可以是预定义的方式,网络设备和终端都可知,也可以是网络设备通过信令告知UE具体的采用的方式,信令可以是物理层信令,也可以是高层信令。具体的实施方式在此不做限定。
进一步可选的,当终端处于协作模式下,可以默认在所有DMRS天线端口组中的DMRS天线端口对应的时频资源位置上没有数据映射。
比如高层信号或者预定义的分配了2个DMRS天线端口组,则终端可以预定义在该2个DMRS天线端口组中的DMRS天线端口对应的时频资源位置上没有数据传输。
针对非理性回传的场景下,网络设备间可以协商具体的DMRS天线端口组的分组情况,以及各自使用的DMRS天线端口,并且在后续的协作传输中,在该两组DMRS天线端口对应的时频资源位置上仅传输各自的天线端口组对应的DMRS而不传输数据。因为不确定彼此是否调度数据,因此为了避免数据对DMRS的干扰,预定义基站在邻基站DMRS天线端口组的天线端口对应的时频资源上不映射数据,终端在DMRS天线端口组对应的天线端口的时频资源上仅根据指示接收DMRS,而不进行数据的接收。
比如传输点间协商好,针对接收点的数据传输,传输点A用DMRS天线端口组1对应的DMRS天线端口(和/或pattern),传输点B用DMRS天线端口组2对应的DMRS天线端口(和/或pattern),则传输点A在DMRS天线端口组2对应的DMRS天线端口的时频资源上不进行接收点的数据映射,传输点B在DMRS天线端口组1对应的DMRS天线端口的时频资源上不进行接收点的数据映射。而接收点在接收传输点A的数据时(或在接收DMRS天线端口组1对应的DMRS天线端口发送的数据时),在DMRS天线端口组2对应的DMRS天线端口的时频资源上不进行数据接收;接收点在接收传输点B的数据时(或在接收DMRS天线端口组2对应的DMRS天线端口发送的数据时),在DMRS天线端口组1对应的DMRS天线端口的时频资源上不进行数据接收。
或者通过1bit指示,指示接收点是否在数据传输的DMRS天线端口组外的其他DMRS天线端口组上不进行数据接收。应当理解,步骤S401中传输点A向接收点发送第一指示 信息的具体实施方式可以参见现有技术中传输点向接收点发送解调参考信号的配置信息的具体实施方式,或者也可以参见上述传输点B向接收点发送的第二指示信息的具体实施方式。在此不做限制。
步骤S404,传输点A向接收点发送第一解调参考信号,接收点根据所述第一指示信息,在所述第一解调参考信号的时频资源位置接收所述第一解调参考信号。
步骤S405,接收点根据所述第二解调参考信号的时频资源位置确定所述第一数据的时频资源位置。
步骤S406,接收点根据所述第一解调参考信号对所述第一数据进行解调处理。
步骤S404至步骤S406的执行方式可参见图2涉及实施例中的相关具体描述,在此不再赘述。
本申请实施例中可选的,传输点B也可以向接收点发送第二解调参考信号,接收点能够根据所述第二指示信息,在所述第二解调参考信号的时频资源位置上接收所述第二解调参考信号,接收点能够根据第一解调参考信号的时频资源位置来确定第二数据的时频资源位置,也就是说,接收点确定第二数据的时频资源位置时,能够规避第一解调参考信号的时频资源位置,即接收点能够在第一解调参考信号的时频资源位置上不接收第二数据,进而不影响接收点对第一解调参考信号的接收。并且,接收点能够根据第二解调参考信号对第二数据进行解调处理。
需要说明的是,本申请实施例对上述方法的执行步骤不作具体限定。
请参阅图5,图5是本申请实施例提供的又一种通信方法的流程示意图。如图5所示,该方法可以包括以下步骤。
步骤S501,传输点C向接收点发送第一指示信息,所述第一指示信息用于指示传输点A需要发送的第一数据的第一解调参考信号的时频资源位置,接收点接收所述第一指示信息。
步骤S502,传输点C向接收点发送第二指示信息,所述第二指示信息用于指示传输点B需要发送的第二数据的第二解调参考信号的时频资源位置,接收点接收所述第二指示信息。
步骤S503,传输点A向接收点发送第一解调参考信号,接收点根据所述第一指示信息接收所述第一解调参考信号。
步骤S504,接收点根据第二解调参考信号的时频资源位置确定所述第一数据的时频资源位置。
步骤S505,接收点根据所述第一解调参考信号对所述第一数据进行解调处理。
步骤S506,传输点B向接收点发送第二解调参考信号,接收点根据第二指示信息接收所述第二解调参考信号。
步骤S507,接收点根据第一解调参考信号的时频资源位置确定第二数据的时频资源位置。
步骤S508,接收点根据所述第二解调参考信号对所述第二数据进行解调处理。
在一些可能的实现方式中,由协作式多点传输系统中的一个传输点来统一管理及发送指示信息,例如,本实施例中传输点C能够获知传输点A需要发送第一数据,传输点B需要发送第二数据,进而,由传输点C为接收点配置指示信息,通过第一指示信息指示第 一数据的第一解调参考信号的时频资源位置,以及通过第二指示信息指示第二数据的第二解调参考信号的时频资源位置。传输点C向接收点发送指示信息的方式可参见上述实施例。
本申请实施例可选的,当传输点A向接收点发送第一解调参考信号和第一数据时,传输点A根据第二解调参考信号的时频资源位置确定第一数据的时频资源位置,包括传输点A在第二解调参考信号的时频资源位置上不映射第一数据。可选的,进一步,当传输点B向该接收点发送第二解调参考信号和第二数据时,传输点B根据第一解调参考信号的时频资源位置确定第二数据的时频资源位置,包括传输B在第一解调参考信号的时频资源位置上不映射第二数据。
这里传输点A传输的第一数据和传输点B传输的第二数据可以是不同的码字;也可以是相同码字对应的不同层的数据,例如,一个码字对应两个层的数据,则第一数据表示第一层的数据,第二数据表示第二层的数据;也可以是相同层对应的不同天线端口的数据,例如,一个码字的第一层的数据对应第一天线端口数据和第二天线端口数据,则第一数据可以表示第一天线端口数据,第二数据可以表示第二天线端口数据。第一数据和第二数据可以根据协商同时被发送,也可以不同时发送,在此不作具体限定。
对于本申请实施例中的其他步骤的执行方式可参见上述实施例,在此不再赘述。
需要说明的是,本申请实施例不限定步骤的执行顺序。
请参阅图6,图6是本申请实施例提供的又一种通信方法的流程示意图。如图6所示,该方法包括以下步骤。
步骤S601,传输点B向传输点A发送第二指示信息,第二指示信息用于指示第二解调参考信号的时频资源位置,传输点A接收所述第二指示信息。
步骤S602,传输点A根据所述第二解调参考信号的时频资源位置确定第一数据的时频资源位置。
步骤S603,传输点A向接收点发送第一指示信息,所述第一指示信息用于指示所述第一数据的第一解调参考信号的时频资源位置,接收点接收所述第一指示信息。
步骤S604,接收点根据所述第一解调参考信号,对所述第一数据进行解调处理。
在一些可能的实现方式中,传输点B向传输点A发送第二指示信息,该第二指示信息用于指示第二解调参考信号的时频资源位置。具体的,传输点B可以是在接收到传输点A针对第二指示信息的请求后,向传输点A发送第二指示信息;或者,传输点B也可以是获知传输点A需要确定第一数据的时频资源位置后,向传输点A发送第二指示信息,或者,传输点B通过其他方式触发向传输点A发送第二指示信息。传输点A在接收到第二指示信息后,能够根据第二解调参考信号的时频资源确定第一数据的时频资源位置,比如第一数据的时频资源位置不包括第二解调参考信号的时频资源位置,即不在第二解调参考信号的时频资源位置上映射第一数据,在此结合图7对传输点A确定第一数据的时频资源位置进行示例性说明。图7中,传输点A可以为第一数据分配RB,其中RB包括RE1至RE9,传输点A在接收到第二指示信息后,能够确定第二解调参考信号的时频资源位置为RE3,则传输点将第一数据映射至RE上时,可以将第一数据映射在RE1至RE2,以及RE4至RE9中的至少一个位置上。从而,传输点A在进行第一数据映射处理时,能够规避第二解调参考信号的时频资源位置,进而能够保证第一数据与第二解调参考信号不在 同一个时频资源位置上发生干扰。传输点A向接收点发送第一指示信息,第一指示信息用于指示第一数据的解调参考信号的时频资源位置。接收点能够根据第一指示信息来接收第一解调参考信号,并且根据第一解调参考信号对第一数据进行接收以及进行解调处理。在此,接收点无需判断第一数据是否与其他解调参考信号占用资源冲突,提升接收点接收数据性能。
可选的,在协作式多点传输系统中,协作传输点之间或者传输点与接收点之间确定一种共知的方式,确定传输点向接收点发送的数据与传输点向接收点发送的解调参考信号的时频资源位置不同;或者确定接收点在检测到一个时频资源位置上同时存在数据和解调参考信号时,不接收该数据,等等。
需要说明的是,上述图2至图7所示的方法中的第一解调参考信号、第二解调参考信号的类型可以至少包括以下几种情况,本申请对此不作特别限定。
第一解调参考信号为front loaded DMRS,第二解调参考信号为front loaded DMRS;第一解调参考信号为additional DMRS,第二解调参考信号为additional DMRS;
第一解调参考信号为front loaded DMRS,第二解调参考信号为additional DMRS;
第一解调参考信号为additional DMRS,第二解调参考信号为front loaded DMRS;
第一解调参考信号为additional DMRS,第二解调参考信号为additional DMRS。
其中,front loaded DMRS也可称为基本的解调参考信号(Demodulation reference signal,DMRS),可以放在数据的开始或者相对靠前的位置。additional DMRS也可称为附加的DMRS。其中,基本的DMRS与附加的DMRS可以承载在同一调度单元的不同符号位置上,该同一调度单元至少包括子帧、时隙、或者微时隙中的任意一种,本申请实施例对此不作特别限定。
图8是本申请另一实施例提供的一种通信方法的流程示意图。如图8所示,该方法至少包括以下步骤。
步骤S801,传输点A向接收点发送第一指示信息,该第一指示信息用于指示第一数据的第一解调参考信号的时频资源位置;接收点接收该第一指示信息。
步骤S802,接收点接收第二指示信息,该第二指示信息用于指示第二解调参考信号的时频资源位置。
步骤S803,传输点A向接收点发送该第一解调参考信号,接收点根据该第一指示信息,在该第一解调参考信号的时频资源位置接收该第一解调参考信号。
需要说明的是,上述步骤S801至S803与图2中所示的方法中的步骤S201至S203一致,步骤S801至S803的具体说明请参考步骤S201至S203,为了简洁,此处不再赘述。
步骤S804,接收点接收第三指示信息,该第三指示信息用于指示第三解调参考信号的时频资源位置。
在一些可能的实施例中,接收点能够接收第三指示信息,该第三指示信息用于指示第三解调参考信号的时频资源位置。本申请实施例中,第三解调参考信号可以是针对协作式多点传输系统中至少一个传输点向本接收点传输的至少一个数据;例如,第三解调参考信号可以是针对协作式多点传输系统中传输点B向接收点传输的第二数据;第三解调参考信号也可以是针对传输点A向接收点传输的第三数据,第三数据与第一数据不同,其中,第三数据与第一数据不同包括第三数据与第一数据所占用的时频资源位置不同,或者,第三 数据与第一数据的数据内容不同等。或者,第三解调参考信号也可以不针对数据,第三解调参考信号的时频资源位置是协作式多点传输系统预定义的,即第三解调参考信号的时频资源位置不针对某一次特定的传输数据,是传输数据通用的,第三解调参考信号的时频资源位置可以是针对协作式多点传输系统中一个或多个传输点通用的。
在一些可能的实现方式中,接收点接收到的用于指示第三解调参考信号的时频资源位置的第三指示信息可以是由需要传输数据的传输点发送的,例如,传输点B需要传输第二数据,第三解调参考信号用于对第二数据进行解调处理,则传输点B向接收点发送第三指示信息;也可以是多个协作传输点针对一次或每次指示信息的发送需求进行协议后由一个传输点统一发送的。本申请实施例对传输上述第三指示信息的传输点不作具体限定。
步骤805,接收点根据该第二解调参考信号的时频资源位置与该第三解调参考信号的时频资源位置确定该第一数据的时频资源位置。
在一些可能的实现方式中,接收点在接收到第二指示信息与第三指示信息后,能够根据第二指示信息确定第二解调参考信号的时频资源位置,并能够根据第三指示信息确定第三解调参考信号的时频资源位置,进而,接收点能够根据该第二解调参考信号的时频资源位置与第三解调参考信号的时频资源位置确定第一数据的时频资源位置。在此结合图9中的A和图9中的B对接收点确定第一数据的时频资源位置进行示例性说明。如图9中的A所示,接收点能够确定第一数据的RB位置,该RB包括RE1至RE12,其中,RE1至RE12共同承载有第一数据。其中,接收点已确定RE5承载有第二解调参考信号,并且已确定RE8承载有第三解调参考信号,即,第二解调参考信号的时频资源位置为RE5,第三解调参考信号的时频资源位置为RE8。也就是说,RE5既承载有第一数据中的数据,也承载有第二解调参考信号,RE8既承载有第一数据中的数据,也承载有第三解调参考信号。接收点确定第一数据的时频资源位置为RE1至RE4、RE6至RE7和RE9至RE12。在接收点确定出第一数据的时频资源位置后,对这些时频资源位置上的数据进行接收。如图9中的B所示,接收点能够确定第一数据的RB位置,该RB包括RE1至RE12,其中,除RE5和RE8外的RE共同承载有第一数据,接收点已确定RE5承载有第二解调参考信号,RE8承载有第三解调参考信号,即,第二解调参考信号的时频资源位置为RE5,第三解调参考信号的时频资源位置为RE8。那么接收点确定第一数据的时频资源位置为RE1至RE4、RE6至RE7和RE9至RE12。在接收点确定出第一数据的时频资源位置后,对这些时频资源位置上的数据进行接收。综上,如果接收点收到第二指示信息和第三指示信息,便可以得知RE5上承载的是第二解调参考信号,RE8上承载的是第三解调参考信号,并且第一数据没有映射到RE5和RE8上,进而避免了接收点在RE5和RE8接收第一数据,进行正常的数据的速率匹配,提高数据接收性能。
可选的,接收点可以首先分别确定与第二解调参考信号的时频资源位置、第三解调参考信号的时频资源位置相关的数据,进而确定相关的数据的时频资源位置。如果第一数据包括多个码字,即第一数据的最小数据单元为码字,可以首先分别确定与第二解调参考信号的时频资源位置、第三解调参考信号的时频资源位置相关的一个或多个码字,进而根据第二解调参考信号的时频资源位置,确定与第二解调参考信号的时频资源位置相关的一个或多个码字的时频资源位置,并且根据第三解调参考信号的时频资源位置,确定与第三解调参考信号的时频资源位置相关的一个或多个码字的时频资源位置。如果第一数据包括多 个码字对应的层的数据,即第一数据的最小数据单元为层,可以首先分别确定与第二解调参考信号的时频资源位置、第三解调参考信号的时频资源位置相关的一个或多个层的数据,进而根据第二解调参考信号的时频资源位置,确定与第二解调参考信号的时频资源位置相关的一个或多个层的数据的时频资源位置,并且根据第三解调参考信号的时频资源位置,确定与第三解调参考信号的时频资源位置相关的一个或多个层的数据的时频资源位置。如果第一数据包括多个层对应的天线端口数据,即第一数据的最小数据单元为天线端口,可以首先分别确定与第二解调参考信号的时频资源位置、第三解调参考信号的时频资源位置相关的一个或多个天线端口数据,进而根据第二解调参考信号的时频资源位置,确定与第二解调参考信号的时频资源位置相关的一个或多个天线端口数据的时频资源位置,并且根据第三解调参考信号的时频资源位置,确定与第三解调参考信号的时频资源位置相关的一个或多个天线端口数据的时频资源位置。
可选的,接收点可以联合确定与第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置相关的数据,进而确定相关的数据的时频资源位置。如果第一数据包括多个码字,即第一数据的最小数据单元为码字,可以联合确定与第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置相关的一个或多个码字,进而根据第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置,确定与第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置相关的一个或多个码字的时频资源位置。如果第一数据包括多个码字对应的层的数据,即第一数据的最小数据单元为层,可以联合确定与第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置相关的一个或多个层的数据,进而根据第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置,确定与第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置相关的一个或多个层的数据的时频资源位置。如果第一数据包括多个层对应的天线端口数据,即第一数据的最小数据单元为天线端口,可以联合确定与第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置相关的一个或多个天线端口数据,进而根据第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置,确定与第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置相关的一个或多个天线端口数据的时频资源位置。
在一些可能的实现方式中,如果接收点确定RE8承载有数据,该数据属于第一数据,则可以请求传输点重发,或者请求传输点将该时频资源位置上的数据映射到其他时频资源位置上,又或者选择忽略该时频资源位置上的数据。进一步可选的,在接收第一数据后,向传输点发送接收报告,以告知传输点RE8上的数据未被接收。
步骤S806,接收点根据该第一解调参考信号对该第一数据进行解调处理。
在一些可能的实现方式中,接收点接收到第一数据后,可以根据第一解调参考信号对第一数据进行解调处理。
需要说明的是,本申请实施例对所涉及的执行步骤的顺序不作具体限定,例如,传输点B可以同时接收第一指示信息、第二指示信息和第三指示信息,即步骤S801、步骤S802和S804并行执行;或者,步骤S805在步骤S803之前执行等。
可以得知,本申请实施例中,接收点通过接收第一指示信息,能够确定第一数据的第一解调参考信号的时频资源位置;接收点通过接收第二指示信息,能够确定第二解调参考 信号的时频资源位置,接收点通过接收第三指示信息,能够确定第三解调参考信号的时频资源位置,接收点能够根据第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置确定第一数据的时频资源位置,以使第一数据的时频资源位置规避第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置,进而能够避免接收点对第一数据和第二解调参考信号的接收干扰,并且能够避免接收点对第一数据和第三解调参考信号的接收干扰,明确第一数据的时频资源位置,进行正确的数据速率匹配,提升接收点的接收性能。
请参阅图10,图10是本申请另一实施例提供的另一种通信方法的流程示意图。如图10所示,该方法包括以下步骤。
步骤S901,传输点A向接收点发送第一指示信息,该第一指示信息用于指示第一数据的第一解调参考信号的时频资源位置,接收点接收该第一指示信息。
步骤S902,传输点B向接收点发送高层信令,该高层信令携带有该第二解调参考信号的时频资源位置的相关信息和与该相关信息对应的标识。
步骤S903,传输点B向接收点发送物理层信令,接收点通过该物理层信令接收该第二指示信息,该第二指示信息包括至少一个第一标识,该第一标识与该至少一组第二解调参考信号的时频资源位置的相关信息对应。
需要说明的是,上述步骤S901至S903与图4中所示的方法中的步骤S401至S403一致,步骤S901至S903的具体说明请参考步骤S401至S403,为了简洁,此处不再赘述。
步骤S904,传输点B向接收点发送高层信令,该高层信令携带有该第三解调参考信号的时频资源位置的相关信息和与该相关信息对应的标识。
步骤S905,传输点B向接收点发送物理层信令,接收点通过该物理层信令接收该第三指示信息,该第三指示信息包括至少一个第二标识,该第二标识与该至少一组第三解调参考信号的时频资源位置的相关信息对应。
在一些可能的实现方式中,传输点B首先可以向接收点发送高层信令,例如无线资源控制(Radio Resource Control,RRC)信令、广播信令,该高层信令中携带有第三解调参考信号的时频资源位置的相关信息和与该相关信息对应的标识。
在一些可能的实现方式中,高层信令中携带有第三解调参考信号的时频资源位置的相关信息和与该相关信息对应的标识。其中,高层信令中可以携带至少一组第三解调参考信号的时频资源位置的相关信息,和与相关信息对应的标识,本申请实施例对相关信息与标识的关系不做具体限定,例如,每组相关信息对应一个标识,或者多组相关信息对应一个标识等。例如,高层信令中可以携带有第三解调参考信号的全部的时频资源位置的相关信息,或者高层信令中可以携带有一组第三解调参考信号的时频资源位置的相关信息,或者高层信令中可以携带有与数据相关的一组或多组第三解调参考信号的时频资源位置的相关信息。接收点在接收到高层信令携带的相关信息和相关信息对应的标识后,可以存储上述相关信息和相关信息对应的标识。
高层信令对应至少一个物理层信令,在与该高层信令对应的物理层信令中包括该高层信令携带的至少一个标识。也就是说,接收点通过物理层信令接收第三指示信息,该第三指示信息包括至少一个标识。接收点根据接收到的至少一个标识可以确定该标识对应的相关信息,进而根据所确定的相关信息来确定第三解调参考信号的时频资源位置。在此,如 果传输点为基站,那么物理层信令可以是DCI等控制信令。
本申请实施例中可选的,在高层信令,比如RRC信令,中包括一组或者多组数据资源映射指示(PDSCH-RE-MappingConfig)信息,数据资源映射指示信息包括了数据资源映射指示信息的标识信息(pdsch-RE-MappingConfigId)和第三DMRS(第三解调参考信号)的时频资源位置的相关信息,例如,相关信息可以指示解调参考信号的图案(DMRS pattern)和/或者解调参考信号的天线端口(DMRS port)等等。
一种具体的信令实现方式如下:
Figure PCTCN2018083096-appb-000005
基于上述信令实现方式,示出了RRC信令中的一种数据资源映射指示信息所包括的内容。该数据资源映射指示信息包括了数据资源映射指示信息的标识信息(pdsch-RE-MappingConfigId)和第三DMRS的时频资源位置的相关信息,这里相关信息包括DMRS ports和/或DMRS pattern;或者DMRS port group。这里,DMRS ports表示DMRS的天线端口信息(例如,这里天线端口信息包括天线端口的端口号);DMRS pattern表示DMRS图案;或者DMRS port group表示DMRS天线端口组的信息。对于第三DMRS的时频资源位置的相关信息,可参见本申请下文中的具体描述。
本申请实施例中可选的,DCI中具体指示使用RRC配置的哪组数据资源映射指示信息。举例来说,可以是通过DCI中通过数据资源映射和准共址指示域(PDSCH RE Mapping and Quasi-Co-Location Indicator,PQI)的比特位来指示RRC信令中配置的数据资源映射指示信息的标识信息(例如,pdsch-RE-MappingConfigId)。一种具体的实现方式可以参见表5,表5中示例以2个bit表示数据资源映射和准共址指示域进行举例说明。
Figure PCTCN2018083096-appb-000006
表5
在此,数据资源映射和准共址指示域也可以理解为DCI携带的第三指示信息的一种具 体实现方式。该第三指示信息通过指示对应的标识,进而能够确定RRC中与该标识对应的第三解调参考信号的时频资源位置的相关信息。例如,上述示例性的RRC信令中,数据资源映射指示信息的标识信息为标识1,DCI中数据资源映射和准共址指示域的比特取值为“00”,则可以确定DCI指示标识1中的第三解调参考信号的时频资源位置的相关信息,进而可以确定相关信息为DMRS ports ENUMERATED{7,8,9,10,11,12,13,14,spare1},和/或DMRS pattern ENUMERATED{pattern 1,pattern 2};或者DMRS port group ENUMERATED{group编号1,group编号2,…}。
可以得知,接收点获取数据资源映射指示信息中的第三DMRS的时频资源位置,即可知道数据不映射到该第三DMRS的时频资源位置。即不会在该第三DMRS的时频资源位置上进行数据接收。接收点接收的物理层信令是与高层信令对应的物理层信令。可选的,传输点B也可以直接通过物理层信令来接收第三指示信息,该第三指示信息包括第三解调参考信号的时频资源位置的相关信息。即物理层信令即能够指示第三解调参考信号的时频资源位置的相关信息。应当理解的,该物理层信令可以仅包括一组或多组第三解调参考信号的时频资源位置的相关信息;该物理层信令也可以包括一组或多组其他解调参考信号的时频资源位置的相关信息,例如,该物理层信令可以同时包括一组或多组第四解调参考信号的时频资源位置的相关信息以及一组或多组第三解调参考信号的时频资源位置的相关信息。
本申请实施例中可选的,在物理层信令中指示第三解调参考信号的时频资源位置的相关信息可以是通过数据映射指示信息域进行指示,例如,数据映射指示信息域可以为“DMRS pattern和/或port(s)for PDSCH RE mapping”。通过该域中的比特值来指示DMRS pattern和/或DMRS port信息来实现,具体的信令举例如下:
-DMRS pattern和/或port(s)for PDSCH RE mapping
本申请实施例中可选的,第一指示信息、第二指示信息和第三指示信息可以都是传输点A发送的,也可以都是传输点B发送的,也可以是传输点A发送第一指示信息,传输点B发送第二指示信息和第三指示信息,也可以是传输点A发送第二指示信息,传输B发送第一指示信息和第三指示信息,也可以是传输点A发送第三指示信息,传输点B发送第一指示信息和第二指示信息,具体的,在此不做限定。
综上,在一些可能的实现方式中,第三解调参考信号的时频资源位置的相关信息可以包括第三解调参考信号的图案(DMRS Pattern)和/或第三解调参考信号相关的天线端口(DMRS Port)信息。其中,天线端口信息又包括天线端口的端口号和/或天线端口的个数。
具体实现中,如果第三解调参考信号的图案与天线端口信息对应,则高层信令可以携带第三解调参考信号的图案或天线端口信息中的任意一个,以及与其对应的标识。或者,直接由物理层信令携带有第三解调参考信号的图案或天线端口信息中的任意一个。举例说明,第三解调参考信号的图案1(pattern 1)与天线端口的端口号{7,8,11,13}对应,第三解调参考信号的图案2(pattern 2)与天线端口的端口号{9,10,12,14}对应。则在物理层信令中可以通过1比特(bit)来指示图案或天线端口的端口号。如表6A中所示,物理层信令中可以通过比特“0”来指示图案1,通过比特“1”来指示图案2。当然,还可以包括其他指示方式,例如比特“0”来指示图案2,通过比特“1”来指示图案1。又如表6B中所示,物理层信令中可以通过比特“0”来指示天线端口的端口号{7,8,11,13},通过比特“1”来指示天线 端口的端口号{9,10,12,14}。当然,还包括其他指示方式,例如物理层信令中可以通过比特“1”来指示天线端口的端口号{7,8,11,13},通过比特“0”来指示天线端口的端口号{9,10,12,14}。在此比特值,指示信息以及比特值与指示信息的对应关系仅是举例,也可以采用其他的比特值,指示信息以及比特值与指示信息的对应关系,在此不做具体限定。
比特值 DMRS图案
0 Pattern 1
1 Pattern 2
表6A
比特值 DMRS天线端口的端口号
0 7,8,11,13
1 9,10,12,14
表6B
具体实现中,如果DMRS图案和DMRS天线端口的端口号不对应,则在高层信令或在物理层信令中的相关信息需要同时包括DMRS图案和DMRS天线端口的端口号。其中,可以分开指示DMRS图案和DMRS天线端口的端口号,也可以联合指示DMRS图案和DMRS天线端口的端口号。下面对分开指示与联合指示两种情况分别举例进行说明。
例如,在物理层信令中,可以通过1bit来指示DMRS图案,参见表7A,通过比特“0”来指示图案1,通过比特“1”来指示图案2。或者通过比特“1”来指示图案1,通过比特“0”来指示图案2。可以通过2个bit来指示DMRS的天线端口信息。参见表7B,通过比特“00”来指示端口号{7}或者指示端口个数为1个;通过比特“01”来指示端口号{7,8}或者指示端口个数为2个;通过比特“10”来指示端口号{7,8,9,10}或者指示端口个数为4个;通过比特“11”来指示端口号{7,8,9,10,11}或者指示端口个数为5个。这1个bit和2个bit分别用来指示DMRS图案和DMRS天线端口的端口号。这1个bit和2个bit在物理层信令中可以是相邻的,也可以是不相邻的。在此比特值,指示信息以及比特值与指示信息的对应关系仅是举例,也可以采用其他的比特值,指示信息以及比特值与指示信息的对应关系,在此不做具体限定。
比特值 DMRS图案
0 Pattern 1
1 Pattern 2
表7A
比特值 DMRS天线端口信息(端口号/端口个数)
00 7/1
01 7,8/2
10 7,8,9,10/4
11 7,8,9,10,11/5
表7B
例如,在物理层信令中,可以通过3个bit或4个bit来联合指示DMRS图案和DMRS天线端口信息。以3个bit为例,如表4所示,表8示出了一种4个bit的比特值和DMRS图案和DMRS天线端口信息的对应关系。在此比特值,指示信息以及比特值与指示信息的对应关系仅是举例,也可以采用其他的比特值,指示信息以及比特值与指示信息的对应关系,在此不做具体限定。
Figure PCTCN2018083096-appb-000007
表8
在一些可能的实现方式中,第三解调参考信号的时频资源位置的相关信息也可以包括第三解调参考信号对应的天线端口组的信息。其中,将天线端口进行分组并确定天线端口组与各传输点或者准共址信息的对应关系。例如,传输点A使用天线端口号7或8的天线端口来发送第四解调参考信号,可以确定天线端口号7、8的天线端口为一个天线端口组,该天线端口组的组号为天线端口组1;传输点B使用天线端口号9或10的天线端口来发送第三解调参考信号,可以确定天线端口号9、10的天线端口为一个端口组,该天线端口组的组号为天线端口组2。接收点在接收到天线端口组的信息时,即能够根据天线端口组确定与天线端口组的信息对应的解调参考信号的时频资源位置。例如,接收点接收到天线端口组1,则确定第三解调参考信号的时频资源位置。这里,天线端口组的信息可以是天线端口组的组号,也可以是天线端口组的其他信息。关于第三解调参考信号的天线端口组的信息可以通过物理层信令中的1bit或2bit进行指示,或者,关于第三解调参考信号的天线端口组的信息可以是通过高层信令进行指示,或者也可以通过高层信令和物理层信令联合指示,比如可以参考DMRS图案和/或DMRS天线端口的指示方式,在此不做限定。对于天线端口组的分组可以是预定义的,即接收点与系统中的传输点共知的,也可以是传输点通过信令告知接收点的,具体的在此不做限定。
具体的物理层信令可以举例如下:传输点向接收点发送一种指示信息,该指示信息可 以是数据映射的指示信息,该指示信息包括第三解调参考信号的天线端口组的信息。比如接收点通过DCI信令中接收该指示信息,当接收点接收到该指示信息时,即可确定在该DMRS天线端口组中的DMRS天线端口对应的时频资源位置上不进行数据映射,即不进行数据接收。比如用1或者2个比特信息通知DMRS天线端口组的信息。具体如下:
-DMRS port group for PDSCH RE mapping---1bit or 2bits。
本申请实施例中可选的,该接收点根据该第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置分别确定该第一数据中与该第二解调参考信号的时频资源位置相关的数据的时频资源位置、该第一数据中与该第三解调参考信号的时频资源位置相关的数据的时频资源位置,该与第二解调参考信号的时频资源位置相关的数据包括该第一数据包括的码字、该第一数据包括的码字对应的层的数据、该第一数据包括的层对应的天线端口数据中的至少一个数据;该与第三解调参考信号的时频资源位置相关的数据包括该第一数据包括的码字、该第一数据包括的码字对应的层的数据、该第一数据包括的层对应的天线端口数据中的至少一个数据。
具体的比如,以携带第三解调参考信号的时频资源位置相关的信息的数据映射指示信息为例,来说明第三解调参考信号的时频资源位置的相关信息与第一数据(比如码字/层/DMRS port)的关系。具体的,第三解调参考信号的时频资源位置的相关信息与第一数据(比如码字/层/DMRS port)的关系可以是预定义的,也可以是指示的,具体的指示信令可以是高层信令或者物理层信令等。
预定义的比如,数据映射指示信息与码字的对应关系,以2个数据映射指示信息与2个码字的对应关系为例,比如第一个数据映射指示信息对应第一个码字的数据映射,第二个数据映射指示信息对应第二个码字的数据映射,反之亦可;
数据映射指示信息与层的对应关系,以2个数据映射指示信息与层的对应关系为例,比如如果有2层数据,则第一个数据映射指示信息对应第一层数据的数据映射,第二个数据映射指示信息对应第二层数据的数据映射;如果有3层数据,则第一个数据映射指示信息对应第一层和第二层数据的数据映射,第二个数据映射指示信息对应第三层数据的数据映射;或者如果有3层数据,则第一个数据映射指示信息对应第一层数据的数据映射,第二个数据映射指示信息对应第二层和第三层数据的数据映射;如果有4层数据,则第一个数据映射指示信息对应第一层和第二层数据的数据映射,第二个数据映射指示信息对应第三层和第四层数据的数据映射;或者如果有4层数据,则第一个数据映射指示信息对应第一层数据的数据映射,第二个数据映射指示信息对应第二层、第三层和第四层数据的数据映射;或者如果有4层数据,则第一个数据映射指示信息对应第一层、第二层和第三层数据的数据映射,第二个数据映射指示信息对应第四层数据的数据映射;其他层的情况也类似,在此不做具体限定。
数据映射指示信息与天线端口的对应关系,以2个数据映射指示信息与天线端口的对应关系为例,比如如果有2个天线端口,则第一个数据映射指示信息对应第一个天线端口的数据的数据映射,第二个数据映射指示信息对应第二个天线端口的数据的数据映射,反之亦可;如果有3个天线端口,则第一个数据映射指示信息对应第一个和第二个天线端口的数据的数据映射,第二个数据映射指示信息对应第三个天线端口的数据的数据映射;或者如果有3个天线端口,则第一个数据映射指示信息对应第一个天线端口的数据的数据映 射,第二个数据映射指示信息对应第二个和第三个天线端口的数据的数据映射;如果有4个天线端口,则第一个数据映射指示信息对应第一个和第二个天线端口的数据的数据映射,第二个数据映射指示信息对应第三个和第四个天线端口的数据的数据映射;或者如果有4个天线端口,则第一个数据映射指示信息对应第一个天线端口的数据的数据映射,第二个数据映射指示信息对应第二个、第三个和第四个天线端口的数据的数据映射;或者如果有4个天线端口,则第一个数据映射指示信息对应第一个、第二个和第三个天线端口的数据的数据映射,第二个数据映射指示信息对应第四个天线端口的数据的数据映射;其他层的情况也类似,在此不做具体限定。
本申请实施例中可选的,多个传输点协作为一个终端设备传输数据时,具体的根据第三解调参考信号的时频资源位置确定第一数据的时频资源位置,具体的举例如下:其中下面的数据映射指示信息用于携带第三解调参考信号的时频资源位置的相关信息。
第一种情况为,当多个传输点协作传输来自一个码字的多层时,即一个码字的多层是分别来自多个传输点。此时传输点可以针对一个码字的每层/每个天线端口分别指示终端设备一组第三DMRS时频资源位置的相关信息。
针对第一种情况,可以存在至少以下三种示例性的实现方式。
实现方式一:一个高层信令中数据映射指示信息标识对应一组第三DMRS时频资源位置的相关信息,在DCI中配置多个数据映射指示信息的标识。比如:如果配置了2层/2个天线端口,则对应在DCI中配置2个数据映射指示信息标识,第一个数据映射指示信息标识对应第一层数据传输(或者第一个天线端口的数据传输),第二个数据映射指示信息标识对应第二层数据传输(或者第二个天线端口的数据传输)。
实现方式二:一个高层信令中的数据映射指示信息标识对应多组第三DMRS时频资源位置的相关信息,在DCI中配置1个数据映射指示信息标识。终端设备根据DCI中的一个数据映射指示信息标识,即可确定出多组第三DMRS时频资源位置,进一步根据数据映射指示信息与数据的对应关系,既可以确定数据的时频资源位置。比如:如果配置了2层/2个天线端口,则对应配置1个数据映射指示信息标识,该标识包括2组第三DMRS时频资源位置的相关信息。则第一组第三DMRS时频资源位置的相关信息对应第一层数据传输(或者第一个天线端口的数据传输),第二组第三DMRS时频资源位置的相关信息对应第二个数据映射指示信息标识对应第二层数据传输(或者第二个天线端口的数据传输)。
比如RRC中信令中一个数据映射指示信息标识对应多组第三DMRS时频资源位置的相关信息,一种示例性的信令实现方式如下:
Figure PCTCN2018083096-appb-000008
Figure PCTCN2018083096-appb-000009
在上述信令实现方式中,可以通过方式(1)表达两组第三DMRS的时频资源位置的相关信息;或者,通过方式(2)表达两组第三DMRS的时频资源位置的相关信息。
实现方式三:通过物理层信令携带第三指示信息,第三指示信息可以包括一组或者多组第三解调参考信号的时频资源位置的相关信息。比如:如果配置了2层/2个天线端口,则第三指示信息中可以包括2组第三解调参考信号的时频资源位置的相关信息,第一组第三解调参考信号的时频资源位置的相关信息对应第一层数据传输(或者第一个天线端口的数据传输),第二组第三解调参考信号的时频资源位置的相关信息对应第二层数据传输(或者第二个天线端口的数据传输)。
当接收点接收到该信息后,即可知一个码字的层或天线端口对应不同的数据映射指示信息,进而对该码字的不同层或者天线端口的数据在不同的时频资源上分别进行接收。
第二种情况为,当多个传输点协作传输,不同的传输点传输不同的码字。则针对每个码字指示1组第三DMRS时频资源位置的相关信息。
针对第二种情况,可以存在至少以下三种示例性的实现方式。
实现方式一:一个高层信令中的数据映射指示信息标识对应一组第三DMRS时频资源位置的相关信息,在DCI中配置多个数据映射指示信息标识,比如默认最多支持2个数据映射指示信息。如果配置了2个码字,则对应配置2个数据映射指示信息标识,第一个数据映射指示信息标识对应第一个码字,第二个数据映射指示信息标识对应第二个码字。
实现方式二:一个高层信令中的数据映射指示信息标识对应多组第三DMRS时频资源位置的相关信息,在DCI中配置1个数据映射指示信息标识。终端设备根据DCI中的一个数据映射指示信息标识,即可确定出多组第三DMRS时频资源位置,进一步根据数据映射指示信息与数据的对应关系,既可以确定数据的时频资源位置。比如:如果配置了2个码字,则对应配置1个数据映射指示信息标识,该标识包括2组第三DMRS时频资源位置的相关信息。则第一组第三DMRS时频资源位置的相关信息对应第一个码字的数据传输,第二组第三DMRS时频资源位置的相关信息对应第二个数据映射指示信息标识对应第二个码字的数据传输。具体的RRC信息如上实施例中的描述,在此不再赘述。
实现方式三:通过物理层信令携带第三指示信息,第三指示信息可以包括一组或者多组第三解调参考信号的时频资源位置的相关信息。比如:如果配置了2个码字,则第三指示信息中可以包括2组第三解调参考信号的时频资源位置的相关信息,第一组第三解调参考信号的时频资源位置的相关信息对应第个码字数据传输,第二组第三解调参考信号的时频资源位置的相关信息对应第个码字的数据传输。
当接收点接收到该信息后,即可知道针对不同码字的层或port对应不同的数据映射指示信息,进而对不同码字的数据在不同的时频资源上分别进行接收。
本申请实施例可选的,适用于一个调度时刻仅有一个传输点传输数据的情况,也适用于一个调度时刻有多个传输点传输数据的情况。适用于一个调度时刻仅有一个码字或者层或者天线端口的数据传输的情况,也适用于一个调度时刻有多个码字或者层或者天线端口 的数据传输的情况。
本申请实施例中可选的,该接收点根据该第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置联合确定该第一数据中与该第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置相关的数据的时频资源位置,该与第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置相关的数据包括该第一数据包括的码字、该第一数据包括的码字对应的层的数据、该第一数据包括的层对应的天线端口数据中的至少一个数据。
下面以传输点为网络设备,接收点为终端进行举例说明。
本申请实施例可选的,接收点可以按照预定义的规则,确定不同码字/层/天线端口的数据的时频资源位置信息。比如如果一个下行控制信息中指示的两个码字的调度的资源位置重叠,则可以默认在两个码字对应的DMRS的时频资源位置上,都没有任何数据映射。又比如如果一个DCI中针对两个层或者port的调度的资源位置重叠,则可以默认在重叠的两个层或者port对应的DMRS的位置上,都没有任何数据映射。
本申请实施例可选的,接收点可以按照预定义的规则,确定不同码字/层/天线端口的数据的时频资源位置信息。比如如果两个下行控制信息中指示的两个数据的调度的资源位置重叠,则可以默认在两个数据对应的DMRS的时频资源位置上,都没有任何数据映射。又比如不管两个数据的调度的资源位置是否重叠,接收点可以默认在两个数据对应的DMRS的时频资源位置上,都没有任何数据映射。或者是否与资源位置重叠相关可以是预定义的,也可以是传输点通过信令告知接收点,具体的在此不做限定。
本申请实施例可选的,针对非理想回传(backhaul)情况下,不同的传输点可以分别发送下行控制信息进行数据的调度和传输,因此会出现不同的传输点是否调度数据彼此不知的情况,为了提高接收点信道估计的准确性,在一个传输点发送DMRS的位置上,另一传输点不发送信号。因此可以根据不同的DMRS天线端口组进行对应的数据映射,协作下为了QCL(准共址)指示,不同传输点会采用不同DMRS天线端口组中的天线端口进行数据的发送,因此可以根据DMRS port天线端口组信息确定数据的时频资源位置。
具体的比如:根据高层信令中的DMRS天线端口组信息或者预定义的DMRS天线端口组信息,可以明确不同传输点采用不同的DMRS天线端口组中的天线端口发送数据,再根据物理层信令中传输数据的DMRS天线端口所属的DMRS天线端口组信息,即可确定在其他DMRS天线端口组中的DMRS天线端口对应的时频资源位置上不进行数据映射。
下面以数据传输的单位为码字的情况举例说明,而针对数据传输的单位为层的数据或者天线端口的数据类似,在此不再赘述。
比如针对码字1采用DMRS天线端口组1中的DMRS天线端口进行传输,码字2采用DMRS天线端口组2中的DMRS天线端口进行传输。则接收点可以确定码字1的数据不在DMRS天线端口组2中的DMRS天线端口对应的时频资源上映射,码字2的数据不在DMRS天线端口组1中的DMRS天线端口对应的时频资源上映射。
本申请实施例可选的,方式一:数据的时频资源位置与数据的调度资源位置相关,比如两个码字传输时只有重叠的调度资源上采用上述实施例确定数据的时频资源位置,比如码字1传输的频段包括频段1和频段2,码字2传输的频段包括频段1和频段3,则码字 2和码字2在频段1重叠,而码字1的频段2上没有码字2的数据,码字2的频段3上没有码字1的数据。因此针对码字1进行数据映射时,码字1在频段1中的DMRS天线端口组2中的DMRS天线端口对应的时频资源上不进行数据映射;码字1在频段2中的DMRS天线端口组2中的DMRS天线端口对应的时频资源上可以进行数据映射。针对码字2进行数据映射时,码字2在频段1中的DMRS天线端口组1中的DMRS天线端口对应的时频资源上不进行数据映射,码字2在频段3中的DMRS天线端口组1中的DMRS天线端口对应的时频资源上可以进行数据映射。
本申请实施例可选的,方式二:数据的时频资源位置与数据的调度资源位置无关,比如不管两个码字的调度资源是否重叠,码字1在DMRS天线端口2中的DMRS天线端口对应的时频资源上都不进行数据映射,码字2在DMRS天线端口1中的DMRS天线端口对应的时频资源上都不进行数据映射。
本申请实施例可选的,具体采用方式一还是方式二确定数据的时频资源位置,可以是预定义的方式,网络设备和终端都可知,也可以是网络设备通过信令告知UE具体的采用的方式,信令可以是物理层信令,也可以是高层信令。具体的实施方式在此不做限定。
进一步可选的,当终端处于协作模式下,可以默认在所有DMRS天线端口组中的DMRS天线端口对应的时频资源位置上没有数据映射。
比如高层信号或者预定义的分配了2个DMRS天线端口组,则终端可以预定义在该2个DMRS天线端口组中的DMRS天线端口对应的时频资源位置上没有数据传输。
针对非理性回传的场景下,网络设备间可以协商具体的DMRS天线端口组的分组情况,以及各自使用的DMRS天线端口,并且在后续的协作传输中,在该两组DMRS天线端口对应的时频资源位置上仅传输各自的天线端口组对应的DMRS而不传输数据。因为不确定彼此是否调度数据,因此为了避免数据对DMRS的干扰,预定义基站在邻基站DMRS天线端口组的天线端口对应的时频资源上不映射数据,终端在DMRS天线端口组对应的天线端口的时频资源上仅根据指示接收DMRS,而不进行数据的接收。
比如传输点间协商好,针对接收点的数据传输,传输点A用DMRS天线端口组1对应的DMRS天线端口(和/或pattern),传输点B用DMRS天线端口组2对应的DMRS天线端口(和/或pattern),则传输点A在DMRS天线端口组2对应的DMRS天线端口的时频资源上不进行接收点的数据映射,传输点B在DMRS天线端口组1对应的DMRS天线端口的时频资源上不进行接收点的数据映射。而接收点在接收传输点A的数据时(或在接收DMRS天线端口组1对应的DMRS天线端口发送的数据时),在DMRS天线端口组2对应的DMRS天线端口的时频资源上不进行数据接收;接收点在接收传输点B的数据时(或在接收DMRS天线端口组2对应的DMRS天线端口发送的数据时),在DMRS天线端口组1对应的DMRS天线端口的时频资源上不进行数据接收。
或者通过1bit指示,指示接收点是否在数据传输的DMRS天线端口组外的其他DMRS天线端口组上不进行数据接收。应当理解,步骤S801中传输点A向接收点发送第四指示信息的具体实施方式可以参见现有技术中传输点向接收点发送解调参考信号的配置信息的具体实施方式,或者也可以参见上述传输点B向接收点发送的第三指示信息的具体实施方式。在此不做限制。
步骤S906,传输点A向接收点发送第一解调参考信号,接收点根据该第一指示信息, 在该第一解调参考信号的时频资源位置接收该第一解调参考信号。
步骤S907,接收点根据该第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置确定该第一数据的时频资源位置。
步骤S908,接收点根据该第一解调参考信号对该第一数据进行解调处理。
需要说明的是,步骤S906至步骤S908的执行方式可参见图8涉及实施例中的相关具体描述,在此不再赘述。
本申请实施例中可选的,传输点B也可以向接收点发送第二解调参考信号和第三解调参考信号,接收点能够根据该第二指示信息和第三指示信息,在该第二解调参考信号的时频资源位置上接收该第二解调参考信号,并且在该第三解调参考信号的时频资源位置上接收该第三解调参考信号,接收点能够根据第一解调参考信号的时频资源位置来确定第二数据的时频资源位置,也就是说,接收点确定第二数据的时频资源位置时,能够规避第一解调参考信号的时频资源位置,即接收点能够在第一解调参考信号的时频资源位置上不接收第二数据,进而不影响接收点对第一解调参考信号的接收。并且,接收点能够根据第二解调参考信号和第三解调参考信号对第二数据进行解调处理。
需要说明的是,本申请实施例对上述方法的执行步骤不作具体限定。
请参阅图11,图11是本申请另一实施例提供的又一种通信方法的流程示意图。如图11所示,该方法可以包括以下步骤。
步骤S1001,传输点C向接收点发送第一指示信息,该第一指示信息用于指示传输点A需要发送的第一数据的第一解调参考信号的时频资源位置,接收点接收该第一指示信息。
步骤S1002,传输点C向接收点发送第二指示信息,该第二指示信息用于指示传输点B需要发送的第二数据的第二解调参考信号的时频资源位置,接收点接收该第二指示信息。
步骤S1003,传输点C向接收点发送第三指示信息,该第三指示信息用于指示传输点B需要发送的第二数据的第三解调参考信号的时频资源位置,接收点接收该第三指示信息。
步骤S1004,传输点A向接收点发送第一解调参考信号,接收点根据该第一指示信息接收该第一解调参考信号。
步骤S1005,接收点根据第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置确定该第一数据的时频资源位置。
步骤S1006,接收点根据该第一解调参考信号对该第一数据进行解调处理。
步骤S1007,传输点B向接收点发送第二解调参考信号,接收点根据第二指示信息接收该第二解调参考信号。
步骤S1008,传输点B向接收点发送第三解调参考信号,接收点根据第三指示信息接收该第三解调参考信号。
步骤S1009,接收点根据第一解调参考信号的时频资源位置确定第二数据的时频资源位置。
步骤S1010,接收点根据该第二解调参考信号和第三解调参考信号对该第二数据进行解调处理。
在一些可能的实现方式中,由协作式多点传输系统中的一个传输点来统一管理及发送指示信息,例如,本实施例中传输点C能够获知传输点A需要发送第一数据,传输点B需要发送第二数据,进而,由传输点C为接收点配置指示信息,通过第一指示信息指示第一数据的第一解调参考信号的时频资源位置,以及通过第二指示信息指示第二数据的第二解调参考信号的时频资源位置,并且通过第三指示信息指示第二数据的第三解调参考信号的时频资源位置。传输点C向接收点发送指示信息的方式可参见上述实施例。
本申请实施例可选的,当传输点A向接收点发送第一解调参考信号和第一数据时,传输点A根据第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置确定第一数据的时频资源位置,包括传输点A在第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置上不映射第一数据。可选的,进一步,当传输点B向该接收点发送第二解调参考信号、第三解调参考信号和第二数据时,传输点B根据第一解调参考信号的时频资源位置确定第二数据的时频资源位置,包括传输B在第一解调参考信号的时频资源位置上不映射第二数据。
这里传输点A传输的第一数据和传输点B传输的第二数据可以是不同的码字;也可以是相同码字对应的不同层的数据,例如,一个码字对应两个层的数据,则第一数据表示第一层的数据,第二数据表示第二层的数据;也可以是相同层对应的不同天线端口的数据,例如,一个码字的第一层的数据对应第一天线端口数据和第二天线端口数据,则第一数据可以表示第一天线端口数据,第二数据可以表示第二天线端口数据。第一数据和第二数据可以根据协商同时被发送,也可以不同时发送,在此不作具体限定。
对于本申请实施例中的其他步骤的执行方式可参见上述实施例,在此不再赘述。
需要说明的是,本申请实施例不限定步骤的执行顺序。
请参阅图12,图12是本申请另一实施例提供的又一种通信方法的流程示意图。如图12所示,该方法包括以下步骤。
步骤S1101,传输点B向传输点A发送第二指示信息,第二指示信息用于指示第二解调参考信号的时频资源位置,传输点A接收该第二指示信息。
步骤S1102,传输点B向传输点A发送第三指示信息,第三指示信息用于指示第三解调参考信号的时频资源位置,传输点A接收该第三指示信息。
步骤S1103,传输点A根据该第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置确定第一数据的时频资源位置。
步骤S1104,传输点A向接收点发送第一指示信息,该第一指示信息用于指示该第一数据的第一解调参考信号的时频资源位置,接收点接收该第一指示信息。
步骤S1105,接收点根据该第一解调参考信号,对该第一数据进行解调处理。
在一些可能的实现方式中,传输点B向传输点A发送第二指示信息和第三指示信息,该第二指示信息用于指示第二解调参考信号的时频资源位置,该第三指示信息用于指示第三解调参考信号的时频资源位置。具体的,传输点B可以是在接收到传输点A针对第二指示信息的请求后,向传输点A发送第二指示信息,并且是在接收到传输点A针对第三指示信息的请求后,向传输点A发送第三指示信息;或者,传输点B也可以是获知传输点A需要确定第一数据的时频资源位置后,向传输点A发送第二指示信息和第三指示信息,或者,传输点B通过其他方式触发向传输点A发送第二指示信息和第三指示信息。 传输点A在接收到第二指示信息和第三指示信息后,能够根据第二解调参考信号的时频资源和第三解调参考信号的时频资源确定第一数据的时频资源位置,比如第一数据的时频资源位置不包括第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置,即不在第二解调参考信号的时频资源位置上和第三解调参考信号的时频资源位置上映射第一数据,在此结合图13对传输点A确定第一数据的时频资源位置进行示例性说明。图13中,传输点A可以为第一数据分配RB,其中RB包括RE1至RE12,传输点A在接收到第二指示信息和第三指示信息后,能够确定第二解调参考信号的时频资源位置为RE4,第三解调参考信号的时频资源位置为RE6,则传输点将第一数据映射至RE上时,可以将第一数据映射在RE1至RE3、RE5以及RE7至RE12中的至少一个位置上。从而,传输点A在进行第一数据映射处理时,能够规避第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置,进而能够保证第一数据与第二解调参考信号、第三解调参考信号不在同一个时频资源位置上发生干扰。传输点A向接收点发送第一指示信息,第一指示信息用于指示第一数据的解调参考信号的时频资源位置。接收点能够根据第一指示信息来接收第一解调参考信号,并且根据第一解调参考信号对第一数据进行接收以及进行解调处理。在此,接收点无需判断第一数据是否与其他解调参考信号占用资源冲突,提升接收点接收数据性能。
图14是本申请再一实施例提供的一种通信方法的流程示意图。如图14所示,该方法至少包括以下步骤。
步骤S1201,传输点A向接收点发送第一指示信息,该第一指示信息用于指示第一数据的第一解调参考信号的时频资源位置;接收点接收该第一指示信息。
步骤S1202,接收点接收第二指示信息,该第二指示信息用于指示第二解调参考信号的时频资源位置。
步骤S1203,传输点A向接收点发送该第一解调参考信号,接收点根据该第一指示信息,在该第一解调参考信号的时频资源位置接收该第一解调参考信号。
步骤S1204,接收点接收第三指示信息,该第三指示信息用于指示第三解调参考信号(例如,additional DMRS的一例)的时频资源位置。
步骤S1205,接收点根据该第二解调参考信号的时频资源位置与该第三解调参考信号的时频资源位置确定该第一数据的时频资源位置。
需要说明的是,上述步骤S1201至S1205与图8中所示的方法中的步骤S801至S805一致,步骤S1201至S1205的具体说明请参考步骤S801至S805,为了简洁,此处不再赘述。
步骤S1206,传输点A向接收点发送第四指示信息,该第四指示信息用于指示第一数据的第四解调参考信号的时频资源位置;接收点接收该四指示信息。
在一些可能的实现方式中,传输点A向接收点发送第四指示信息,该第四指示信息用于指示第一数据的第四解调参考信号的时频资源位置。其中,第一数据是传输点A需要向接收点发送的数据。接收点能够接收第四指示信息,并且能够根据该第四指示信息,确定第四解调参考信号的时频资源位置,进而根据第四解调参考信号的时频资源位置接收该第四解调参考信号。
其中,传输点A可以在向接收点传输数据(如第一数据)的同时,向接收点发送第四 指示信息;或者,传输点A可以在向接收点传输第一数据之前或之后,向接收点发送第四指示信息,本申请实施例对传输点A发送第四指示信息的发送时间不做具体限定。
传输点A向接收点发送的数据(如第一数据)中可以携带有该第四指示信息,或者,传输点A向接收点发送的控制信令中可以携带有该第四指示信息,例如,传输点为基站时,传输点A向接收点发送的下行控制信息(Downlink Control Information,DCI)中携带有第四指示信息
可选的,第四指示信息可以通过高层信令或物理层信令指示,具体的在此不做限定。
步骤S1207,传输点A向接收点发送该第四解调参考信号,接收点根据该第四指示信息,在该第四解调参考信号的时频资源位置接收该第四解调参考信号。
在一些可能的实现方式中,当接收点接收到第四指示信息后,接收点能够根据第四指示信息确定第四解调参考信号的时频资源位置,传输点A可以向接收点发送第四解调参考信号,接收点能够根据获知的第四解调参考信号的时频资源位置,在对应的时频资源位置上接收第四解调参考信号。
步骤S1208,接收点根据该第一解调参考信号与第四解调参考信号对该第一数据进行解调处理。
在一些可能的实现方式中,接收点接收到第一数据后,可以根据第一解调参考信号与第四解调参考信号对第一数据进行解调处理。
需要说明的是,本申请实施例对所涉及的执行步骤的顺序不作具体限定。
还需要说明的是,上述仅以传输点A发送第一指示信息、第四指示信息为例进行说明,但本申请实施例并不限定于此,例如,第一指示信息、第二指示信息、第三指示信息以及第四指示信息可以都是由传输点A发送的,也可以都是传输点B发送的,本申请实施例对此不作特别限定。
可以得知,本申请实施例中,接收点通过接收第一指示信息,能够确定第一数据的第一解调参考信号的时频资源位置,接收点通过接收第四指示信息,能够确定第一数据的第四解调参考信号的时频资源位置;接收点通过接收第二指示信息,能够确定第二解调参考信号的时频资源位置,接收点通过接收第三指示信息,能够确定第三解调参考信号的时频资源位置,接收点能够根据第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置确定第一数据的时频资源位置,以使第一数据的时频资源位置规避第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置,进而能够避免接收点对第一数据和第二解调参考信号的接收干扰,并且能够避免接收点对第一数据和第三解调参考信号的接收干扰,明确第一数据的时频资源位置,进行正确的数据速率匹配,提升接收点的接收性能。
请参阅图15,图15是本申请再一实施例提供的另一种通信方法的流程示意图。如图15所示,该方法包括以下步骤。
步骤S1301,传输点A向接收点发送第一指示信息,该第一指示信息用于指示第一数据的第一解调参考信号的时频资源位置,接收点接收该第一指示信息。
步骤S1302,传输点B向接收点发送高层信令,该高层信令携带有该第二解调参考信号的时频资源位置的相关信息和与该相关信息对应的标识。
步骤S1303,传输点B向接收点发送物理层信令,接收点通过该物理层信令接收该第 二指示信息,该第二指示信息包括至少一个第一标识,该第一标识与该至少一组第二解调参考信号的时频资源位置的相关信息对应。
步骤S1304,传输点B向接收点发送高层信令,该高层信令携带有该第三解调参考信号的时频资源位置的相关信息和与该相关信息对应的标识。
步骤S1305,传输点B向接收点发送物理层信令,接收点通过该物理层信令接收该第三指示信息,该第三指示信息包括至少一个第二标识,该第二标识与该至少一组第三解调参考信号的时频资源位置的相关信息对应。
步骤S1306,传输点A向接收点发送第一解调参考信号,接收点根据该第一指示信息,在该第一解调参考信号的时频资源位置接收该第一解调参考信号。
步骤S1307,接收点根据该第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置确定该第一数据的时频资源位置。
步骤S1308,传输点A向接收点发送第四指示信息,该第四指示信息用于指示第一数据的第四解调参考信号的时频资源位置,接收点接收该第四指示信息。
步骤S1309,传输点A向接收点发送第四解调参考信号,接收点根据该第四指示信息,在该第四解调参考信号的时频资源位置接收该第四解调参考信号。
步骤1310,接收点根据该第一解调参考信号与第四解调参考信号对该第一数据进行解调处理。
需要说明的是,上述步骤S1301至S1307与图10中所示的方法中的步骤S901至S907一致,步骤S1301至S1307的具体说明请参考步骤S901至S907,为了简洁,此处不再赘述。
并且,步骤S1308至S1310与图14中所示的方法中的步骤S1206至S1208一致,步骤S1308至S1310的具体说明请参考步骤S1206至S1208,为了简洁,此处不再赘述。
本申请实施例中可选的,传输点B也可以向接收点发送第二解调参考信号和第三解调参考信号,接收点能够根据该第二指示信息和第三指示信息,在该第二解调参考信号的时频资源位置上接收该第二解调参考信号,并且在该第三解调参考信号的时频资源位置上接收该第三解调参考信号,接收点能够根据第一解调参考信号的时频资源位置来确定第二数据的时频资源位置,也就是说,接收点确定第二数据的时频资源位置时,能够规避第一解调参考信号的时频资源位置,即接收点能够在第一解调参考信号的时频资源位置上不接收第二数据,进而不影响接收点对第一解调参考信号的接收。并且,接收点能够根据第二解调参考信号和第三解调参考信号对第二数据进行解调处理。
本申请实施例中可选的,传输点B也可以向接收点发送第二解调参考信号和第三解调参考信号,接收点能够根据该第二指示信息和第三指示信息,在该第二解调参考信号的时频资源位置上接收该第二解调参考信号,并且在该第三解调参考信号的时频资源位置上接收该第三解调参考信号,接收点能够根据第一解调参考信号的时频资源位置和第四解调参考信号的时频资源位置来确定第二数据的时频资源位置,也就是说,接收点确定第二数据的时频资源位置时,能够规避第一解调参考信号的时频资源位置和第四解调参考信号的时频资源位置,即接收点能够在第一解调参考信号的时频资源位置和第四解调参考信号的时频资源位置上不接收第二数据,进而不影响接收点对第一解调参考信号和第四解调参考信号的接收。并且,接收点能够根据第二解调参考信号和第三解调参考信号对第二数据进行 解调处理。
需要说明的是,本申请实施例对上述方法的执行步骤不作具体限定。
请参阅图16,图16是本申请再一实施例提供的又一种通信方法的流程示意图。如图16所示,该方法可以包括以下步骤。
步骤S1401,传输点C向接收点发送第一指示信息,该第一指示信息用于指示传输点A需要发送的第一数据的第一解调参考信号的时频资源位置,接收点接收该第一指示信息。
步骤S1402,传输点C向接收点发送第二指示信息,该第二指示信息用于指示传输点B需要发送的第二数据的第二解调参考信号的时频资源位置,接收点接收该第二指示信息。
步骤S1403,传输点C向接收点发送第三指示信息,该第三指示信息用于指示传输点B需要发送的第二数据的第三解调参考信号的时频资源位置,接收点接收该第三指示信息。
步骤S1404,传输点C向接收点发送第四指示信息,该第四指示信息用于指示传输点A需要发送的第一数据的第四解调参考信号的时频资源位置,接收点接收该第四指示信息。
步骤S1405,传输点A向接收点发送第一解调参考信号,接收点根据该第一指示信息接收该第一解调参考信号。
步骤S1406,传输点A向接收点发送第四解调参考信号,接收点根据该第四指示信息接收该第四解调参考信号。
步骤S1407,接收点根据第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置确定该第一数据的时频资源位置。
步骤S1408,接收点根据该第一解调参考信号与第四解调参考信号对该第一数据进行解调处理。
步骤S1409,传输点B向接收点发送第二解调参考信号,接收点根据第二指示信息接收该第二解调参考信号。
步骤S1410,传输点B向接收点发送第三解调参考信号,接收点根据第三指示信息接收该第三解调参考信号。
步骤S1411,接收点根据第一解调参考信号的时频资源位置与第四解调参考信号的时频资源位置确定第二数据的时频资源位置。
步骤S1412,接收点根据该第二解调参考信号和第三解调参考信号对该第二数据进行解调处理。
需要说明的是,上述步骤S1401至S1403、S1405、S1407、S1409、S1410以及S1412与图11中所示的方法中的步骤S1001至S1005、S1007至S1010一致,步骤S1401至S1403、S1405、S1407、S1409、S1410以及S1412的具体说明请参考步骤S1001至S1005、S1007至S1010,为了简洁,此处不再赘述。
并且,步骤S1404、S1406以及S1411与图14中所示的方法中的步骤S1206至S1208一致,步骤S1404、S1406以及S1411的具体说明请参考步骤S1206至S1208,为了简洁,此处不再赘述。
需要说明的是,本申请实施例不限定步骤的执行顺序。
请参阅图17,图17是本申请再一实施例提供的又一种通信方法的流程示意图。如图17所示,该方法包括以下步骤。
步骤S1501,传输点B向传输点A发送第二指示信息,第二指示信息用于指示第二解调参考信号的时频资源位置,传输点A接收该第二指示信息。
步骤S1502,传输点B向传输点A发送第三指示信息,第三指示信息用于指示第三解调参考信号的时频资源位置,传输点A接收该第三指示信息。
步骤S1503,传输点A根据该第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置确定第一数据的时频资源位置。
步骤S1504,传输点A向接收点发送第一指示信息,该第一指示信息用于指示该第一数据的第一解调参考信号的时频资源位置,接收点接收该第一指示信息。
步骤S1505,传输点A向接收点发送第四指示信息,该第四指示信息用于指示该第一数据的第四解调参考信号的时频资源位置,接收点接收该第四指示信息。
步骤S1506,接收点根据该第一解调参考信号与第四解调参考信号,对该第一数据进行解调处理。
需要说明的是,上述步骤S1501至S1504与图12中所示的方法中的步骤S1101至S1104一致,步骤S1501至S1504的具体说明请参考步骤S1101至S1104,为了简洁,此处不再赘述。
并且,步骤S1505、S1506与图14中所示的方法中的步骤S1206、S1208一致,步骤S1505、S1506的具体说明请参考步骤S1206、S1208,为了简洁,此处不再赘述。
需要说明的是,在本申请实施例中,上述图8至图17示出的方法中仅以通过第二指示信息指示第二解调参考信号的时频资源位置、通过第三指示信息指示第三解调参考信号的时频资源位置为例进行说明,本申请实施例并不限定于此。例如,可以仅通过一个指示信息即指示第二解调参考信号的时频资源位置、又指示第三解调参考信号的时频资源位置。
可选的,以第二解调参考信号为front loaded DMRS,第三解调参考信号为additional DMRS为例,比如高层信令(如RRC信令,MAC信令)中一个数据映射指示信息标识对应一组或者多组第二解调参考信号的时频资源位置和一组或多组第三DMRS时频资源位置的相关信息,一种示例性的信令实现方式如下:
Figure PCTCN2018083096-appb-000010
Figure PCTCN2018083096-appb-000011
针对上述方案,在物理层信令(比如DCI)中配置1个数据映射指示信息标识。终端设备根据DCI中的一个数据映射指示信息标识,即可确定出一组或多组第二解调参考信号时频资源位置,也可以同时确定出一组或多组第三DMRS时频资源位置。
可选的,在物理层信令中指示第二解调参考信号的时频资源位置和第三解调参考信号的时频资源位置的相关信息可以是通过数据映射指示信息域进行指示,例如,数据映射指示信息域可以为“DMRS pattern和/或port(s)for PDSCH RE mapping”。通过该域中的比特值来指示DMRS pattern和/或DMRS port信息来实现,具体的信令举例如下:
-front loaded DMRS pattern和/或port(s)for PDSCH RE mapping
-additional DMRS pattern和/或port(s)for PDSCH RE mapping
可选的,传输点向接收点发送一种指示信息,该指示信息可以是数据映射的指示信息,该指示信息包括第二解调参考信号的天线端口组的信息和第三解调参考信号的天线端口组的信息。比如接收点通过DCI信令中接收该指示信息,当接收点接收到该指示信息时,即可确定在该DMRS天线端口组中的DMRS天线端口对应的时频资源位置上不进行数据映射,即不进行数据接收。比如用1或者2个比特信息通知DMRS天线端口组的信息。具体如下:
-front loaded DMRS port group for PDSCH RE mapping---1bit or 2bits。
-additional DMRS port group for PDSCH RE mapping---1bit or 2bits。
上述图8至图12示出的方法中包括了传输点向接收点发送第一解调参考信号(例如,front loaded DMRS的一例)、第二解调参考信号(例如,front loaded DMRS的一例)以及第三解调参考信号的方案。
需要说明的是,上述图8至图12所示的方法中的第一解调参考信号、第二解调参考 信号以及第三解调参考信号的类型可以为:
第一解调参考信号为front loaded DMRS,第二解调参考信号为front loaded DMRS,第三解调参考信号为additional DMRS。
上述图14至图17示出的方法中包括了传输点向接收点发送第一解调参考信号、第二解调参考信号、第三解调参考信号以及第四解调参考信号的方案。
需要说明的是,上述图14至图17所示的方法中的第一解调参考信号、第二解调参考信号、第三解调参考信号以及第四解调参考信号的类型可以为:
第一解调参考信号为front loaded DMRS,第二解调参考信号为front loaded DMRS,第三解调参考信号为additional DMRS,第四解调参考信号为additional DMRS。
还需要说明的是,在本申请实施例中,还包括传输点向接收点发送第一解调参考信号、第二解调参考信号以及第四解调参考信号的方案,具体的方案描述可以参照上述图14至图17中涉及到的传输点向接收点发送第一解调参考信号、第二解调参考信号以及第四解调参考信号的方案描述,为了简洁,此处不再赘述。
在传输点向接收点发送第一解调参考信号、第二解调参考信号以及第四解调参考信号的情况下,第一解调参考信号、第二解调参考信号以及第四解调参考信号的类型可以为:
第一解调参考信号为front loaded DMRS,第二解调参考信号为additional DMRS,第四解调参考信号为additional DMRS。
需要说明的是,在本申请实施例中,可以通过第三指示信息指示第三解调参考信号的时频资源位置,但本申请并不限定于此。还可以通过其他方式指示第三解调参考信号的时频资源位置。下面进行详细说明。
作为示例而非限定,接收点接收到第二解调参考信号(例如,front loaded DMRS的一例)和第三解调参考信号(例如,additional DMRS的一例),其中,第二解调参考信号的时频资源位置与第三解调参考信号的时频资源位置之间存在预设的映射关系。
例如,接收点已经确定了第二解调参考信号的时频资源位置,则接收点便可以根据第二解调参考信号的时频资源位置以及该预设的映射关系,确定第三解调参考信号的时频资源位置。
具体地,作为示例而非限定,第二解调参考信号的时频资源位置与第三解调参考信号的时频资源位置之间存在的预设的映射关系可以为:第三解调参考信号的时频资源位置在时域上相对于第二解调参考信号的时频资源位置向左或向右偏移了N个符号(比如N可以为3),第三解调参考信号的时频资源位置在频域上子载波位置相对于第二解调参考信号的时频资源位置不存在偏移;或
第三解调参考信号的时频资源位置在时域上相对于第二解调参考信号的时频资源位置向左或向右偏移了L个符号(比如L可以为3),第三解调参考信号的时频资源位置在频域上子载波位置相对于第二解调参考信号的时频资源位置向上或向下偏移了M个子载波(比如M可以为3);或者
第三解调参考信号的时频资源位置的相关信息与第二解调参考信号的时频资源位置的相关信息具有映射关系,相关信息可以比如指示解调参考信号的图案(DMRS pattern)和/或者解调参考信号的天线端口(DMRS port)和/或DMRS天线端口组的信息等等。
具体的比如,第三解调参考信号的图案与第二解调参考信号的图案相同;比如第二解 调参考信号的图案为pattern 1,则第三解调参考信号的图案为pattern 1;比如第二解调参考信号的图案为pattern 2,则第三解调参考信号的图案为pattern 2;或者
第三解调参考信号的天线端口与第二解调参考信号的天线端口相同;比如第二解调参考信号的天线端口信息为port 7,8,则第三解调参考信号的天线端口信息为port 7,8;比如第二解调参考信号的天线端口信息为port 9,10,则第三解调参考信号的天线端口信息为port 9,10;或者
第三解调参考信号的天线端口组信息与第二解调参考信号的天线端口组信息相同;比如第二解调参考信号的天线端口组信息为组1,则第三解调参考信号的天线端口组信息为组1;比如第二解调参考信号的天线端口组信息为组2,则第三解调参考信号的天线端口组信息为组2;或者
第三解调参考信号的天线端口组信息与第二解调参考信号的天线端口组信息不同。比如第二解调参考信号的天线端口组信息为组1,则第三解调参考信号的天线端口组信息为组2;比如第二解调参考信号的天线端口组信息为组2,则第三解调参考信号的天线端口组信息为组1等等。
其中N,L,M可以为大于等于0整数。
比如N可以取值为0,3,5,6等;L可以取值为0,3,4,5,6,7等,M可以取值为0,1,2,3等。可选的,N,M的取值可以是协议预定义的,或者是基站通过信令告知接收点。
可选的,可以是通过高层信令通知接收点可能的取值范围,进而通过另一高层信令或者物理层信令通知接收点具体的取值。
比如通过高层信令(比如RRC信令)告知接收点N和/或L和/或M的可能取值的集合A和/或B和/或C,A中可以包括3,5等,B中可以包括3,5等,C中可以包括1,2,3等。在高层信令(比如RRC信令或MAC信令)或物理层信号(比如DCI)中指示集合中的具体某个取值。
在接收点确定了第二解调参考信号的时频资源位置的情况下,则接收点便可以根据第二解调参考信号的时频资源位置以及该预设的映射关系,确定第三解调参考信号的时频资源位置。
该映射关系可以由任意一个传输点通过信令通知给接收点;或者,该映射关系也可以基于系统预定义;或者,不同解调参考信号的时频资源位置在时域上的符号之间的偏移量可以由任意一个传输点通过信令通知给接收点,不同解调参考信号的时频资源位置在频域上的子载波之间的偏移量可以基于系统预定义;或者不同解调参考信号的时频资源位置在时域上的符号之间的偏移量可以基于系统预定义,不同解调参考信号的时频资源位置在频域上的子载波之间的偏移量可以由任意一个传输点通过信令通知给接收点。
应理解,上述仅以接收点根据第二解调参考信号的时频资源位置以及该预设的映射关系预设的映射关系,确定第三解调参考信号的时频资源位置为例进行说明;接收点还可以根据第三解调参考信号的时频资源位置以及该预设的映射关系预设的映射关系,确定第二解调参考信号的时频资源位置,本申请对此不作特别限定。
应理解,上述仅以接收点根据第二解调参考信号的时频资源位置以及该预设的映射关系预设的映射关系,确定第三解调参考信号的时频资源位置为例进行说明;接收点还可以根据第一解调参考信号的时频资源位置以及该预设的映射关系预设的映射关系,确定第四 解调参考信号的时频资源位置,本申请对此不作特别限定。
应理解,上述仅以接收点根据第二解调参考信号的时频资源位置以及该预设的映射关系预设的映射关系,确定第三解调参考信号的时频资源位置为例进行说明;接收点还可以根据第四解调参考信号的时频资源位置以及该预设的映射关系预设的映射关系,确定第一解调参考信号的时频资源位置,本申请对此不作特别限定。
作为示例而非限定,接收点(例如,终端设备的一例)接收传输点A(例如,基站的一例)发送的第一解调参考信号(例如,front loaded DMRS的一例),接收点接收传输点B发送的第二解调参考信号(例如,additional DMRS的一例),对于不同传输点发送的不同的解调参考信号(例如,第一解调参考信号与第二解调参考信号),同样可以根据上述的映射关系,通过两个不同的解调参考信号中一个解调参考信号的时频资源位置确定另一个解调参考信号的时频资源位置。为了简洁,此处不再赘述。
在本申请实施例中,传输点向接收点发送additional DMRS并不是必须的。接收点可以通过以下描述的方法确定传输点是否发送additional DMRS。
首先,接收点可以确定当前是否处于多点协作传输模式,具体地,接收点可以通过以下几种方式进行确定。
方式一:接收点根据接收到的物理下行控制信道(Physical Downlink Control Channel,PDCCH)的配置个数,当PDCCH的配置个数大于等于2时,接收点确定当前处于多点协作传输模式。
方式二:接收点根据接收到的控制信道资源集合的(Control Resource Set,CORESET)的配置个数,当CORESET的配置个数大于等于2时,接收点确定当前处于多点协作传输模式。
方式三:接收点根据接收到DMRS端口的配置个数,当DMRS端口的配置个数大于等于2时,接收点确定当前处于多点协作传输模式。在接收点确定当前处于多点协作传输模式的情况下,接收点还可以进一步确定多点协作传输模式下那些传输点会发送additional DMRS,具体地,接收点可以通过以下几种方式进行确定。
方式1:作为示例而非限定,系统预定义协作传输模式下多个传输点中每个传输点均不发送additional DMRS;
具体地,在系统预定义所有的传输点均不向接收点发送additional DMRS的情况下,则接收点便不接收多点协作传输模式下的任意一个传输点发送的additional DMRS;
方式2:作为示例而非限定,系统预定义协作模式下多个传输点中每个传输点均发送additional DMRS;或者多个传输点中部分传输点发送additional DMRS。
系统预定义多点协作传输模式下所有传输点均向接收点发送additional DMRS,则当接收点根据上述方式一至方式三中任一种确定当前处于多点协作传输模式下时,便可以根据系统预定义的传输模式,确定接收多点协作传输模式下的所有传输点发送的additional DMRS。
系统预定义多点协作传输模式下传输点A和传输点C向接收点发送additional DMRS,则当接收点根据上述方式一至方式三中任一种确定当前处于多点协作传输模式时,便可以根据系统预定义的传输模式,确定只接收传输点A和传输点C发送的additional DMRS;或者
方式3:作为示例而非限定,接收点接收来自传输点发送的信令,该信令用于向接收点指示多点协作传输模式下的传输点发送additional DMRS的情况,例如,该信令向接收点指示传输点均不向接收点发送additional DMRS;或者传输点A和传输点B向接收点发送additional DMRS;或者所有传输点均向接收点发送additional DMRS。接收点根据该信令,确定多点协作传输模式下的传输点发送additional DMRS的情况。
本申请实施例进一步给出实现上述方法实施例中各步骤及方法的装置实施例。前述方法实施例的方法、步骤、技术细节以及技术效果等同样适用于装置实施例,后续不再详细说明。
请参阅图18,图18提供了一种终端103的结构示意图。在此,以图18示出的终端103作为接收点对接收点的结构进行示例性说明,该终端103可适用于图1所示出的系统中。为了便于说明,图18仅示出了终端103的主要部件。如图18所示,终端103包括处理器、存储器、控制电路或天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据,例如存储上述实施例中高层信令配置的解调参考信号的相关信息。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,本申请实施例中,终端103可以包括一组或多组天线,主要用于收发电磁波形式的射频信号。具输入输出装置,例如触摸屏、显示屏或键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端103开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端103时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图18仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图18中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。基带处理器也可以表述为基带处理电路或者基带处理芯片。中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端103的收发单元801,将具有处理功能的处理器视为终端103的处理单元802。如图18所示, 终端103包括收发单元801和处理单元802。收发单元也可以称为收发器、收发机或收发装置等。可选的,可以将收发单元801中用于实现接收功能的器件视为接收单元,将收发单元801中用于实现发送功能的器件视为发送单元,即收发单元801包括接收单元和发送单元示例性的,接收单元也可以称为接收机、接收器或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
上述终端103可以用于实现前述方法实施例中的方法,具体的:
收发单元801,用于接收第一指示信息,所述第一指示信息用于指示第一数据的第一解调参考信号的时频资源位置;
收发单元801,用于接收第二指示信息,所述第二指示信息用于指示第二解调参考信号的时频资源位置;
处理单元802,用于根据所述第二解调参考信号的时频资源位置确定所述第一数据的时频资源位置,并根据所述第一解调参考信号对所述第一数据进行解调处理。
可选的,收发单元801,还用于接收高层信令,所述高层信令携带有所述第二解调参考信号的时频资源位置的相关信息和与所述相关信息对应的标识;
收发单元801,还用于通过物理层信令接收所述第二指示信息,所述第二指示信息包括至少一个第一标识,所述第一标识与所述至少一组第二解调参考信号的时频资源位置的相关信息对应。
可选的,收发单元801,还用于通过物理层信令接收所述第二指示信息,所述第二指示信息包括所述第二解调参考信号的时频资源位置的相关信息。
可选的,处理单元802,还用于根据所述第二解调参考信号的时频资源位置确定所述第一数据中与所述第二解调参考信号的时频资源位置相关的数据的时频资源位置,所述与第二解调参考信号的时频资源位置相关的数据包括所述第一数据包括的码字、所述第一数据包括的码字对应的层的数据、所述第一数据包括的层对应的天线端口数据中的至少一个数据。
可选地,收发单元801,还用于接收第三指示信息,该第三指示信息用于指示该第一数据的第三解调参考信号的时频资源位置;
处理单元802,还用于根据该第二解调参考信号的时频资源位置与该第三解调参考信号的时频资源位置确定该第一数据的时频资源位置。
可选地,收发单元801,还用于接收第四指示信息,该第四指示信息用于指示该第一数据的第四解调参考信号的时频资源位置;
处理单元802,还用于根据该第一解调参考信号与该第四解调参考信号对该第一数据进行解调处理。
图19示出一种网络设备的结构示意图,在此,以图19示出的网络设备作为传输点对传输点的结构进行示例性说明,其中,第一传输点和第二传输点的结构均可参考图19所示的网络设备结构。该网络设备可应用于如图1所示的系统。其中,图1所示的系统中的网络设备101-A至101-D的结构均可以参考图19所示的网络设备的结构。如图19所示,网络设备101包括一个或多个远端射频单元(remote radio unit,RRU)901和一个或多个基带单元(baseband unit,BBU)902。RRU901可以称为收发单元、收发机、收发电路或者收发器等等,其可以包括至少一个天线9011和射频单元9012。RRU901分主要用于射频 信号的收发以及射频信号与基带信号的转换,例如用于向终端发送上述实施例中的信令指示或参考信号。BBU902部分主要用于进行基带处理,对网络设备进行控制等。RRU901与BBU902可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
BBU902为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。在一个示例中,BBU902可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如5G网络),也可以分别支持不同接入制式的无线接入网。BBU902还包括存储器9021和处理器9022。存储器9021用以存储必要的指令和数据。处理器9022用于控制网络设备进行必要的动作。存储器9021和处理器9022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板公用相同的存储器和处理器。此外每个单板上还设置有必要的电路。
上述网络设备可以用于实现前述第一传输点所执行的方法实施例的方法,具体的:
处理器,用于根据第二解调参考信号的时频资源位置确定第一数据的时频资源位置;
收发器,用于向接收点发送第一指示信息,所述第一指示信息用于指示所述第一数据的第一解调参考信号的时频资源位置。
上述网络设备也可以用于实现前述第二传输点所执行的方法实施例的方法,具体的:
收发器,用于向接收点发送第二指示信息,所述第二指示信息用于指示第二解调参考信号的时频资源位置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (39)

  1. 一种通信方法,其特征在于,包括:
    接收点接收第一指示信息,所述第一指示信息用于指示第一数据的第一解调参考信号的时频资源位置;
    所述接收点接收第二指示信息,所述第二指示信息用于指示第二解调参考信号的时频资源位置;
    所述接收点根据所述第二解调参考信号的时频资源位置确定所述第一数据的时频资源位置,并根据所述第一解调参考信号对所述第一数据进行解调处理。
  2. 如权利要求1所述方法,其特征在于,所述第二指示信息用于指示第二解调参考信号的时频资源位置,包括:
    所述第二指示信息用于指示第二数据的第二解调参考信号的时频资源位置,所述第二解调参考信号用于对所述第二数据进行解调处理。
  3. 如权利要求2所述方法,其特征在于,所述第一数据和所述第一解调参考信号是由第一传输点发送的,所述第二数据和所述第二解调参考信号是由第二传输点发送的,所述第一传输点与所述第二传输点为协作关系。
  4. 如权利要求1-3任一项所述方法,其特征在于,还包括:
    所述接收点接收高层信令,所述高层信令携带有所述第二解调参考信号的时频资源位置的相关信息和与所述相关信息对应的标识;
    所述接收点接收第二指示信息,包括:
    所述接收点通过物理层信令接收所述第二指示信息,所述第二指示信息包括至少一个第一标识,所述第一标识与所述至少一组第二解调参考信号的时频资源位置的相关信息对应。
  5. 如权利要求1-3任一项所述方法,其特征在于,所述接收点接收第二指示信息,包括:
    所述接收点通过物理层信令接收所述第二指示信息,所述第二指示信息包括所述第二解调参考信号的时频资源位置的相关信息。
  6. 如权利要求1-5任一项所述方法,其特征在于,所述接收点根据所述第二解调参考信号的时频资源位置确定所述第一数据的时频资源位置,包括:
    所述接收点根据所述第二解调参考信号的时频资源位置确定所述第一数据中与所述第二解调参考信号的时频资源位置相关的数据的时频资源位置,所述与第二解调参考信号的时频资源位置相关的数据包括所述第一数据包括的码字、所述第一数据包括的码字对应的层的数据、所述第一数据包括的层对应的天线端口数据中的至少一个数据。
  7. 如权利要求1-6任一项所述方法,其特征在于,所述第二解调参考信号的时频资源位置的相关信息包括第二解调参考信号的图案和/或第二解调参考信号相关的天线端口信息,所述天线端口信息包括天线端口的端口号和/或天线端口的个数。
  8. 如权利要求1-6任一项所述方法,其特征在于,所述第二解调参考信号的时频资源位置的相关信息包括与所述第二解调参考信号对应的天线端口组的信息。
  9. 如权利要求1-8任一项所述的方法,其特征在于,还包括:
    所述接收点接收第三指示信息,所述第三指示信息用于指示第三解调参考信号的时频资源位置;
    所述接收点根据所述第二解调参考信号的时频资源位置和所述第三解调参考信号的时频资源位置确定所述第一数据的时频资源位置。
  10. 如权利要求1-9任一项所述的方法,其特征在于,还包括:
    所述接收点接收第四指示信息,所述第四指示信息用于指示所述第一数据的第四解调参考信号的时频资源位置;
    所述接收点根据所述第一解调参考信号和所述第四解调参考信号对所述第一数据进行解调处理。
  11. 一种通信方法,其特征在于,包括:
    第一传输点根据第二解调参考信号的时频资源位置确定第一数据的时频资源位置;
    所述第一传输点向接收点发送第一指示信息,所述第一指示信息用于指示所述第一数据的第一解调参考信号的时频资源位置。
  12. 如权利要求11所述方法,其特征在于,还包括:
    所述第一传输点接收第二传输点发送的第二指示信息,所述第二指示信息用于指示第二解调参考信号的时频资源位置。
  13. 如权利要求12所述的方法,其特征在于,还包括:
    所述第一传输点接收所述第二传输点发送的第三指示信息,所述第三指示信息用于指示第三解调参考信号的时频资源位置。
  14. 如权利要求13所述的方法,其特征在于,还包括:
    所述第一传输点根据所述第二解调参考信号的时频资源位置和所述第三解调参考信号的时频资源位置确定所述第一数据的时频资源位置。
  15. 如权利要求11-14任一项所述的方法,其特征在于,还包括:
    所述第一传输点向所述接收点发送第四指示信息,所述第四指示信息用于指示所述第一数据的第四解调参考信号的时频资源位置。
  16. 一种通信方法,其特征在于,包括:
    第二传输点向接收点发送第二指示信息,所述第二指示信息用于指示第二解调参考信号的时频资源位置。
  17. 如权利要求16所述方法,其特征在于,还包括:
    所述第二传输点向第一传输点发送所述第二指示信息。
  18. 如权利要求16或17所述的方法,其特征在于,还包括:
    所述第二传输点向所述接收点发送第三指示信息,所述第三指示信息用于指示第三解调参考信息的时频资源位置。
  19. 如权利要求18所述的方法,其特征在于,还包括:
    所述第二传输点向所述第一传输点发送所述第三指示信息。
  20. 一种接收点,其特征在于,包括收发器和处理器,其中:
    所述收发器,用于接收第一指示信息,所述第一指示信息用于指示第一数据的第一解调参考信号的时频资源位置;
    所述收发器,用于接收第二指示信息,所述第二指示信息用于指示第二解调参考信号的时频资源位置;
    所述处理器,用于根据所述第二解调参考信号的时频资源位置确定所述第一数据的时频资源位置,并根据所述第一解调参考信号对所述第一数据进行解调处理。
  21. 如权利要求20所述接收点,其特征在于,所述第二指示信息用于指示第二解调参考信号的时频资源位置,包括:
    所述第二指示信息用于指示第二数据的第二解调参考信号的时频资源位置,所述第二解调参考信号用于对所述第二数据进行解调处理。
  22. 如权利要求21所述接收点,其特征在于,所述第一数据和所述第一解调参考信号是由第一传输点发送的,所述第二数据和所述第二解调参考信号是由第二传输点发送的,所述第一传输点与所述第二传输点为协作关系。
  23. 如权利要求20-22任一项所述接收点,其特征在于,
    所述收发器,用于接收高层信令,所述高层信令携带有所述第二解调参考信号的时频资源位置的相关信息和与所述相关信息对应的标识;
    所述收发器用于接收第二指示信息的实现方式为:
    所述收发器用于通过物理层信令接收所述第二指示信息,所述第二指示信息包括至少一个第一标识,所述第一标识与所述至少一组第二解调参考信号的时频资源位置的相关信息对应。
  24. 如权利要求20-22任一项所述接收点,其特征在于,所述收发器用于接收第二指示信息的实现方式为:
    所述收发器用于通过物理层信令接收所述第二指示信息,所述第二指示信息包括所述第二解调参考信号的时频资源位置的相关信息。
  25. 如权利要求20-24任一项所述接收点,其特征在于,所述处理器用于根据所述第二解调参考信号的时频资源位置确定所述第一数据的时频资源位置的实现方式为:
    所述处理器根据所述第二解调参考信号的时频资源位置确定所述第一数据中与所述第二解调参考信号的时频资源位置相关的数据的时频资源位置,所述与第二解调参考信号的时频资源位置相关的数据包括所述第一数据包括的码字、所述第一数据包括的码字对应的层的数据、所述第一数据包括的层对应的天线端口数据中的至少一个数据。
  26. 如权利要求20-25任一项所述接收点,其特征在于,所述第二解调参考信号的时频资源位置的相关信息包括第二解调参考信号的图案和/或第二解调参考信号相关的天线端口信息,所述天线端口信息包括天线端口的端口号和/或天线端口的个数。
  27. 如权利要求20-25任一项所述接收点,其特征在于,所述第二解调参考信号的时频资源位置的相关信息包括与所述第二解调参考信号对应的天线端口组的信息。
  28. 如权利要求20-27任一项所述的接收点,其特征在于,
    所述收发器,用于接收第三指示信息,所述第三指示信息用于指示第三解调参考信号的时频资源位置;
    所述处理器,用于根据所述第二解调参考信号的时频资源位置和所述第三解调参考信号的时频资源位置确定所述第一数据的时频资源位置。
  29. 如权利要求20-28任一项所述的接收点,其特征在于,
    所述收发器,用于接收第四指示信息,所述第四指示信息用于指示所述第一数据的第四解调参考信号的时频资源位置;
    所述处理器,用于根据所述第一解调参考信号和所述第四解调参考信号对所述第一数据进行解调处理。
  30. 一种第一传输点,其特征在于,包括收发器和处理器,其中:
    所述处理器,用于根据第二解调参考信号的时频资源位置确定第一数据的时频资源位置;
    所述收发器,用于向接收点发送第一指示信息,所述第一指示信息用于指示所述第一数据的第一解调参考信号的时频资源位置。
  31. 如权利要求30所述第一传输点,其特征在于,所述收发器还用于:
    接收第二传输点发送的第二指示信息,所述第二指示信息用于指示第二解调参考信号的时频资源位置。
  32. 如权利要求31所述的第一传输点,其特征在于,
    所述收发器,用于接收所述第二传输点发送的第三指示信息,所述第三指示信息用于指示第三解调参考信号的时频资源位置。
  33. 如权利要求32所述的第一传输点,其特征在于,
    所述处理器,用于根据所述第二解调参考信号的时频资源位置和所述第三解调参考信号的时频资源位置确定所述第一数据的时频资源位置。
  34. 如权利要求30-33任一项所述的第一传输点,其特征在于,
    所述收发器,用于向所述接收点发送第四指示信息,所述第四指示信息用于指示所述第一数据的第四解调参考信号的时频资源位置。
  35. 一种第二传输点,其特征在于,包括收发器,其中:
    所述收发器,用于向接收点发送第二指示信息,所述第二指示信息用于指示第二解调参考信号的时频资源位置。
  36. 如权利要求30所述第二传输点,其特征在于,所述收发器还用于:
    向第一传输点发送所述第二指示信息。
  37. 如权利要求35或36所述的第二传输点,其特征在于,
    所述收发器,用于向所述接收点发送第三指示信息,所述第三指示信息用于指示第三解调参考信息的时频资源位置。
  38. 如权利要求37所述的第二传输点,其特征在于,所述收发器,用于向所述第一传输点发送所述第三指示信息。
  39. 一种协作式多点传输系统,其特征在于,包括接收点、第一传输点和第二传输点;其中,所述第一接收点用于执行如权利要求1-10任一项所述方法;所述第一传输点用于执行如权利要求11-15任一项所述方法;所述第二传输点用于执行如权利要求16-19任一项所述方法。
PCT/CN2018/083096 2017-05-05 2018-04-13 一种通信方法、相关设备和系统 WO2018201879A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112019023006A BR112019023006A2 (pt) 2017-05-05 2018-04-13 método de comunicação, e dispositivo e sistema relacionados
EP18794509.2A EP3614607B1 (en) 2017-05-05 2018-04-13 Communications method and related device
US16/674,186 US10756861B2 (en) 2017-05-05 2019-11-05 Communication method, and related device and system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710323434 2017-05-05
CN201710323434.9 2017-05-05
CN201710732932.9A CN108809599B (zh) 2017-05-05 2017-08-24 一种通信方法、相关设备和系统
CN201710732932.9 2017-08-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/674,186 Continuation US10756861B2 (en) 2017-05-05 2019-11-05 Communication method, and related device and system

Publications (1)

Publication Number Publication Date
WO2018201879A1 true WO2018201879A1 (zh) 2018-11-08

Family

ID=64015720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083096 WO2018201879A1 (zh) 2017-05-05 2018-04-13 一种通信方法、相关设备和系统

Country Status (1)

Country Link
WO (1) WO2018201879A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2346201A2 (en) * 2010-01-11 2011-07-20 Ntt Docomo, Inc. Method and system for MU-MIMO transmission
CN102215182A (zh) * 2010-04-02 2011-10-12 电信科学技术研究院 一种导频和数据的收发处理方法及设备
CN104581961A (zh) * 2015-01-29 2015-04-29 大唐移动通信设备有限公司 一种下行协作多点联合传输方法及装置
CN105531949A (zh) * 2013-09-17 2016-04-27 华为技术有限公司 增强下行ue特定解调参考信号以促进小区间干扰抑制的设备和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2346201A2 (en) * 2010-01-11 2011-07-20 Ntt Docomo, Inc. Method and system for MU-MIMO transmission
CN102215182A (zh) * 2010-04-02 2011-10-12 电信科学技术研究院 一种导频和数据的收发处理方法及设备
CN105531949A (zh) * 2013-09-17 2016-04-27 华为技术有限公司 增强下行ue特定解调参考信号以促进小区间干扰抑制的设备和方法
CN104581961A (zh) * 2015-01-29 2015-04-29 大唐移动通信设备有限公司 一种下行协作多点联合传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3614607A4 *

Similar Documents

Publication Publication Date Title
US11962532B2 (en) Apparatus and method for transmitting muting information, and apparatus and method for acquiring channel state using same
WO2018171640A1 (zh) 一种数据传输方法、终端设备及基站系统
WO2017167290A1 (zh) 一种数据传输方法、网络侧设备及终端设备
WO2018040779A1 (zh) 一种下行传输方法及装置
JP7227297B2 (ja) データ通信方法、端末、および基地局
WO2019029662A1 (zh) 信息传输的方法和通信装置
CN108809599B (zh) 一种通信方法、相关设备和系统
CN108811074B (zh) 信息传输方法及装置
WO2020259336A1 (zh) 准共站址信息指示方法、设备和系统
WO2018137675A1 (zh) 通信方法和网络设备
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2020169063A1 (zh) 一种数据传输方法及通信装置
US20220400470A1 (en) Terminal device, base station apparatus, and communication method
US20180098346A1 (en) System and Method for Signal Density Reduction in the Frequency Domain
WO2021062918A1 (zh) 一种资源的动态指示方法及装置
WO2017174018A1 (zh) 多传输点数据传输的方法及装置
WO2023226046A1 (zh) Tci状态的指示方法、装置、设备及介质
WO2018171783A1 (zh) 信号传输方法、装置及系统
CN116058032A (zh) 为一个或多个coreset激活两个或更多个tci状态
WO2017181996A1 (zh) 一种参考信号的发送方法、接收方法及相关设备
CN114175697A (zh) 使用比特图的长期演进-m资源预留
WO2016169479A1 (zh) 一种数据传输方法及设备
WO2018127158A1 (zh) 一种数据传输的方法、网络侧设备及终端设备
WO2018201879A1 (zh) 一种通信方法、相关设备和系统
WO2021062892A1 (zh) 一种资源的动态指示方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019023006

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018794509

Country of ref document: EP

Effective date: 20191118

ENP Entry into the national phase

Ref document number: 112019023006

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191101