WO2018201847A1 - 一种光学指纹识别方法及相关产品 - Google Patents

一种光学指纹识别方法及相关产品 Download PDF

Info

Publication number
WO2018201847A1
WO2018201847A1 PCT/CN2018/082210 CN2018082210W WO2018201847A1 WO 2018201847 A1 WO2018201847 A1 WO 2018201847A1 CN 2018082210 W CN2018082210 W CN 2018082210W WO 2018201847 A1 WO2018201847 A1 WO 2018201847A1
Authority
WO
WIPO (PCT)
Prior art keywords
fingerprint
data
noise
mobile terminal
repair
Prior art date
Application number
PCT/CN2018/082210
Other languages
English (en)
French (fr)
Inventor
周意保
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP18794997.9A priority Critical patent/EP3620952B1/en
Publication of WO2018201847A1 publication Critical patent/WO2018201847A1/zh
Priority to US16/667,342 priority patent/US20200065555A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/30Noise filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification

Definitions

  • the present invention relates to the field of data transmission technologies, and in particular, to an optical fingerprint identification method and related products.
  • mobile terminals such as smart phones
  • mobile phones generally use fingerprint recognition technology, and fingerprint recognition can be used for various aspects such as unlocking of mobile terminals and mobile payment.
  • the optical fingerprint recognition module generally includes a light source and an optical fingerprint detection module.
  • the imaging principle of optical fingerprint recognition is that the light source emits light, the light passes through the surface of the display screen with the fingerprint pressed, and then is reflected to the optical fingerprint recognition module, and the optical fingerprint recognition module receives the reflected light and processes it to form a fingerprint image.
  • the fingerprint matching principle is: the optical fingerprint identification module matches the formed fingerprint image with the pre-stored fingerprint image to obtain a matching result.
  • the residual fingerprint trace often affects the recognition result of the optical fingerprint recognition module, resulting in deviation between the formed fingerprint image and the actual fingerprint image, thereby reducing The fingerprint matching success rate of the optical fingerprint identification module.
  • the embodiment of the invention provides an optical fingerprint identification method and related products, which can improve the success rate of fingerprint matching.
  • the first aspect of the present invention provides an optical fingerprint identification method, which is applied to a mobile terminal including an application processor AP, a touch display screen, and an optical fingerprint recognition module, where the fingerprint identification area of the optical fingerprint recognition module is located
  • a mobile terminal including an application processor AP, a touch display screen, and an optical fingerprint recognition module, where the fingerprint identification area of the optical fingerprint recognition module is located
  • the first area of the touch display screen the method comprising:
  • the mobile terminal controls the optical fingerprint identification module to collect fingerprint data of the user, and sends the fingerprint data to the AP;
  • the mobile terminal performs denoising processing on the fingerprint data by using the pre-acquired noise data by the AP to obtain fingerprint repair data, where the noise data is that the optical fingerprint recognition module is not touched in the first area in advance. Collected during control operation;
  • the mobile terminal determines, by the AP, whether the fingerprint repair data matches the pre-stored fingerprint template data, and if it matches, passes the fingerprint verification.
  • a second aspect of the present invention provides a mobile terminal, including an application processor AP, a touch display screen, and an optical fingerprint recognition module.
  • the fingerprint identification area of the optical fingerprint recognition module is located on the touch display screen.
  • the optical fingerprint recognition module is configured to: when the touch display screen detects a touch operation of the user for the first area, collect fingerprint data of the user, and send the fingerprint data to the AP;
  • the AP is configured to perform noise removal processing on the fingerprint data by using the pre-acquired noise data to obtain fingerprint repair data, where the noise data is that the optical fingerprint recognition module has no touch operation in the first area in advance. Collected at the time;
  • the AP is further configured to determine whether the fingerprint repair data matches the pre-stored fingerprint template data
  • the AP is further configured to perform fingerprint verification when the fingerprint repair data matches the pre-stored fingerprint template data.
  • a third aspect of the present invention provides a mobile terminal, including: an application processor AP, a touch display screen, an optical fingerprint recognition module, and a memory; and one or more programs, wherein the optical fingerprint recognition module The fingerprint identification area is located in the first area of the touch display screen;
  • the one or more programs are stored in the memory and are configured to be executed by the AP, the program including instructions for performing the following steps:
  • the touch screen When the touch screen displays the touch operation of the user for the first area, collects fingerprint data of the user, and sends the fingerprint data to the AP;
  • a fourth aspect of the present invention provides an optical fingerprint identification device, which is applied to a mobile terminal including an application processor AP, a touch display screen, and an optical fingerprint recognition module, where the fingerprint identification area of the optical fingerprint recognition module is located
  • the first area of the touch display screen, the optical fingerprint identification device includes an acquisition unit, a processing unit, a determination unit, and a verification unit, wherein:
  • the collecting unit is configured to: when the touch display screen detects a touch operation of the user for the first area, control the optical fingerprint identification module to collect fingerprint data of the user, and send the fingerprint data To the AP;
  • the processing unit is configured to perform denoising processing on the fingerprint data by using the pre-acquired noise data by the AP to obtain fingerprint repair data, where the noise data is in advance of the optical fingerprint recognition module.
  • the area is collected without touch operation;
  • the determining unit is configured to determine, by the AP, whether the fingerprint repair data matches the pre-stored fingerprint template data
  • the verification unit is configured to perform fingerprint verification when the determination unit determines that the result is yes.
  • a fifth aspect of embodiments of the present invention provides a computer readable storage medium for storing a computer program for electronic data exchange, wherein the computer program causes a computer to perform a first aspect of an embodiment of the present invention Some or all of the steps described in either method.
  • a sixth aspect of the embodiments of the present invention provides a computer program product comprising a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to perform an embodiment of the present invention
  • the optical fingerprint identification method in the embodiment of the present invention performs denoising processing on the collected fingerprint data before performing fingerprint data matching, and repairs the collected fingerprint data to obtain fingerprint repair data that is closer to the real fingerprint.
  • the embodiment of the invention can reduce the influence of the residual pollutants in the first area (fingerprint identification area) on the touch display screen on the collected fingerprint data, thereby improving the fingerprint matching success rate.
  • FIG. 1a is a schematic diagram showing the working principle of an optical fingerprint identification module according to an embodiment of the present invention
  • FIG. 1b is a schematic structural diagram of a mobile terminal according to an embodiment of the present invention.
  • FIG. 1c is a schematic structural diagram of a fingerprint identification area according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of an optical fingerprint identification method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of another optical fingerprint identification method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of another optical fingerprint identification method according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another mobile terminal according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an optical fingerprint identification device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another optical fingerprint identification apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of still another mobile terminal according to an embodiment of the present invention.
  • references to "an embodiment” herein mean that a particular feature, structure, or characteristic described in connection with the embodiments can be included in at least one embodiment of the invention.
  • the appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will understand and implicitly understand that the embodiments described herein can be combined with other embodiments.
  • the mobile terminal involved in the embodiments of the present invention may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of user equipment (User Equipment, UE), mobile station (MS), terminal device, and the like.
  • UE User Equipment
  • MS mobile station
  • terminal device and the like.
  • the devices mentioned above are collectively referred to as mobile terminals.
  • FIG. 1a is a schematic diagram of the working principle of the optical fingerprint identification module disclosed in the embodiment of the present invention.
  • the touch display screen 110 and the optical fingerprint recognition module 120 are included.
  • the optical fingerprint recognition module 120 can emit incident light, and the incident light is reflected by the surface of the touch display screen and the finger, and the reflected light is received by the optical fingerprint recognition module 120.
  • the optical fingerprint recognition module 120 can be based on total reflection. The principle identifies which incident rays are in contact with the bumps of the fingerprint (the ridges of the fingerprint) and which incident optics are in contact with the depressions of the fingerprint (the valley of the fingerprint).
  • the ridge of the fingerprint is in contact with the surface of the touch display screen, and the valley of the fingerprint is not in contact with the surface of the touch display screen.
  • the optical fingerprint recognition module 120 generates incident light rays that are incident on the valley of the fingerprint, the incident light is irradiated on the surface of the touch display screen that is in contact with the air. At this time, by designing the incident angle of the incident light, the incident light is totally reflected.
  • the optical fingerprint recognition module 120 can Received strong total reflection light.
  • the optical fingerprint recognition module 120 generates incident light to illuminate the ridge of the fingerprint, the incident light illuminates the surface of the touch display screen that is in contact with the finger fingerprint protrusion. At this time, the incident light is irradiated on the convex portion of the finger to emit the diffuse. Reflecting, at this time, the optical fingerprint recognition module 120 can receive weak diffuse reflection light. The optical fingerprint recognition module 120 can form a fingerprint image according to the strength of the received emitted light.
  • FIG. 1b is a schematic structural diagram of a mobile terminal according to an embodiment of the present invention.
  • the mobile terminal 100 includes an application processor (AP) 101, a touch display screen 102, The fingerprint identification area of the optical fingerprint recognition module 103 is located in the first area of the touch display screen 102.
  • the AP 101 is connected to the touch display screen 102 and the optical fingerprint identification module 103 via the bus 104.
  • the optical fingerprint recognition module 103 is configured to collect fingerprint data of the user when the touch display screen 102 detects the touch operation of the user for the first area, and send the fingerprint data to the AP 101.
  • the first area may be any preset area of the touch screen display 102, and the preset area may be located on the upper left side of the touch display screen 102 (as shown in FIG. 1c), the upper side, the lower side, the left side, In any position such as the right side, the size of the preset area is such that the fingerprint area of the finger can be covered.
  • the shape of the predetermined area may be any shape such as a circular shape, an elliptical shape, a quadrangular shape (for example, a rectangular shape), a finger fingerprint shape, and the like, which is not limited by the embodiment of the present invention.
  • the touch display screen 102 in the embodiment of the present invention may be a Thin Film Transistor-Liquid Crystal Display (TFT-LCD), a Light Emitting Diode (LED) display, or an Organic Light-emitting diode (Organic Light- Emitting Diode, OLED) display, etc.
  • TFT-LCD Thin Film Transistor-Liquid Crystal Display
  • LED Light Emitting Diode
  • OLED Organic Light-emitting diode
  • the touch display screen 102 in the embodiment of the present invention may include a touch screen and a display screen, and the touch screen and the display screen are stacked, and the display screen is disposed on the lower side of the touch screen.
  • the AP 101 is configured to perform noise removal processing on the fingerprint data by using the pre-acquired noise data to obtain fingerprint repair data.
  • the noise data is collected by the optical fingerprint recognition module 103 when the first region has no touch operation.
  • the pre-acquired noise data may be pre-acquired by the optical fingerprint identification module 103 before collecting the fingerprint data of the user.
  • the optical fingerprint recognition module 103 collects noise processing in advance when there is no touch operation in the first area. If the first area has residual contaminants (eg, fingerprint traces), the result of the fingerprint data collected by the optical fingerprinting module 103 may be affected.
  • the collected fingerprint data is denoised, and the collected fingerprint data is repaired to obtain fingerprint repair data that is closer to the real fingerprint.
  • the AP 101 is further configured to determine whether the fingerprint repair data matches the pre-stored fingerprint template data.
  • the AP 101 is also used for fingerprint verification when the fingerprint repair data is matched with the pre-stored fingerprint template data.
  • the AP 101 before performing fingerprint data matching, performs denoising processing on the collected fingerprint data, and repairs the collected fingerprint data to obtain fingerprint repair data that is closer to the real fingerprint.
  • the influence of the residual pollutants in the first area (fingerprint identification area) on the touch display screen on the collected fingerprint data can be reduced, thereby improving the success rate of the fingerprint matching.
  • the noise data includes N noise data points
  • the fingerprint data includes N fingerprint data points
  • the N noise data points are in one-to-one correspondence with the N fingerprint data points
  • the AP 101 denoises the fingerprint data by using the pre-acquired noise data.
  • the AP 101 obtains a first data difference between the first noise data point and the first fingerprint data point, and repairs the first fingerprint data point according to the first data difference to obtain a first fingerprint repair data point; wherein the fingerprint repair data includes N
  • the fingerprint repair data point is any one of N noise data points
  • the first fingerprint data point is one of the N fingerprint data points corresponding to the first noise data point
  • N is greater than or equal to 2 The integer.
  • the optical fingerprint recognition module 103 may collect N fingerprint data points of the user when detecting the touch operation of the user for the first area, or may collect N when the first area has no touch operation.
  • the noise data points, and the N fingerprint data points are in one-to-one correspondence with the N noise data points.
  • the AP 101 may obtain a first data difference between the first noise data point and the first fingerprint data point of the N noise data points, where the first noise data point corresponds to the first fingerprint data point, and according to the first data difference The value is repaired to the first fingerprint data point to obtain the first fingerprint repair data point.
  • the AP 101 repairs the first fingerprint data point according to the first data difference
  • the method for obtaining the first fingerprint repair data point is specifically: the first data difference between the first noise data point and the first fingerprint data point by the AP 101.
  • the value as the first fingerprint repair data point For example, the optical fingerprint recognition module 103 collects the value of the first noise data point as 50, and the value of the first fingerprint data point is 150. If the difference between the two is 100, 100 can be used as the value of the first fingerprint repair data point.
  • the AP 101 repairs the first fingerprint data point according to the first data difference
  • the method for obtaining the first fingerprint repair data point is specifically:
  • the AP 101 determines whether the first data difference is greater than a preset threshold
  • the AP 101 uses the first data difference value as the value of the first fingerprint repair data point;
  • AP101 does not repair the first fingerprint data point.
  • the optical fingerprint recognition module 103 collects fingerprint data twice
  • the fingerprint data points collected twice will have a slight difference. If the first data difference is large, it indicates that the first data point is greatly affected by the noise, or the first data point is the data of the raised portion of the collected fingerprint (for example, the ridge of the fingerprint), and the first data is needed. The point is repaired and the first data difference is used as the value of the first fingerprint repair data point. If the first data difference is small, it indicates that the first data point is less affected by noise, and there is no need to repair the first data point.
  • the preset threshold can be set in advance, for example, the preset threshold can be set to 5. By implementing the embodiments of the present invention, the complexity of the fingerprint data repair processing can be reduced, and the speed of fingerprint matching can be improved.
  • the optical fingerprint identification module 103 is further configured to periodically collect noise data when the first area has no touch operation.
  • the optical fingerprinting module 103 can periodically collect the noise data, for example, the period can be 1 minute, 5 minutes, and the like, which is not limited in the embodiment of the present invention.
  • the AP 101 is further configured to acquire periodically collected noise data from the optical fingerprint identification module 103, and use the newly collected noise data as pre-acquired noise data.
  • the AP101 After the AP101 acquires new noise data from the optical fingerprint recognition module 103, the AP 101 overwrites the previously acquired noise data to ensure that each time the fingerprint is repaired, the latest acquired noise data is used. The accuracy of fingerprint repair.
  • the pre-acquired noise data is any one of a plurality of periodically collected noise data that is periodically performed by the optical fingerprint recognition module when the first area has no touch operation.
  • FIG. 2 is a schematic flowchart diagram of an optical fingerprint identification method according to an embodiment of the present invention.
  • the method is applied to a mobile terminal including an application processor AP, a touch display screen, and an optical fingerprint recognition module.
  • the fingerprint identification area of the optical fingerprint recognition module is located in a first area of the touch display screen, as shown in FIG. 2 .
  • the method includes the following steps.
  • the mobile terminal controls the optical fingerprint recognition module to collect the fingerprint data of the user, and sends the fingerprint data to the AP.
  • the mobile terminal performs noise removal processing on the fingerprint data by using the pre-acquired noise data by the AP, and obtains fingerprint repair data, where the noise data is collected by the optical fingerprint recognition module in advance when the first area has no touch operation.
  • the mobile terminal determines, by the AP, whether the fingerprint repair data matches the pre-stored fingerprint template data, and if yes, passes the fingerprint verification. If it does not match, it will not pass the fingerprint verification. Fingerprint verification can be used for scenarios such as fingerprint unlocking and fingerprint payment.
  • the AP before performing fingerprint data matching, performs denoising processing on the collected fingerprint data, and repairs the collected fingerprint data to obtain fingerprint repair data that is closer to the real fingerprint.
  • the embodiment of the invention can reduce the influence of the residual pollutants in the first area (fingerprint identification area) on the touch display screen on the collected fingerprint data, thereby improving the fingerprint matching success rate.
  • the noise data includes N noise data points
  • the fingerprint data includes N fingerprint data points
  • the N noise data points are in one-to-one correspondence with the N fingerprint data points
  • the mobile terminal uses the pre-acquired noise data to the fingerprint data through the AP.
  • the way to get fingerprint repair data is as follows:
  • the mobile terminal acquires a first data difference between the first noise data point and the first fingerprint data point by using the AP, and repairs the first fingerprint data point according to the first data difference, to obtain a first fingerprint repair data point; wherein, the fingerprint repair The data includes N fingerprint repair data points, and the first noise data point is any one of N noise data points, and the first fingerprint data point is one of the N fingerprint data points corresponding to the first noise data point, and N is greater than Or an integer equal to 2.
  • the manner in which the mobile terminal repairs the first fingerprint data point according to the first data difference value by the AP, and obtains the first fingerprint repair data point is specifically:
  • the mobile terminal determines, by the AP, whether the first data difference is greater than a preset threshold
  • the mobile terminal uses the first data difference value as the value of the first fingerprint repair data point by using the AP;
  • the mobile terminal does not repair the first fingerprint data point by using the AP.
  • the complexity of the fingerprint data repair processing can be reduced, and the speed of fingerprint matching can be improved.
  • FIG. 3 is a schematic flowchart diagram of another optical fingerprint identification method according to an embodiment of the present invention.
  • the method is applied to a mobile terminal including an application processor AP, a touch display screen, and an optical fingerprint recognition module.
  • the fingerprint identification area of the optical fingerprint recognition module is located in a first area of the touch display screen, as shown in FIG. 3 .
  • the method includes the following steps.
  • the mobile terminal periodically collects noise data when the first area has no touch operation by using the optical fingerprint recognition module.
  • the mobile terminal controls the optical fingerprint recognition module to collect the fingerprint data of the user, and sends the fingerprint data to the AP.
  • the mobile terminal performs denoising processing on the fingerprint data by using the pre-acquired noise data by the AP, and obtains fingerprint repair data, where the noise data is collected by the optical fingerprint recognition module when the first area has no touch operation.
  • the pre-acquired noise data is any one of a plurality of periodically collected noise data that is periodically performed by the optical fingerprint recognition module when the first area has no touch operation.
  • the mobile terminal determines, by the AP, whether the fingerprint repair data matches the pre-stored fingerprint template data, and if it matches, passes the fingerprint verification.
  • step 201 to step 203 shown in FIG. 2 For the steps 302 to 304, refer to step 201 to step 203 shown in FIG. 2, and details are not described herein again.
  • the AP may periodically collect the noise data, and after collecting the fingerprint data, perform the denoising processing on the collected fingerprint data by using the pre-acquired noise data, and collect the fingerprint.
  • the data is repaired to get fingerprint repair data that is closer to the real fingerprint.
  • the embodiment of the invention can reduce the influence of the residual pollutants in the first area (fingerprint identification area) on the touch display screen on the collected fingerprint data, thereby improving the fingerprint matching success rate.
  • FIG. 4 is a schematic flowchart diagram of another optical fingerprint identification method according to an embodiment of the present invention.
  • the method is applied to a mobile terminal including an application processor AP, a touch display screen, and an optical fingerprint recognition module.
  • the fingerprint identification area of the optical fingerprint recognition module is located in a first area of the touch display screen, as shown in FIG. 4 .
  • the method includes the following steps.
  • the mobile terminal periodically collects noise data when the first area has no touch operation by using the optical fingerprint recognition module.
  • the mobile terminal acquires periodically collected noise data from the optical fingerprint identification module through the AP, and uses the newly collected noise data as pre-acquired noise data.
  • the AP After the AP acquires new noise data from the optical fingerprint identification module 103, the AP overwrites the previously acquired noise data to ensure that each time the fingerprint is repaired, the latest acquired noise data is used. The accuracy of fingerprint repair.
  • the mobile terminal controls the optical fingerprint recognition module to collect the fingerprint data of the user, and sends the fingerprint data to the AP.
  • the mobile terminal performs noise removal processing on the fingerprint data by using the pre-acquired noise data by the AP, and obtains fingerprint repair data, where the noise data is collected by the optical fingerprint recognition module before the first area has no touch operation.
  • the mobile terminal determines, by the AP, whether the fingerprint repair data matches the pre-stored fingerprint template data, and if yes, passes the fingerprint verification.
  • step 301 For the steps 402 to 405, refer to step 301 to step 304 shown in FIG. 3, and details are not described herein again.
  • the AP may periodically collect noise data, and after collecting the fingerprint data, perform denoising processing on the collected fingerprint data by using the latest collected noise data.
  • the fingerprint data is repaired to obtain fingerprint repair data that is closer to the real fingerprint.
  • the embodiment of the invention can reduce the influence of the residual pollutants in the first area (fingerprint identification area) on the touch display screen on the collected fingerprint data, thereby improving the fingerprint matching success rate.
  • FIG. 5 is a schematic structural diagram of another mobile terminal according to an embodiment of the present invention.
  • the mobile terminal 500 includes an application processor AP501, a touch display screen 502, an optical fingerprint recognition module 503, and a memory 504; and one or more programs, wherein the fingerprint identification area of the optical fingerprint recognition module is located on the touch display screen.
  • the first area; the AP 501 can connect the touch display screen 502, the optical fingerprint recognition module 503, and the memory 504 through the data bus 505.
  • One or more programs are stored in memory 504 and are configured to be executed by AP 501, the program including instructions for performing the following steps:
  • the touch display screen 502 detects the touch operation of the user for the first area, the fingerprint data of the user is collected, and the fingerprint data is sent to the AP 501;
  • the fingerprint data is denoised by using the pre-acquired noise data to obtain fingerprint repair data, and the noise data is collected by the optical fingerprint recognition module 503 when there is no touch operation in the first region;
  • the noise data includes N noise data points
  • the fingerprint data includes N fingerprint data points
  • the N noise data points are performed in one-to-one correspondence with the N fingerprint data points
  • the fingerprint data is denoised by using the pre-acquired noise data.
  • the instruction to obtain the fingerprint repair data step is specifically used to perform the following steps:
  • the fingerprint repair data point, the first noise data point is any one of N noise data points, and the first fingerprint data point is one of the N fingerprint data points corresponding to the first noise data point, and N is greater than or equal to 2. Integer.
  • the step of performing the step of repairing the first fingerprint data point according to the first data difference is performed to perform the following steps:
  • the first data difference is used as the value of the first fingerprint repair data point
  • the program also includes instructions for performing the following steps:
  • the noise data is periodically collected when there is no touch operation in the first area.
  • the program also includes instructions for performing the following steps:
  • the newly acquired noise data is taken as the pre-acquired noise data.
  • the pre-acquired noise data is any one of a plurality of collected noise data periodically periodically when the first area has no touch operation in the first area.
  • the AP before performing fingerprint data matching, performs denoising processing on the collected fingerprint data, and repairs the collected fingerprint data to obtain fingerprint repair data that is closer to the real fingerprint.
  • the embodiment of the invention can reduce the influence of the residual pollutants in the first area (fingerprint identification area) on the touch display screen on the collected fingerprint data, thereby improving the fingerprint matching success rate.
  • FIG. 6 is a schematic structural diagram of an optical fingerprint identification device according to an embodiment of the present invention.
  • the optical fingerprint identification device 600 is applied to a mobile terminal including an application processor AP, a touch display screen, and an optical fingerprint recognition module.
  • the fingerprint identification area of the optical fingerprint recognition module is located in the first area of the touch display screen, and optical fingerprint recognition is performed.
  • the apparatus 600 includes an acquisition unit 601, a processing unit 602, a determination unit 603, and a verification unit 604, where:
  • the collecting unit 601 is configured to: when the touch display screen detects the touch operation of the user for the first area, control the optical fingerprint identification module to collect the fingerprint data of the user, and send the fingerprint data to the AP.
  • the processing unit 602 is configured to perform noise removal processing on the fingerprint data by using the pre-acquired noise data by the AP to obtain fingerprint repair data, where the noise data is collected by the optical fingerprint recognition module in advance when the first area has no touch operation.
  • the determining unit 603 is configured to determine, by the AP, whether the fingerprint repair data matches the pre-stored fingerprint template data.
  • the verification unit 604 is configured to pass the fingerprint verification when the determination unit 603 determines that the result is YES.
  • the processing unit 602 before performing fingerprint data matching, performs denoising processing on the collected fingerprint data, and repairs the collected fingerprint data to obtain fingerprint repair data that is closer to the real fingerprint.
  • the embodiment of the invention can reduce the influence of the residual pollutants in the first area (fingerprint identification area) on the touch display screen on the collected fingerprint data, thereby improving the fingerprint matching success rate.
  • the noise data includes N noise data points
  • the fingerprint data includes N fingerprint data points
  • the N noise data points are in one-to-one correspondence with the N fingerprint data points
  • the processing unit 602 uses the pre-acquired noise data to the fingerprint through the AP.
  • the data is de-noised, and the way to obtain fingerprint repair data is as follows:
  • the processing unit 602 obtains a first data difference between the first noise data point and the first fingerprint data point by using the AP, and repairs the first fingerprint data point according to the first data difference to obtain a first fingerprint repair data point; wherein, the fingerprint The repair data includes N fingerprint repair data points, and the first noise data point is any one of N noise data points, and the first fingerprint data point is one of the N fingerprint data points corresponding to the first noise data point, and N is An integer greater than or equal to 2.
  • the processing unit 602 by using the AP to repair the first fingerprint data point according to the first data difference, obtains the first fingerprint repair data point by:
  • the processing unit 602 determines, by the AP, whether the first data difference is greater than a preset threshold
  • the processing unit 602 uses the first data difference value as the value of the first fingerprint repair data point by the AP;
  • the processing unit 602 does not repair the first fingerprint data point by the AP.
  • the collecting unit 601 is further configured to periodically collect noise data when the first area has no touch operation by using the optical fingerprinting module.
  • the optical fingerprinting device 600 further includes an acquiring unit 605, which acquires periodically collected noise data from the optical fingerprinting module through the AP, and uses the newly collected noise data as Pre-acquired noise data.
  • the pre-acquired noise data is any one of a plurality of periodically collected noise data that is periodically performed by the optical fingerprint recognition module when the first area has no touch operation.
  • the noise data before the fingerprint data is matched, the noise data may be periodically collected in advance, and after the fingerprint data is collected, the collected fingerprint data is denoised by using the latest collected noise data, and the collected data is collected.
  • the fingerprint data is repaired to obtain fingerprint repair data that is closer to the real fingerprint.
  • the embodiment of the invention can reduce the influence of the residual pollutants in the first area (fingerprint identification area) on the touch display screen on the collected fingerprint data, thereby improving the fingerprint matching success rate.
  • the embodiment of the present invention further provides another mobile terminal.
  • FIG. 8 for the convenience of description, only parts related to the embodiment of the present invention are shown. If the specific technical details are not disclosed, refer to the method of the embodiment of the present invention. section.
  • the mobile terminal can be any terminal device including a mobile phone, a tablet computer, a PDA (Personal Digital Assistant), a POS (Point of Sales), an in-vehicle computer, and the mobile terminal is used as a mobile phone as an example:
  • FIG. 8 is a block diagram showing a partial structure of a mobile phone related to a mobile terminal provided by an embodiment of the present invention.
  • the mobile phone includes: a radio frequency (RF) circuit 910 , a memory 920 , an input unit 930 , a display unit 940 , a sensor 950 , an audio circuit 960 , a wireless fidelity (WiFi) module 970 , and a processor 980 .
  • RF radio frequency
  • the RF circuit 910 can be used for receiving and transmitting information.
  • RF circuit 910 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • LNA Low Noise Amplifier
  • RF circuitry 910 can also communicate with the network and other devices via wireless communication.
  • the above wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division). Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), E-mail, Short Messaging Service (SMS), and the like.
  • GSM Global System of Mobile communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • E-mail Short Messaging Service
  • the memory 920 can be used to store software programs and modules, and the processor 980 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 920.
  • the memory 920 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function, and the like; the storage data area may store data created according to usage of the mobile phone, and the like.
  • memory 920 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 930 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
  • the input unit 930 can include a fingerprint recognition module 931 (eg, an optical fingerprint is a module), a touch display screen 932, and other input devices 933.
  • the fingerprint identification module 931 can collect fingerprint data of the user.
  • the input unit 930 may also include other input devices 933.
  • the other input device 933 may include, but is not limited to, one or more of a touch screen, a physical keyboard, function keys (such as a volume control button, a switch button, etc.), a trackball, a mouse, a joystick, and the like.
  • the display unit 940 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 940 can include a display screen 941.
  • the display screen 941 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the fingerprint recognition module 931 and the display screen 941 function as two separate components to implement the input and input functions of the mobile phone, in some embodiments, the fingerprint recognition module 931 and the display screen 941 can be implemented. Integrated to achieve mobile phone input and fingerprint recognition.
  • the handset may also include at least one type of sensor 950, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display screen 941 according to the brightness of the ambient light, and the proximity sensor may turn off the display screen 941 and/or when the mobile phone moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • the mobile phone can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • the gesture of the mobile phone such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration
  • vibration recognition related functions such as pedometer, tapping
  • the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • An audio circuit 960, a speaker 961, and a microphone 962 can provide an audio interface between the user and the handset.
  • the audio circuit 960 can transmit the converted electrical data of the received audio data to the speaker 961 for conversion to the sound signal by the speaker 961; on the other hand, the microphone 962 converts the collected sound signal into an electrical signal by the audio circuit 960. After receiving, it is converted into audio data, and then processed by the audio data playback processor 980, sent to the other mobile phone via the RF circuit 910, or played back to the memory 920 for further processing.
  • WiFi is a short-range wireless transmission technology
  • the mobile phone can help users to send and receive emails, browse web pages, and access streaming media through the WiFi module 970, which provides users with wireless broadband Internet access.
  • FIG. 8 shows the WiFi module 970, it can be understood that it does not belong to the essential configuration of the mobile phone, and may be omitted as needed within the scope of not changing the essence of the invention.
  • the processor 980 is the control center of the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 920, and invoking data stored in the memory 920, executing The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 980 may include one or more processing units; preferably, the processor 980 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 980.
  • the handset also includes a power source 990 (such as a battery) that supplies power to the various components.
  • a power source 990 such as a battery
  • the power source can be logically coupled to the processor 980 through a power management system to manage functions such as charging, discharging, and power management through the power management system.
  • the mobile phone may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium stores a computer program for electronic data exchange, the computer program causing the computer to execute any one of the optical fingerprint identification methods as described in the foregoing method embodiments. Some or all of the steps.
  • Embodiments of the present invention also provide a computer program product comprising a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to perform the operations as recited in the above method embodiments Any or all of the steps of any optical fingerprinting method.
  • the disclosed apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Collating Specific Patterns (AREA)
  • Telephone Function (AREA)
  • Position Input By Displaying (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明实施例公开了一种光学指纹识别方法及相关产品,该方法包括:当触控显示屏检测到用户针对第一区域的触控操作时,移动终端控制光学指纹识别模组采集用户的指纹数据,并将指纹数据发送至AP;移动终端通过AP利用预先采集的噪声数据对指纹数据做去噪声处理,得到指纹修复数据,噪声数据为光学指纹识别模组预先在第一区域没有触控操作时采集得到的;移动终端通过AP判断指纹修复数据与预先存储的指纹模板数据是否匹配,若匹配,则通过指纹验证。本发明实施例可以提高指纹匹配成功率。

Description

一种光学指纹识别方法及相关产品 技术领域
本发明涉及数据传输技术领域,具体涉及一种光学指纹识别方法及相关产品。
背景技术
随着智能手机等移动终端的应用越来越广泛,现代生活人们基本上已是人手一台手机。目前的手机一般都采用指纹识别技术,指纹识别可以用于移动终端的解锁、移动支付等各个方面。
光学指纹识别技术以其稳定性好、识别灵敏度高的优点广泛应用在各种移动终端的指纹识别模组上。光学指纹识别模组一般包括光源和光学指纹检测模块。光学指纹识别的成像原理为:光源发射光线,光线经过按压有指纹的显示屏表面,然后反射到光学指纹识别模块上,光学指纹识别模块接收反射的光线并进行处理,从而形成指纹图像。指纹匹配原理为:光学指纹识别模块将形成的指纹图像与预先存储的指纹图像进行匹配,得到匹配结果。
然而,由于用户的手指会在显示屏表面按压时容易留下指纹痕迹,而残留的指纹痕迹往往会影响光学指纹识别模组的识别结果,导致形成的指纹图像与实际指纹图像产生偏差,进而降低光学指纹识别模组的指纹匹配成功率。
发明内容
本发明实施例提供了一种光学指纹识别方法及相关产品,可以提高指纹匹配成功率。
本发明实施例第一方面提供一种光学指纹识别方法,应用于包括应用处理器AP、触控显示屏、光学指纹识别模组的移动终端,所述光学指纹识别模组的指纹识别区域位于所述触控显示屏的第一区域,所述方法包括:
当所述触控显示屏检测到用户针对所述第一区域的触控操作时,所述移动终端控制所述光学指纹识别模组采集用户的指纹数据,并将所述指纹数据发送至所述AP;
所述移动终端通过所述AP利用预先采集的噪声数据对所述指纹数据做去噪声处理,得到指纹修复数据,所述噪声数据为所述光学指纹识别模组预先在所述第一区域没有触控操作时采集得到的;
所述移动终端通过所述AP判断所述指纹修复数据与预先存储的指纹模板数据是否匹配,若匹配,则通过指纹验证。
本发明实施例第二方面提供一种移动终端,包括应用处理器AP、触控显示屏和光学指纹识别模组,所述光学指纹识别模组的指纹识别区域位于所述触控显示屏的第一区域,其中,
所述光学指纹识别模组,用于当所述触控显示屏检测到用户针对所述第一区域的触控操作时,采集用户的指纹数据,并将所述指纹数据发送至所述AP;
所述AP,用于利用预先采集的噪声数据对所述指纹数据做去噪声处理,得到指纹修复数据,所述噪声数据为所述光学指纹识别模组预先在所述第一区域没有触控操作时采集得 到的;
所述AP,还用于判断所述指纹修复数据与预先存储的指纹模板数据是否匹配;
所述AP,还用于所述指纹修复数据与预先存储的指纹模板数据匹配时,通过指纹验证。
本发明实施例第三方面提供一种移动终端,包括:应用处理器AP、触控显示屏、光学指纹识别模组和存储器;以及一个或多个程序,其中,所述光学指纹识别模组的指纹识别区域位于所述触控显示屏的第一区域;
所述一个或多个程序被存储在所述存储器中,并且被配置成由所述AP执行,所述程序包括用于执行以下步骤的指令:
当所述触控显示屏检测到用户针对所述第一区域的触控操作时,采集用户的指纹数据,并将所述指纹数据发送至所述AP;
利用预先采集的噪声数据对所述指纹数据做去噪声处理,得到指纹修复数据,所述噪声数据为所述光学指纹识别模组预先在所述第一区域没有触控操作时采集得到的;
判断所述指纹修复数据与预先存储的指纹模板数据是否匹配,若匹配,则通过指纹验证。
本发明实施例第四方面提供一种光学指纹识别装置,应用于包括应用处理器AP、触控显示屏、光学指纹识别模组的移动终端,所述光学指纹识别模组的指纹识别区域位于所述触控显示屏的第一区域,所述光学指纹识别装置包括采集单元、处理单元、判断单元和验证单元,其中:
所述采集单元,用于当所述触控显示屏检测到用户针对所述第一区域的触控操作时,控制所述光学指纹识别模组采集用户的指纹数据,并将所述指纹数据发送至所述AP;
所述处理单元,用于通过所述AP利用预先采集的噪声数据对所述指纹数据做去噪声处理,得到指纹修复数据,所述噪声数据为所述光学指纹识别模组预先在所述第一区域没有触控操作时采集得到的;
所述判断单元,用于所述AP判断所述指纹修复数据与预先存储的指纹模板数据是否匹配;
所述验证单元,用于当所述判断单元判断结果为是时,通过指纹验证。
本发明实施例第五方面提供一种计算机可读存储介质,所述计算机可读存储介质用于存储电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本发明实施例第一方面任一方法中所描述的部分或全部步骤。
本发明实施例第六方面提供一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如本发明实施例第一方面任一方法中所描述的部分或全部步骤。
本发明实施例中的光学指纹识别方法,在进行指纹数据匹配之前,将采集的指纹数据进行去噪声处理,对采集的指纹数据进行修复,得到更加贴近真实指纹的指纹修复数据。采用本发明实施例,可以降低触控显示屏上的第一区域(指纹识别区)残留的污染物对采集的指纹数据造成的影响,进而可以提高指纹匹配成功率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是本发明实施例公开的光学指纹识别模组的工作原理示意图;
图1b是本发明实施例公开的一种移动终端的结构示意图;
图1c是本发明实施例公开的一种指纹识别区域的结构示意图;
图2是本发明实施例公开的一种光学指纹识别方法的流程示意图;
图3是本发明实施例公开的另一种光学指纹识别方法的流程示意图;
图4是本发明实施例公开的另一种光学指纹识别方法的流程示意图;
图5是本发明实施例公开的另一种移动终端的结构示意图;
图6是本发明实施例公开的一种光学指纹识别装置的结构示意图;
图7是本发明实施例公开的另一种光学指纹识别装置的结构示意图;
图8是本发明实施例公开的又一种移动终端的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本发明实施例所涉及到的移动终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为移动终端。
下面对本发明实施例进行详细介绍。
为了更好的理解本发明实施例,首先对本发明实施例中的光学指纹识别模组的工作原理进行介绍。请参阅图1a,图1a是本发明实施例公开的光学指纹识别模组的工作原理示意图,如图1a所示,包括触控显示屏110和光学指纹识别模组120。其中,光学指纹识别模组120可以发射入射光线,入射光线经过触控显示屏表面与手指接触的区域发生反射,反 射光线被光学指纹识别模组120接收,光学指纹识别模组120可以根据全反射原理识别哪些入射光线与指纹的凸起处(指纹的脊)接触,哪些入射光学与指纹的凹陷处(指纹的谷)接触。
具体请参见图1a中的虚线放大区域,在触控显示屏表面,指纹的脊与触控显示屏表面接触,指纹的谷不与触控显示屏表面接触。当光学指纹识别模组120产生入射光线照射在指纹的谷时,入射光线照射在触控显示屏与空气接触的表面,此时,通过设计入射光线的入射角度,以使该入射光线发生全反射(触控显示屏的材质的折射率大于1,空气的折射率约等于1,设置触控显示屏的材质的折射率大于空气的折射率即可),此时,光学指纹识别模组120可以接收到较强的全反射光线。当光学指纹识别模组120产生入射光线照射在指纹的脊时,入射光线照射在触控显示屏与手指指纹凸起处接触的表面,此时,入射光线照射在手指的凸起处,发射漫反射,此时,光学指纹识别模组120可以接收到较弱的漫反射光线。光学指纹识别模组120可以根据接收的发射光线的强弱形成指纹图像。
请参阅图1b,图1b是本发明实施例公开的一种移动终端的结构示意图,如图1b所示,该移动终端100包括应用处理器(Application Processor,AP)101、触控显示屏102、光学指纹识别模组103,光学指纹识别模组103的指纹识别区域位于触控显示屏102的第一区域,其中,AP101通过总线104连接触控显示屏102和光学指纹识别模组103。
光学指纹识别模组103,用于当触控显示屏102检测到用户针对第一区域的触控操作时,采集用户的指纹数据,并将指纹数据发送至AP101。
其中,第一区域可以是触控显示屏102的任意一个预设区域,该预设区域可以位于触控显示屏102的左上侧(如图1c所示)、上侧、下侧、左侧、右侧等任意位置,该预设区域的面积大小以满足手指的指纹区能够覆盖为前提。该预设区域的形状可以是圆形、椭圆形、四边形(例如矩形)、手指指纹形状等任意形状,本发明实施例不做唯一限定。
本发明实施例中的触控显示屏102可以是薄膜晶体管液晶显示器(Thin Film Transistor-Liquid Crystal Display,TFT-LCD)、发光二极管(Light Emitting Diode,LED)显示屏、有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏等。
本发明实施例中的触控显示屏102可以包括触控屏和显示屏,触控屏和显示屏层叠设置,且显示屏设置于触控屏的下侧面。
AP101,用于利用预先采集的噪声数据对指纹数据做去噪声处理,得到指纹修复数据,噪声数据为光学指纹识别模组103预先在第一区域没有触控操作时采集得到的。
其中,预先采集的噪声数据可以是光学指纹识别模组103在采集用户的指纹数据之前预先采集的。光学指纹识别模组103预先在第一区域没有触控操作时采集噪声处理。如果第一区域有残留的污染物(例如,指纹痕迹、)覆盖,则会影响光学指纹识别模组103采集的指纹数据的结果。采用本发明实施例,在进行指纹数据匹配之前,将采集的指纹数据进行去噪声处理,对采集的指纹数据进行修复,得到更加贴近真实指纹的指纹修复数据。
AP101,还用于判断指纹修复数据与预先存储的指纹模板数据是否匹配。
AP101,还用于指纹修复数据与预先存储的指纹模板数据匹配时,通过指纹验证。
本发明实施例中,AP101在进行指纹数据匹配之前,将采集的指纹数据进行去噪声处理,对采集的指纹数据进行修复,得到更加贴近真实指纹的指纹修复数据。采用本发明实 施例,可以降低触控显示屏上的第一区域(指纹识别区)残留的污染物对采集的指纹数据造成的影响,进而可以提高指纹匹配成功率。
可选的,噪声数据包括N个噪声数据点,指纹数据包括N个指纹数据点,N个噪声数据点与N个指纹数据点一一对应,AP101利用预先采集的噪声数据对指纹数据做去噪声处理,得到指纹修复数据的方式具体为:
AP101获取第一噪声数据点与第一指纹数据点的第一数据差值,根据第一数据差值对第一指纹数据点进行修复,得到第一指纹修复数据点;其中,指纹修复数据包括N个指纹修复数据点,第一噪声数据点为N个噪声数据点中的任意一个,第一指纹数据点为N个指纹数据点中与第一噪声数据点对应的一个,N为大于或等于2的整数。
本发明实施例中,光学指纹识别模组103可以在检测到用户针对第一区域的触控操作时,采集用户的N个指纹数据点,也可以在第一区域没有触控操作时采集N个噪声数据点,并且N个指纹数据点与N个噪声数据点一一对应。AP101可以获取N个噪声数据点中的第一噪声数据点与第一指纹数据点的第一数据差值,其中,第一噪声数据点与第一指纹数据点相对应,并根据第一数据差值对第一指纹数据点进行修复,得到第一指纹修复数据点。具体的,AP101根据第一数据差值对第一指纹数据点进行修复,得到第一指纹修复数据点的方式具体为:AP101将第一噪声数据点与第一指纹数据点的第一数据差值作为第一指纹修复数据点的数值。例如,光学指纹识别模组103采集第一噪声数据点的值为50,第一指纹数据点的值为150,两者差值为100,则可以将100作为第一指纹修复数据点的数值。
可选的,AP101根据第一数据差值对第一指纹数据点进行修复,得到第一指纹修复数据点的方式具体为:
AP101判断第一数据差值是否大于预设阈值;
若是,AP101将第一数据差值作为第一指纹修复数据点的数值;
若否,AP101不对第一指纹数据点进行修复。
一般而言,光学指纹识别模组103两次采集指纹数据时,两次采集的指纹数据点会有略微的差异。如果第一数据差值较大,则表明第一数据点受噪声影响较大,或者是第一数据点为采集的指纹的凸起处(例如,指纹的脊)的数据,需要对第一数据点进行修复,并将第一数据差值作为第一指纹修复数据点的数值。如果第一数据差值较小,则表明第一数据点受噪声影响较小,无需对第一数据点进行修复。预设阈值可以预先进行设定,比如,可以设定预设阈值为5。实施本发明实施例,可以降低指纹数据修复处理的复杂度,提高指纹匹配的速度。
可选的,光学指纹识别模组103,还用于在第一区域没有触控操作时周期性的采集噪声数据。
其中,光学指纹识别模组103可以周期性的采集噪声数据,例如,周期可以为1分钟,5分钟等等,本发明实施例不做限定。
可选的,AP101,还用于从光学指纹识别模组103获取周期性采集的噪声数据,并将最新采集的噪声数据作为预先采集的噪声数据。
其中,AP101每次从光学指纹识别模组103获取新的噪声数据之后,将新的噪声数据覆盖之前获取的噪声数据,以保证每次指纹修复时,都使用的是最新获取的噪声数据,提 高指纹修复的准确率。
可选的,预先采集的噪声数据为光学指纹识别模组在第一区域没有触控操作时周期性的多个采集噪声数据中的任意一个。
请参阅图2,图2是本发明实施例公开的一种光学指纹识别方法的流程示意图。该方法应用于包括应用处理器AP、触控显示屏、光学指纹识别模组的移动终端,所述光学指纹识别模组的指纹识别区域位于所述触控显示屏的第一区域,如图2所示,该方法包括如下步骤。
201,当触控显示屏检测到用户针对第一区域的触控操作时,移动终端控制光学指纹识别模组采集用户的指纹数据,并将指纹数据发送至AP。
202,移动终端通过AP利用预先采集的噪声数据对指纹数据做去噪声处理,得到指纹修复数据,噪声数据为光学指纹识别模组预先在第一区域没有触控操作时采集得到的。
203,移动终端通过AP判断指纹修复数据与预先存储的指纹模板数据是否匹配,若匹配,则通过指纹验证。若不匹配,则不通过指纹验证。指纹验证可以用于指纹解锁、指纹支付等场景。
本发明实施例中,AP在进行指纹数据匹配之前,将采集的指纹数据进行去噪声处理,对采集的指纹数据进行修复,得到更加贴近真实指纹的指纹修复数据。采用本发明实施例,可以降低触控显示屏上的第一区域(指纹识别区)残留的污染物对采集的指纹数据造成的影响,进而可以提高指纹匹配成功率。
可选的,噪声数据包括N个噪声数据点,指纹数据包括N个指纹数据点,N个噪声数据点与N个指纹数据点一一对应,移动终端通过AP利用预先采集的噪声数据对指纹数据做去噪声处理,得到指纹修复数据的方式具体为:
移动终端通过AP获取第一噪声数据点与第一指纹数据点的第一数据差值,根据第一数据差值对第一指纹数据点进行修复,得到第一指纹修复数据点;其中,指纹修复数据包括N个指纹修复数据点,第一噪声数据点为N个噪声数据点中的任意一个,第一指纹数据点为N个指纹数据点中与第一噪声数据点对应的一个,N为大于或等于2的整数。
可选的,所述移动终端通过所述AP根据所述第一数据差值对所述第一指纹数据点进行修复,得到第一指纹修复数据点的方式具体为:
所述移动终端通过所述AP判断所述第一数据差值是否大于预设阈值;
若是,所述移动终端通过所述AP将所述第一数据差值作为所述第一指纹修复数据点的数值;
若否,所述移动终端通过所述AP不对所述第一指纹数据点进行修复。
实施本发明实施例,可以降低指纹数据修复处理的复杂度,提高指纹匹配的速度。
请参阅图3,图3是本发明实施例公开的另一种光学指纹识别方法的流程示意图。该方法应用于包括应用处理器AP、触控显示屏、光学指纹识别模组的移动终端,所述光学指纹识别模组的指纹识别区域位于所述触控显示屏的第一区域,如图3所示,该方法包括如下步骤。
301,移动终端通过光学指纹识别模组在第一区域没有触控操作时周期性的采集噪声数据。
302,当触控显示屏检测到用户针对第一区域的触控操作时,移动终端控制光学指纹识别模组采集用户的指纹数据,并将指纹数据发送至AP。
303,移动终端通过AP利用预先采集的噪声数据对指纹数据做去噪声处理,得到指纹修复数据,噪声数据为光学指纹识别模组预先在第一区域没有触控操作时采集得到的。
可选的,预先采集的噪声数据为光学指纹识别模组在第一区域没有触控操作时周期性的多个采集噪声数据中的任意一个。
304,移动终端通过AP判断指纹修复数据与预先存储的指纹模板数据是否匹配,若匹配,则通过指纹验证。
其中,步骤302至步骤304可以参见图2所示的步骤201至步骤203,此处不再赘述。
本发明实施例中,AP在进行指纹数据匹配之前,可以预先周期性的采集噪声数据,并在采集指纹数据之后,利用预先采集的噪声数据对采集的指纹数据进行去噪声处理,对采集的指纹数据进行修复,得到更加贴近真实指纹的指纹修复数据。采用本发明实施例,可以降低触控显示屏上的第一区域(指纹识别区)残留的污染物对采集的指纹数据造成的影响,进而可以提高指纹匹配成功率。
请参阅图4,图4是本发明实施例公开的另一种光学指纹识别方法的流程示意图。该方法应用于包括应用处理器AP、触控显示屏、光学指纹识别模组的移动终端,所述光学指纹识别模组的指纹识别区域位于所述触控显示屏的第一区域,如图4所示,该方法包括如下步骤。
401,移动终端通过光学指纹识别模组在第一区域没有触控操作时周期性的采集噪声数据。
402,移动终端通过AP从光学指纹识别模组获取周期性采集的噪声数据,并将最新采集的噪声数据作为预先采集的噪声数据。
其中,AP每次从光学指纹识别模组103获取新的噪声数据之后,将新的噪声数据覆盖之前获取的噪声数据,以保证每次指纹修复时,都使用的是最新获取的噪声数据,提高指纹修复的准确率。
403,当触控显示屏检测到用户针对第一区域的触控操作时,移动终端控制光学指纹识别模组采集用户的指纹数据,并将指纹数据发送至AP。
404,移动终端通过AP利用预先采集的噪声数据对指纹数据做去噪声处理,得到指纹修复数据,噪声数据为光学指纹识别模组预先在第一区域没有触控操作时采集得到的。
405,移动终端通过AP判断指纹修复数据与预先存储的指纹模板数据是否匹配,若匹配,则通过指纹验证。
其中,步骤402至步骤405可以参见图3所示的步骤301至步骤304,此处不再赘述。
本发明实施例中,AP在进行指纹数据匹配之前,可以预先周期性的采集噪声数据,并在采集指纹数据之后,利用预先采集的最新的噪声数据对采集的指纹数据进行去噪声处理,对采集的指纹数据进行修复,得到更加贴近真实指纹的指纹修复数据。采用本发明实施例,可以降低触控显示屏上的第一区域(指纹识别区)残留的污染物对采集的指纹数据造成的影响,进而可以提高指纹匹配成功率。
请参阅图5,图5是本发明实施例公开的另一种移动终端的结构示意图。该移动终端 500包括应用处理器AP501、触控显示屏502、光学指纹识别模组503和存储器504;以及一个或多个程序,其中,光学指纹识别模组的指纹识别区域位于触控显示屏的第一区域;AP501可以通过数据总线505连接触控显示屏502、光学指纹识别模组503和存储器504。
一个或多个程序被存储在存储器504中,并且被配置成由AP501执行,程序包括用于执行以下步骤的指令:
当触控显示屏502检测到用户针对第一区域的触控操作时,采集用户的指纹数据,并将指纹数据发送至AP501;
利用预先采集的噪声数据对指纹数据做去噪声处理,得到指纹修复数据,噪声数据为光学指纹识别模组503预先在第一区域没有触控操作时采集得到的;
判断指纹修复数据与预先存储的指纹模板数据是否匹配,若匹配,则通过指纹验证。
可选的,噪声数据包括N个噪声数据点,指纹数据包括N个指纹数据点,执行N个噪声数据点与N个指纹数据点一一对应,利用预先采集的噪声数据对指纹数据做去噪声处理,得到指纹修复数据步骤的指令具体用于执行以下步骤:
获取第一噪声数据点与第一指纹数据点的第一数据差值,根据第一数据差值对第一指纹数据点进行修复,得到第一指纹修复数据点;其中,指纹修复数据包括N个指纹修复数据点,第一噪声数据点为N个噪声数据点中的任意一个,第一指纹数据点为N个指纹数据点中与第一噪声数据点对应的一个,N为大于或等于2的整数。
可选的,执行根据第一数据差值对第一指纹数据点进行修复,得到第一指纹修复数据点步骤的指令具体用于执行以下步骤:
判断第一数据差值是否大于预设阈值;
若是,将第一数据差值作为第一指纹修复数据点的数值;
若否,不对第一指纹数据点进行修复。
可选的,程序还包括用于执行以下步骤的指令:
在第一区域没有触控操作时周期性的采集噪声数据。
可选的,程序还包括用于执行以下步骤的指令:
在第一区域没有触控操作时周期性的采集噪声数据之后,将最新采集的噪声数据作为预先采集的噪声数据。
可选的,预先采集的噪声数据为光学指纹识别模组503在第一区域没有触控操作时周期性的多个采集噪声数据中的任意一个。
本发明实施例中,AP在进行指纹数据匹配之前,将采集的指纹数据进行去噪声处理,对采集的指纹数据进行修复,得到更加贴近真实指纹的指纹修复数据。采用本发明实施例,可以降低触控显示屏上的第一区域(指纹识别区)残留的污染物对采集的指纹数据造成的影响,进而可以提高指纹匹配成功率。
请参阅图6,图6是本发明实施例公开的一种光学指纹识别装置的结构示意图。该光学指纹识别装置600应用于包括应用处理器AP、触控显示屏、光学指纹识别模组的移动终端,光学指纹识别模组的指纹识别区域位于触控显示屏的第一区域,光学指纹识别装置600包括采集单元601、处理单元602、判断单元603和验证单元604,其中:
采集单元601,用于当触控显示屏检测到用户针对第一区域的触控操作时,控制光学 指纹识别模组采集用户的指纹数据,并将指纹数据发送至AP。
处理单元602,用于通过AP利用预先采集的噪声数据对指纹数据做去噪声处理,得到指纹修复数据,噪声数据为光学指纹识别模组预先在第一区域没有触控操作时采集得到的。
判断单元603,用于AP判断指纹修复数据与预先存储的指纹模板数据是否匹配。
验证单元604,用于当判断单元603判断结果为是时,通过指纹验证。
本发明实施例中,在进行指纹数据匹配之前,处理单元602将采集的指纹数据进行去噪声处理,对采集的指纹数据进行修复,得到更加贴近真实指纹的指纹修复数据。采用本发明实施例,可以降低触控显示屏上的第一区域(指纹识别区)残留的污染物对采集的指纹数据造成的影响,进而可以提高指纹匹配成功率。
可选的,噪声数据包括N个噪声数据点,指纹数据包括N个指纹数据点,N个噪声数据点与N个指纹数据点一一对应,处理单元602通过AP利用预先采集的噪声数据对指纹数据做去噪声处理,得到指纹修复数据的方式具体为:
处理单元602通过AP获取第一噪声数据点与第一指纹数据点的第一数据差值,根据第一数据差值对第一指纹数据点进行修复,得到第一指纹修复数据点;其中,指纹修复数据包括N个指纹修复数据点,第一噪声数据点为N个噪声数据点中的任意一个,第一指纹数据点为N个指纹数据点中与第一噪声数据点对应的一个,N为大于或等于2的整数。
可选的,处理单元602通过AP根据第一数据差值对第一指纹数据点进行修复,得到第一指纹修复数据点的方式具体为:
处理单元602通过AP判断第一数据差值是否大于预设阈值;
若是,处理单元602通过AP将第一数据差值作为第一指纹修复数据点的数值;
若否,处理单元602通过AP不对第一指纹数据点进行修复。
可选的,采集单元601,还用于通过光学指纹识别模组在第一区域没有触控操作时周期性的采集噪声数据。
可选的,如图7所示,该光学指纹识别装置600还包括获取单元605,该获取单元605通过AP从光学指纹识别模组获取周期性采集的噪声数据,并将最新采集的噪声数据作为预先采集的噪声数据。
可选的,预先采集的噪声数据为光学指纹识别模组在第一区域没有触控操作时周期性的多个采集噪声数据中的任意一个。
本发明实施例中,在进行指纹数据匹配之前,可以预先周期性的采集噪声数据,并在采集指纹数据之后,利用预先采集的最新的噪声数据对采集的指纹数据进行去噪声处理,对采集的指纹数据进行修复,得到更加贴近真实指纹的指纹修复数据。采用本发明实施例,可以降低触控显示屏上的第一区域(指纹识别区)残留的污染物对采集的指纹数据造成的影响,进而可以提高指纹匹配成功率。
本发明实施例还提供了另一种移动终端,如图8所示,为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明实施例方法部分。该移动终端可以为包括手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)、POS(Point of Sales,销售终端)、车载电脑等任意终端设备,以移动终端为手机为例:
图8示出的是与本发明实施例提供的移动终端相关的手机的部分结构的框图。参考图 8,手机包括:射频(Radio Frequency,RF)电路910、存储器920、输入单元930、显示单元940、传感器950、音频电路960、无线保真(Wireless Fidelity,WiFi)模块970、处理器980、以及电源990等部件。本领域技术人员可以理解,图8中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图8对手机的各个构成部件进行具体的介绍:
RF电路910可用于信息的接收和发送。通常,RF电路910包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路910还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器920可用于存储软件程序以及模块,处理器980通过运行存储在存储器920的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器920可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据手机的使用所创建的数据等。此外,存储器920可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元930可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元930可包括指纹识别模组931(例如,光学指纹是被模组)、触控显示屏932以及其他输入设备933。指纹识别模组931,可采集用户在其上的指纹数据。除了指纹识别模组931,输入单元930还可以包括其他输入设备933。具体地,其他输入设备933可以包括但不限于触控屏、物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元940可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元940可包括显示屏941,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示屏941。虽然在图8中,指纹识别模组931与显示屏941是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将指纹识别模组931与显示屏941集成而实现手机的输入和指纹识别功能。
手机还可包括至少一种传感器950,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示屏941的亮度,接近传感器可在手机移动到耳边时,关闭显示屏941和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机 还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路960、扬声器961,传声器962可提供用户与手机之间的音频接口。音频电路960可将接收到的音频数据转换后的电信号,传输到扬声器961,由扬声器961转换为声音信号播放;另一方面,传声器962将收集的声音信号转换为电信号,由音频电路960接收后转换为音频数据,再将音频数据播放处理器980处理后,经RF电路910以发送给比如另一手机,或者将音频数据播放至存储器920以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块970可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图8示出了WiFi模块970,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器980是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器920内的软件程序和/或模块,以及调用存储在存储器920内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器980可包括一个或多个处理单元;优选的,处理器980可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器980中。
手机还包括给各个部件供电的电源990(比如电池),优选的,电源可以通过电源管理系统与处理器980逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任何一种光学指纹识别方法的部分或全部步骤。
本发明实施例还提供一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法实施例中记载的任何一种光学指纹识别方法的部分或全部步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之 间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。

Claims (21)

  1. 一种光学指纹识别方法,其特征在于,应用于包括应用处理器AP、触控显示屏、光学指纹识别模组的移动终端,所述光学指纹识别模组的指纹识别区域位于所述触控显示屏的第一区域,所述方法包括:
    当所述触控显示屏检测到用户针对所述第一区域的触控操作时,所述移动终端控制所述光学指纹识别模组采集用户的指纹数据,并将所述指纹数据发送至所述AP;
    所述移动终端通过所述AP利用预先采集的噪声数据对所述指纹数据做去噪声处理,得到指纹修复数据,所述噪声数据为所述光学指纹识别模组预先在所述第一区域没有触控操作时采集得到的;
    所述移动终端通过所述AP判断所述指纹修复数据与预先存储的指纹模板数据是否匹配,若匹配,则通过指纹验证。
  2. 根据权利要求1所述的方法,其特征在于,所述噪声数据包括N个噪声数据点,所述指纹数据包括N个指纹数据点,所述N个噪声数据点与所述N个指纹数据点一一对应,所述移动终端通过所述AP利用预先采集的噪声数据对所述指纹数据做去噪声处理,得到指纹修复数据的方式具体为:
    所述移动终端通过所述AP获取第一噪声数据点与第一指纹数据点的第一数据差值,根据所述第一数据差值对所述第一指纹数据点进行修复,得到第一指纹修复数据点;其中,所述指纹修复数据包括N个指纹修复数据点,所述第一噪声数据点为所述N个噪声数据点中的任意一个,所述第一指纹数据点为所述N个指纹数据点中与所述第一噪声数据点对应的一个,N为大于或等于2的整数。
  3. 根据权利要求2所述的方法,其特征在于,所述移动终端通过所述AP根据所述第一数据差值对所述第一指纹数据点进行修复,得到第一指纹修复数据点的方式具体为:
    所述移动终端通过所述AP判断所述第一数据差值是否大于预设阈值;
    若是,所述移动终端通过所述AP将所述第一数据差值作为所述第一指纹修复数据点的数值;
    若否,所述移动终端通过所述AP不对所述第一指纹数据点进行修复。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述移动终端控制所述光学指纹识别模组采集用户的指纹数据之前,所述方法还包括:
    所述移动终端通过所述光学指纹识别模组在所述第一区域没有触控操作时周期性的采集噪声数据。
  5. 根据权利要求4所述的方法,其特征在于,所述移动终端通过所述光学指纹识别模组在所述第一区域没有触控操作时周期性的采集噪声数据之后,所述方法还包括:
    所述移动终端通过所述AP从所述光学指纹识别模组获取周期性采集的噪声数据,并将最新采集的噪声数据作为所述预先采集的噪声数据。
  6. 根据权利要求4所述的方法,其特征在于,所述预先采集的噪声数据为所述光学指纹识别模组在所述第一区域没有触控操作时周期性的多个采集噪声数据中的任意一个。
  7. 一种移动终端,其特征在于,包括应用处理器AP、触控显示屏和光学指纹识别模 组,所述光学指纹识别模组的指纹识别区域位于所述触控显示屏的第一区域,其中,
    所述光学指纹识别模组,用于当所述触控显示屏检测到用户针对所述第一区域的触控操作时,采集用户的指纹数据,并将所述指纹数据发送至所述AP;
    所述AP,用于利用预先采集的噪声数据对所述指纹数据做去噪声处理,得到指纹修复数据,所述噪声数据为所述光学指纹识别模组预先在所述第一区域没有触控操作时采集得到的;
    所述AP,还用于判断所述指纹修复数据与预先存储的指纹模板数据是否匹配;
    所述AP,还用于所述指纹修复数据与预先存储的指纹模板数据匹配时,通过指纹验证。
  8. 根据权利要求7所述的移动终端,其特征在于,所述噪声数据包括N个噪声数据点,所述指纹数据包括N个指纹数据点,所述N个噪声数据点与所述N个指纹数据点一一对应,所述AP利用预先采集的噪声数据对所述指纹数据做去噪声处理,得到指纹修复数据的方式具体为:
    所述AP获取第一噪声数据点与第一指纹数据点的第一数据差值,根据所述第一数据差值对所述第一指纹数据点进行修复,得到第一指纹修复数据点;其中,所述指纹修复数据包括N个指纹修复数据点,所述第一噪声数据点为所述N个噪声数据点中的任意一个,所述第一指纹数据点为所述N个指纹数据点中与所述第一噪声数据点对应的一个,N为大于或等于2的整数。
  9. 根据权利要求8所述的移动终端,其特征在于,所述AP根据所述第一数据差值对所述第一指纹数据点进行修复,得到第一指纹修复数据点的方式具体为:
    所述AP判断所述第一数据差值是否大于预设阈值;
    若是,所述AP将所述第一数据差值作为所述第一指纹修复数据点的数值;
    若否,所述AP不对所述第一指纹数据点进行修复。
  10. 根据权利要求7-9任一项所述的移动终端,其特征在于,
    所述光学指纹识别模组,还用于在所述第一区域没有触控操作时周期性的采集噪声数据。
  11. 根据权利要求10所述的移动终端,其特征在于,
    所述AP,还用于从所述光学指纹识别模组获取周期性采集的噪声数据,并将最新采集的噪声数据作为所述预先采集的噪声数据。
  12. 根据权利要求10所述的移动终端,其特征在于,所述预先采集的噪声数据为所述光学指纹识别模组在所述第一区域没有触控操作时周期性的多个采集噪声数据中的任意一个。
  13. 一种移动终端,其特征在于,包括:应用处理器AP、触控显示屏、光学指纹识别模组和存储器;以及一个或多个程序,其中,所述光学指纹识别模组的指纹识别区域位于所述触控显示屏的第一区域;
    所述一个或多个程序被存储在所述存储器中,并且被配置成由所述AP执行,所述程序包括用于执行以下步骤的指令:
    当所述触控显示屏检测到用户针对所述第一区域的触控操作时,采集用户的指纹数据,并将所述指纹数据发送至所述AP;
    利用预先采集的噪声数据对所述指纹数据做去噪声处理,得到指纹修复数据,所述噪声数据为所述光学指纹识别模组预先在所述第一区域没有触控操作时采集得到的;
    判断所述指纹修复数据与预先存储的指纹模板数据是否匹配,若匹配,则通过指纹验证。
  14. 根据权利要求13所述的移动终端,其特征在于,所述噪声数据包括N个噪声数据点,所述指纹数据包括N个指纹数据点,执行所述N个噪声数据点与所述N个指纹数据点一一对应,所述利用预先采集的噪声数据对所述指纹数据做去噪声处理,得到指纹修复数据步骤的指令具体用于执行以下步骤:
    获取第一噪声数据点与第一指纹数据点的第一数据差值,根据所述第一数据差值对所述第一指纹数据点进行修复,得到第一指纹修复数据点;其中,所述指纹修复数据包括N个指纹修复数据点,所述第一噪声数据点为所述N个噪声数据点中的任意一个,所述第一指纹数据点为所述N个指纹数据点中与所述第一噪声数据点对应的一个,N为大于或等于2的整数。
  15. 根据权利要求14所述的移动终端,其特征在于,执行所述根据所述第一数据差值对所述第一指纹数据点进行修复,得到第一指纹修复数据点步骤的指令具体用于执行以下步骤:
    判断所述第一数据差值是否大于预设阈值;
    若是,将所述第一数据差值作为所述第一指纹修复数据点的数值;
    若否,不对所述第一指纹数据点进行修复。
  16. 根据权利要求13-15任一项所述的移动终端,其特征在于,所述程序还包括用于执行以下步骤的指令:
    在所述第一区域没有触控操作时周期性的采集噪声数据。
  17. 根据权利要求14所述的移动终端,其特征在于,所述程序还包括用于执行以下步骤的指令:
    在所述第一区域没有触控操作时周期性的采集噪声数据之后,将最新采集的噪声数据作为所述预先采集的噪声数据。
  18. 根据权利要求14所述的移动终端,其特征在于,所述预先采集的噪声数据为所述光学指纹识别模组在所述第一区域没有触控操作时周期性的多个采集噪声数据中的任意一个。
  19. 一种光学指纹识别装置,其特征在于,应用于包括应用处理器AP、触控显示屏、光学指纹识别模组的移动终端,所述光学指纹识别模组的指纹识别区域位于所述触控显示屏的第一区域,所述光学指纹识别装置包括采集单元、处理单元、判断单元和验证单元,其中:
    所述采集单元,用于当所述触控显示屏检测到用户针对所述第一区域的触控操作时,控制所述光学指纹识别模组采集用户的指纹数据,并将所述指纹数据发送至所述AP;
    所述处理单元,用于通过所述AP利用预先采集的噪声数据对所述指纹数据做去噪声处理,得到指纹修复数据,所述噪声数据为所述光学指纹识别模组预先在所述第一区域没有触控操作时采集得到的;
    所述判断单元,用于所述AP判断所述指纹修复数据与预先存储的指纹模板数据是否匹配;
    所述验证单元,用于当所述判断单元判断结果为是时,通过指纹验证。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-6所述的方法。
  21. 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如权利要求1-6任一项所述的方法。
PCT/CN2018/082210 2017-05-03 2018-04-08 一种光学指纹识别方法及相关产品 WO2018201847A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18794997.9A EP3620952B1 (en) 2017-05-03 2018-04-08 Optical fingerprint identification method, and related product
US16/667,342 US20200065555A1 (en) 2017-05-03 2019-10-29 Method for optical fingerprint recognition and related products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710305567.3A CN107239737A (zh) 2017-05-03 2017-05-03 一种光学指纹识别方法及相关产品
CN201710305567.3 2017-05-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/667,342 Continuation US20200065555A1 (en) 2017-05-03 2019-10-29 Method for optical fingerprint recognition and related products

Publications (1)

Publication Number Publication Date
WO2018201847A1 true WO2018201847A1 (zh) 2018-11-08

Family

ID=59984163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082210 WO2018201847A1 (zh) 2017-05-03 2018-04-08 一种光学指纹识别方法及相关产品

Country Status (4)

Country Link
US (1) US20200065555A1 (zh)
EP (1) EP3620952B1 (zh)
CN (1) CN107239737A (zh)
WO (1) WO2018201847A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111353332A (zh) * 2018-12-21 2020-06-30 中国电信股份有限公司 指纹图像处理方法、装置和计算机可读存储介质
CN111695386A (zh) * 2019-03-15 2020-09-22 虹软科技股份有限公司 一种指纹图像增强、指纹识别和应用程序启动方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107239737A (zh) * 2017-05-03 2017-10-10 广东欧珀移动通信有限公司 一种光学指纹识别方法及相关产品
CN110895665B (zh) * 2018-09-12 2023-03-31 上海耕岩智能科技有限公司 一种用于屏下成像的坐标变换方法、存储介质及电子设备
CN109284742A (zh) * 2018-10-30 2019-01-29 Oppo广东移动通信有限公司 屏下指纹模组、电子设备及指纹图像处理方法
WO2020088156A1 (zh) 2018-10-30 2020-05-07 Oppo广东移动通信有限公司 屏下指纹模组、电子设备及指纹图像处理方法
CN111382404B (zh) * 2018-12-27 2023-12-29 珠海市魅族科技有限公司 指纹防误触的方法、系统、终端设备及可读存储介质
CN109740538B (zh) * 2019-01-03 2021-07-27 Oppo广东移动通信有限公司 指纹采集方法、电子装置及计算机可读存储介质
CN109976615B (zh) * 2019-03-28 2021-03-12 Oppo广东移动通信有限公司 指纹图像处理方法及相关装置
CN110287899B (zh) * 2019-06-27 2022-01-11 Oppo广东移动通信有限公司 区域指纹识别方法及相关产品
US11443546B1 (en) * 2021-04-19 2022-09-13 Novatek Microelectronics Corp. Fingerprint sensing signal correction method and device thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993007584A1 (en) * 1991-10-07 1993-04-15 Cogent Systems, Inc. Method and system for detecting features of fingerprint in gray level image
CN101383002A (zh) * 2008-10-27 2009-03-11 北京海鑫科金高科技股份有限公司 一种支持任意方向滚动的指纹采集和拼接方法
CN102833423A (zh) * 2012-09-24 2012-12-19 武汉大学 一种基于指纹识别的触摸屏手机及登录解锁方法
WO2015185883A1 (en) * 2014-06-06 2015-12-10 The Secretary Of State For Defence Synthetic latent fingerprint images
CN105205440A (zh) * 2015-02-13 2015-12-30 比亚迪股份有限公司 用于指纹传感器的数据处理方法及电子装置
CN105956535A (zh) * 2016-04-25 2016-09-21 广东欧珀移动通信有限公司 指纹识别控制方法、指纹识别控制装置及电子装置
CN107239737A (zh) * 2017-05-03 2017-10-10 广东欧珀移动通信有限公司 一种光学指纹识别方法及相关产品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202196429U (zh) * 2011-07-21 2012-04-18 德信互动科技(北京)有限公司 便携式手持电子设备
US9519819B2 (en) * 2014-07-14 2016-12-13 Fingerprint Cards Ab Method and electronic device for noise mitigation
CN106066685B (zh) * 2016-05-30 2018-01-19 广东欧珀移动通信有限公司 一种解锁控制方法及终端设备
CN106547309A (zh) * 2016-10-06 2017-03-29 南昌与德通讯技术有限公司 终端设备及其操作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993007584A1 (en) * 1991-10-07 1993-04-15 Cogent Systems, Inc. Method and system for detecting features of fingerprint in gray level image
CN101383002A (zh) * 2008-10-27 2009-03-11 北京海鑫科金高科技股份有限公司 一种支持任意方向滚动的指纹采集和拼接方法
CN102833423A (zh) * 2012-09-24 2012-12-19 武汉大学 一种基于指纹识别的触摸屏手机及登录解锁方法
WO2015185883A1 (en) * 2014-06-06 2015-12-10 The Secretary Of State For Defence Synthetic latent fingerprint images
CN105205440A (zh) * 2015-02-13 2015-12-30 比亚迪股份有限公司 用于指纹传感器的数据处理方法及电子装置
CN105956535A (zh) * 2016-04-25 2016-09-21 广东欧珀移动通信有限公司 指纹识别控制方法、指纹识别控制装置及电子装置
CN107239737A (zh) * 2017-05-03 2017-10-10 广东欧珀移动通信有限公司 一种光学指纹识别方法及相关产品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3620952A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111353332A (zh) * 2018-12-21 2020-06-30 中国电信股份有限公司 指纹图像处理方法、装置和计算机可读存储介质
CN111695386A (zh) * 2019-03-15 2020-09-22 虹软科技股份有限公司 一种指纹图像增强、指纹识别和应用程序启动方法
CN111695386B (zh) * 2019-03-15 2024-04-26 虹软科技股份有限公司 一种指纹图像增强、指纹识别和应用程序启动方法

Also Published As

Publication number Publication date
EP3620952A1 (en) 2020-03-11
EP3620952B1 (en) 2023-06-07
CN107239737A (zh) 2017-10-10
EP3620952A4 (en) 2020-05-20
US20200065555A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2018201847A1 (zh) 一种光学指纹识别方法及相关产品
TWI666593B (zh) 光學指紋驗證方法及行動終端
WO2018201848A1 (zh) 一种光学指纹采集方法及相关产品
WO2018201849A1 (zh) 光学指纹采集方法及相关产品
CN106778707B (zh) 指纹识别方法、显示屏以及移动终端
TWI679585B (zh) 指紋識別區域顯示方法及移動終端
US11868604B2 (en) Display processing method and apparatus
TWI663541B (zh) 行動終端、指紋識別控制方法及裝置、電腦可讀儲存媒體及電腦程式產品
WO2017206707A1 (en) Method for launching application and terminal
WO2018196660A1 (zh) 指纹识别区域显示方法及相关产品
CN105912918B (zh) 一种指纹解锁方法及终端
CN110113528B (zh) 一种参数获取方法及终端设备
KR20150079829A (ko) 제스처에 기반한 대화 처리 방법, 장치, 단말 장치, 프로그램 및 기록 매체
CN107463897B (zh) 指纹识别方法及移动终端
CN103813127B (zh) 一种视频通话方法、终端及系统
WO2018205847A1 (zh) 指纹的采集方法及相关产品
WO2018133642A1 (zh) 指纹识别模组、指纹识别方法及相关产品
WO2018161540A1 (zh) 指纹注册方法及相关产品
CN105807908B (zh) 一种切换工作模式的方法和装置
CN108196663B (zh) 一种人脸识别方法、移动终端
CN107169472B (zh) 指纹操作方法、移动终端及存储介质
CN108984075A (zh) 显示模式切换方法、装置及终端
CN108304709B (zh) 人脸解锁方法及相关产品
WO2017035794A1 (zh) 显示器操作的方法、装置、用户界面及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018794997

Country of ref document: EP

Effective date: 20191203