WO2018201659A1 - 用于移动基站的耐高温电缆 - Google Patents

用于移动基站的耐高温电缆 Download PDF

Info

Publication number
WO2018201659A1
WO2018201659A1 PCT/CN2017/103105 CN2017103105W WO2018201659A1 WO 2018201659 A1 WO2018201659 A1 WO 2018201659A1 CN 2017103105 W CN2017103105 W CN 2017103105W WO 2018201659 A1 WO2018201659 A1 WO 2018201659A1
Authority
WO
WIPO (PCT)
Prior art keywords
high temperature
base station
mobile base
resistant cable
temperature resistant
Prior art date
Application number
PCT/CN2017/103105
Other languages
English (en)
French (fr)
Inventor
陈永健
潘照红
王永池
许志伟
Original Assignee
江苏亨鑫科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨鑫科技有限公司 filed Critical 江苏亨鑫科技有限公司
Priority to US16/076,121 priority Critical patent/US20210005349A1/en
Priority to DE112017007500.9T priority patent/DE112017007500T5/de
Publication of WO2018201659A1 publication Critical patent/WO2018201659A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1834Construction of the insulation between the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1895Particular features or applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/185Sheaths comprising internal cavities or channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame

Definitions

  • the present invention relates to the technical field of mobile base station accessories, and more particularly to a high temperature resistant cable for a mobile base station.
  • the outer conductor of the high-temperature cable in the prior art is usually a tin-plated copper wire woven + immersion tin process, and the outer conductor of this structure may be cracked in multiple bending, and as shown in FIG.
  • the strength of the connector root of the high-temperature cable assembly and the soldering of the cable is poor, and the outer conductor of the cable is easily cracked when bent.
  • a high temperature resistant cable for a mobile base station comprising an inner conductor, a PTFE insulating layer, an outer conductor and a sheath, respectively, wherein the PTFE insulating layer has at least one hollow tunnel extending in a direction in which the inner conductor extends .
  • the plurality of hollow channels are not connected, and the plurality of hollow holes are not connected to each other.
  • the plurality of hollow channels and the inner conductor are parallel to each other, and the plurality of hollow holes are symmetrically distributed around the inner conductor.
  • the inner conductor is a single-strand silver-plated copper wire or a plurality of silver-plated copper stranded wires.
  • the outer conductor is a spiral copper tube.
  • the outer diameter of the PTFE insulating layer is 2.0 to 20.0 mm, preferably 2.0 to 10.0 mm.
  • the diameter of the hollow tunnel is 0.20 to 5.0 mm, preferably 0.20 to 2.0 mm, and more preferably 0.30 to 1.50 mm.
  • the PTFE insulating layer is extruded and sintered by using a PTFE paste extrusion material.
  • the material of the sheath is a low-smoke halogen-free type (LSZH type) or a perfluoroethylene propylene copolymer (FEP).
  • LSZH type low-smoke halogen-free type
  • FEP perfluoroethylene propylene copolymer
  • the high temperature resistant cable for mobile base station of the present invention has the following beneficial effects:
  • the high temperature resistant cable for the mobile base station of the present invention is comparable in size to the conventional semi-flexible cable, but has high strength, excellent bending performance, low intermodulation and low loss; and can be well adapted to the miniaturization and large size of the mobile antenna base station. The trend of gain is required.
  • Figure 1 is a photograph of a prior art connector of a high temperature cable assembly broken from the outer conductor of a cable weld.
  • FIG. 2 is a schematic view showing the overall structure of a high temperature resistant cable for a mobile base station according to the present invention.
  • FIG 3 is a schematic cross-sectional view showing a high temperature resistant cable for a mobile base station of the present invention.
  • the high temperature resistant cable for a mobile base station of the present embodiment includes an inner conductor 10, a PTFE insulating layer 20, an outer conductor 30, and a sheath 40 in this order.
  • the PTFE insulating layer has at least one hollow hole extending in a direction in which the inner conductor extends, the plurality of hollow holes and the inner conductor being flush with each other And the plurality of hollow cells are symmetrically distributed around the inner conductor.
  • the inner conductor is preferably made of a silver plated copper wire material, for example, a single silver plated copper wire or a plurality of silver plated copper wires may be selected.
  • a silver plated copper wire material for example, a single silver plated copper wire or a plurality of silver plated copper wires may be selected.
  • silver is used as a conductive core coating on the one hand, which can reduce the loss of the conductor under high-frequency RF conditions, and is beneficial to improve or ensure the performance of the cable under high temperature conditions and high frequency conditions, and the silver here.
  • the coating layer can also impart good thermal conductivity and thermal oxidation resistance, and is favorable for forming a PTFE insulating layer on the inner conductor by extrusion and sintering processes.
  • the present invention employs a PTFE insulating layer having at least one hollow cell extending in the direction in which the inner conductor extends.
  • the PTFE insulating layer has an outer diameter of 2.0 to 20.0 mm, preferably 2.0 to 10.0 mm.
  • the diameter of the hollow tunnel is 0.20 to 5.0 mm, preferably 0.20 to 2.0 mm, and more preferably 0.30 to 1.50 mm.
  • the PTFE insulating layer using the hollow channel not only ensures the temperature resistance level of the insulation, but also reduces the dielectric constant of the PTFE insulating layer due to the filling of the air in the hollow channel, and the dielectric loss is lower, which is suitable for the application of the present invention. Frequency, ultra high frequency working environment.
  • the insulating layer with hollow channels can reduce the amount of PTFE material and improve the utilization of PTFE materials, for example, under the premise of ensuring the strength and temperature resistance of the insulating layer, compared with the conventional expanded microporous PTFE insulating layer.
  • the PTFE insulating layer is extruded and sintered by using a PTFE paste extrusion material.
  • the insulating layer having a hollow cell according to the present invention is obtained by a process including extrusion, drying and sintering through an extruder using a PTFE paste-like extrudate.
  • the extruder includes a die and a core, the die tapered portion and a die hole communicating with a bottom of the tapered constrict; the core has a center hole for conveying the inner conductor, and A plurality of rod members extending in a direction parallel to an axial direction of the core are symmetrically disposed along a circumference of the center hole; the rods are disposed in the mold holes for forming the hollow holes.
  • the process is as follows: the PTFE paste extrusion is extruded through a tapered constriction of a die and extruded from an outlet of the die to form a PTFE insulation layer surrounding the inner conductor.
  • the formed PTFE insulating layer body can be dried at 100-250 ° C to volatilize and remove the lubricating oil in the PTFE insulating layer blank, and the lubricating oil volatilization can be accelerated by introducing a hot air flow during drying.
  • the dried PTFE insulating layer body is sintered and solidified in a curing oven, and the sintering curing temperature can be performed, for example, at a temperature above the melting point of PTFE and below 500 ° C, for example, preferably in a temperature range of 400 to 480 ° C.
  • the PTFE insulating layer of the present invention can be obtained.
  • the PTFE paste-like extrudate is usually configured by using PTFE and lubricating oil, or a commercially available PTFE paste-like extrudate, for example, a paste-like extrudate having a trade name of Fluon CD4 can be used. (British Buenmen Chemical Industry Co., Ltd.).
  • the fluorine atoms in the PTFE molecular chain are symmetric and evenly distributed, and there is no inherent dipole moment, so that the dissipation factor tg ⁇ and the relative dielectric constant change little from low frequency to high frequency range, and from room temperature to its use temperature and even
  • the temperature range of 300 ° C, tg ⁇ is also almost unchanged, in theory, the tg ⁇ value is about 0.0001.
  • a PTFE paste-like extrudate is used, and the dielectric loss tg ⁇ is usually 0.00035 to 0.00050 due to factors such as difficulty in volatilization of the lubricant and sintering.
  • the outer conductor is a spiral copper tube, and the structural strength of the spiral copper tube is further improved compared with the "woven wire + immersion tin" outer conductor, and the bending property is further improved.
  • the air medium between the spiral copper tube and the PTFE insulating layer and the air medium in the hollow hole inside the PTFE insulating layer form internal and external
  • the dual air dielectric channel further reduces the dielectric constant of the insulation, which is beneficial to further reduce the dielectric loss.
  • the outer conductor is formed by a conventional machining, welding, drawing, sizing, and embossing process using a copper strip, and the pitch, peak, and valley between the spirals are reduced in order to reduce loss and improve bending performance. Should be as consistent as possible.
  • the copper strip should be 0.15 mm or more and the surface should be smooth, clean, and free from defects such as peeling, tingling, and inclusion.
  • the sheath is disposed at the outermost layer for protecting the inner inner conductor, the outer conductor, and the PTFE insulating layer.
  • the material of the sheath may be low smoke, low toxicity, low corrosion and high flame retardant materials such as low smoke zero halogen type (LSZH type) or perfluoroethylene propylene copolymer (FEP), which not only can give the cable good mechanical, Flame retardant, safe and environmentally friendly.
  • LSZH type low smoke zero halogen type
  • FEP perfluoroethylene propylene copolymer
  • the high temperature resistant cable of the embodiment comprises a silver-plated copper inner conductor, and a PTFE insulating layer, a spiral copper tube and a LSZH resistor which are symmetrically formed around the inner conductor and have seven hollow holes parallel to the extending direction of the inner conductor. Burning polyolefin.
  • the inner diameter of the silver-plated copper wire inner conductor is 1.15 ⁇ 0.02 mm, and the thickness of the silver plating layer is greater than 1 ⁇ m.
  • the PTFE insulating layer has an outer diameter of 3.00 ⁇ 0.05 mm, and the hollow channels are symmetrically distributed and seven, and each hollow channel has a diameter of 0.3 to 0.5 mm.
  • the outer diameter of the threaded copper tube is 4.25 ⁇ 0.10 mm.
  • the outer diameter of the sheath is 5.20 ⁇ 0.10 mm.
  • the high temperature resistant cable of the embodiment comprises a silver-plated copper inner conductor, and a PTFE insulating layer, a spiral copper tube and a perfluorocarbon which are symmetrically formed around the inner conductor and have seven hollow holes parallel to the extending direction of the inner conductor.
  • Ethylene propylene copolymer FEP Ethylene propylene copolymer FEP.
  • the inner diameter of the silver-plated copper wire inner conductor is 1.15 ⁇ 0.02 mm, and the thickness of the silver plating layer is greater than 1 ⁇ m.
  • the PTFE insulating layer has an outer diameter of 3.00 ⁇ 0.05 mm, and the hollow channels are symmetrically distributed and seven, and each hollow channel has a diameter of 0.3 to 0.5 mm.
  • the outer diameter of the threaded copper tube is 4.25 ⁇ 0.10 mm.
  • the outer diameter of the sheath is 5.00 ⁇ 0.10 mm.
  • the transmission attenuation of the cable is mainly caused by heat generation of the inner conductor, the insulation and the outer conductor.
  • the invention has improved from the two aspects of the structure and material of the cable, and not only solves the problem.
  • the mechanical properties of the cable are cracked and cracked, and the strength is insufficient, and the overall dielectric constant and loss are significantly reduced, thereby significantly reducing the overall attenuation of the cable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Conductors (AREA)
  • Communication Cables (AREA)

Abstract

一种用于移动基站的耐高温电缆,属于移动基站配件的技术领域。用于移动基站的耐高温电缆,依次包括内导体(10)、PTFE绝缘层(20)、外导体(30)和护套(40),所述PTFE绝缘层(20)中具有至少一个沿着内导体(10)延伸的方向延伸的中空孔道,所述多个中空孔道与所述内导体(10)相互平行,并且所述多个中空孔道对称地分布在所述内导体(10)周围。用于移动基站的耐高温电缆尺寸与常规的半柔电缆相当,但其强度高、弯曲性能优越,而且低互调、损耗低;能够很好的适应移动天线基站的小型化和大增益的趋势要求。

Description

用于移动基站的耐高温电缆 技术领域
本发明涉及移动基站配件的技术领域,更具体地说,本发明涉及一种用于移动基站的耐高温电缆。
背景技术
在移动通信领域,移动基站天线的小型化和大增益是未来发展的趋势。目前基站天线使用的常规高温电缆具有耐高温、低互调、弯曲性能好、机械相位稳定性好等特优点,如RG141半柔电缆。但RG141电缆的结构和尺寸决定了其衰减偏大,不适合应用于大增益天线;而如果采用RG250代替RG141电缆,天线内使用的同轴电缆成本增加近200%,而且RG250较大的尺寸导致电缆弯曲半径增大,也不利于天线内部的排线。
另外,现有技术中高温电缆的外导体通常采用镀锡铜丝编织+浸锡的工艺,这种结构的外导体在多次弯曲会出现开裂的问题,而如图1所示,天线内使用的高温电缆组件的连接器根部与电缆焊接处的强度较差,弯曲时易造成电缆外导体开裂,即便采用热缩管来提高强度,也难以彻底解决外导体易开裂的问题。
因此,亟需开发一款具备尺寸小、损耗低、弯曲性能优越、低互调、强度好的高温电缆来同时满足移动基站天线的小型化和大增益的需求。
发明内容
为了解决现有技术中的上述技术问题,本发明的目的在于提供一种用于移动基站的耐高温电缆。
为了解决发明所述的技术问题并实现发明目的,本发明采用了以下技术方案:
一种用于移动基站的耐高温电缆,依次包括内导体、PTFE绝缘层、外导体和护套,其特征在于:所述PTFE绝缘层中具有至少一个沿着内导体延伸的方向延伸的中空孔道。
其中,所述中空孔道为多个,并且所述多个中空孔道互不连通。
其中,所述多个中空孔道与所述内导体相互平行,并且所述多个中空孔道对称地分布在所述内导体周围。
其中,所述内导体为单股镀银铜线,或多股镀银铜绞线。
其中,所述外导体为螺旋纹铜管。
其中,所述PTFE绝缘层的外径为2.0~20.0mm,优选为2.0~10.0mm。
其中,所述中空孔道的直径为0.20~5.0mm,优选为0.20~2.0mm,更优选为0.30~1.50mm。
其中,所述PTFE绝缘层采用PTFE糊状挤压料挤压并烧结而成。
其中,所述护套的材料为低烟无卤型(LSZH型)或全氟乙烯丙烯共聚物(FEP)。
与最接近的现有技术相比,本发明所述的用于移动基站的耐高温电缆具有以下有益效果:
本发明的用于移动基站的耐高温电缆尺寸与常规的半柔电缆相当,但其强度高、弯曲性能优越,而且低互调、损耗低;能够很好的适应移动天线基站的小型化和大增益的趋势要求。
附图说明
图1为现有技术中的高温电缆组件的连接器与电缆焊接处外导体断裂的照片。
图2为本发明的用于移动基站的耐高温电缆的整体结构示意图。
图3为本发明的用于移动基站的耐高温电缆的截面结构示意图。
具体实施方式
以下将结合具体实施例对本发明所述的用于移动基站的耐高温电缆做进一步的阐述,以期对本发明的技术方案做出更完整和清楚的说明。
如图2~3所示,本实施例的用于移动基站的耐高温电缆,依次包括内导体10、PTFE绝缘层20、外导体30和护套40。所述PTFE绝缘层中具有至少一个沿着内导体延伸的方向延伸的中空孔道,所述多个中空孔道与所述内导体相互平 行,并且所述多个中空孔道对称地分布在所述内导体周围。
在本发明中,为了满足高频传输特性要求,所述内导体优选采用镀银铜线材质,例如可以选择单股镀银铜线,或多股镀银铜绞线。作为贵金属的银在此处一方面作为导电线芯镀层,能够降低导体在高频射频条件下的损耗,有利于提高或保证电缆在高温条件和高频条件下的使用性能,而且此处的银镀层也能够赋予良好的导热性和抗热氧化性,有利于在内导体上通过挤压、烧结工艺形成PTFE绝缘层。
与现有技术中通常采用的膨胀微孔聚四氟乙烯绝缘层不同的是,本发明采用的具有至少一个沿着内导体延伸的方向延伸的中空孔道的PTFE绝缘层。所述PTFE绝缘层的外径为2.0~20.0mm,优选为2.0~10.0mm。所述中空孔道的直径为0.20~5.0mm,优选为0.20~2.0mm,更优选为0.30~1.50mm。采用中空孔道的PTFE绝缘层既保证了绝缘的耐温等级,而且由于中空孔道内填充空气,从而还可以降低PTFE绝缘层的介电常数,介质损耗更低,适合应用在本发明所应用的高频、超高频的工作环境。同时采用具有中空孔道的绝缘层与普通的膨胀微孔聚四氟乙烯绝缘层相比还可以减少PTFE材料的用量,提高PTFE材料的利用率,例如在保证绝缘层强度和耐温性的前提下,依赖于所述中空孔道的直径以及中空孔道的个数,通常可以减少10%~50%不等的PTFE材料用量。所述PTFE绝缘层采用PTFE糊状挤压料挤压并烧结而成。
具体来说,本发明所述的具有中空孔道的绝缘层采用PTFE糊状挤压料通过挤压机经过包括挤压、干燥和烧结的工艺得到。所述挤压机包括模头和模芯,所述模头锥形收缩部和与所述锥形收缩部的底部连通的模孔;所述模芯具有用于传送内导体的中心孔,并且沿着所述中心孔的周围对称地设置有多个沿平行于所述模芯的轴线方向延伸的杆件;所述杆件设置在所述模孔内用于形成所述中空孔道。具体来说所述工艺如下:将所述PTFE糊状挤压料挤压通过模头的锥形收缩部并从所述模孔的出口挤出从而形成环绕在内导体周围的PTFE绝缘层坯体,挤压形 成的PTFE绝缘层坯体可在100~250℃进行干燥,以使得所述PTFE绝缘层坯体中的润滑油挥发并去除,在干燥时可通过引入热空气气流的方式来加快润滑油的挥发,然后将干燥后的PTFE绝缘层坯体在固化炉中进行烧结固化,烧结固化的温度例如可以在PTFE的熔点温度以上以及500℃以下,例如可以优选为400~480℃的温度范围内进行烧结从而可以得到本发明的PTFE绝缘层。在本发明中所述PTFE糊状挤压料通常采用PTFE和润滑油等配置而成,或者也可以采用商用的PTFE糊状挤压料,例如可以采用商品名称为Fluon CD4的糊状挤压料(英国卜内门化学工业有限公司)。PTFE分子链中的氟原子对称、均匀分布,不存在固有的偶极距,使得其耗散因数tgδ和相对介电系数从低频至高频范围内变化很小,而且从室温至其使用温度乃至300℃的温度范围,tgδ也几乎保持不变,在理论上tgδ值约为0.0001。但在本发明中,采用PTFE糊状挤压料,由于其中的润滑剂难以挥发完全以及烧结等因素,介质损耗tgδ通常为0.00035~0.00050。但申请人发现在PTFE糊状挤压料中加入少量的纳米氧化铜有利于降低耗散因数tgδ,尤其是当纳米氧化铜的含量为PTFE糊状挤压料的0.05~0.5wt%(优选为0.05~0.30)时会有利于降低介质损耗tgδ,而且不影响弯曲性能,且对介电常数影响小,而这可能是由于纳米氧化铜改进了PTFE绝缘层坯体的烧结性能,减少了结晶损失有关。以下表1示出了纳米氧化铜含量对介质损耗tgδ的影响(谐振腔法)。
表1
含量 0 0.01 0.02 0.03 0.05 0.10 0.20 0.30 0.40 0.50 0.60
tgδ 0.00045 0.00042 0.00045 0.0041 0.00035 0.00030 0.0025 0.0028 0.00035 0.00040 0.0010
在本发明中,所述外导体为螺旋纹铜管,采用螺旋纹铜管较‘编织丝+浸锡’外导体的结构强度进一步提升,弯曲性能也进一步改善。而且螺旋纹铜管与PTFE绝缘层之间的空气介质与PTFE绝缘层内部中空孔道内的空气介质,形成了内外 的双空气介质通道,进一步降低了绝缘介电常数,有利于进一步减少介质损耗。在本发明中所述外导体采用铜带经过常规的机加工、焊接、拉伸、定径和轧纹工艺形成,为了减少损耗并改进弯曲性能,所述螺旋纹之间的间距、波峰、波谷等应当尽量保持一致。所述铜带应当为0.15mm以上并且表面应光滑、清洁,并且无起皮、起刺、夹杂等缺陷。
在本发明中,所述护套设置在最外层,用于保护内部的内导体、外导体以及PTFE绝缘层。护套的材料可以为低烟无卤型(LSZH型)或全氟乙烯丙烯共聚物(FEP)等低烟、低毒、低腐蚀和高阻燃的材料,其不仅能够赋予电缆良好的机械、阻燃性能,而且安全、环保。
实施例1
本实施例的耐高温电缆,包括镀银铜线内导体、在内导体的周围对称地形成有7个平行于所述内导体延伸方向的中空孔道的PTFE绝缘层、螺旋纹铜管和LSZH阻燃聚烯烃。其中,所述镀银铜线内导体的直径为1.15±0.02mm,镀银层的厚度大于1μm。所述PTFE绝缘层的外径为3.00±0.05mm,中空孔道对称分布且为7个,每个中空孔道的直径0.3~0.5mm。螺纹铜管的外径为4.25±0.10mm。护套外径为5.20±0.10mm。
实施例2
本实施例的耐高温电缆,包括镀银铜线内导体、在内导体的周围对称地形成有7个平行于所述内导体延伸方向的中空孔道的PTFE绝缘层、螺旋纹铜管和全氟乙烯丙烯共聚物FEP。其中,所述镀银铜线内导体的直径为1.15±0.02mm,镀银层的厚度大于1μm。所述PTFE绝缘层的外径为3.00±0.05mm,中空孔道对称分布且为7个,每个中空孔道的直径0.3~0.5mm。螺纹铜管的外径为4.25±0.10mm。护套外径为5.00±0.10mm。
根据同轴电缆信号传输原理,电缆的传输衰减主要是由内导体、绝缘、外导体三部分发热产生,本发明从电缆的结构和材料两个方面进行了改进,不仅解决 了电缆弯曲开裂、强度不足的机械性能问题,而且由于显著降低了整体的介电常数以及损耗,从而也明显降低了电缆的整体衰减。
对于本领域的普通技术人员而言,具体实施例只是对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种非实质性的改进,或未经改进将本发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围之内。

Claims (11)

  1. 一种用于移动基站的耐高温电缆,依次包括内导体、PTFE绝缘层、外导体和护套,其特征在于:所述PTFE绝缘层中具有至少一个沿着内导体延伸的方向延伸的中空孔道。
  2. 根据权利要求1所述的用于移动基站的耐高温电缆,其特征在于:所述中空孔道为多个,并且所述多个中空孔道互不连通。
  3. 根据权利要求1所述的用于移动基站的耐高温电缆,其特征在于:所述多个中空孔道与所述内导体相互平行,并且所述多个中空孔道对称地分布在所述内导体周围。
  4. 根据权利要求1所述的用于移动基站的耐高温电缆,其特征在于:所述内导体为单股镀银铜线,或多股镀银铜绞线。
  5. 根据权利要求1所述的用于移动基站的耐高温电缆,其特征在于:所述外导体为螺旋纹铜管。
  6. 根据权利要求1所述的用于移动基站的耐高温电缆,其特征在于:所述PTFE绝缘层的外径为2.0~20.0mm。
  7. 根据权利要求5所述的用于移动基站的耐高温电缆,其特征在于:所述PTFE绝缘层的外径为3.0~20.0mm。
  8. 根据权利要求5所述的用于移动基站的耐高温电缆,其特征在于:所述中空孔道的直径为0.20~5.0mm。
  9. 根据权利要求7所述的用于移动基站的耐高温电缆,其特征在于:所述中空孔道的直径为0.20~2.0mm。
  10. 根据权利要求1所述的用于移动基站的耐高温电缆,其特征在于:所述PTFE绝缘层采用PTFE糊状挤压料挤压并烧结而成。
  11. 根据权利要求1所述的用于移动基站的耐高温电缆,其特征在于:所述护套的材料为低烟无卤型或全氟乙烯丙烯共聚物等耐高温材料。
PCT/CN2017/103105 2017-05-04 2017-09-25 用于移动基站的耐高温电缆 WO2018201659A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/076,121 US20210005349A1 (en) 2017-05-04 2017-09-25 High temperature-resistant cable for mobile base station
DE112017007500.9T DE112017007500T5 (de) 2017-05-04 2017-09-25 Hochtemperaturbeständiges Kabel für Mobilfunkbasisstation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710311360.7A CN107123472B (zh) 2017-05-04 2017-05-04 用于移动基站的耐高温电缆
CN201710311360.7 2017-05-04

Publications (1)

Publication Number Publication Date
WO2018201659A1 true WO2018201659A1 (zh) 2018-11-08

Family

ID=59726768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103105 WO2018201659A1 (zh) 2017-05-04 2017-09-25 用于移动基站的耐高温电缆

Country Status (4)

Country Link
US (1) US20210005349A1 (zh)
CN (1) CN107123472B (zh)
DE (1) DE112017007500T5 (zh)
WO (1) WO2018201659A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123472B (zh) * 2017-05-04 2018-11-30 江苏亨鑫科技有限公司 用于移动基站的耐高温电缆
CN114242305B (zh) * 2021-12-22 2023-12-29 江苏昇达线缆有限公司 一种耐弯折镀银合金铜线
CN114596995B (zh) * 2022-03-17 2022-12-02 江苏亨鑫科技有限公司 一种应用于5g室分的低损柔性馈线同轴电缆

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110180298A1 (en) * 2010-01-26 2011-07-28 Hitachi Cable, Ltd. Hydrous water absorbent polymer-dispersed ultraviolet curable resin composition, porous substance, insulated wire, multilayer covered cable, coaxial cable using the same, method for fabricating a porous substance, and method for fabricating an insulated wire
CN102568664A (zh) * 2012-02-22 2012-07-11 江苏亨鑫科技有限公司 低损耗耐高温电缆
CN102646464A (zh) * 2012-04-28 2012-08-22 苏州宝兴电线电缆有限公司 一种半柔性同轴射频电缆
CN202443778U (zh) * 2012-02-22 2012-09-19 江苏亨鑫科技有限公司 低损耗耐高温电缆
CN203013399U (zh) * 2012-12-24 2013-06-19 珠海汉胜科技股份有限公司 一种ptfe绝缘同轴电缆
CN103337281A (zh) * 2013-06-09 2013-10-02 深圳市穗榕同轴电缆科技有限公司 一种高传输速率氟塑料同轴电缆
CN203366795U (zh) * 2013-06-09 2013-12-25 深圳市穗榕同轴电缆科技有限公司 一种高传输速率氟塑料同轴电缆
CN103854732A (zh) * 2013-08-26 2014-06-11 安徽华星电缆集团有限公司 一种新型耐火补偿导线
CN104409181A (zh) * 2014-12-09 2015-03-11 天津米克威科技有限公司 一种用于射频电缆的藕心型聚四氟乙烯绝缘层加工工艺
CN204760128U (zh) * 2015-06-15 2015-11-11 江苏艾力升电缆有限公司 低损耗半柔同轴电缆
CN107123472A (zh) * 2017-05-04 2017-09-01 江苏亨鑫科技有限公司 用于移动基站的耐高温电缆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652805B2 (en) * 1999-07-02 2003-11-25 Holl Technologies Company Highly filled composites of powdered fillers and polymer matrix
CN101946288B (zh) * 2007-12-21 2012-10-10 Abb研究有限公司 用于气体断路器的弱导电喷嘴和其所用的基于ptfe的材料
FR2962128B1 (fr) * 2010-07-02 2013-06-14 Prod Plastiques Performants Holding 3P Holding Materiau ptfe a effet anti-corona

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110180298A1 (en) * 2010-01-26 2011-07-28 Hitachi Cable, Ltd. Hydrous water absorbent polymer-dispersed ultraviolet curable resin composition, porous substance, insulated wire, multilayer covered cable, coaxial cable using the same, method for fabricating a porous substance, and method for fabricating an insulated wire
CN102568664A (zh) * 2012-02-22 2012-07-11 江苏亨鑫科技有限公司 低损耗耐高温电缆
CN202443778U (zh) * 2012-02-22 2012-09-19 江苏亨鑫科技有限公司 低损耗耐高温电缆
CN102646464A (zh) * 2012-04-28 2012-08-22 苏州宝兴电线电缆有限公司 一种半柔性同轴射频电缆
CN203013399U (zh) * 2012-12-24 2013-06-19 珠海汉胜科技股份有限公司 一种ptfe绝缘同轴电缆
CN103337281A (zh) * 2013-06-09 2013-10-02 深圳市穗榕同轴电缆科技有限公司 一种高传输速率氟塑料同轴电缆
CN203366795U (zh) * 2013-06-09 2013-12-25 深圳市穗榕同轴电缆科技有限公司 一种高传输速率氟塑料同轴电缆
CN103854732A (zh) * 2013-08-26 2014-06-11 安徽华星电缆集团有限公司 一种新型耐火补偿导线
CN104409181A (zh) * 2014-12-09 2015-03-11 天津米克威科技有限公司 一种用于射频电缆的藕心型聚四氟乙烯绝缘层加工工艺
CN204760128U (zh) * 2015-06-15 2015-11-11 江苏艾力升电缆有限公司 低损耗半柔同轴电缆
CN107123472A (zh) * 2017-05-04 2017-09-01 江苏亨鑫科技有限公司 用于移动基站的耐高温电缆

Also Published As

Publication number Publication date
CN107123472A (zh) 2017-09-01
DE112017007500T5 (de) 2020-02-20
US20210005349A1 (en) 2021-01-07
CN107123472B (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
WO2018201659A1 (zh) 用于移动基站的耐高温电缆
JP2010218741A (ja) 高速差動ケーブル
JP5255529B2 (ja) 伝送ケーブル用中空コア体及びその製造方法並びに信号伝送用ケーブル
JP2015100188A (ja) 冷却ケーブル加工品及びケーブル冷却システム
JP2007250235A (ja) 同軸ケーブル用中空コア体,同コア体の製造方法,同コア体を用いる同軸ケーブル
CN204632443U (zh) 一种同轴电缆
CN202443778U (zh) 低损耗耐高温电缆
CN201036066Y (zh) 云母绕包绝缘玻璃纤维编织护套型耐高温特种电线
CN103515825B (zh) 一种射频同轴电缆的组装夹具及组装方法
CN209860122U (zh) 高频低损稳相同轴电缆
CN102568664A (zh) 低损耗耐高温电缆
CN204066800U (zh) 一种耐高温低噪音射频电缆
JP3537288B2 (ja) セミリジッド同軸ケーブルおよびその製造方法
CN211295341U (zh) 一种用于毫米波频率的软波导结构
CN105720344B (zh) 低损耗半柔同轴射频电缆
CN209658375U (zh) 一种螺纹结构绝缘层低损耗半柔射频同轴电缆
CN204793141U (zh) 低损耗半柔同轴射频电缆
CN111540530A (zh) 一种飞行器用高清视频差分电缆及其制备方法
CN207068543U (zh) 一种rf低损耗稳相的同轴电缆
CN201536030U (zh) 一种耐高温柔性同轴通信电缆
CN201466190U (zh) 低损耗半柔射频同轴电缆
RU198245U1 (ru) Коаксиально-микрополосковый переход
CN206947489U (zh) 使用频段 26.5GHz 的低损耗半柔电缆
CN207489537U (zh) 一种sas线缆
CN217562260U (zh) 一种迷你型同轴通讯电缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908338

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17908338

Country of ref document: EP

Kind code of ref document: A1