WO2018199294A1 - メチオニンの製造方法および製造設備 - Google Patents

メチオニンの製造方法および製造設備 Download PDF

Info

Publication number
WO2018199294A1
WO2018199294A1 PCT/JP2018/017210 JP2018017210W WO2018199294A1 WO 2018199294 A1 WO2018199294 A1 WO 2018199294A1 JP 2018017210 W JP2018017210 W JP 2018017210W WO 2018199294 A1 WO2018199294 A1 WO 2018199294A1
Authority
WO
WIPO (PCT)
Prior art keywords
methionine
solid
liquid separation
slurry
carbon dioxide
Prior art date
Application number
PCT/JP2018/017210
Other languages
English (en)
French (fr)
Inventor
宣仁 大本
慶孝 佐藤
正幸 森川
善行 古泉
直也 山城
良輔 片上
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2019514657A priority Critical patent/JP7150704B2/ja
Priority to CN201880027733.0A priority patent/CN110536882A/zh
Priority to SG11201911239VA priority patent/SG11201911239VA/en
Priority to EP18791984.0A priority patent/EP3617187B1/en
Priority to US16/608,038 priority patent/US10829447B2/en
Publication of WO2018199294A1 publication Critical patent/WO2018199294A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/26Separation; Purification; Stabilisation; Use of additives
    • C07C319/28Separation; Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00033Continuous processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/57Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C323/58Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups with amino groups bound to the carbon skeleton

Definitions

  • the present invention relates to a method for producing methionine by hydrolysis of 5- [2- (methylthio) ethyl] imidazolidine-2,4-dione.
  • Methionine is a kind of essential amino acid that cannot be synthesized in the body of an animal, is widely used as an animal feed additive, and industrially manufactured in a chemical plant.
  • an object of the present invention is to provide a method for producing methionine capable of recovering carbon dioxide from a mother liquor separated by solid-liquid separation after the crystallization step and recycling it.
  • carbon dioxide can be recovered from the separated mother liquor by performing solid-liquid separation after the crystallization step using a pressure filter.
  • Steps (1) to (4) (1) Reaction Step: Hydrolysis of 5- [2- (methylthio) ethyl] imidazolidine-2,4-dione in the presence of an alkali compound to give an alkali salt of methionine (2) Crystallization step: A step of precipitating methionine by introducing carbon dioxide into the reaction solution to obtain a first slurry containing the methionine, (3) A solid-liquid separation step: A step of allowing the first slurry to flow into a pressure filter and obtaining the solid methionine and mother liquor from the first slurry; and (4) carbon dioxide recovery step: a step of recovering carbon dioxide from the mother liquor.
  • the solid-liquid separation step includes a first solid-liquid separation step and a second solid-liquid separation step, and the first solid-liquid separation step causes the first slurry to flow into a pressure filter, and the first slurry
  • the solid methionine and the mother liquor are obtained from the second solid-liquid separation step, and the second solid-liquid separation step is a liquid-containing solid methionine (eg, cake or powder thereof) obtained by the first solid-liquid separation step by drying or filter press.
  • the manufacturing method of the methionine of the said 1st aspect including the process of further reducing a rate.
  • the second solid-liquid separation step includes the step of performing solid-liquid separation of the second slurry to obtain solid methionine having a lower liquid content than the solid methionine obtained in the first solid-liquid separation step.
  • the method for producing methionine wherein the pressure filter in any one of the first to third aspects is a continuous pressure filter. 5).
  • a methionine production facility hereinafter, referred to as “a methionine production facility of the present invention”) provided with a carbon dioxide recovery facility. 6).
  • the manufacturing apparatus of the 5th aspect WHEREIN The manufacturing apparatus of methionine provided with the solid-liquid separation equipment in the downstream of the said pressure filtration equipment. 7).
  • the carbon dioxide introduced in the crystallization step is suppressed from being released from the mother liquor. Can be recovered. Recycling the collected carbon dioxide can reduce the cost of producing methionine and reduce the environmental load.
  • a reaction containing methionine as an alkali salt by using 5- [2- (methylthio) ethyl] imidazolidine-2,4-dione as a raw material and hydrolyzing it in the presence of an alkali compound A liquid (hereinafter sometimes referred to as “this reaction liquid”) is obtained [(1) reaction step].
  • this reaction liquid A liquid
  • As a method for preparing the raw material 5- [2- (methylthio) ethyl] imidazolidine-2,4-dione for example, 2-hydroxy-4-methylthiobutanenitrile is reacted with ammonia and carbon dioxide, or with ammonium carbonate. The method of preparing is mentioned.
  • alkali compound examples include potassium hydroxide, sodium hydroxide, potassium carbonate, potassium hydrogen carbonate and the like, and two or more of them can be used as necessary.
  • the amount of the alkali compound used is usually 2 to 10 moles, preferably 3 to 6 moles as potassium or sodium per mole of 5- [2- (methylthio) ethyl] imidazolidine-2,4-dione.
  • the amount of water used is usually 2 to 20 parts by weight per part by weight of 5- [2- (methylthio) ethyl] imidazolidine-2,4-dione.
  • the hydrolysis reaction performed in the reaction step is a stirring type or non-stirring type, and is performed in a continuous type or batch (batch) type reaction tank.
  • This hydrolysis reaction is preferably carried out by heating to about 150 to 200 ° C. under a pressure of about 0.5 to 1 MPa as a gauge pressure.
  • the reaction time is usually 10 minutes to 24 hours.
  • a crystallization step is performed.
  • the reaction solution is allowed to flow into the crystallization equipment, and carbon dioxide is introduced into the reaction solution to precipitate methionine to obtain a first slurry containing the methionine [(2) crystallization step]. .
  • Carbon dioxide is absorbed into the reaction solution by introduction of carbon dioxide, and the alkali salt of methionine precipitates as free methionine.
  • the introduction of carbon dioxide in the crystallization step is preferably carried out under a pressure of 0.1 to 1.0 MPa, preferably 0.2 to 0.5 MPa as a gauge pressure.
  • the crystallization temperature is usually 0 to 50 ° C., preferably 10 to 30 ° C.
  • the crystallization time may be a time from when the reaction solution is saturated with carbon dioxide until methionine is sufficiently precipitated, but is usually 10 minutes to 24 hours.
  • the first slurry containing the precipitated methionine is subjected to a solid-liquid separation process.
  • the solid-liquid separation step an operation is performed in which the first slurry obtained in the crystallization step is caused to flow into a pressure filter and solid methionine (for example, cake or powder thereof) and a mother liquor are obtained from the first slurry.
  • a pressure filter for example, cake or powder thereof
  • solid methionine for example, cake or powder thereof
  • a mother liquor obtained from the first slurry.
  • Solid-liquid separation step In the mother liquor, carbon dioxide introduced under pressure in the crystallization step is dissolved.
  • solid-liquid separation step solid-liquid separation is performed using a pressure filter so that the carbon dioxide is not released as a gas.
  • the pressure filter a filter capable of filtering the slurry in a sealed state is used.
  • the pressure filter examples include a drum pressure filter, a leaf pressure filter, and a candle pressure. Examples include a filter, a belt press type filter press, a screw press type filter press, and a rotary press type filter press.
  • the pressure filter may be either a continuous type or a batch (batch) type, but is preferably a continuous type pressure filter because productivity is improved.
  • the pressure in the pressure filter is 0.1 to 1.0 MPa in gauge pressure, preferably the same as or higher than the pressure in the crystallization process.
  • the filtration temperature is usually 0 to 50 ° C., preferably 10 to 30 ° C.
  • the mother liquor obtained in the solid-liquid separation process is transferred to the recovery tank of the carbon dioxide recovery facility. Since this recovery tank is at a pressure lower than the pressure in the pressure filter, preferably at atmospheric pressure, the carbon dioxide dissolved in the mother liquor is released as a gas. Since the inside of this recovery tank is sealed, the carbon dioxide that has become a gas is recovered [(4) carbon dioxide recovery step]. The recovered carbon dioxide is recycled to any step in the production of methionine.
  • the recovery tank of the carbon dioxide recovery facility is a so-called flash tank, and the structure is not particularly limited as long as it can separate gas and liquid.
  • the mother liquor is introduced from the side of the tank, and the gas and liquid are separated inside the flash tank.
  • the flow rate of the mother liquor to the flash tank is not limited.
  • the size and number of the flash tanks are appropriately determined depending on the solid content concentration in the slurry and the flow rate of the mother liquor.
  • FIG. 1 is a flowchart showing an example of a method for producing methionine according to an embodiment of the production method of the present application.
  • the solid-liquid separation step in the present invention may include a first solid-liquid separation step and a second solid-liquid separation step.
  • the first solid-liquid separation step is a step of allowing the first slurry obtained in the crystallization step to flow into a pressure filter and obtaining solid methionine and mother liquor from the first slurry.
  • the liquid separation step is a step of reducing the liquid content of solid methionine.
  • the purpose is to perform solid-liquid separation of the first slurry so that carbon dioxide gas is not released from the mother liquor, and in the second solid-liquid separation step, the liquid content of solid methionine is reduced.
  • Each process can be performed efficiently by using a solid-liquid separator according to the purpose.
  • the solid-liquid separation in the second solid-liquid separation step is preferably performed by centrifugation.
  • solid-liquid separation is performed so that the liquid content of solid methionine is 1 to 25% by weight.
  • downstream side means the side close to the step of obtaining the final product in the method for producing methionine of the present invention.
  • the present invention may include a reslurry process in which the methionine obtained in the first solid-liquid separation process and the reslurry liquid are mixed to form a second slurry.
  • “Reslurry” generally refers to an operation in which a solid obtained by solid-liquid separation of a slurry is mixed with a liquid to form a slurry again, and a liquid in which the solid is difficult to dissolve is used.
  • the “reslurry liquid” in the present specification means a liquid used for reslurry.
  • As the reslurry liquid a liquid in which methionine is difficult to dissolve is used, and a saturated aqueous solution of methionine is preferably used.
  • the liquid content of solid methionine is further reduced by solid-liquid separation of the second slurry obtained in the reslurry step in the second solid-liquid separation step.
  • the second solid-liquid separation step is performed by the above method.
  • the amount of impurities contained in the methionine is reduced.
  • the amount of impurities contained in methionine can be further reduced.
  • the second solid-liquid separation step when the reslurry step is not included, a method of reducing the water content of the solid methionine obtained in the first solid-liquid separation step as it is is considered.
  • the liquid in the solid methionine is removed by drying or filter pressing.
  • the pressure at this time does not matter, but it is often more energy efficient to carry out under reduced pressure.
  • Drying methods include material transport methods, material static type, material transfer type, material agitation type, hot air transfer type, and convection heat transfer type, conduction heat transfer type, radiation heat transfer type as heat transfer methods for drying And microwave heating type.
  • a filter press such as a belt press type filter press, a screw press type filter press or a rotary press type filter press.
  • the methionine obtained in the solid-liquid separation process is dried and then the final product. Drying is performed by heating to about 50 to 120 ° C. under a slight vacuum. The drying time is usually 10 minutes to 24 hours.
  • parts by weight / hr represents a flow rate per hour.
  • Methionine is precipitated by introducing carbon dioxide gas into the reaction solution under conditions of a gauge pressure of 0.35 MPa and 25 ° C. to obtain a slurry containing the precipitated methionine.
  • the slurry is allowed to flow into a pressure filter under conditions of a gauge pressure of 0.35 MPa and 25 ° C., and methionine and mother liquor are separated by pressure filtration using a filter.
  • the mother liquor is caused to flow into the flash tank at a flow rate of 118.3 parts by weight / hr under conditions of a gauge pressure of 0.35 MPa and 25 ° C.
  • 18.3 parts by weight of carbon dioxide is dissolved per 118.3 parts by weight of the mother liquor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本願発明は、アルカリ化合物の存在下に5-[2-(メチルチオ)エチル]イミダゾリジン-2,4-ジオンを加水分解し、メチオニンのアルカリ塩を含む反応液を得る工程、前記反応液に二酸化炭素を導入することによりメチオニンを析出させ、該メチオニンを含む第1スラリーを得る工程、前記第1スラリーを加圧ろ過機に流入させ、前記第1スラリーから固体メチオニンと母液とを得る工程、および前記母液から二酸化炭素を回収する工程、を含むことを特徴とするメチオニンの製造方法を提供する。この製造方法により、晶析工程で導入された二酸化炭素が母液から放出されるのが抑制されて、該二酸化炭素を回収することができる。

Description

メチオニンの製造方法および製造設備
 本特許出願は、日本国特許出願2017-087751号(2017年4月27日出願)に基づくパリ条約上の優先権および利益を主張するものであり、ここに引用することによって、上記出願に記載された内容の全体が、本明細書中に組み込まれるものとする。
 本発明は、5-[2-(メチルチオ)エチル]イミダゾリジン-2,4-ジオンの加水分解反応により、メチオニンを製造する方法に関する。
 メチオニンは、動物の体内で合成することができない必須アミノ酸の一種であり、動物用飼料添加剤として広く用いられ、工業的には化学プラントで製造されている。
 メチオニンを製造する方法として、5-[2-(メチルチオ)エチル]イミダゾリジン-2,4-ジオンを加水分解して得られる反応液に、二酸化炭素を導入することによりメチオニンを析出させる晶析工程を包含する方法が開示されている(例えば、特許文献1参照)。
特開2010-111641号公報
 上記の方法において、メチオニンを析出させた後、ろ過やデカンテーションなどの固液分離を行い、メチオニンと母液とを分離する。該母液には、晶析工程において導入された二酸化炭素が溶解しており、該二酸化炭素は固液分離の際に気体となって放出される。該二酸化炭素を回収し、リサイクルすることができればメチオニン製造時のコストを削減できるとともに、二酸化炭素が大気中に放出されることによる環境負荷を低減できると考えられる。
 本発明は上記事情に鑑み、晶析工程後の固液分離により分離された母液から二酸化炭素を回収し、リサイクルすることが可能なメチオニンの製造方法を提供することを目的とする。
 本発明者らは、鋭意研究を行った結果、晶析工程後の固液分離を、加圧ろ過機により行うことにより、分離された母液から二酸化炭素を回収することができることを見出した。
 本願の発明は、以下の態様を包含する。
1.次の工程(1)~(4):(1)反応工程:アルカリ化合物の存在下に5-[2-(メチルチオ)エチル]イミダゾリジン-2,4-ジオンを加水分解し、メチオニンのアルカリ塩を含む反応液を得る工程、(2)晶析工程:前記反応液に二酸化炭素を導入することによりメチオニンを析出させ、該メチオニンを含む第1スラリーを得る工程、(3)固液分離工程:前記第1スラリーを加圧ろ過機に流入させ、前記第1スラリーから前記固体メチオニンと母液とを得る工程、および(4)二酸化炭素回収工程:前記母液から二酸化炭素を回収する工程、を含むメチオニンの製造方法(以下、本明細書中、「本発明のメチオニンの製造方法」と記すことがある)。
 2.前記固液分離工程が、第1固液分離工程と第2固液分離工程とを含み、前記第1固液分離工程は、前記第1スラリーを加圧ろ過機に流入させ、前記第1スラリーから前記固体メチオニンと前記母液とを得る工程であり、前記第2固液分離工程は、乾燥またはフィルタプレスにより第1固液分離工程で得られる固体メチオニン(例えば、そのケーキや粉末)の含液率をさらに低下させる工程を含む、前記第1の態様のメチオニンの製造方法。
 3.前記第1固液分離工程で得られた固体メチオニン(例えば、そのケーキや粉末)と、リスラリー液(つまり、リスラリー用の液)とを混合して第2スラリーとするリスラリー工程を含み、前記第2固液分離工程は、前記第2スラリーの固液分離を行い、前記第1固液分離工程で得られた固体メチオニンより含液率の低い固体メチオニンを得る工程を含む、前記第2の態様のメチオニンの製造方法。
 4.第1から第3の態様のいずれか1つにおける、前記加圧ろ過機は、連続式の加圧ろ過機である、メチオニンの製造方法。
 5.アルカリ化合物の存在下に5-[2-(メチルチオ)エチル]イミダゾリジン-2,4-ジオンを加水分解してメチオニンのアルカリ塩を含む反応液を得る反応設備と、前記反応液に二酸化炭素を導入することによりメチオニンを析出させ、該メチオニンを含む第1スラリーを得る晶析設備と、前記第1スラリーから前記固体メチオニンと母液とを得る加圧ろ過設備と、前記母液から二酸化炭素を回収する二酸化炭素回収設備と、が備えられている、メチオニンの製造設備(以下、本明細書中、「本発明のメチオニンの製造設備」と記すことがある)。
 6.第5の態様の製造装置において、前記加圧ろ過設備の下流側に、固液分離設備が備えられている、メチオニンの製造設備。
 7.第5または第6の態様における、前記加圧ろ過設備が、連続式の加圧ろ過設備である、メチオニンの製造設備。
 8.(5)固液分離工程で得られたメチオニンを乾燥する工程、をさらに含む、前記第1の態様のメチオニンの製造方法。
 本願の方法および装置によれば、晶析工程後の固液分離を加圧ろ過機で行うことにより、晶析工程で導入された二酸化炭素が母液から放出されるのが抑制されて、二酸化炭素を回収することができる。回収した二酸化炭素をリサイクルすることによりメチオニン製造時のコストを削減できるとともに、環境負荷を低減できる。
本願の製造方法の実施形態に係るメチオニンの製造方法の一例を表すフロー図である。
 以下、本願の方法および装置の実施の形態に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するためのメチオニンの製造方法、およびメチオニンの製造設備を例示するものであって、本発明を以下のものに特定しない。
 本明細書では、5-[2-(メチルチオ)エチル]イミダゾリジン-2,4-ジオンを原料に用い、これをアルカリ化合物の存在下に加水分解することにより、メチオニンをアルカリ塩として含有する反応液(以下、「本反応液」と記すことがある)を得る〔(1)反応工程〕。原料の5-[2-(メチルチオ)エチル]イミダゾリジン-2,4-ジオンの調製方法としては、例えば、2-ヒドロキシ-4-メチルチオブタンニトリルを、アンモニア及び二酸化炭素と、又は炭酸アンモニウムと反応させることにより、調製する方法が挙げられる。
 アルカリ化合物としては、例えば、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸水素カリウムなどが挙げられ、必要に応じてそれらの2種以上を用いることもできる。アルカリ化合物の使用量は、5-[2-(メチルチオ)エチル]イミダゾリジン-2,4-ジオン1モル当たり、カリウムまたはナトリウムとして、通常2~10モル、好ましくは3~6モルである。また、水の使用量は、5-[2-(メチルチオ)エチル]イミダゾリジン-2,4-ジオン1重量部当たり、通常2~20重量部である。
 反応工程で行われる加水分解反応は、攪拌式または非攪拌式であって、連続式または回分(バッチ)式の反応槽で行われる。
 この加水分解反応は、ゲージ圧力で0.5~1MPa程度の加圧下に、150~200℃程度に加熱して行うのがよい。反応時間は通常10分~24時間である。
 本反応液からメチオニンを得るために、晶析工程が行われる。晶析工程では、晶析設備内に本反応液を流入させ、本反応液に二酸化炭素を導入することによりメチオニンを析出させ、該メチオニンを含む第1スラリーを得る〔(2)晶析工程〕。
 二酸化炭素の導入により本反応液に二酸化炭素が吸収され、メチオニンのアルカリ塩が遊離のメチオニンとなって析出する。晶析工程での二酸化炭素の導入は、ゲージ圧力で0.1~1.0MPa、好ましくは0.2~0.5MPaの加圧下で行うのがよい。晶析温度は、通常0~50℃、好ましくは10~30℃である。また、晶析時間は、本反応液が二酸化炭素で飽和されて、メチオニンが十分に析出するまでの時間を目安にすればよいが、通常10分~24時間である。
 析出したメチオニンを含む第1スラリーは、固液分離工程に付される。固液分離工程では、晶析工程で得られた第1スラリーを、加圧ろ過機に流入させ、この第1スラリーから固体メチオニン(例えば、そのケーキや粉末)と母液とを得る操作が行われる〔(3)固液分離工程〕。該母液には、上記晶析工程において加圧下で導入された二酸化炭素が溶解している。固液分離工程では、該二酸化炭素が気体となって放出しないように加圧ろ過機を用いて固液分離が行われる。加圧ろ過機としては、密閉状態でスラリーのろ過が可能なろ過機が用いられ、かかる加圧ろ過機としては、例えば、ドラム式加圧ろ過機、リーフ式加圧ろ過機、キャンドル式加圧ろ過機、ベルトプレス式フィルタプレス、スクリュープレス式フィルタプレスおよびロータリープレス式フィルタプレスが挙げられる。また、加圧ろ過機は、連続式および回分(バッチ)式のいずれでもよいが、生産性が向上されるため、連続式の加圧ろ過機であることが好ましい。
 加圧ろ過機内の圧力は、ゲージ圧力で0.1~1.0MPa、好ましくは晶析工程での圧力と同じ、またはそれ以上である。ろ過温度は通常0~50℃、好ましくは10~30℃である。
 固液分離工程で得られた母液は、二酸化炭素回収設備の回収槽へ移送される。この回収槽は、加圧ろ過機内の圧力よりも低い圧力、望ましくは大気圧になっているので、母液に溶解していた二酸化炭素は、気体となって放出される。この回収槽内は密閉されているので、気体となった二酸化炭素が回収される〔(4)二酸化炭素回収工程〕。回収した二酸化炭素は、メチオニンの製造における任意の工程へリサイクルされる。
 二酸化炭素回収設備の回収槽は、いわゆるフラッシュタンクであり、気液を分離できるものであれば構造は特に限定されない。本実施形態のフラッシュタンクは、タンクの側面から母液を流入させ、フラッシュタンクの内部で気液を分離する。フラッシュタンクへの母液の流量は、限定されるものではなく、例えばフラッシュタンクの大きさおよび個数は、スラリー中の固形分濃度および母液の流量によって適宜決定される。
 図1には、本願の製造方法の実施形態に係るメチオニンの製造方法の一例を表すフロー図を示す。図1に示すように、本発明における固液分離工程は、第1固液分離工程と第2固液分離工程とを含んでいてもよい。この場合、第1固液分離工程は、晶析工程で得られた第1スラリーを、加圧ろ過機に流入させ、この第1スラリーから固体メチオニンと母液とを得る工程であり、第2固液分離工程は、固体メチオニンの含液率を低下させる工程である。第1固分離工程では、母液から二酸化炭素ガスが放出されないように第1スラリーの固液分離を行うことを目的とし、第2固液分離工程では、固体メチオニンの含液率を低下させることを目的としており、それぞれの工程で目的に応じた固液分離機を用いることにより、それぞれの工程を効率よく行うことができる。また、生産性を向上させるには、第1固液分離工程で連続式の加圧ろ過機を用いることが好ましい。第1固液分離工程を、連続式の加圧ろ過機を用いて行い、その後、第2固液分離工程を行うことにより、母液から二酸化炭素ガスを回収することができるとともに、生産性を向上させることができる。
 第2固液分離工程における固液分離は、ろ過およびデカンテーションなどにより行われる。本発明においては、第2固液分離工程における固液分離は遠心分離により行われることが好ましい。第2固液分離工程では、固体メチオニンの含液率が1~25重量%になるように固液分離される。
 なお、本明細書において、「下流側」とは、本発明のメチオニンの製造方法における、最終製品が得られる工程に近い側を意味する。
 本発明は、第1固液分離工程で得られたメチオニンと、リスラリー液とを混合して第2スラリーとするリスラリー工程を含んでいてもよい。「リスラリー」とは、一般に、スラリーを固液分離して得られる固体を、液体と混合して再度スラリーの状態にする操作を言い、該液体としては、該固体が溶解し難い液体が用いられる。本明細書における「リスラリー液」とは、リスラリーに用いられる液体を意味する。リスラリー液としては、メチオニンが溶解し難い液体が用いられ、好ましくはメチオニンの飽和水溶液が用いられる。
 本発明がリスラリー工程を含む場合、第2固液分離工程で、リスラリー工程で得られた第2スラリーを固液分離することにより、固体メチオニンの含液率をさらに低下させる。第2固液分離工程は、上記の方法により行われる。第1固液分離工程で得られた固体メチオニンをリスラリーすることにより、メチオニンに含まれる不純物の量が減少される。更に含液率を下げることでメチオニンに含まれる不純物量をより低減することが可能になる。
 第2固液分離工程としては上記リスラリー工程を含まない場合には第1固液分離工程で得られる固体メチオニンをそのまま含水率を下げる方法が考えられる。具体的には乾燥、またはフィルタプレスにより固体メチオニン中の液体を除去する。この時の圧力は問わないが減圧下で実施する方がエネルギー効率が良いことが多い。乾燥方法としては材料の搬送方法から材料静地型、材料移送型、材料撹拌型、熱風搬送型があり、乾燥のための伝熱方式として対流伝熱式、伝導伝熱式、輻射伝熱式、マイクロ波加熱式などがある。またベルトプレス式フィルタプレス、スクリュープレス式フィルタプレスまたはロータリープレス式フィルタプレスなどのフィルタプレスなど機械的な圧力により含水率を低減する方法もある。
 固液分離工程で得られたメチオニンは、乾燥された後、最終製品とされる。乾燥は、微減圧下、50~120℃程度に加熱して行われる。乾燥時間は通常10分~24時間である。
 次に本発明の実施例を示すが、本発明はこれによって限定されるものではない。実施例における重量部/hrは、1時間当たりの流量を表す。
実施例1
 本反応液にゲージ圧力0.35MPa、25℃の条件下で二酸化炭素ガスを導入することによりメチオニンを析出させて、析出したメチオニンを含むスラリーを得る。該スラリーをゲージ圧力0.35MPa、25℃の条件下で加圧ろ過機に流入させ、フィルタによる加圧ろ過によりメチオニンと母液とを分離する。該母液をゲージ圧力0.35MPa、25℃の条件下、流量を118.3重量部/hrとしてフラッシュタンクへ流入させる。母液には、母液118.3重量部あたり18.3重量部の二酸化炭素が溶解している。フラッシュタンク内圧力がゲージ圧力0MPa(大気圧)、25℃の条件下、気体となった二酸化炭素をフラッシュタンクから回収する。二酸化炭素回収量はガス流量で14.5重量部/hrである。また、水分が0.2重量部/hr回収される。

Claims (7)

  1.  次の工程(1)~(4):
    (1)反応工程:アルカリ化合物の存在下に5-[2-(メチルチオ)エチル]イミダゾリジン-2,4-ジオンを加水分解し、メチオニンのアルカリ塩を含む反応液を得る工程、
    (2)晶析工程:前記反応液に二酸化炭素を導入することによりメチオニンを析出させ、該メチオニンを含む第1スラリーを得る工程、
    (3)固液分離工程:前記第1スラリーを加圧ろ過機に流入させ、前記第1スラリーから固体メチオニンと母液とを得る工程、および
    (4)二酸化炭素回収工程:前記母液から二酸化炭素を回収する工程、
    を含むメチオニンの製造方法。
  2.  前記固液分離工程が、第1固液分離工程と第2固液分離工程とを含み、
    前記第1固液分離工程は、前記第1スラリーを加圧ろ過機に流入させ、前記第1スラリーから前記固体メチオニンと前記母液とを得る工程であり、
     前記第2固液分離工程は、乾燥またはフィルタプレスにより第1固液分離工程で得られる固体メチオニンの含液率をさらに低下させる工程である、請求項1記載のメチオニンの製造方法。
  3.  前記第1固液分離工程で得られた固体メチオニンと、リスラリー液とを混合して第2スラリーとするリスラリー工程を含み、
     前記第2固液分離工程は、前記第2スラリーの固液分離を行い、前記第1固液分離工程で得られた固体メチオニンより含液率の低い固体メチオニンを得る、請求項2記載のメチオニンの製造方法。
  4.  前記加圧ろ過機は、連続式の加圧ろ過機である、
    請求項1から3のいずれか1つに記載のメチオニンの製造方法。
  5.  アルカリ化合物の存在下に5-[2-(メチルチオ)エチル]イミダゾリジン-2,4-ジオンを加水分解してメチオニンのアルカリ塩を含む反応液を得る反応設備と、
     前記反応液に二酸化炭素を導入することによりメチオニンを析出させ、該メチオニンを含む第1スラリーを得る晶析設備と、
     前記第1スラリーから前記固体メチオニンと母液とを得る加圧ろ過設備と、
     前記母液から二酸化炭素を回収する二酸化炭素回収設備と、
    が備えられていることを特徴とするメチオニンの製造設備。
  6.  前記加圧ろ過設備の下流側に、固液分離設備が備えられている、請求項5記載のメチオニンの製造設備。
  7.  前記加圧ろ過設備は、連続式の加圧ろ過設備である、請求項5または6記載のメチオニンの製造設備。
PCT/JP2018/017210 2017-04-27 2018-04-27 メチオニンの製造方法および製造設備 WO2018199294A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019514657A JP7150704B2 (ja) 2017-04-27 2018-04-27 メチオニンの製造方法および製造設備
CN201880027733.0A CN110536882A (zh) 2017-04-27 2018-04-27 甲硫氨酸的制造方法和制造设备
SG11201911239VA SG11201911239VA (en) 2017-04-27 2018-04-27 Methionine production method and production equipment
EP18791984.0A EP3617187B1 (en) 2017-04-27 2018-04-27 Methionine production method and production equipment
US16/608,038 US10829447B2 (en) 2017-04-27 2018-04-27 Methionine production method and production equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-087751 2017-04-27
JP2017087751 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018199294A1 true WO2018199294A1 (ja) 2018-11-01

Family

ID=63919768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017210 WO2018199294A1 (ja) 2017-04-27 2018-04-27 メチオニンの製造方法および製造設備

Country Status (6)

Country Link
US (1) US10829447B2 (ja)
EP (1) EP3617187B1 (ja)
JP (1) JP7150704B2 (ja)
CN (1) CN110536882A (ja)
SG (1) SG11201911239VA (ja)
WO (1) WO2018199294A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108357A (ja) * 1983-04-11 1985-06-13 ソシエテ・アンテルナシヨナル・ド・ピユブリシテ・エ・ダジヤンス・コメルシヤル ゼオライトaの製造方法および得られた生成物
JP2007063141A (ja) * 2005-08-29 2007-03-15 Sumitomo Chemical Co Ltd メチオニンの製造方法
JP2010111641A (ja) 2008-11-07 2010-05-20 Sumitomo Chemical Co Ltd メチオニンの製造方法
JP2015515458A (ja) * 2012-03-20 2015-05-28 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG メチオニンの製造方法
JP2015140342A (ja) * 2014-01-30 2015-08-03 株式会社日立製作所 精製テレフタル酸の製造方法
JP2017087751A (ja) 2015-11-02 2017-05-25 トヨタ自動車株式会社 車両のラジエータのシール構造

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2867503A (en) * 1954-06-10 1959-01-06 Chemical Construction Corp Cobalt and nickel recovery using carbon dioxide leach
DE102004035465A1 (de) * 2004-07-22 2006-02-16 Degussa Ag Verfahren zur Reinigung von CO2-Gasströmen
JP2009292796A (ja) * 2008-06-09 2009-12-17 Sumitomo Chemical Co Ltd メチオニンの製造方法
JP2010111640A (ja) * 2008-11-07 2010-05-20 Sumitomo Chemical Co Ltd メチオニンの製造方法
JP2013173717A (ja) 2012-02-27 2013-09-05 Sumitomo Chemical Co Ltd 精製メチオニンの製造方法
JP6607367B2 (ja) * 2014-12-02 2019-11-20 Dic株式会社 ポリアリーレンスルフィドフィルム及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108357A (ja) * 1983-04-11 1985-06-13 ソシエテ・アンテルナシヨナル・ド・ピユブリシテ・エ・ダジヤンス・コメルシヤル ゼオライトaの製造方法および得られた生成物
JP2007063141A (ja) * 2005-08-29 2007-03-15 Sumitomo Chemical Co Ltd メチオニンの製造方法
JP2010111641A (ja) 2008-11-07 2010-05-20 Sumitomo Chemical Co Ltd メチオニンの製造方法
JP2015515458A (ja) * 2012-03-20 2015-05-28 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG メチオニンの製造方法
JP2015140342A (ja) * 2014-01-30 2015-08-03 株式会社日立製作所 精製テレフタル酸の製造方法
JP2017087751A (ja) 2015-11-02 2017-05-25 トヨタ自動車株式会社 車両のラジエータのシール構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3617187A4

Also Published As

Publication number Publication date
CN110536882A (zh) 2019-12-03
SG11201911239VA (en) 2020-01-30
US20200079730A1 (en) 2020-03-12
EP3617187A4 (en) 2021-01-27
JPWO2018199294A1 (ja) 2020-03-12
EP3617187B1 (en) 2024-02-14
JP7150704B2 (ja) 2022-10-11
US10829447B2 (en) 2020-11-10
EP3617187A1 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
US8217197B2 (en) Process for producing methionine
JP2009292796A (ja) メチオニンの製造方法
US8101797B2 (en) Process for producing methionine
US20070055078A1 (en) Process for producing methionine
AU2017334825B2 (en) Nickel powder manufacturing method
WO2018199296A1 (ja) メチオニンの製造方法および製造設備
WO2018199294A1 (ja) メチオニンの製造方法および製造設備
JP4157415B2 (ja) フッ化カリウムを含有する廃塩からの有価物回収法およびその方法により回収された有価物の再利用法
CN106800303B (zh) 一种利用微通道反应器制备碘化钾的方法
CN107602352A (zh) 一种回收对甲酚磺化碱熔生产过程中氢氧化钠的方法
CN110678446B (zh) 制备蛋氨酸的方法
WO2018199295A1 (ja) メチオニンの製造方法
JP2009001506A (ja) トリヒドロキシベンゾフェノンの製造方法
JP2011126794A (ja) メチオニンの製造方法
WO2023195222A1 (ja) 3,5-ジ-ターシャリーブチルサリチル酸の製造方法
US9738542B2 (en) Method for the further processing of iron sulfate heptahydrate
JP2011195517A (ja) メチオニンの製造方法
CN104193661A (zh) 一种无臭的蛋氨酸的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514657

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018791984

Country of ref document: EP

Effective date: 20191127