WO2018198866A1 - Electric motor element, electric motor, and device - Google Patents

Electric motor element, electric motor, and device Download PDF

Info

Publication number
WO2018198866A1
WO2018198866A1 PCT/JP2018/015754 JP2018015754W WO2018198866A1 WO 2018198866 A1 WO2018198866 A1 WO 2018198866A1 JP 2018015754 W JP2018015754 W JP 2018015754W WO 2018198866 A1 WO2018198866 A1 WO 2018198866A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
axis
electric motor
motor element
degrees
Prior art date
Application number
PCT/JP2018/015754
Other languages
French (fr)
Japanese (ja)
Inventor
幸弘 岡田
慎一 堤
登史 小川
植田 浩司
祐一 吉川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019514407A priority Critical patent/JPWO2018198866A1/en
Priority to CN201880026351.6A priority patent/CN110537314A/en
Publication of WO2018198866A1 publication Critical patent/WO2018198866A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to an electric motor element and an electric motor and an apparatus including the electric motor element.
  • electromagnetic steel sheets are frequently used for stator yokes (stator magnetic cores) of stators of electric motor elements mounted on electric devices and the like.
  • the electromagnetic steel sheet used for this stator yoke (stator magnetic core) has a characteristic of low magnetic loss in order to increase the efficiency of the motor element.
  • a magnetic steel sheet coats the surface of a magnetic steel sheet, electrically insulates the magnetic steel sheets, and suppresses an increase in eddy current.
  • the generation of eddy current is similarly suppressed by increasing the Si content of the electromagnetic steel sheet and increasing the electrical resistance of the electromagnetic steel sheet itself.
  • electromagnetic steel plates are also frequently used for the rotor yoke (rotor core) on the rotor side having the permanent magnet portion.
  • both stators and rotors are of the same type and material, mainly from the viewpoint of mass production in industrial production and management from industrial production. Most cases use steel plates.
  • stator and the rotor are both magnetic steel sheets of the same product type and material.
  • the mode in which the rotating operation stops is expressed as a motor lock
  • the rotating magnetic field from the stator is stopped with the rotor stopped. May be applied to the rotor as a reverse magnetic field.
  • This reverse magnetic field may cause demagnetization of the permanent magnet portion mounted on the rotor.
  • One factor that causes demagnetization of the permanent magnet due to the reverse magnetic field when the motor is locked is considered as follows. That is, when the motor is locked, the rotor that has stopped rotating is positioned in the rotating magnetic field from the stator. The permanent magnet portion of the rotor is also located in the rotating magnetic field. A state in which this rotating magnetic field acts in the direction of demagnetizing the permanent magnet portion of the rotor can occur.
  • the electrical steel sheet used for the rotor magnetic core has an insulating coating and contains a large amount of Si. Therefore, the electrical resistivity of the electrical steel sheet is larger than that of copper or the like. The eddy current of the electrical steel sheet generated by electromagnetic induction is slight.
  • the eddy current generated in the electromagnetic steel sheet of the rotor by the rotating magnetic field from the stator is small.
  • the rotating magnetic field from the stator reaches the permanent magnet portion located inside the rotor without being canceled by the magnetic field due to the eddy current.
  • the rotating magnetic field may also occur as a strong reverse magnetic field that demagnetizes the permanent magnet portion.
  • a reverse magnetic field (arrow 16) flows from the stator into the rotor 2 in a substantial radial direction.
  • the magnetization direction 10a of the bond magnet part 10 located in the outer peripheral part of the rotor 2 is opposite to the reverse magnetic field (substantially opposite to the direction of the arrow 16), the bond magnet part 10 is demagnetized.
  • the motor element exhibits a characteristic that is deteriorated from the initial characteristic.
  • the Si content applied to reduce the loss due to the eddy current of the electrical steel sheet is relatively large, and the insulating coating that electrically insulates the electrical steel sheets from each other Since the generation is suppressed, the phenomenon of demagnetization of the permanent magnet portion due to the reverse magnetic field when the motor is locked cannot be suppressed.
  • permanent magnets of motors and motor elements are equipped with rare-earth sintered magnets with high coercive force, etc. from the viewpoint of the technical idea of increasing the safety factor. In many cases, the demagnetization of the permanent magnet portion is suppressed. However, economics are an issue.
  • a high coercive force magnet such as a NdFeB sintered magnet
  • the high coercive force acts effectively. Therefore, even when the motor lock occurs, demagnetization of the permanent magnet portion due to the reverse magnetic field is rare. That is, a high-level electric motor and electric motor elements that do not require consideration for demagnetization can be realized only by adopting a high coercive force magnet such as a NdFeB sintered magnet for the permanent magnet portion.
  • a bonded magnet when a bonded magnet is employed for the permanent magnet portion mounted on the rotor, the coercive force of the bonded magnet is inferior to that of a magnet such as a NdFeB sintered magnet. For this reason, the detailed consideration regarding the demagnetization of a bond magnet, such as the material of the electromagnetic steel plate of a yoke part and the structure of a rotor, is required. In addition, compared with sintered magnets, such as a NdFeB sintered magnet, a bonded magnet has many freedom regarding the shape of bonded magnet itself, and arrangement
  • a protective tube provided to prevent magnet scattering during high-speed rotation cancels out the rotating magnetic field from the aforementioned stator by a magnetic field caused by eddy currents, It can be considered that the function of suppressing demagnetization of the film is fulfilled.
  • a cylindrical protective tube made of non-magnetic material is installed on the outermost periphery of the rotor to prevent magnets from scattering during high-speed rotation.
  • the reason why the protective tube is made of a nonmagnetic material is that it does not prevent the magnetic flux from the magnet provided in the rotor from interlinking with the stator. If the protective material is a magnetic material, the magnetic flux from the rotor magnet passes through the protective tube having a high magnetic permeability and branches to the adjacent magnetic pole. Therefore, the magnetic flux interlinking with the stator side is reduced, and the efficiency of the motor element is reduced.
  • the center part of the rotor is not provided with a protection tube for preventing scattering, and only the upper and lower ends are prevented from scattering. It is also possible to recall a configuration for achieving this. That is, if there is a protective tube, the AC magnetic field generated from the stator is attenuated by the protective tube. Therefore, it is possible to avoid lowering the motor element efficiency by not providing the protective tube.
  • Patent Document 1 Patent Document 2, Patent Document 3, and Patent Document 4.
  • Patent Document 4 There are many other documents with similar contents.
  • this new bonded magnet is desired.
  • the high performance of this new bonded magnet is desired to be applied to an interior permanent magnet (IPM) type rotor in which a bonded magnet (permanent magnet) is embedded in the rotor.
  • IPM interior permanent magnet
  • motor lock when the operation state of the rotation drive of the electric motor element stops (so-called motor lock), the rotation of the rotor is stopped. It may occur when the rotating magnetic field from the stator is applied to the bonded magnet of the rotor as a reverse magnetic field that demagnetizes the magnetized state of the bonded magnet.
  • an object of the present invention is to provide a motor element and a motor having a novel configuration in which resistance to demagnetization of the motor element is improved in a configuration in which a bond magnet is disposed inside the rotor.
  • the present invention is an electric motor element including a stator and a rotor having a plurality of magnetic poles.
  • the rotor includes a configuration having magnetic saliency.
  • a plurality of d-axis magnetic flux paths for generating magnet torque out of rotational torque components generated by a rotating magnetic field from the stator, and reluctance torque out of rotational torque components are provided.
  • a plurality of q-axis magnetic flux paths for generating Each of the plurality of d-axis magnetic flux paths includes a bond magnet part, and each of the plurality of q-axis magnetic flux paths includes a bond magnet part or an adjacent part in contact with a bond magnet part different from the bond magnet part.
  • An extension of a straight line connecting the centers of a plurality of magnetic poles and the center of the rotation axis of the rotor is defined as a d-axis, and the electrical angle is shifted by 90 degrees with respect to the d-axis and passes through the center of the rotation axis of the rotor.
  • the magnetization direction in the main part of the bond magnet part, which is the main part of the bond magnet part located near the q axis, with the straight line as the q axis is the intersection of the magnetization direction virtual extension line of the magnetization direction and the q axis. Is one of the four corners at the intersection.
  • This one corner is a corner portion sandwiched by the q-axis line segment between the intersection and the outer periphery of the rotor, and the magnetization direction virtual extension straight line, among the line segments included in the q-axis.
  • the angle of the corner is in the range of 30 to 150 degrees.
  • the magnetic field generated from the stator side when the motor is locked becomes a reverse magnetic field and flows (out) in the radial direction of the rotor.
  • demagnetization of the bonded magnet portion can be suppressed. Therefore, it is possible to provide an electric motor element, an electric motor, an electric device, and the like including an embedded magnet rotor that can suppress deterioration of characteristics even when a magnetic field generated from the stator side acts when the motor is locked. Therefore, it has a great industrial value.
  • FIG. 3 is an explanatory diagram showing a state in which a rotating magnetic field from a stator is applied as a reverse magnetic field to a rotor when the motor element according to the first embodiment is locked.
  • FIG. 3 is a diagram illustrating a first aspect of a magnetization direction of a main part of the bonded magnet according to the first embodiment.
  • FIG. 6 is a diagram illustrating a second aspect of the magnetization direction of the main part of the bonded magnet according to the first embodiment. 6 is a graph showing a simulation result of an induced voltage in the first embodiment.
  • FIG. 5 is a perspective view showing a structural example of a motor element according to a second embodiment.
  • the top view which looked at the electric motor element of Embodiment 2 from the rotating shaft direction.
  • the figure which shows the magnetization direction of the bond magnet part principal part in Embodiment 2.
  • FIG. Explanatory drawing which shows the state by which the rotating magnetic field from a stator was applied to a rotor as a reverse magnetic field at the time of the motor lock of the electric motor element of Embodiment 2.
  • FIG. Schematic which shows the magnetization direction of the embedded magnet type
  • FIG. 1 is a cross-sectional view showing a structural example of the electric motor element according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing a cross section of a plane including the rotation shaft of the electric motor element of the present embodiment.
  • the combination of the number of poles and the number of slots of the motor element shown in FIG. 1 is a so-called concentrated winding configuration of 6 poles and 9 slots.
  • the electric motor element includes a stator 1 having a concentrated winding body in nine teeth and a rotor 2 having six magnetic poles having magnetic saliency.
  • the configuration of the motor element in the present invention is not limited to this.
  • a wound body 6 by concentrated winding in which a winding is wound around one tooth portion 5 is illustrated, but the present invention is not limited to this.
  • various winding modes such as distributed winding or wave winding in which the winding is wound across the plurality of teeth portions 5 can be employed.
  • the wound body 6 includes, for example, a 10 pole 9 slot concentrated winding configuration, a 10 pole 12 slot concentrated winding configuration, a 12 pole 9 slot concentrated winding configuration, a 14 pole 12 slot concentrated winding configuration, 4 poles.
  • 24-slot distributed winding configuration 4-pole 36-slot distributed winding configuration, 6-pole 36-slot distributed winding configuration, 8-pole 48-slot distributed winding configuration, 4-pole 12-slot wave winding configuration, 4-pole
  • the present invention can be applied to any known combination of the number of poles and the number of slots, such as a 12-slot wave winding configuration and a 6-pole 18-slot wave winding configuration.
  • the electric motor element 14 in the present embodiment includes a substantially cylindrical stator 1 and a rotor 2 that is rotatably held inside the stator 1.
  • a shaft hole 3 is provided at the center of the rotor 2.
  • the rotor 2 and the shaft are fixed with a shaft (not shown) inserted through the shaft hole 3.
  • both ends of the shaft include a pair of bearings that rotatably support the shaft.
  • the shaft and the bearing are self-explanatory and are not shown.
  • the stator 1 includes a substantially cylindrical yoke portion 4, a core 7 of the stator 1 having a tooth portion 5 extending inside the yoke portion 4, and an insulated wire wound around each of the tooth portions 5. And a wound body 6 provided. Between the teeth part 5 and the wound body 6, an insulator 8 that electrically insulates the two is provided.
  • the rotor 2 includes a bonded magnet portion 10 in each of a core 9 of the columnar rotor 2 and a plurality of arrangement holes 11 formed in the circumferential direction of the rotor 2 (six in this example).
  • a material of the core wire of the insulated wire constituting the wound body 6 a material containing inevitable impurities and any of copper, copper alloy, aluminum, or aluminum alloy is used.
  • the core 7 of the stator 1 is constituted by a laminated body of electromagnetic steel plates.
  • An electromagnetic steel sheet is punched to form a stator core sheet including a yoke part and a tooth part, and a plurality of stator core sheets are laminated to form a laminated body of electromagnetic steel sheets as the core 7 of the stator 1.
  • the electromagnetic steel sheet contains Fe and Si as main components, and is not particularly limited as subcomponents.
  • the components of the electrical steel sheet include inevitable impurities that cannot be specified.
  • the surface of the electrical steel sheet has an insulating coating.
  • an electromagnetic steel plate manufactured by Nippon Steel & Sumikin Co., Ltd. called 35H300, may be used for the core 7 of the stator 1 as an equivalent to the electromagnetic steel plate.
  • the thickness dimension of 35H300 is 0.35 mm.
  • FIG. 4A is a diagram showing an aspect 1 of the magnetization direction of the main part of the bonded magnet in the first embodiment.
  • FIG. 4B is a diagram showing an aspect 2 of the magnetization direction of the main part of the bonded magnet in the first embodiment.
  • an electromagnetic steel plate called 35H300 used for the core 7 of the stator 1 may be employed for the core 9 of the rotor 2.
  • the magnetization direction 10a of the bond magnet portion main part 10c of the bond magnet portion 10 is defined as the outer periphery of the rotor 2.
  • the demagnetization of the bonded magnet unit 10 can be suppressed by setting the angle ⁇ between the corners sandwiched between the q-axis line between the two and the virtual extension straight line of the magnetization direction 10a to a range of 30 degrees to 150 degrees. is there.
  • the magnetic field generated from the stator 1 side when the motor is locked acts as a reverse magnetic field, and this reverse magnetic field flows from the substantial radial direction of the rotor 2 to cause demagnetization in the bond magnet unit 10. It can be suppressed.
  • the direction of the magnetic field generated from the side of the stator 1 when the motor is locked and the magnetization direction 10a of the main part 10c of the bonded magnet are not opposite to each other and are different from each other. It is considered that the demagnetization of the part 10 is suppressed.
  • the bonded magnet unit 10 includes at least magnet powder and a resin material.
  • the type of magnetic material of the magnet powder is not particularly limited.
  • Nd—Fe—B magnet powder, Sm—Co magnet powder, Sm—Fe—N magnet powder, ferrite magnet powder, or a mixture thereof Etc. are selected as appropriate.
  • the cross-sectional shape of the surface perpendicular to the axial direction of the bonded magnet portion 10 shows a substantially V-shaped shape, it is not limited to this shape.
  • a mode suitable for the specifications of the motor element such as a rectangle, a trapezoid, a U-shape, and an arc shape, is appropriately selected.
  • the diameter of the rotor 2 is the range of 30 mm to 60 mm.
  • the length dimension in the longitudinal direction of the rotation axis of the rotor 2 (columnar length dimension) is in the range of 15 mm to 60 mm.
  • the thickness dimension of the bonded magnet portion 10 in a cross section perpendicular to the rotation axis of the rotor 2 needs to be at least about 2 mm.
  • the physique of the stator 1 is selected according to the physique of the rotor 2.
  • the angle ⁇ between the magnetization direction 10a of the bonded magnet main part 10c and the q-axis line between the outer periphery of the rotor 2 and the virtual extension straight line of the magnetization direction 10a is set to 30 to 150 degrees.
  • the range occupied by the main part 10c of the bonded magnet part in the bonded magnet part 10 is as follows. When the diameter of the rotor 2 is about 60 mm, it is preferable that the diameter is from the vicinity of the outer diameter of the rotor 2 to the diameter of about 20 mm inside the rotor 2. When the diameter of the rotor 2 is about 30 mm, it is preferable that the diameter is from the vicinity of the outer diameter of the rotor 2 to the diameter of about 10 mm inside the rotor 2.
  • the motor element 14 in the present embodiment includes at least the stator 1 and the rotor 2 having a plurality of magnetic poles.
  • the rotor 2 includes a configuration having magnetic saliency.
  • the configuration having the magnetic saliency includes a plurality of d-axis magnetic flux paths for generating a magnet torque, and a rotational torque component among the rotational torque components generated by the rotating magnetic field from the stator 1.
  • Bond magnet part 10 is included in at least a part of each of the plurality of d-axis magnetic flux paths, and bond magnet part 10 or a bond magnet part different from bond magnet part 10 is in contact with at least a part of each of the plurality of q-axis magnetic flux paths. Including adjacent parts.
  • An extension of a straight line connecting each of the centers of the plurality of magnetic poles and the center of the rotation axis of the rotor 2 is defined as a d-axis 2d, and the rotor is deviated by 90 degrees in electrical angle with respect to each of the d-axis 2d.
  • the magnetization direction 10a in the main part 10c of the bond magnet part 10c of the bond magnet part 10 arranged at a position close to each of the q axes 2q is defined as a magnetization direction 10a with a straight line passing through the center of the rotation axis 2 as q axis 2q.
  • This is one of the four corners at the intersection formed by the intersection of the magnetization direction virtual extension straight line 10b in the direction 10a and the q axis 2q.
  • One corner is a corner portion sandwiched between the q-axis line segment 2r between the intersection and the outer periphery of the rotor 2 and the magnetization direction virtual extension straight line 10b among the line segments included in the q-axis 2q.
  • the angle ⁇ of the corner is in the range of 30 degrees to 150 degrees.
  • the magnetic field generated from the stator 1 side when the motor is locked becomes a reverse magnetic field and flows from the substantial radial direction of the rotor 2 to demagnetize the bonded magnet unit 10. It was confirmed that this phenomenon (demagnetization) can be suppressed.
  • the confirmation method and the result are described below.
  • the confirmation method used numerical analysis of the magnetic field by the finite element method. In this numerical analysis, first, an induced voltage is calculated for an electric motor element including a rotor 2 having a bonded magnet portion that is not demagnetized.
  • FIG. 5 is a graph showing a simulation result of the induced voltage in the first embodiment.
  • the value of the reverse magnetic field in the above numerical analysis is such that demagnetization occurs in the bond magnet unit 10 when the direction of the reverse magnetic field and the direction of the magnetic field of the bond magnet unit 10 face each other in the opposite direction. Is the value of the magnetic field.
  • the numerical analysis was performed assuming that the value of the reverse magnetic field in the above numerical analysis was a value that was about 20% higher than the value of the holding force Hcj of the bonded magnet.
  • the holding force Hcj is about 850 [kA / m].
  • the residual magnetic flux density Br is about 630 [mT].
  • the density is about 5.0 [Mg / m 3 ].
  • the magnetization direction 10a of the bond magnet portion main portion 10c of the bond magnet portion 10 is equal to the angle ⁇ of the corner portion sandwiched between the q-axis line between the outer periphery of the rotor 2 and the virtual extension straight line of the magnetization direction 10a. .
  • the angle ⁇ was changed from 10 degrees to 170 degrees, and the reduction rate of the induced voltage was obtained by numerical analysis.
  • the results shown in FIG. 5 show that when the angle ⁇ , which is the magnetization direction 10a shown in FIG. 4A, is in the range of 30 degrees to 150 degrees, the demagnetization factor is less than 1%, and the influence of demagnetization is small.
  • the angle ⁇ of the magnetization direction 10a of the main part of the bond magnet unit 10 is set to a substantially constant angle in all the main parts of the bond magnet unit 10. preferable.
  • the relationship between the angle ⁇ , which is the magnetization direction 10a, and the demagnetization factor is as shown in FIG. If the angle ⁇ , which is the magnetization direction 10a, is 30 degrees, the demagnetization factor is about 1%, and the influence of demagnetization is slight, which is preferable.
  • the demagnetization factor is about 0.75%, and the influence of demagnetization is slight, which is preferable.
  • the demagnetization factor is about 0.6%, and the influence of demagnetization is slight, which is preferable.
  • the demagnetization factor is about 0.5%, and the influence of demagnetization is slight, which is preferable.
  • the demagnetization factor is about 0.4%, and the influence of demagnetization is slight, which is preferable.
  • the demagnetization factor is about 0.25%, and the influence of demagnetization is slight, which is preferable.
  • the demagnetization factor is about 0.25%, and the influence of demagnetization is slight, which is preferable.
  • the demagnetization factor is about 0.25%, and the influence of demagnetization is slight, which is preferable.
  • the demagnetization factor is about 0.3%, and the influence of demagnetization is slight, which is preferable.
  • the demagnetization factor is about 0.45%, and the influence of demagnetization is slight, which is preferable.
  • the demagnetization factor is about 0.65%, and the influence of demagnetization is slight, which is preferable.
  • the demagnetization factor is about 0.75%, and the influence of demagnetization is slight, which is preferable.
  • the angle ⁇ which is the magnetization direction 10a
  • the demagnetization factor is about 1%, and the influence of demagnetization is slight, which is preferable.
  • the demagnetization rate is less than about 1%, and the influence of demagnetization is slight, which is preferable.
  • the demagnetization factor is a value in the range of about 1% to about 0.25%, and the influence of demagnetization is small, which is preferable.
  • the demagnetization factor is a value in the range of about 0.75% to about 0.25%, and the influence of demagnetization is small, which is preferable.
  • the demagnetization factor is a value in the range of about 0.6% to about 0.25%, and the influence of demagnetization is small, which is preferable.
  • the demagnetization factor is a value in the range of about 0.5% to about 0.25%, and the influence of demagnetization is slight, which is preferable.
  • the demagnetization factor is a value in the range of about 0.4% to about 0.25%, and the influence of demagnetization is slight, which is preferable.
  • the demagnetization factor is a value in the range of about 1% to about 0.25%, and the influence of demagnetization is slight, which is preferable.
  • the demagnetization factor is about 1% or a value in the range of about 0.65% to about 0.25%, and the influence of demagnetization is slight, which is preferable. .
  • the value of the reverse magnetic field indicates that when the direction of the reverse magnetic field and the direction of the magnetization direction magnetic field of the bond magnet unit 10 face each other in the opposite direction, the bonded magnet unit 10
  • the value of the magnetic field at which demagnetization occurs in the magnetic field the value was increased by about 20% from the value of the holding force Hcj of the bonded magnet, and numerical analysis was performed.
  • the magnetic characteristics of the bond magnet used in this embodiment are isotropic magnetic characteristics.
  • the holding force Hcj is about 850 [kA / m].
  • the residual magnetic flux density Br is about 630 [mT]. Numerical analysis was performed assuming that the density was about 5.0 [Mg / m 3 ].
  • the bond magnet will go through demagnetization and become demagnetized. It reaches a state in which it is magnetized (magnetized) in a close state or a magnetization direction that is the same as the direction of the reverse magnetic field. This is obvious even if it is not explained.
  • the number of poles of the rotor 2 in the present embodiment is 6, but the present embodiment is applicable if it is 2n times (n is a natural number).
  • FIG. 5 is a result at the time of using the electromagnetic steel plate by Nippon Steel & Sumikin Co., Ltd. called 35H300 for the rotor 2.
  • the rotor 2 has magnetic saliency.
  • the portion of the rotor 2 that is crossed by the arrow 12 is a d-axis magnetic flux path constituting portion, and generates a magnet torque among the components of the rotational torque generated by the rotating magnetic field from the stator 1.
  • the part of the rotor 2 crossed by the arrow 13 is a q-axis magnetic flux path constituting part, and generates a reluctance torque among the components of the rotational torque generated by the rotating magnetic field from the stator 1.
  • the d-axis magnetic flux path component and the q-axis magnetic flux path component include at least one of the laminate of the bond magnet part and the steel plate.
  • the steel plate included in the rotor 2 of the motor element in the present embodiment may include at least Fe and Si having an upper limit value of 0.8 wt% in the steel plate components.
  • the Si content of the steel sheet is made small, the electrical conductivity of the steel sheet is smaller than the electrical conductivity of the electromagnetic steel sheet.
  • the eddy current of the steel sheet generated by electromagnetic induction due to the reverse magnetic field from the outside shows a larger value than the eddy current in the electromagnetic steel sheet.
  • the reverse magnetic field from the outside is canceled out by this eddy current, and the effect of suppressing the occurrence of demagnetization of the bonded magnet portion is enhanced.
  • the steel plate included in the rotor 2 of the motor element in the present embodiment is a steel plate that does not have an insulating coating. That is, by forming the core of the rotor 2 as a laminated body of steel plates, the ground surfaces of the steel plates are in contact with each other. Moreover, you may apply
  • the steel plate included in the rotor 2 of the electric motor element in the present embodiment is a steel plate having 0.35 mm as the lower limit of the thickness dimension.
  • the magnetic field generated from the side of the stator 1 when the motor is locked increases the thickness of the steel plate, thereby generating more eddy currents near the outer periphery of the rotor 2 and suppressing demagnetization of the bond magnet portion. It is.
  • the thickness dimension may be about 0.5 mm.
  • the steel plate included in the electric motor element in the present embodiment may include at least Fe and Si having an upper limit of 0.8 wt% in the steel plate components.
  • the thickness dimension of the steel plate may be about 0.5 mm.
  • a steel sheet made by Nippon Steel & Sumikin Co., Ltd. called 50H470, 50H400 or 50H350 may be used with the thickness dimension of the steel sheet being about 0.5 mm.
  • eddy currents are likely to occur near the outer periphery of the rotor 2.
  • the reverse magnetic field from the outside is canceled out by this eddy current, and the effect of suppressing the occurrence of demagnetization of the bonded magnet portion is enhanced.
  • the electric motor element in the present embodiment includes a configuration in which the ground surfaces of the steel plates are in contact with each other and a configuration in which the steel plates are in contact with each other through an oxide film formed by natural oxidation of the ground surface.
  • at least a part of the surface of the rotor 2 may be provided with a coating covering the surface of the rotor 2 in order to suppress an oxide film due to natural oxidation that inevitably occurs on the base of the steel plate. .
  • FIG. 3 is an explanatory diagram illustrating a state in which the rotating magnetic field from the stator 1 is applied as a reverse magnetic field to the rotor 2 when the motor element of the first embodiment is locked.
  • An arrow 15 shown in FIG. 3 schematically shows the above-described reverse magnetic field.
  • this reverse magnetic field is a rotating magnetic field. For this reason, when this reverse magnetic field is applied in a direction that causes demagnetization of the magnet mounted on the rotor 2, the magnet may be demagnetized. For this reason, it has been continuously recognized as a problem.
  • the manufacturing method of the core of the motor element (the core of the stator 1 and the core of the rotor 2) using the steel plate or the electromagnetic steel plate in the present embodiment is as follows.
  • a rolled steel plate or electromagnetic steel plate supplied from a manufacturer of metal materials or the like is sent to a press machine by an unwinding machine.
  • a steel plate or an electromagnetic steel plate is punched into a core sheet having a predetermined axial cross-sectional shape by a mold installed in a press.
  • a core a laminated body configured by laminating core sheets which are processed products from steel plates or electromagnetic steel plates
  • the electric motor element 14 of the present embodiment includes the stator 1 and the rotor 2 having a plurality of magnetic poles.
  • the rotor 2 includes a configuration having magnetic saliency.
  • the configuration having magnetic saliency includes a plurality of d-axis magnetic flux passages for generating a magnet torque among the rotational torque components generated by the rotating magnetic field from the stator 1, and the reluctance torque among the rotational torque components.
  • a plurality of q-axis magnetic flux paths for generating.
  • Each of the plurality of d-axis magnetic flux paths includes a bond magnet unit 10
  • each of the plurality of q-axis magnetic flux paths includes a bond magnet unit 10, or an adjacent part in contact with a bond magnet unit different from the bond magnet unit 10 including.
  • An extension of a straight line connecting the centers of the plurality of magnetic poles and the center of the rotation axis of the rotor 2 is defined as a d-axis 2d, and is deviated by 90 degrees in electrical angle with respect to the d-axis 2d.
  • the magnetization direction in the bond magnet part main part 10c which is the main part of the bond magnet part 10 located in the vicinity of the q axis 2q, is a virtual extension of the magnetization direction of the magnetization direction. It is one of the four corners at the intersection formed by the intersection of the straight line and the q axis 2q.
  • One corner is a corner portion sandwiched between the q-axis line segment 2r between the intersection and the outer periphery of the rotor 2 and the magnetization direction virtual extension straight line 10b among the line segments included in the q-axis 2q.
  • the angle of the corner is in the range of 30 to 150 degrees.
  • the magnetic field generated from the stator 1 side when the motor is locked becomes a reverse magnetic field and flows in (out) in the substantial radial direction of the rotor 2, whereas the magnetization of the main part 10c of the bonded magnet portion.
  • demagnetization of the bonded magnet unit 10 can be suppressed. Therefore, it is possible to provide an electric motor element, an electric motor, an electric device, and the like including an embedded magnet type rotor that can suppress deterioration of characteristics even when a magnetic field generated from the stator 1 side acts when the motor is locked. . Therefore, it has a great industrial value.
  • the angle is in the range of 30 degrees to 90 degrees.
  • the angle is in the range of 40 degrees to 90 degrees.
  • the angle is in the range of 50 to 90 degrees.
  • the angle is in the range of 60 to 90 degrees.
  • the angle is in the range of 70 degrees to 90 degrees.
  • the angle is in the range of 30 degrees to 110 degrees.
  • the angle is in the range of 30 degrees to 130 degrees.
  • the cross-sectional shape of the bond magnet portion in the cross section perpendicular to the rotation axis of the rotor 2 may be a V-shape.
  • the cross-sectional shape of the bond magnet portion in the cross section perpendicular to the rotation axis of the rotor 2 may be a U-shape.
  • the cross-sectional shape of the bond magnet portion in the cross section perpendicular to the axis of rotation of the rotor 2 may be an arc shape.
  • the lower limit value of the thickness dimension of the bonded magnet portion 10 in the cross section in the vertical direction with respect to the rotation axis of the rotor 2 is 2 mm.
  • the diameter of the rotor is preferably in the range of 30 mm to 60 mm.
  • a part of each of the plurality of d-axis magnetic flux paths and a part of each of the plurality of q-axis magnetic flux paths include a laminate in which a plurality of steel sheets are laminated, and the steel sheet components are Fe and 0.8 wt%. Si as the upper limit value may be included.
  • the laminated body included in the rotor 2 may include a configuration in which the ground surfaces of the steel plates are in contact with each other.
  • the laminated body included in the rotor 2 may include a configuration in which the ground surfaces of the steel plates are in contact with each other and a configuration in which the steel plates are in contact with each other through an oxide film formed by natural oxidation of the ground surfaces.
  • the laminated body included in the rotor 2 may include a steel plate having a lower limit value of the thickness dimension of 0.35 mm.
  • the rotor 2 may include a coating that covers the surface of the rotor 2.
  • the stator 1 of the electric motor element 14 includes a core 7 of the stator 1 having a substantially cylindrical yoke portion 4 and a plurality of teeth portions 5 extending inside the yoke portion 4, and a plurality of teeth.
  • the core 7 of the stator 1 may include a laminated body of electromagnetic steel sheets.
  • the electric motor of the present embodiment includes an electric motor element, an output shaft that outputs the rotational torque of the electric motor element, and a bearing that rotatably supports the output shaft. Thereby, a highly reliable electric motor is provided.
  • the apparatus according to the present embodiment is equipped with an electric motor including an electric motor element, an output shaft that outputs rotational torque of the electric motor element, and a bearing that rotatably supports the output shaft. This provides a highly reliable device.
  • FIG. 6 is a perspective view showing a structural example of the electric motor element of the present embodiment.
  • FIG. 7 is a plan view of the electric motor element of the present embodiment as viewed from the direction of the rotation axis.
  • the combination of the number of poles and the number of slots of the motor element of the present embodiment shown in FIGS. 6 and 7 is a so-called concentrated winding configuration of 10 poles and 12 slots.
  • the electric motor element includes a stator 1 having concentrated winding bodies at 12 tooth portions, and a rotor 2 having 10 magnetic pole portions having magnetic saliency. Other configurations are the same as those in the first embodiment.
  • the winding body 6 and 7 exemplify the wound body 6 by concentrated winding in which the winding is wound around one tooth portion 5, but the present invention is not limited to this.
  • the winding body 6 can employ various winding modes such as distributed winding or wave winding in which the winding is wound across the plurality of tooth portions 5.
  • the wound body 6 includes, for example, a 10 pole 9 slot concentrated winding configuration, a 10 pole 12 slot concentrated winding configuration, a 12 pole 9 slot concentrated winding configuration, a 14 pole 12 slot concentrated winding configuration, 4 poles.
  • 24-slot distributed winding configuration 4-pole 36-slot distributed winding configuration, 6-pole 36-slot distributed winding configuration, 8-pole 48-slot distributed winding configuration, 4-pole 12-slot wave winding configuration, 4-pole
  • the present invention can be applied to any known combination of the number of poles and the number of slots, such as a 12-slot wave winding configuration and a 6-pole 18-slot wave winding configuration.
  • the number of poles of the rotor 2 in the present embodiment is 10, but the present invention is applicable if it is 2n times (n is a natural number).
  • the electric motor element 14 in the present embodiment includes a substantially cylindrical stator 1 and a rotor 2 that is rotatably held inside the stator 1.
  • a shaft hole 3 is provided at the center of the rotor 2.
  • the rotor 2 and the shaft are fixed in a state where a shaft (not shown) is inserted into the shaft hole 3.
  • both ends of the shaft include a pair of bearings that rotatably support the shaft. 6 and 7, the shaft and the bearing are obvious and are not shown.
  • the stator 1 includes a substantially cylindrical yoke portion 4, a core 7 of the stator 1 having a tooth portion 5 extending inside the yoke portion 4, and an insulated wire wound around each of the tooth portions 5. And a wound body 6 provided. Between the teeth part 5 and the wound body 6, an insulator (not shown) that electrically insulates both is provided.
  • the rotor 2 includes a bonded magnet portion 20 in each of a core 9 of the columnar rotor 2 and a plurality of arrangement holes 11 formed in the circumferential direction of the rotor 2 (10 locations in this example).
  • the core 7 of the stator 1 is constituted by a laminated body of electromagnetic steel plates. An electromagnetic steel sheet is punched to form a stator core sheet including a yoke part and a tooth part, and a plurality of stator core sheets are laminated to form a laminated body of electromagnetic steel sheets as the core 7 of the stator 1 To do.
  • the electromagnetic steel sheet contains Fe and Si as main components, and is not particularly limited as subcomponents.
  • the components of the electrical steel sheet include inevitable impurities that cannot be specified.
  • the surface of the electrical steel sheet has an insulating coating. As a thing equivalent to the above, you may use the electromagnetic steel plate by Nippon Steel & Sumikin Co., Ltd. called 35H300 for the core 7 of the stator 1, for example.
  • the thickness dimension of 35H300 is 0.35 mm.
  • FIG. 8 is a diagram showing the magnetization direction of the main part of the bonded magnet in the second embodiment.
  • an electromagnetic steel plate called 35H300 used for the core 7 of the stator 1 may be employed for the core 9 of the rotor 2.
  • the magnetization direction 20a of the main part 20c of the bonded magnet part in the bonded magnet part 20 is set to the outer periphery of the rotor 2.
  • the demagnetization of the bonded magnet unit 20 can be suppressed by setting the angle ⁇ between the corners sandwiched by the q-axis line between them and the virtual extended straight line 20b of the magnetization direction 20a to be in the range of 30 degrees to 150 degrees. is there.
  • the magnetic field generated from the stator 1 side when the motor is locked acts as a reverse magnetic field, and this reverse magnetic field flows from the substantial radial direction of the rotor 2 to cause demagnetization in the bond magnet unit 20. It can be suppressed.
  • the direction of the magnetic field generated from the side of the stator 1 when the motor is locked and the magnetization direction 20a of the main part of the bond magnet unit 20 are not opposite to each other and are different from each other. It is considered that the demagnetization of the magnet unit 20 is suppressed.
  • the bonded magnet unit 20 includes at least magnet powder and a resin material.
  • the type of magnetic material of the magnet powder is not particularly limited.
  • Nd—Fe—B magnet powder, Sm—Co magnet powder, Sm—Fe—N magnet powder, ferrite magnet powder, or a mixture thereof Etc. are selected as appropriate.
  • the cross-sectional shape of the surface perpendicular to the axial direction of the bond magnet unit 20 shows a case of a substantially arc shape, but is not limited to this shape.
  • a mode suitable for the specifications of the motor element such as a rectangle, a trapezoid, and a V shape, is appropriately selected.
  • the diameter of the rotor 2 is the range of 30 mm to 60 mm.
  • the length dimension in the longitudinal direction of the rotation axis of the rotor 2 (columnar length dimension) is in the range of 15 mm to 60 mm.
  • the thickness dimension of the bonded magnet portion 20 in a cross section perpendicular to the rotation axis of the rotor 2 needs to be at least about 2 mm.
  • the physique of the stator 1 is selected according to the physique of the rotor 2.
  • the angle ⁇ of the corner sandwiched between the magnetization direction 20a of the bonded magnet portion 20c in the bonded magnet portion 20 and the q-axis line between the outer periphery of the rotor 2 and the virtual extension straight line 20b of the magnetization direction 20a is defined as
  • the range occupied by the main part 20c of the bonded magnet part 20 in the bonded magnet part 20 when 30 degrees to 150 degrees is as follows.
  • the diameter of the rotor 2 is about 60 mm, it is preferable that the diameter is from the vicinity of the outer diameter of the rotor 2 to the diameter of about 20 mm inside the rotor 2.
  • the diameter of the rotor 2 is about 30 mm, it is preferable that the diameter is from the vicinity of the outer diameter of the rotor 2 to the diameter of about 10 mm inside the rotor 2.
  • the rotor 2 has magnetic saliency, and a d-axis magnetic flux path configuration section that generates magnet torque and a q-axis magnetic flux path configuration that generates reluctance torque.
  • d-axis magnetic flux path constituent parts and q-axis magnetic flux path constituent parts include at least a laminate of either a bond magnet part or a steel plate.
  • the steel plate included in the rotor 2 of the motor element in the present embodiment may include at least Fe and Si having an upper limit value of 0.8 wt% in the steel plate components.
  • the Si content of the steel sheet is made small, the electrical conductivity of the steel sheet is smaller than the electrical conductivity of the electromagnetic steel sheet.
  • the eddy current of the steel sheet generated by electromagnetic induction due to the reverse magnetic field from the outside shows a larger value than the eddy current in the electromagnetic steel sheet.
  • the reverse magnetic field from the outside is canceled out by the eddy current in the vicinity of the outer periphery of the rotor 2, and the effect of suppressing the occurrence of demagnetization of the bonded magnet portion is enhanced.
  • the steel plate included in the rotor 2 of the motor element in the present embodiment is a steel plate that does not have an insulating coating. That is, by forming the core of the rotor 2 as a laminated body of steel plates, the ground surfaces of the steel plates are in contact with each other. Moreover, you may apply
  • the steel plate included in the rotor 2 of the electric motor element in the present embodiment is a steel plate having 0.35 mm as the lower limit of the thickness dimension.
  • the magnetic field generated from the side of the stator 1 when the motor is locked increases the thickness of the steel plate, thereby generating more eddy currents near the outer periphery of the rotor 2 and suppressing demagnetization of the bond magnet portion. It is.
  • the thickness dimension may be about 0.5 mm.
  • the steel plate included in the electric motor element in the present embodiment may include at least Fe and Si having an upper limit of 0.8 wt% in the steel plate components.
  • the thickness dimension of the steel plate may be about 0.5 mm.
  • a steel sheet made by Nippon Steel & Sumikin Co., Ltd. called 50H470, 50H400 or 50H350 may be used with the thickness dimension of the steel sheet being about 0.5 mm.
  • eddy currents are likely to occur near the outer periphery of the rotor 2.
  • the reverse magnetic field from the outside is canceled out by this eddy current, and the effect of suppressing the occurrence of demagnetization of the bonded magnet portion is enhanced.
  • the electric motor element in the present embodiment includes a configuration in which the ground surfaces of the steel plates are in contact with each other and a configuration in which the steel plates are in contact with each other through an oxide film formed by natural oxidation of the ground surface.
  • a coating covering the surface of the rotor 2 may be provided on at least a part of the surface of the rotor 2 in order to suppress an oxide film due to natural oxidation inevitably occurring on the ground surface of the steel plate. .
  • FIG. 9 is an explanatory diagram showing a state in which the rotating magnetic field from the stator is applied as a reverse magnetic field to the rotor when the motor element of the present embodiment is locked.
  • An arrow 15 shown in FIG. 9 schematically shows the above-described reverse magnetic field.
  • this reverse magnetic field is a rotating magnetic field. For this reason, when this reverse magnetic field is applied in a direction that causes demagnetization of the magnet mounted on the rotor 2, the magnet may be demagnetized. For this reason, it was conventionally recognized as a problem.
  • the manufacturing method of the core of the motor element (the core of the stator 1 and the core of the rotor 2) using the steel plate or the electromagnetic steel plate in the present embodiment is as follows.
  • a rolled steel plate or electromagnetic steel plate supplied from a manufacturer of metal materials or the like is sent to a press machine by an unwinding machine.
  • a steel plate or an electromagnetic steel plate is punched into a core sheet having a predetermined axial cross-sectional shape by a mold installed in a press.
  • a core a laminated body formed by laminating a core sheet that is a processed product from a steel plate or an electromagnetic steel plate is referred to as a core
  • a core a laminated body formed by laminating a core sheet that is a processed product from a steel plate or an electromagnetic steel plate is referred to as a core
  • the present invention suppresses demagnetization due to application of a reverse magnetic field to the bond magnet part included in the motor element and the rotor of the motor. Therefore, the present invention can provide an electric motor and an electric motor element with improved reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Provided is an electric motor element including a stator and a rotor having a plurality of magnetic poles. The rotor includes a configuration having a magnetic salient polarity. The configuration having the magnetic salient polarity includes: a plurality of d-axis magnetic flux paths for generating a magnet torque among the rotational torque components generated by the rotating magnetic field from the stator; and a plurality of q-axis magnetic flux paths for generating a reluctance torque among the rotational torque components. A part of each of the d-axis magnetic flux paths includes a bond magnet portion, and a part of each of the q-axis magnetic flux paths includes the bond magnet portion or an adjacent portion that is different from the bond magnet portion and makes contact with the bond magnet portion. When the extended line of the line connecting the center of the plurality of magnetic poles and the center of the rotation axis of the rotor is defined as a d-axis and the line shifted by an electrical angle of 90 degrees with respect to the d-axis and passing through the center of the rotation axis of the rotor is defined as a q-axis, a magnetization direction of a bond magnet portion main section that is a main section of the bond magnet portion positioned at a site adjacent to the q-axis is one angle among the four angles at the intersection point formed by a magnetization direction virtual extended line in the magnetization direction and the q-axis. The one angle is an angle portion sandwiched by a q-axis segment between the intersection point and the outer circumference of the rotor among the segments included in the q-axis and the magnetization direction virtual extended line. The angle of the angle portion is 30 degrees to 150 degrees.

Description

電動機要素、電動機、装置Motor elements, motors, equipment
 本発明は、電動機要素、電動機要素を含む電動機及び装置に関する。 The present invention relates to an electric motor element and an electric motor and an apparatus including the electric motor element.
 従来から、電気機器等に搭載する電動機要素の固定子の固定子ヨーク(固定子磁心)には、電磁鋼板が多用されている。この固定子ヨーク(固定子磁心)に用いる電磁鋼板は、電動機要素の効率を高めるため、磁気損失が低損失な特性を有する。例えば、電磁鋼板は、電磁鋼板の表面に被膜を施し、電磁鋼板同士を電気的に絶縁し、渦電流が増大することを抑制している。さらに、電磁鋼板のSiの含有量を高め、電磁鋼板自体の電気抵抗を高くすることで、同じく渦電流発生を抑制している。例えば、電動機に用いる無方向性電磁鋼板のうち、高位グレード電磁鋼板では、2wt%から3wt%程度のSiを添加し、中低位グレード電磁鋼板では、1wt%程度のSiを添加している。近年では、Siの添加量を6wt%から7wt%程度まで高めた電磁鋼板も開発されている。 Conventionally, electromagnetic steel sheets are frequently used for stator yokes (stator magnetic cores) of stators of electric motor elements mounted on electric devices and the like. The electromagnetic steel sheet used for this stator yoke (stator magnetic core) has a characteristic of low magnetic loss in order to increase the efficiency of the motor element. For example, a magnetic steel sheet coats the surface of a magnetic steel sheet, electrically insulates the magnetic steel sheets, and suppresses an increase in eddy current. Furthermore, the generation of eddy current is similarly suppressed by increasing the Si content of the electromagnetic steel sheet and increasing the electrical resistance of the electromagnetic steel sheet itself. For example, among non-oriented electrical steel sheets used for electric motors, about 2 wt% to 3 wt% Si is added to high grade electrical steel sheets, and about 1 wt% Si is added to medium to low grade electrical steel sheets. In recent years, electrical steel sheets in which the additive amount of Si is increased from about 6 wt% to about 7 wt% have been developed.
 一方、永久磁石部を具備する回転子の側の回転子ヨーク(回転子磁心)にも、電磁鋼板が多用されている。なお、電磁鋼板を固定子及び回転子に用いるに際しては、主に工業的生産における大量生産の観点及び工業的生産における経営的視点から、固定子及び回転子にはいずれも同じ品種・材質の電磁鋼板を採用するケースが殆どである。 On the other hand, electromagnetic steel plates are also frequently used for the rotor yoke (rotor core) on the rotor side having the permanent magnet portion. When electromagnetic steel sheets are used for stators and rotors, both stators and rotors are of the same type and material, mainly from the viewpoint of mass production in industrial production and management from industrial production. Most cases use steel plates.
 電動機要素の回転駆動の動作状態に不具合な動作を生じない限り、固定子及び回転子がいずれも同じ品種・材質の電磁鋼板であっても、特に支障となることは無い。 As long as there is no malfunction in the operating state of the rotational drive of the motor element, there is no particular problem even if the stator and the rotor are both magnetic steel sheets of the same product type and material.
 しかし、何らかの要因によって、電動機要素の回転動作が停止する場合(以下、この回転動作が停止する態様を、モータロック、と表現する)、回転子の回転が止まった状態で固定子からの回転磁界が回転子へ逆磁界として印加される場合がある。この逆磁界が回転子に搭載された永久磁石部の減磁を引き起こすことがある。モータロック時の状況を擬似的に再現する減磁試験を実施することによって、回転子に搭載された永久磁石部の減磁に起因する不具合現象の状態を確認することも行われる。 However, when the rotating operation of the electric motor element stops for some reason (hereinafter, the mode in which the rotating operation stops is expressed as a motor lock), the rotating magnetic field from the stator is stopped with the rotor stopped. May be applied to the rotor as a reverse magnetic field. This reverse magnetic field may cause demagnetization of the permanent magnet portion mounted on the rotor. By performing a demagnetization test that simulates the situation when the motor is locked, it is also possible to confirm the state of the malfunction phenomenon caused by the demagnetization of the permanent magnet portion mounted on the rotor.
 モータロック時の逆磁界によって永久磁石部の減磁が生じる要因の一つは、以下のように考察される。すなわち、モータロック時には、回転駆動の止まった回転子が、固定子からの回転磁界の中に位置する。そして、回転子の永久磁石部も、回転磁界の中に位置する。この回転磁界が、回転子の永久磁石部を減磁する方向へ作用する状態が起き得る。一方、回転子の磁心に用いる電磁鋼板は、絶縁被膜を有し、且つSiを高含有するため、電磁鋼板の電気抵抗率は銅などの電気抵抗率に比べて大きな値である。電磁誘導によって生じる電磁鋼板の渦電流は僅かなものである。したがって、固定子からの回転磁界によって回転子の電磁鋼板に生じる渦電流は僅かである。固定子からの回転磁界は、渦電流による磁界で相殺されることもなく、回転子の内部に位置する永久磁石部へ達する。回転磁界は、永久磁石部を減磁するほどの強い逆磁界として作用する場合も起き得る。例えば、図10に示すように、逆磁界(矢印16)は、固定子から実質的な径方向に回転子2に流入する。このため、回転子2の外周部に位置するボンド磁石部10の磁化方向10aが逆磁界と逆方向(矢印16の方向と実質的な逆方向)であると、ボンド磁石部10が減磁することがある。減磁したボンド磁石部10は、再度着磁をしなければ、もとの残留磁束密度に回復することはなく、ボンド磁石部10からの磁束量は減磁によって減少したままとなる。よって、電動機要素は初期の特性よりも劣化した特性を示す。 One factor that causes demagnetization of the permanent magnet due to the reverse magnetic field when the motor is locked is considered as follows. That is, when the motor is locked, the rotor that has stopped rotating is positioned in the rotating magnetic field from the stator. The permanent magnet portion of the rotor is also located in the rotating magnetic field. A state in which this rotating magnetic field acts in the direction of demagnetizing the permanent magnet portion of the rotor can occur. On the other hand, the electrical steel sheet used for the rotor magnetic core has an insulating coating and contains a large amount of Si. Therefore, the electrical resistivity of the electrical steel sheet is larger than that of copper or the like. The eddy current of the electrical steel sheet generated by electromagnetic induction is slight. Therefore, the eddy current generated in the electromagnetic steel sheet of the rotor by the rotating magnetic field from the stator is small. The rotating magnetic field from the stator reaches the permanent magnet portion located inside the rotor without being canceled by the magnetic field due to the eddy current. The rotating magnetic field may also occur as a strong reverse magnetic field that demagnetizes the permanent magnet portion. For example, as shown in FIG. 10, a reverse magnetic field (arrow 16) flows from the stator into the rotor 2 in a substantial radial direction. For this reason, when the magnetization direction 10a of the bond magnet part 10 located in the outer peripheral part of the rotor 2 is opposite to the reverse magnetic field (substantially opposite to the direction of the arrow 16), the bond magnet part 10 is demagnetized. Sometimes. If the demagnetized bond magnet unit 10 is not magnetized again, it does not recover to the original residual magnetic flux density, and the amount of magnetic flux from the bond magnet unit 10 remains reduced by demagnetization. Therefore, the motor element exhibits a characteristic that is deteriorated from the initial characteristic.
 このように、電磁鋼板の渦電流による損失の低減のために施されたSi含有量が比較的に多量であること、及び、電磁鋼板同士を電気的に絶縁する絶縁被膜などは、渦電流の発生を抑制することから、モータロック時の逆磁界による永久磁石部の減磁という現象の抑制は、できない。 Thus, the Si content applied to reduce the loss due to the eddy current of the electrical steel sheet is relatively large, and the insulating coating that electrically insulates the electrical steel sheets from each other Since the generation is suppressed, the phenomenon of demagnetization of the permanent magnet portion due to the reverse magnetic field when the motor is locked cannot be suppressed.
 なお、一般的に、電動機及び電動機要素の永久磁石部には、安全率を高める技術思想の観点から、高い保磁力を有する希土類焼結磁石等を搭載することで、モータロック時の逆磁界による永久磁石部の減磁を抑制するケースが多い。しかし、経済性が、課題となる。 In general, permanent magnets of motors and motor elements are equipped with rare-earth sintered magnets with high coercive force, etc. from the viewpoint of the technical idea of increasing the safety factor. In many cases, the demagnetization of the permanent magnet portion is suppressed. However, economics are an issue.
 例えば、回転子に搭載される永久磁石部にNdFeB焼結磁石等の高い保磁力の磁石を採用する場合は、高い保磁力が有効に作用する。したがって、モータロックが生じた場合でも、逆磁界による永久磁石部の減磁は稀である。つまり、永久磁石部にNdFeB焼結磁石等の高い保磁力の磁石を採用するだけで、減磁に対しての考察を要しない高水準の電動機及び電動機要素が実現可能である。 For example, when a high coercive force magnet such as a NdFeB sintered magnet is used for the permanent magnet portion mounted on the rotor, the high coercive force acts effectively. Therefore, even when the motor lock occurs, demagnetization of the permanent magnet portion due to the reverse magnetic field is rare. That is, a high-level electric motor and electric motor elements that do not require consideration for demagnetization can be realized only by adopting a high coercive force magnet such as a NdFeB sintered magnet for the permanent magnet portion.
 一方、回転子に搭載する永久磁石部にボンド磁石を採用する場合においては、ボンド磁石の保磁力がNdFeB焼結磁石等の磁石よりも劣る。このため、ヨーク部の電磁鋼板の材質、回転子の構造など、ボンド磁石の減磁に関する詳細な考察を要する。なお、ボンド磁石は、NdFeB焼結磁石等の焼結磁石に比べて、ボンド磁石自体の形状、及び、回転子への配置に関して、自由度に富む。したがって、何らか新規な構成の回転子の想起が期待される。 On the other hand, when a bonded magnet is employed for the permanent magnet portion mounted on the rotor, the coercive force of the bonded magnet is inferior to that of a magnet such as a NdFeB sintered magnet. For this reason, the detailed consideration regarding the demagnetization of a bond magnet, such as the material of the electromagnetic steel plate of a yoke part and the structure of a rotor, is required. In addition, compared with sintered magnets, such as a NdFeB sintered magnet, a bonded magnet has many freedom regarding the shape of bonded magnet itself, and arrangement | positioning to a rotor. Therefore, it is expected to recall a rotor with a new structure.
 ちなみに、表面磁石型の回転子を採用する電動機要素の場合は、高速回転時の磁石飛散防止のために設ける保護管が、前述の固定子からの回転磁界を渦電流による磁界によって相殺し、磁石の減磁を抑制する機能を果たすことを考察し得る。 By the way, in the case of an electric motor element that employs a surface magnet type rotor, a protective tube provided to prevent magnet scattering during high-speed rotation cancels out the rotating magnetic field from the aforementioned stator by a magnetic field caused by eddy currents, It can be considered that the function of suppressing demagnetization of the film is fulfilled.
 例えば、非磁性材料の筒状の保護管を回転子の最外周に設置し、高速回転時の磁石飛散を防止する。保護管を特に非磁性材料とするのは、回転子に具備する磁石からの磁束が固定子の側へ鎖交するのを妨げないためである。もし、磁性材料を保護管にした場合では、回転子の磁石からの磁束は、透磁率の高い保護管内を通り、隣接の磁極の側へ分岐する割合が高くなる。よって、固定子の側と鎖交する磁束は減少し、電動機要素の効率の低下を招く。 For example, a cylindrical protective tube made of non-magnetic material is installed on the outermost periphery of the rotor to prevent magnets from scattering during high-speed rotation. The reason why the protective tube is made of a nonmagnetic material is that it does not prevent the magnetic flux from the magnet provided in the rotor from interlinking with the stator. If the protective material is a magnetic material, the magnetic flux from the rotor magnet passes through the protective tube having a high magnetic permeability and branches to the adjacent magnetic pole. Therefore, the magnetic flux interlinking with the stator side is reduced, and the efficiency of the motor element is reduced.
 例えば、磁石飛散防止に加え、渦電流損失による電動機の効率の低下を抑制することを意図する場合は、回転子の中央部には、飛散防止の保護管を設けず、上下端のみ飛散防止機能を図る構成も想起し得る。すなわち、保護管があると固定子から発生される交流磁界が保護管にて減衰される。したがって、保護管を設けないことで、電動機要素効率を低下させることを回避可能である。 For example, in addition to preventing the scattering of magnets, if it is intended to suppress the reduction in the efficiency of the motor due to eddy current loss, the center part of the rotor is not provided with a protection tube for preventing scattering, and only the upper and lower ends are prevented from scattering. It is also possible to recall a configuration for achieving this. That is, if there is a protective tube, the AC magnetic field generated from the stator is attenuated by the protective tube. Therefore, it is possible to avoid lowering the motor element efficiency by not providing the protective tube.
 なお、上述の技術思想を示す先行技術文献は、例えば、特許文献1、特許文献2、特許文献3、特許文献4などがある。他に同様の内容の文献が多々見られる。 The prior art documents showing the above technical idea include, for example, Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4. There are many other documents with similar contents.
 近年においては、電動機要素の性能向上に寄与する新規なボンド磁石の開発が盛んである。この新規なボンド磁石の活用が希求されている。特に、この新規なボンド磁石の高性能化は、ボンド磁石(永久磁石)を回転子内部に埋設する永久磁石埋め込み(Interior Permanent Magnet(IPM))型の回転子への応用が望まれるところである。しかし、上述のとおり、電動機要素の回転駆動の動作状態が、停止する場合(所謂、モータロック)が生じると、回転子の回転が止まった状態となる。固定子からの回転磁界が回転子のボンド磁石に対しては、ボンド磁石の着磁状態を減磁させる逆磁界として印加される場合も起き得る。また、従来技術を踏襲した回転子の構成のままでは、回転子に搭載するボンド磁石の保磁力を多少高めたとしても、NdFeB焼結磁石等の高い値の保磁力には到底及ばず、ボンド磁石の減磁を解消することは難しいものと考察される。 In recent years, the development of new bonded magnets that contribute to improving the performance of electric motor elements has been active. Utilization of this new bonded magnet is desired. In particular, the high performance of this new bonded magnet is desired to be applied to an interior permanent magnet (IPM) type rotor in which a bonded magnet (permanent magnet) is embedded in the rotor. However, as described above, when the operation state of the rotation drive of the electric motor element stops (so-called motor lock), the rotation of the rotor is stopped. It may occur when the rotating magnetic field from the stator is applied to the bonded magnet of the rotor as a reverse magnetic field that demagnetizes the magnetized state of the bonded magnet. Further, with the rotor configuration that follows the conventional technology, even if the coercive force of the bond magnet mounted on the rotor is slightly increased, the coercive force of the NdFeB sintered magnet or the like does not reach the high value. It is considered difficult to eliminate the demagnetization of the magnet.
特開2010-259304号公報JP 2010-259304 A 特開2009-95200号公報JP 2009-95200 A 特開2000-312447号公報JP 2000-31447 A 特開平10-304610号公報Japanese Patent Laid-Open No. 10-304610
 そこで、本発明の目的は、回転子内部にボンド磁石を配置する構成において、電動機要素の減磁に対する耐性向上を図った新規な構成の電動機要素及び電動機を提供することを目的とする。 Therefore, an object of the present invention is to provide a motor element and a motor having a novel configuration in which resistance to demagnetization of the motor element is improved in a configuration in which a bond magnet is disposed inside the rotor.
 上述の目的を達成するために、本件出願の発明者らは、試行錯誤を重ね且つ鋭意検討を行った。その詳細を下記に述べる。 In order to achieve the above-described object, the inventors of the present application conducted trial and error and conducted intensive studies. Details are described below.
 本発明は、固定子と、複数の磁極を有する回転子と、を含む電動機要素である。回転子は、磁気的突極性を有する構成を含む。磁気的突極性を有する構成は、固定子からの回転磁界によって発生する回転トルクの成分のうちのマグネットトルクを発生させるための複数のd軸磁束通路と、回転トルクの成分のうちのリラクタンストルクを発生させるための複数のq軸磁束通路とを含む。複数のd軸磁束通路の各々の一部分にボンド磁石部を含み、複数のq軸磁束通路の各々の一部分にボンド磁石部、又はボンド磁石部とは別のボンド磁石部と接する隣接部を含む。複数の磁極の中心と、回転子の回転軸の中心と、を結ぶ直線の延長線をd軸とし、d軸に対して電気角で90度ずれ、且つ回転子の回転軸の中心を通過する直線をq軸として、q軸に対して近接の箇所に位置するボンド磁石部の要部であるボンド磁石部要部における磁化方向は、磁化方向の磁化方向仮想延長直線と、q軸との交差でなす交点における4つの角のうちの一つの角である。この一つの角は、q軸に含まれる線分のうちの、交点と回転子の外周との間のq軸線分と、磁化方向仮想延長直線と、によって挟まれる角部である。角部の角度は、30度から150度の範囲である。 The present invention is an electric motor element including a stator and a rotor having a plurality of magnetic poles. The rotor includes a configuration having magnetic saliency. In the configuration having magnetic saliency, a plurality of d-axis magnetic flux paths for generating magnet torque out of rotational torque components generated by a rotating magnetic field from the stator, and reluctance torque out of rotational torque components are provided. And a plurality of q-axis magnetic flux paths for generating. Each of the plurality of d-axis magnetic flux paths includes a bond magnet part, and each of the plurality of q-axis magnetic flux paths includes a bond magnet part or an adjacent part in contact with a bond magnet part different from the bond magnet part. An extension of a straight line connecting the centers of a plurality of magnetic poles and the center of the rotation axis of the rotor is defined as a d-axis, and the electrical angle is shifted by 90 degrees with respect to the d-axis and passes through the center of the rotation axis of the rotor. The magnetization direction in the main part of the bond magnet part, which is the main part of the bond magnet part located near the q axis, with the straight line as the q axis is the intersection of the magnetization direction virtual extension line of the magnetization direction and the q axis. Is one of the four corners at the intersection. This one corner is a corner portion sandwiched by the q-axis line segment between the intersection and the outer periphery of the rotor, and the magnetization direction virtual extension straight line, among the line segments included in the q-axis. The angle of the corner is in the range of 30 to 150 degrees.
 本発明の構成によれば、モータロック時に固定子の側から発生した磁界が逆磁界となって、回転子の実質的に径方向に流入(出)することに対して、ボンド磁石部の要部の磁化方向を所定の角度とすることによって、ボンド磁石部の減磁を抑制可能である。したがって、モータロック時に固定子の側から発生した磁界が作用しても、特性の劣化を抑制可能な埋め込み磁石型回転子を含む電動機要素、電動機、電気機器等を提供することが可能である。よって、産業的価値の大なるものである。 According to the configuration of the present invention, the magnetic field generated from the stator side when the motor is locked becomes a reverse magnetic field and flows (out) in the radial direction of the rotor. By setting the magnetization direction of the portion to a predetermined angle, demagnetization of the bonded magnet portion can be suppressed. Therefore, it is possible to provide an electric motor element, an electric motor, an electric device, and the like including an embedded magnet rotor that can suppress deterioration of characteristics even when a magnetic field generated from the stator side acts when the motor is locked. Therefore, it has a great industrial value.
実施の形態1の電動機要素の構造例を示す断面図。Sectional drawing which shows the structural example of the electric motor element of Embodiment 1. FIG. 実施の形態1の電動機要素の回転軸を含む平面の断面を示す断面図。Sectional drawing which shows the cross section of the plane containing the rotating shaft of the electric motor element of Embodiment 1. FIG. 実施の形態1の電動機要素のモータロック時において、固定子からの回転磁界が回転子へ逆磁界として印加された状態を示す説明図。FIG. 3 is an explanatory diagram showing a state in which a rotating magnetic field from a stator is applied as a reverse magnetic field to a rotor when the motor element according to the first embodiment is locked. 実施の形態1におけるボンド磁石部要部の磁化方向の態様1を示す図。FIG. 3 is a diagram illustrating a first aspect of a magnetization direction of a main part of the bonded magnet according to the first embodiment. 実施の形態1におけるボンド磁石部要部の磁化方向の態様2を示す図。FIG. 6 is a diagram illustrating a second aspect of the magnetization direction of the main part of the bonded magnet according to the first embodiment. 実施の形態1における誘起電圧のシミュレーション結果を示すグラフ。6 is a graph showing a simulation result of an induced voltage in the first embodiment. 実施の形態2の電動機要素の構造例を示す斜視図。FIG. 5 is a perspective view showing a structural example of a motor element according to a second embodiment. 実施の形態2の電動機要素を回転軸方向から見た平面図。The top view which looked at the electric motor element of Embodiment 2 from the rotating shaft direction. 実施の形態2におけるボンド磁石部要部の磁化方向を示す図。The figure which shows the magnetization direction of the bond magnet part principal part in Embodiment 2. FIG. 実施の形態2の電動機要素のモータロック時において、固定子からの回転磁界が回転子へ逆磁界として印加された状態を示す説明図。Explanatory drawing which shows the state by which the rotating magnetic field from a stator was applied to a rotor as a reverse magnetic field at the time of the motor lock of the electric motor element of Embodiment 2. FIG. 従来例の一例として示す埋め込み磁石型回転子の磁化方向を示す概略図。Schematic which shows the magnetization direction of the embedded magnet type | mold rotor shown as an example of a prior art example.
 以下、本発明について、図面を参照しながら説明する。なお、以下の各実施の形態によって本発明が限定されるものではない。 Hereinafter, the present invention will be described with reference to the drawings. In addition, this invention is not limited by each following embodiment.
 (実施の形態1)
 図1は、本実施の形態の電動機要素の構造例を示す断面図である。図2は、本実施の形態の電動機要素の回転軸を含む平面の断面を示す断面図である。図1に示す電動機要素の極数とスロット数の組み合わせは、所謂、6極9スロットの集中巻の構成である。電動機要素は、9つのティース部に集中巻の巻装体を具備する固定子1と、磁気的突極性を有する6つの磁極部を具備する回転子2とを有する。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a structural example of the electric motor element according to the present embodiment. FIG. 2 is a cross-sectional view showing a cross section of a plane including the rotation shaft of the electric motor element of the present embodiment. The combination of the number of poles and the number of slots of the motor element shown in FIG. 1 is a so-called concentrated winding configuration of 6 poles and 9 slots. The electric motor element includes a stator 1 having a concentrated winding body in nine teeth and a rotor 2 having six magnetic poles having magnetic saliency.
 本発明における電動機要素の構成は、これに限定されない。図1においては、1つのティース部5に巻線を巻いた集中巻による巻装体6を例示しているが、本発明はこれに限らない。例えば、複数のティース部5に渡って巻線を巻装する分布巻または波巻など種々の巻線の態様を採用可能である。 The configuration of the motor element in the present invention is not limited to this. In FIG. 1, a wound body 6 by concentrated winding in which a winding is wound around one tooth portion 5 is illustrated, but the present invention is not limited to this. For example, various winding modes such as distributed winding or wave winding in which the winding is wound across the plurality of teeth portions 5 can be employed.
 巻装体6は、例えば、10極9スロットの集中巻の構成、10極12スロットの集中巻の構成、12極9スロットの集中巻の構成、14極12スロットの集中巻の構成、4極24スロットの分布巻の構成、4極36スロットの分布巻の構成、6極36スロットの分布巻の構成、8極48スロットの分布巻の構成、4極12スロットの波巻の構成、4極12スロットの波巻の構成、6極18スロットの波巻の構成などの周知の極数とスロット数の組み合わせのいずれにも適用可能である。 The wound body 6 includes, for example, a 10 pole 9 slot concentrated winding configuration, a 10 pole 12 slot concentrated winding configuration, a 12 pole 9 slot concentrated winding configuration, a 14 pole 12 slot concentrated winding configuration, 4 poles. 24-slot distributed winding configuration, 4-pole 36-slot distributed winding configuration, 6-pole 36-slot distributed winding configuration, 8-pole 48-slot distributed winding configuration, 4-pole 12-slot wave winding configuration, 4-pole The present invention can be applied to any known combination of the number of poles and the number of slots, such as a 12-slot wave winding configuration and a 6-pole 18-slot wave winding configuration.
 図1に示すように、本実施の形態における電動機要素14は、実質的に円筒状の固定子1と、固定子1の内側に回転自在に保持される回転子2とを有する。回転子2の中心にはシャフト孔3が設けられる。シャフト孔3にシャフト(図示せず)が挿通された状態で回転子2とシャフトとが固定される。なお、シャフトの両端部は、シャフトを回転自在に支承する一対の軸受を具備する。図1においては、シャフト及び軸受については、自明な内容であり、図示していない。 As shown in FIG. 1, the electric motor element 14 in the present embodiment includes a substantially cylindrical stator 1 and a rotor 2 that is rotatably held inside the stator 1. A shaft hole 3 is provided at the center of the rotor 2. The rotor 2 and the shaft are fixed with a shaft (not shown) inserted through the shaft hole 3. Note that both ends of the shaft include a pair of bearings that rotatably support the shaft. In FIG. 1, the shaft and the bearing are self-explanatory and are not shown.
 固定子1は、実質的に円筒状のヨーク部4、及び、ヨーク部4の内側に延出するティース部5を有する固定子1のコア7と、ティース部5の各々に絶縁電線を巻装して設ける巻装体6とを有している。ティース部5と巻装体6との間には、両者を電気的に絶縁するインシュレータ8を設ける。回転子2は、円柱状の回転子2のコア9と、回転子2の周方向に複数(本例においては6つ)形成された配置孔11の各々にボンド磁石部10を、具備する。なお、巻装体6を構成する絶縁電線の芯線の材質には、不可避不純物と、銅、銅合金、アルミニウム又はアルミニウム合金のいずれかを含むものが用いられる。固定子1のコア7は、電磁鋼板の積層体によって構成される。電磁鋼板を打ち抜き加工し、ヨーク部と、ティース部とを含む固定子コアシートを形成し、複数枚の固定子コアシートを積層して、固定子1のコア7である電磁鋼板の積層体を構成する。電磁鋼板は、主成分として、Fe及びSiを含み、副成分としては特に限定されない。電磁鋼板の成分には、特定し得ない不可避不純物が含まれる。電磁鋼板の表面は、絶縁性の被膜を具備する。電磁鋼板に相当するものとして、例えば、固定子1のコア7には、35H300と呼称される新日鐵住金株式会社製の電磁鋼板を用いてもよい。なお、35H300の厚み寸法は、0.35mmである。 The stator 1 includes a substantially cylindrical yoke portion 4, a core 7 of the stator 1 having a tooth portion 5 extending inside the yoke portion 4, and an insulated wire wound around each of the tooth portions 5. And a wound body 6 provided. Between the teeth part 5 and the wound body 6, an insulator 8 that electrically insulates the two is provided. The rotor 2 includes a bonded magnet portion 10 in each of a core 9 of the columnar rotor 2 and a plurality of arrangement holes 11 formed in the circumferential direction of the rotor 2 (six in this example). In addition, as a material of the core wire of the insulated wire constituting the wound body 6, a material containing inevitable impurities and any of copper, copper alloy, aluminum, or aluminum alloy is used. The core 7 of the stator 1 is constituted by a laminated body of electromagnetic steel plates. An electromagnetic steel sheet is punched to form a stator core sheet including a yoke part and a tooth part, and a plurality of stator core sheets are laminated to form a laminated body of electromagnetic steel sheets as the core 7 of the stator 1. Constitute. The electromagnetic steel sheet contains Fe and Si as main components, and is not particularly limited as subcomponents. The components of the electrical steel sheet include inevitable impurities that cannot be specified. The surface of the electrical steel sheet has an insulating coating. For example, an electromagnetic steel plate manufactured by Nippon Steel & Sumikin Co., Ltd., called 35H300, may be used for the core 7 of the stator 1 as an equivalent to the electromagnetic steel plate. The thickness dimension of 35H300 is 0.35 mm.
 図4Aは、実施の形態1におけるボンド磁石部要部の磁化方向の態様1を示す図である。図4Bは、実施の形態1におけるボンド磁石部要部の磁化方向の態様2を示す図である。本実施の形態においては、回転子2のコア9に、固定子1のコア7に用いられる35H300と呼称される電磁鋼板を採用しても良い。後述するように、回転子2のコア9に、35H300と呼称される電磁鋼板を採用する場合においても、ボンド磁石部10のボンド磁石部要部10cの磁化方向10aを、回転子2の外周との間のq軸線分と、磁化方向10aの仮想延長直線と、によって挟まれる角部の角度θを、30度から150度の範囲とすることによって、ボンド磁石部10の減磁を抑制可能である。モータロック時に固定子1の側から発生した磁界が逆磁界となって作用し、この逆磁界が回転子2の実質的な径方向から流入してボンド磁石部10に減磁を生じさせる現象を抑制可能とする。モータロック時の固定子1の側から発生した磁界の方向と、ボンド磁石部要部10cの磁化方向10aとは、互いの方向が逆方向で向き合うことは無く、相違しているため、ボンド磁石部10の減磁は抑制されるものと考察される。 FIG. 4A is a diagram showing an aspect 1 of the magnetization direction of the main part of the bonded magnet in the first embodiment. FIG. 4B is a diagram showing an aspect 2 of the magnetization direction of the main part of the bonded magnet in the first embodiment. In the present embodiment, an electromagnetic steel plate called 35H300 used for the core 7 of the stator 1 may be employed for the core 9 of the rotor 2. As will be described later, even when an electromagnetic steel plate called 35H300 is adopted for the core 9 of the rotor 2, the magnetization direction 10a of the bond magnet portion main part 10c of the bond magnet portion 10 is defined as the outer periphery of the rotor 2. The demagnetization of the bonded magnet unit 10 can be suppressed by setting the angle θ between the corners sandwiched between the q-axis line between the two and the virtual extension straight line of the magnetization direction 10a to a range of 30 degrees to 150 degrees. is there. The magnetic field generated from the stator 1 side when the motor is locked acts as a reverse magnetic field, and this reverse magnetic field flows from the substantial radial direction of the rotor 2 to cause demagnetization in the bond magnet unit 10. It can be suppressed. The direction of the magnetic field generated from the side of the stator 1 when the motor is locked and the magnetization direction 10a of the main part 10c of the bonded magnet are not opposite to each other and are different from each other. It is considered that the demagnetization of the part 10 is suppressed.
 ボンド磁石部10は、少なくとも磁石粉末と樹脂材料を含む。磁石粉末の磁性材料の種類は、特に限定されないが、例えば、Nd-Fe-B系磁石粉末、Sm-Co系磁石粉末、Sm-Fe-N系磁石粉末、フェライト系磁石粉末、又はこれらの混合物などから適宜選択される。ボンド磁石部10の軸方向に対して垂直な面の断面形状は、実質的なV字状の形状の場合を示すが、この形状に限定されるものではない。長方形、台形、U字状、円弧状など、電動機要素の仕様に適した態様が適宜選択される。 The bonded magnet unit 10 includes at least magnet powder and a resin material. The type of magnetic material of the magnet powder is not particularly limited. For example, Nd—Fe—B magnet powder, Sm—Co magnet powder, Sm—Fe—N magnet powder, ferrite magnet powder, or a mixture thereof Etc. are selected as appropriate. Although the cross-sectional shape of the surface perpendicular to the axial direction of the bonded magnet portion 10 shows a substantially V-shaped shape, it is not limited to this shape. A mode suitable for the specifications of the motor element, such as a rectangle, a trapezoid, a U-shape, and an arc shape, is appropriately selected.
 本実施の形態における回転子2の体格であるが、回転子2の直径は、30mmから60mmの範囲である。回転子2の回転軸の長手方向の長さ寸法(円柱形状の長さ寸法)は、15mmから60mmの範囲である。このような回転子2の体格の場合においては、回転子2の回転軸に対して垂直方向の断面におけるボンド磁石部10の厚み寸法は少なくとも2mm程度を要する。なお、固定子1の体格は、回転子2の体格に応じて選択する。 Although it is the physique of the rotor 2 in this Embodiment, the diameter of the rotor 2 is the range of 30 mm to 60 mm. The length dimension in the longitudinal direction of the rotation axis of the rotor 2 (columnar length dimension) is in the range of 15 mm to 60 mm. In the case of such a physique of the rotor 2, the thickness dimension of the bonded magnet portion 10 in a cross section perpendicular to the rotation axis of the rotor 2 needs to be at least about 2 mm. The physique of the stator 1 is selected according to the physique of the rotor 2.
 ボンド磁石部要部10cの磁化方向10aを、回転子2の外周との間のq軸線分と、磁化方向10aの仮想延長直線と、によって挟まれる角部の角度θを、30度から150度とするときの、ボンド磁石部10におけるボンド磁石部要部10cが占める範囲は以下である。回転子2の直径を60mm程度とするときは、回転子2の外径近傍から回転子2の内部の直径20mm程度までであることが好ましい。回転子2の直径を30mm程度とするときは、回転子2の外径近傍から回転子2の内部の直径10mm程度までであることが好ましい。 The angle θ between the magnetization direction 10a of the bonded magnet main part 10c and the q-axis line between the outer periphery of the rotor 2 and the virtual extension straight line of the magnetization direction 10a is set to 30 to 150 degrees. The range occupied by the main part 10c of the bonded magnet part in the bonded magnet part 10 is as follows. When the diameter of the rotor 2 is about 60 mm, it is preferable that the diameter is from the vicinity of the outer diameter of the rotor 2 to the diameter of about 20 mm inside the rotor 2. When the diameter of the rotor 2 is about 30 mm, it is preferable that the diameter is from the vicinity of the outer diameter of the rotor 2 to the diameter of about 10 mm inside the rotor 2.
 上述のとおり、本実施の形態における電動機要素14は、少なくとも固定子1と、複数の磁極を有する回転子2と、を含む。回転子2は、磁気的突極性を有する構成を含む。この磁気的突極性を有する構成は、固定子1からの回転磁界によって発生する回転トルクの成分のうちの、マグネットトルクを発生させるための複数のd軸磁束通路と、回転トルクの成分のうちのリラクタンストルクを発生させるための複数のq軸磁束通路とを含む。複数のd軸磁束通路の各々の少なくとも一部分にボンド磁石部10を含み、且つ複数のq軸磁束通路の各々の少なくとも一部分にボンド磁石部10又はボンド磁石部10とは別のボンド磁石部と接する隣接部を含む。複数の磁極の中心の各々毎と、回転子2の回転軸の中心と、を結ぶ直線の延長線をd軸2dとし、d軸2dの各々に対して、電気角で90度ずれ且つ回転子2の回転軸の中心を通過する直線をq軸2qとして、q軸2qの各々毎に対して近接する位置に配置されるボンド磁石部10のボンド磁石部要部10cにおける磁化方向10aは、磁化方向10aの磁化方向仮想延長直線10bと、q軸2qとの交差でなす交点における4つの角のうちの一つの角である。一つの角は、q軸2qに含む線分のうちの、交点と回転子2の外周との間のq軸線分2rと、磁化方向仮想延長直線10bと、によって挟まれる角部である。角部の角度θは、30度から150度の範囲である。 As described above, the motor element 14 in the present embodiment includes at least the stator 1 and the rotor 2 having a plurality of magnetic poles. The rotor 2 includes a configuration having magnetic saliency. The configuration having the magnetic saliency includes a plurality of d-axis magnetic flux paths for generating a magnet torque, and a rotational torque component among the rotational torque components generated by the rotating magnetic field from the stator 1. A plurality of q-axis magnetic flux paths for generating reluctance torque. Bond magnet part 10 is included in at least a part of each of the plurality of d-axis magnetic flux paths, and bond magnet part 10 or a bond magnet part different from bond magnet part 10 is in contact with at least a part of each of the plurality of q-axis magnetic flux paths. Including adjacent parts. An extension of a straight line connecting each of the centers of the plurality of magnetic poles and the center of the rotation axis of the rotor 2 is defined as a d-axis 2d, and the rotor is deviated by 90 degrees in electrical angle with respect to each of the d-axis 2d. The magnetization direction 10a in the main part 10c of the bond magnet part 10c of the bond magnet part 10 arranged at a position close to each of the q axes 2q is defined as a magnetization direction 10a with a straight line passing through the center of the rotation axis 2 as q axis 2q. This is one of the four corners at the intersection formed by the intersection of the magnetization direction virtual extension straight line 10b in the direction 10a and the q axis 2q. One corner is a corner portion sandwiched between the q-axis line segment 2r between the intersection and the outer periphery of the rotor 2 and the magnetization direction virtual extension straight line 10b among the line segments included in the q-axis 2q. The angle θ of the corner is in the range of 30 degrees to 150 degrees.
 本実施の形態の電動機要素において、モータロック時に固定子1の側から発生した磁界が逆磁界となって、回転子2の実質的な径方向から流入して、ボンド磁石部10が減磁する現象に対して、この現象(減磁)を抑制可能であることを確認した。その確認方法とその結果を以下に記す。確認方法は、有限要素法による磁界の数値解析を用いた。この数値解析においては、まず、減磁していない状態のボンド磁石部を有する回転子2を具備する電動機要素について、誘起電圧を算出する。次に、固定子1の巻装体として構成した三相コイルのうち一相から他の二相に直流の減磁電流を通電した状態で、回転子2を1回だけ回転させる。その後、再度、誘起電圧を算出する。この減磁電流の通電前後における誘起電圧の変化(低下率)を求め、減磁率と定義する。その結果をグラフ化したものを図5に示す。図5は、実施の形態1における誘起電圧のシミュレーション結果を示すグラフである。 In the electric motor element of the present embodiment, the magnetic field generated from the stator 1 side when the motor is locked becomes a reverse magnetic field and flows from the substantial radial direction of the rotor 2 to demagnetize the bonded magnet unit 10. It was confirmed that this phenomenon (demagnetization) can be suppressed. The confirmation method and the result are described below. The confirmation method used numerical analysis of the magnetic field by the finite element method. In this numerical analysis, first, an induced voltage is calculated for an electric motor element including a rotor 2 having a bonded magnet portion that is not demagnetized. Next, the rotor 2 is rotated only once in a state in which a DC demagnetizing current is applied from one phase to the other two phases among the three-phase coils configured as the winding body of the stator 1. Thereafter, the induced voltage is calculated again. A change (decrease rate) in the induced voltage before and after the application of the demagnetizing current is obtained and defined as a demagnetizing factor. A graph of the results is shown in FIG. FIG. 5 is a graph showing a simulation result of the induced voltage in the first embodiment.
 なお、上記の数値解析における逆磁界の値は、逆磁界の方向と、ボンド磁石部10の磁化方向磁界の方向と、が逆方向で互いに向き合うときに、ボンド磁石部10に減磁が生じる程度の磁界の値である。上記の数値解析における逆磁界の値は、ボンド磁石の保持力Hcjの値よりも2割程増した値として、数値解析を行った。本実施の形態に用いるボンド磁石の磁気特性として、保持力Hcjは、850[kA/m]程度である。残留磁束密度Brは、630[mT]程度である。密度は、5.0[Mg/m]程度である。 Note that the value of the reverse magnetic field in the above numerical analysis is such that demagnetization occurs in the bond magnet unit 10 when the direction of the reverse magnetic field and the direction of the magnetic field of the bond magnet unit 10 face each other in the opposite direction. Is the value of the magnetic field. The numerical analysis was performed assuming that the value of the reverse magnetic field in the above numerical analysis was a value that was about 20% higher than the value of the holding force Hcj of the bonded magnet. As the magnetic characteristics of the bonded magnet used in this embodiment, the holding force Hcj is about 850 [kA / m]. The residual magnetic flux density Br is about 630 [mT]. The density is about 5.0 [Mg / m 3 ].
 ボンド磁石部10のボンド磁石部要部10cの磁化方向10aは、回転子2の外周との間のq軸線分と、磁化方向10aの仮想延長直線と、によって挟まれる角部の角度θと等しい。この角度θを、10度から170度まで変化させて、誘起電圧の低下率を数値解析によって求めた。図5に示す結果は、図4Aに示す磁化方向10aである角度θが、30度から150度の範囲では、減磁率は1%を下回り、減磁の影響は僅かであり、好ましい。 The magnetization direction 10a of the bond magnet portion main portion 10c of the bond magnet portion 10 is equal to the angle θ of the corner portion sandwiched between the q-axis line between the outer periphery of the rotor 2 and the virtual extension straight line of the magnetization direction 10a. . The angle θ was changed from 10 degrees to 170 degrees, and the reduction rate of the induced voltage was obtained by numerical analysis. The results shown in FIG. 5 show that when the angle θ, which is the magnetization direction 10a shown in FIG. 4A, is in the range of 30 degrees to 150 degrees, the demagnetization factor is less than 1%, and the influence of demagnetization is small.
 ボンド磁石部10の要部の磁化方向10aの角度θは、図4A(態様1)に示すように、ボンド磁石部10の要部の各部分の全てで実質的に一定の角度とすることが好ましい。また、図4B(態様2)に示すように、ボンド磁石部10のボンド磁石部要部10cの各部分毎に磁化方向10aの角度θ1、角度θ2~角度θn(nは3以上の自然数)と多少相違し、ある程度の角度幅内で分散しても良い。 As shown in FIG. 4A (mode 1), the angle θ of the magnetization direction 10a of the main part of the bond magnet unit 10 is set to a substantially constant angle in all the main parts of the bond magnet unit 10. preferable. Further, as shown in FIG. 4B (mode 2), the angle θ1, the angle θ2 to the angle θn (n is a natural number of 3 or more) of the magnetization direction 10a for each portion of the bond magnet portion main portion 10c of the bond magnet portion 10. It is slightly different and may be dispersed within a certain angle width.
 磁化方向10aである角度θと、減磁率との関係は、図5に示すとおりである。磁化方向10aである角度θを30度とすると、減磁率は約1%となり、減磁の影響は僅かであり、好ましい。 The relationship between the angle θ, which is the magnetization direction 10a, and the demagnetization factor is as shown in FIG. If the angle θ, which is the magnetization direction 10a, is 30 degrees, the demagnetization factor is about 1%, and the influence of demagnetization is slight, which is preferable.
 磁化方向10aである角度θを40度とすると、減磁率は約0.75%となり、減磁の影響は僅かであり、好ましい。 When the angle θ, which is the magnetization direction 10a, is 40 degrees, the demagnetization factor is about 0.75%, and the influence of demagnetization is slight, which is preferable.
 磁化方向10aである角度θを50度とすると、減磁率は約0.6%となり、減磁の影響は僅かであり、好ましい。 When the angle θ, which is the magnetization direction 10a, is 50 degrees, the demagnetization factor is about 0.6%, and the influence of demagnetization is slight, which is preferable.
 磁化方向10aである角度θを60度とすると、減磁率は約0.5%となり、減磁の影響は僅かであり、好ましい。 When the angle θ, which is the magnetization direction 10a, is 60 degrees, the demagnetization factor is about 0.5%, and the influence of demagnetization is slight, which is preferable.
 磁化方向10aである角度θを70度とすると、減磁率は約0.4%となり、減磁の影響は僅かであり、好ましい。 When the angle θ, which is the magnetization direction 10a, is 70 degrees, the demagnetization factor is about 0.4%, and the influence of demagnetization is slight, which is preferable.
 磁化方向10aである角度θを80度とすると、減磁率は約0.25%となり、減磁の影響は僅かであり、好ましい。 When the angle θ, which is the magnetization direction 10a, is 80 degrees, the demagnetization factor is about 0.25%, and the influence of demagnetization is slight, which is preferable.
 磁化方向10aである角度θを90度とすると、減磁率は約0.25%となり、減磁の影響は僅かであり、好ましい。 When the angle θ, which is the magnetization direction 10a, is 90 degrees, the demagnetization factor is about 0.25%, and the influence of demagnetization is slight, which is preferable.
 磁化方向10aである角度θを100度とすると、減磁率は約0.25%となり、減磁の影響は僅かであり、好ましい。 If the angle θ, which is the magnetization direction 10a, is 100 degrees, the demagnetization factor is about 0.25%, and the influence of demagnetization is slight, which is preferable.
 磁化方向10aである角度θを110度とすると、減磁率は約0.3%となり、減磁の影響は僅かであり、好ましい。 When the angle θ, which is the magnetization direction 10a, is 110 degrees, the demagnetization factor is about 0.3%, and the influence of demagnetization is slight, which is preferable.
 磁化方向10aである角度θを120度とすると、減磁率は約0.45%となり、減磁の影響は僅かであり、好ましい。 When the angle θ, which is the magnetization direction 10a, is 120 degrees, the demagnetization factor is about 0.45%, and the influence of demagnetization is slight, which is preferable.
 磁化方向10aである角度θを130度とすると、減磁率は約0.65%となり、減磁の影響は僅かであり、好ましい。 When the angle θ, which is the magnetization direction 10a, is 130 degrees, the demagnetization factor is about 0.65%, and the influence of demagnetization is slight, which is preferable.
 磁化方向10aである角度θを140度とすると、減磁率は約0.75%となり、減磁の影響は僅かであり、好ましい。 When the angle θ, which is the magnetization direction 10a, is 140 degrees, the demagnetization factor is about 0.75%, and the influence of demagnetization is slight, which is preferable.
 磁化方向10aである角度θを150度とすると、減磁率は約1%となり、減磁の影響は僅かであり、好ましい。 If the angle θ, which is the magnetization direction 10a, is 150 degrees, the demagnetization factor is about 1%, and the influence of demagnetization is slight, which is preferable.
 磁化方向10aである角度θを30度から150度とすると、減磁率は約1%を下回る値となり、減磁の影響は僅かであり、好ましい。 When the angle θ, which is the magnetization direction 10a, is set to 30 ° to 150 °, the demagnetization rate is less than about 1%, and the influence of demagnetization is slight, which is preferable.
 磁化方向10aである角度θを30度から90度とすると、減磁率は約1%から約0.25%の範囲の値となり、減磁の影響は僅かであり、好ましい。 When the angle θ, which is the magnetization direction 10a, is set to 30 to 90 degrees, the demagnetization factor is a value in the range of about 1% to about 0.25%, and the influence of demagnetization is small, which is preferable.
 磁化方向10aである角度θを40度から90度とすると、減磁率は約0.75%から約0.25%の範囲の値となり、減磁の影響は僅かであり、好ましい。 When the angle θ, which is the magnetization direction 10a, is set to 40 degrees to 90 degrees, the demagnetization factor is a value in the range of about 0.75% to about 0.25%, and the influence of demagnetization is small, which is preferable.
 磁化方向10aである角度θを50度から90度とすると、減磁率は約0.6%から約0.25%の範囲の値となり、減磁の影響は僅かであり、好ましい。 When the angle θ, which is the magnetization direction 10a, is set to 50 degrees to 90 degrees, the demagnetization factor is a value in the range of about 0.6% to about 0.25%, and the influence of demagnetization is small, which is preferable.
 磁化方向10aである角度θを60度から90度とすると、減磁率は約0.5%から約0.25%の範囲の値となり、減磁の影響は僅かであり、好ましい。 When the angle θ, which is the magnetization direction 10a, is set to 60 degrees to 90 degrees, the demagnetization factor is a value in the range of about 0.5% to about 0.25%, and the influence of demagnetization is slight, which is preferable.
 磁化方向10aである角度θを70度から90度とすると、減磁率は約0.4%から約0.25%の範囲の値となり、減磁の影響は僅かであり、好ましい。 When the angle θ, which is the magnetization direction 10a, is set to 70 to 90 degrees, the demagnetization factor is a value in the range of about 0.4% to about 0.25%, and the influence of demagnetization is slight, which is preferable.
 磁化方向10aである角度θを30度から110度とすると、減磁率は約1%から約0.25%の範囲の値となり、減磁の影響は僅かであり、好ましい。 When the angle θ, which is the magnetization direction 10a, is set to 30 ° to 110 °, the demagnetization factor is a value in the range of about 1% to about 0.25%, and the influence of demagnetization is slight, which is preferable.
 磁化方向10aである角度θを30度から130度とすると、減磁率は約1%又は約0.65%から約0.25%の範囲の値となり、減磁の影響は僅かであり、好ましい。 When the angle θ, which is the magnetization direction 10a, is 30 degrees to 130 degrees, the demagnetization factor is about 1% or a value in the range of about 0.65% to about 0.25%, and the influence of demagnetization is slight, which is preferable. .
 なお、上述のとおり、数値解析の結果は、逆磁界の値としては、逆磁界の方向と、ボンド磁石部10の磁化方向磁界の方向と、が逆方向で互いに向き合うときに、ボンド磁石部10に減磁が生じる程度の磁界の値として、ボンド磁石の保持力Hcjの値よりも2割程増した値とし、数値解析を行った。また、本実施の形態に用いるボンド磁石の磁気特性は、等方性の磁気特性である。保持力Hcjは、850[kA/m]程度である。残留磁束密度Brは、630[mT]程度である。密度は、5.0[Mg/m]程度のものを用いるとして数値解析を行った。 As described above, as a result of the numerical analysis, the value of the reverse magnetic field indicates that when the direction of the reverse magnetic field and the direction of the magnetization direction magnetic field of the bond magnet unit 10 face each other in the opposite direction, the bonded magnet unit 10 As the value of the magnetic field at which demagnetization occurs in the magnetic field, the value was increased by about 20% from the value of the holding force Hcj of the bonded magnet, and numerical analysis was performed. In addition, the magnetic characteristics of the bond magnet used in this embodiment are isotropic magnetic characteristics. The holding force Hcj is about 850 [kA / m]. The residual magnetic flux density Br is about 630 [mT]. Numerical analysis was performed assuming that the density was about 5.0 [Mg / m 3 ].
 なお、仮に、逆磁界の値が、例えば、ボンド磁石の保持力Hcjの値よりも、10倍~100倍程度の非常に過大な値であれば、ボンド磁石は減磁を越して、消磁に近い状態、または、逆磁界の方向と同方向の磁化方向に着磁(磁化)される状態に至る。このことは、説明するに及ばず自明なことである。 If the value of the reverse magnetic field is a very large value, for example, about 10 to 100 times the value of the holding force Hcj of the bond magnet, the bond magnet will go through demagnetization and become demagnetized. It reaches a state in which it is magnetized (magnetized) in a close state or a magnetization direction that is the same as the direction of the reverse magnetic field. This is obvious even if it is not explained.
 また、本実施の形態における回転子2の極数は6であるが、2n倍(nは自然数)であれば本実施の形態は適用可能である。 Further, the number of poles of the rotor 2 in the present embodiment is 6, but the present embodiment is applicable if it is 2n times (n is a natural number).
 なお、図5は、回転子2に、35H300と呼称される新日鐵住金株式会社製の電磁鋼板を用いた場合の結果である。回転子2に、他の種類の電磁鋼板または鋼材を用いた場合でも、ほぼ同様の傾向を示し、大きく相違することは無い。したがって、本実施の形態の結果を援用できることは言うまでもない。 In addition, FIG. 5 is a result at the time of using the electromagnetic steel plate by Nippon Steel & Sumikin Co., Ltd. called 35H300 for the rotor 2. FIG. Even when other types of electromagnetic steel sheets or steel materials are used for the rotor 2, the same tendency is shown and there is no great difference. Therefore, it cannot be overemphasized that the result of this Embodiment can be used.
 本実施の形態における電動機要素においては、回転子2は磁気的突極性を有している。図1に示すように、矢印12の横切る回転子2の部位は、d軸磁束通路構成部であり、固定子1からの回転磁界によって発生する回転トルクの成分のうちのマグネットトルクを発生させる。矢印13の横切る回転子2の部位は、q軸磁束通路構成部であり、固定子1からの回転磁界によって発生する回転トルクの成分のうちの、リラクタンストルクを発生させる。d軸磁束通路構成部及びq軸磁束通路構成部は、少なくともボンド磁石部及び鋼板のどちらか一方の積層体を含む。 In the motor element in the present embodiment, the rotor 2 has magnetic saliency. As shown in FIG. 1, the portion of the rotor 2 that is crossed by the arrow 12 is a d-axis magnetic flux path constituting portion, and generates a magnet torque among the components of the rotational torque generated by the rotating magnetic field from the stator 1. The part of the rotor 2 crossed by the arrow 13 is a q-axis magnetic flux path constituting part, and generates a reluctance torque among the components of the rotational torque generated by the rotating magnetic field from the stator 1. The d-axis magnetic flux path component and the q-axis magnetic flux path component include at least one of the laminate of the bond magnet part and the steel plate.
 本実施の形態における電動機要素の回転子2に含まれる鋼板は、鋼板の成分に少なくとも、Feと、0.8wt%を上限値とするSiと、を含んでも良い。本実施の形態における構成によれば、鋼板のSi含有量を僅かな量にしたことから、鋼板の電気伝導率は電磁鋼板の電気伝導率よりも小さい。外部からの逆磁界による電磁誘導によって生じる鋼板の渦電流は、電磁鋼板における渦電流よりも大きな値を示す。外部からの逆磁界は、この渦電流によって打ち消され、ボンド磁石部の減磁が生じることを抑制する効果を高める。 The steel plate included in the rotor 2 of the motor element in the present embodiment may include at least Fe and Si having an upper limit value of 0.8 wt% in the steel plate components. According to the configuration in the present embodiment, since the Si content of the steel sheet is made small, the electrical conductivity of the steel sheet is smaller than the electrical conductivity of the electromagnetic steel sheet. The eddy current of the steel sheet generated by electromagnetic induction due to the reverse magnetic field from the outside shows a larger value than the eddy current in the electromagnetic steel sheet. The reverse magnetic field from the outside is canceled out by this eddy current, and the effect of suppressing the occurrence of demagnetization of the bonded magnet portion is enhanced.
 本実施の形態における電動機要素の回転子2に含まれる鋼板は、絶縁被膜を有しない鋼板である。つまり、回転子2のコアを鋼板の積層体として構成することによって、鋼板の素地面同士が接する。また、鋼板には、鋼板の素地面同士の電気的導通を高める導電性材料を塗布してもよい。この構成によって、回転子2の外周付近における渦電流は生じ易い。外部からの逆磁界は、この渦電流によって打ち消され、ボンド磁石部の減磁が生じることを抑制する効果を高める。 The steel plate included in the rotor 2 of the motor element in the present embodiment is a steel plate that does not have an insulating coating. That is, by forming the core of the rotor 2 as a laminated body of steel plates, the ground surfaces of the steel plates are in contact with each other. Moreover, you may apply | coat to the steel plate the electroconductive material which raises the electrical continuity between the base materials of a steel plate. With this configuration, eddy currents are likely to occur near the outer periphery of the rotor 2. The reverse magnetic field from the outside is canceled out by this eddy current, and the effect of suppressing the occurrence of demagnetization of the bonded magnet portion is enhanced.
 本実施の形態における電動機要素の回転子2に含まれる鋼板は、0.35mmを厚み寸法の下限値とする鋼板である。なお、モータロック時に固定子1の側から発生した磁界が、鋼板の厚み寸法を増すことにより、回転子2の外周付近における渦電流を更に多く生じさせて、ボンド磁石部の減磁を抑制可能である。電磁鋼板の場合は、その厚み寸法を、0.5mm程度としても良い。本実施の形態における電動機要素に含まれる鋼板は、鋼板の成分に少なくとも、Feと、0.8wt%を上限値とするSiと、を含んでも良い。鋼板の厚み寸法を0.5mm程度としても良い。例えば、鋼板の厚み寸法を0.5mm程度として、50H470、50H400又は50H350と呼称される新日鐵住金株式会社製の電磁鋼板を用いても良い。この構成によって、回転子2の外周付近における渦電流は生じ易い。外部からの逆磁界は、この渦電流によって打ち消され、ボンド磁石部の減磁が生じることを抑制する効果を高める。 The steel plate included in the rotor 2 of the electric motor element in the present embodiment is a steel plate having 0.35 mm as the lower limit of the thickness dimension. The magnetic field generated from the side of the stator 1 when the motor is locked increases the thickness of the steel plate, thereby generating more eddy currents near the outer periphery of the rotor 2 and suppressing demagnetization of the bond magnet portion. It is. In the case of an electromagnetic steel sheet, the thickness dimension may be about 0.5 mm. The steel plate included in the electric motor element in the present embodiment may include at least Fe and Si having an upper limit of 0.8 wt% in the steel plate components. The thickness dimension of the steel plate may be about 0.5 mm. For example, a steel sheet made by Nippon Steel & Sumikin Co., Ltd. called 50H470, 50H400 or 50H350 may be used with the thickness dimension of the steel sheet being about 0.5 mm. With this configuration, eddy currents are likely to occur near the outer periphery of the rotor 2. The reverse magnetic field from the outside is canceled out by this eddy current, and the effect of suppressing the occurrence of demagnetization of the bonded magnet portion is enhanced.
 なお、鋼板の素地面には、自然酸化による酸化膜が不可避的に生じる。したがって、本実施の形態における電動機要素は、鋼板の素地面同士が接する構成と、鋼板が素地面の自然酸化による酸化膜を介して接する構成と、を含む。また、鋼板の素地面に不可避的に生じる自然酸化による酸化膜を抑制することを意図して、回転子2の表面の少なくとも一部は、回転子2の表面を覆う被膜を具備しても良い。この構成によって、回転子2の外周付近における渦電流は生じ易い。外部からの逆磁界は、この渦電流によって打ち消され、ボンド磁石部の減磁が生じることを抑制する効果を高める。 It should be noted that an oxide film due to natural oxidation is unavoidably formed on the base of the steel plate. Therefore, the electric motor element in the present embodiment includes a configuration in which the ground surfaces of the steel plates are in contact with each other and a configuration in which the steel plates are in contact with each other through an oxide film formed by natural oxidation of the ground surface. In addition, at least a part of the surface of the rotor 2 may be provided with a coating covering the surface of the rotor 2 in order to suppress an oxide film due to natural oxidation that inevitably occurs on the base of the steel plate. . With this configuration, eddy currents are likely to occur near the outer periphery of the rotor 2. The reverse magnetic field from the outside is canceled out by this eddy current, and the effect of suppressing the occurrence of demagnetization of the bonded magnet portion is enhanced.
 本実施の形態の電動機要素を回転駆動させる際に、なんらかの要因によって電動機要素がロックした場合には、回転子2の回転が止まった状態のまま、固定子1からの回転磁界が回転子2への逆磁界として作用する場合がある。その状況を図3に模式的に示す。図3は、実施の形態1の電動機要素のモータロック時において、固定子1からの回転磁界が回転子2へ逆磁界として印加された状態を示す説明図である。図3に示す矢印15は、上述の逆磁界を模式的に示す。上述のとおり、この逆磁界は回転磁界である。このため、この逆磁界が回転子2に搭載された磁石の減磁を引き起こす方向に印加されると、磁石が減磁する場合も起こり得る。このため、従来から継続的に問題として認識されていた。 When the motor element of the present embodiment is rotationally driven, if the motor element is locked due to some factor, the rotating magnetic field from the stator 1 is applied to the rotor 2 while the rotation of the rotor 2 is stopped. May act as a reverse magnetic field. The situation is schematically shown in FIG. FIG. 3 is an explanatory diagram illustrating a state in which the rotating magnetic field from the stator 1 is applied as a reverse magnetic field to the rotor 2 when the motor element of the first embodiment is locked. An arrow 15 shown in FIG. 3 schematically shows the above-described reverse magnetic field. As described above, this reverse magnetic field is a rotating magnetic field. For this reason, when this reverse magnetic field is applied in a direction that causes demagnetization of the magnet mounted on the rotor 2, the magnet may be demagnetized. For this reason, it has been continuously recognized as a problem.
 本実施の形態における、鋼板又は電磁鋼板を使用した電動機要素のコア(固定子1のコア及び回転子2のコア)の製造方法は、次の通りである。金属材料等の製造メーカから供給されたロール状の鋼板又は電磁鋼板を、巻き出し機によってプレス機へ送る。鋼板又は電磁鋼板は、プレス機に設置された金型によって、所定の軸方向断面形状のコアシートに打ち抜かれる。このコアシートを積層して一体化することで、コア(鋼板又は電磁鋼板からの加工品であるコアシートを積層して構成する積層体)を形成する。 The manufacturing method of the core of the motor element (the core of the stator 1 and the core of the rotor 2) using the steel plate or the electromagnetic steel plate in the present embodiment is as follows. A rolled steel plate or electromagnetic steel plate supplied from a manufacturer of metal materials or the like is sent to a press machine by an unwinding machine. A steel plate or an electromagnetic steel plate is punched into a core sheet having a predetermined axial cross-sectional shape by a mold installed in a press. By laminating and integrating the core sheets, a core (a laminated body configured by laminating core sheets which are processed products from steel plates or electromagnetic steel plates) is formed.
 以上のように、本実施の形態の電動機要素14は、固定子1と、複数の磁極を有する回転子2と、を含む。回転子2は、磁気的突極性を有する構成を含む。磁気的突極性を有する構成は、固定子1からの回転磁界によって発生する回転トルクの成分のうちのマグネットトルクを発生させるための複数のd軸磁束通路と、回転トルクの成分のうちのリラクタンストルクを発生させるための複数のq軸磁束通路とを含む。複数のd軸磁束通路の各々の一部分にボンド磁石部10を含み、複数のq軸磁束通路の各々の一部分にボンド磁石部10、又はボンド磁石部10とは別のボンド磁石部と接する隣接部を含む。複数の磁極の中心と、回転子2の回転軸の中心と、を結ぶ直線の延長線をd軸2dとし、d軸2dに対して電気角で90度ずれ、且つ回転子2の回転軸の中心を通過する直線をq軸2qとして、q軸2qに対して近接の箇所に位置するボンド磁石部10の要部であるボンド磁石部要部10cにおける磁化方向は、磁化方向の磁化方向仮想延長直線と、q軸2qとの交差でなす交点における4つの角のうちの一つの角である。一つの角は、q軸2qに含まれる線分のうちの、交点と回転子2の外周との間のq軸線分2rと、磁化方向仮想延長直線10bと、によって挟まれる角部である。角部の角度は、30度から150度の範囲である。 As described above, the electric motor element 14 of the present embodiment includes the stator 1 and the rotor 2 having a plurality of magnetic poles. The rotor 2 includes a configuration having magnetic saliency. The configuration having magnetic saliency includes a plurality of d-axis magnetic flux passages for generating a magnet torque among the rotational torque components generated by the rotating magnetic field from the stator 1, and the reluctance torque among the rotational torque components. And a plurality of q-axis magnetic flux paths for generating. Each of the plurality of d-axis magnetic flux paths includes a bond magnet unit 10, and each of the plurality of q-axis magnetic flux paths includes a bond magnet unit 10, or an adjacent part in contact with a bond magnet unit different from the bond magnet unit 10 including. An extension of a straight line connecting the centers of the plurality of magnetic poles and the center of the rotation axis of the rotor 2 is defined as a d-axis 2d, and is deviated by 90 degrees in electrical angle with respect to the d-axis 2d. With the straight line passing through the center as the q-axis 2q, the magnetization direction in the bond magnet part main part 10c, which is the main part of the bond magnet part 10 located in the vicinity of the q axis 2q, is a virtual extension of the magnetization direction of the magnetization direction. It is one of the four corners at the intersection formed by the intersection of the straight line and the q axis 2q. One corner is a corner portion sandwiched between the q-axis line segment 2r between the intersection and the outer periphery of the rotor 2 and the magnetization direction virtual extension straight line 10b among the line segments included in the q-axis 2q. The angle of the corner is in the range of 30 to 150 degrees.
 これにより、モータロック時に固定子1の側から発生した磁界が逆磁界となって、回転子2の実質的な径方向に流入(出)することに対して、ボンド磁石部要部10cの磁化方向10aを所定の角度とすることによって、ボンド磁石部10の減磁を抑制可能である。したがって、モータロック時に固定子1の側から発生した磁界が作用しても、特性の劣化を抑制可能な埋め込み磁石型回転子を含む電動機要素、電動機、電気機器等を提供することが可能である。よって、産業的価値の大なるものである。 As a result, the magnetic field generated from the stator 1 side when the motor is locked becomes a reverse magnetic field and flows in (out) in the substantial radial direction of the rotor 2, whereas the magnetization of the main part 10c of the bonded magnet portion. By setting the direction 10a to a predetermined angle, demagnetization of the bonded magnet unit 10 can be suppressed. Therefore, it is possible to provide an electric motor element, an electric motor, an electric device, and the like including an embedded magnet type rotor that can suppress deterioration of characteristics even when a magnetic field generated from the stator 1 side acts when the motor is locked. . Therefore, it has a great industrial value.
 角度が、30度から90度の範囲であることが、より好ましい。 It is more preferable that the angle is in the range of 30 degrees to 90 degrees.
 角度が、40度から90度の範囲であることが、さらに好ましい。 More preferably, the angle is in the range of 40 degrees to 90 degrees.
 角度が、50度から90度の範囲であることが、さらに好ましい。 More preferably, the angle is in the range of 50 to 90 degrees.
 角度が、60度から90度の範囲であることが、さらに好ましい。 More preferably, the angle is in the range of 60 to 90 degrees.
 角度が、70度から90度の範囲であることが、さらに好ましい。 More preferably, the angle is in the range of 70 degrees to 90 degrees.
 角度が、30度から110度の範囲であることが、より好ましい。 It is more preferable that the angle is in the range of 30 degrees to 110 degrees.
 角度が、30度から130度の範囲であることが、より好ましい。 It is more preferable that the angle is in the range of 30 degrees to 130 degrees.
 回転子2の回転軸に対して、垂直方向の断面におけるボンド磁石部の断面形状は、V字状の形状であってもよい。 The cross-sectional shape of the bond magnet portion in the cross section perpendicular to the rotation axis of the rotor 2 may be a V-shape.
 回転子2の回転軸に対して、垂直方向の断面におけるボンド磁石部の断面形状は、U字状の形状であってもよい。 The cross-sectional shape of the bond magnet portion in the cross section perpendicular to the rotation axis of the rotor 2 may be a U-shape.
 回転子2の転軸に対して、垂直方向の断面におけるボンド磁石部の断面形状は、円弧状の形状であってもよい。 The cross-sectional shape of the bond magnet portion in the cross section perpendicular to the axis of rotation of the rotor 2 may be an arc shape.
 回転子2の回転軸に対して、垂直方向の断面におけるボンド磁石部10の厚み寸法の下限値は2mmであることが好ましい。 It is preferable that the lower limit value of the thickness dimension of the bonded magnet portion 10 in the cross section in the vertical direction with respect to the rotation axis of the rotor 2 is 2 mm.
 回転子の直径は、30mmから60mmの範囲であることが好ましい。 The diameter of the rotor is preferably in the range of 30 mm to 60 mm.
 複数のd軸磁束通路の各々の一部分、及び、複数のq軸磁束通路の各々の一部分は、複数枚の鋼板を積層する積層体を含み、鋼板の成分は、Feと、0.8wt%を上限値とするSiと、を含んでもよい。 A part of each of the plurality of d-axis magnetic flux paths and a part of each of the plurality of q-axis magnetic flux paths include a laminate in which a plurality of steel sheets are laminated, and the steel sheet components are Fe and 0.8 wt%. Si as the upper limit value may be included.
 回転子2が含む積層体は、鋼板の素地面同士が接する構成を含んでもよい。 The laminated body included in the rotor 2 may include a configuration in which the ground surfaces of the steel plates are in contact with each other.
 回転子2が含む積層体は、鋼板の素地面同士が接する構成と、鋼板が素地面の自然酸化による酸化膜を介して接する構成と、を含んでもよい。 The laminated body included in the rotor 2 may include a configuration in which the ground surfaces of the steel plates are in contact with each other and a configuration in which the steel plates are in contact with each other through an oxide film formed by natural oxidation of the ground surfaces.
 回転子2が含む積層体は、0.35mmを厚み寸法の下限値とする鋼板を含んでもよい。 The laminated body included in the rotor 2 may include a steel plate having a lower limit value of the thickness dimension of 0.35 mm.
 回転子2が、回転子2の表面を覆う被膜を具備してもよい。 The rotor 2 may include a coating that covers the surface of the rotor 2.
 また、電動機要素14の固定子1は、実質的に円筒状のヨーク部4と、ヨーク部4の内側に延出する複数のティース部5とを有する固定子1のコア7と、複数のティース部5の各々に巻装する絶縁電線の巻装体6とを含み、固定子1のコア7は、電磁鋼板の積層体を含んでもよい。 The stator 1 of the electric motor element 14 includes a core 7 of the stator 1 having a substantially cylindrical yoke portion 4 and a plurality of teeth portions 5 extending inside the yoke portion 4, and a plurality of teeth. The core 7 of the stator 1 may include a laminated body of electromagnetic steel sheets.
 また、本実施の形態の電動機は、電動機要素と、電動機要素の回転トルクを出力する出力軸と、出力軸を回転自在に支承する軸受とを含む。これにより、信頼性の高い電動機が提供される。 Also, the electric motor of the present embodiment includes an electric motor element, an output shaft that outputs the rotational torque of the electric motor element, and a bearing that rotatably supports the output shaft. Thereby, a highly reliable electric motor is provided.
 また、本実施の形態の装置は、電動機要素と、電動機要素の回転トルクを出力する出力軸と、出力軸を回転自在に支承する軸受とを含む電動機、を搭載する。これにより、信頼性の高い装置が提供される。 Also, the apparatus according to the present embodiment is equipped with an electric motor including an electric motor element, an output shaft that outputs rotational torque of the electric motor element, and a bearing that rotatably supports the output shaft. This provides a highly reliable device.
 (実施の形態2)
 図6は、本実施の形態の電動機要素の構造例を示す斜視図である。図7は、本実施の形態の電動機要素を回転軸方向から見た平面図である。図6及び図7に示す本実施の形態の電動機要素の極数とスロット数の組み合わせは、所謂、10極12スロットの集中巻の構成である。電動機要素は、12箇所のティース部に集中巻の巻装体を具備する固定子1と、磁気的突極性を有する10箇所の磁極部を具備する回転子2とを有する。その他の構成については、実施の形態1と同様である。
(Embodiment 2)
FIG. 6 is a perspective view showing a structural example of the electric motor element of the present embodiment. FIG. 7 is a plan view of the electric motor element of the present embodiment as viewed from the direction of the rotation axis. The combination of the number of poles and the number of slots of the motor element of the present embodiment shown in FIGS. 6 and 7 is a so-called concentrated winding configuration of 10 poles and 12 slots. The electric motor element includes a stator 1 having concentrated winding bodies at 12 tooth portions, and a rotor 2 having 10 magnetic pole portions having magnetic saliency. Other configurations are the same as those in the first embodiment.
 本実施の形態の電動機要素を回転駆動させる際に、なんらかの要因によって電動機要素がロックした場合には、回転子2の回転が止まった状態で固定子1からの回転磁界が回転子2への逆磁界として作用する場合がある。その状況を図6に模式的に示す。上述のとおり、この逆磁界は回転磁界であるため、この逆磁界が回転子2に搭載された磁石の減磁を引き起こす方向に印加されると、磁石が減磁することが従来から問題として認識されていた。 When the motor element of the present embodiment is rotationally driven, if the motor element is locked due to some factor, the rotating magnetic field from the stator 1 is reversed to the rotor 2 while the rotation of the rotor 2 is stopped. May act as a magnetic field. The situation is schematically shown in FIG. As described above, since this reverse magnetic field is a rotating magnetic field, it has been conventionally recognized as a problem that when this reverse magnetic field is applied in a direction that causes demagnetization of the magnet mounted on the rotor 2, the magnet is demagnetized. It had been.
 なお、図6及び図7は、1つのティース部5に巻線を巻いた集中巻による巻装体6を例示しているが、本発明はこれに限らない。巻装体6は、例えば、複数のティース部5に渡って巻線を巻装する分布巻または波巻など、種々の巻線の態様を採用可能である。 6 and 7 exemplify the wound body 6 by concentrated winding in which the winding is wound around one tooth portion 5, but the present invention is not limited to this. The winding body 6 can employ various winding modes such as distributed winding or wave winding in which the winding is wound across the plurality of tooth portions 5.
 巻装体6は、例えば、10極9スロットの集中巻の構成、10極12スロットの集中巻の構成、12極9スロットの集中巻の構成、14極12スロットの集中巻の構成、4極24スロットの分布巻の構成、4極36スロットの分布巻の構成、6極36スロットの分布巻の構成、8極48スロットの分布巻の構成、4極12スロットの波巻の構成、4極12スロットの波巻の構成、6極18スロットの波巻の構成などの周知の極数とスロット数の組み合わせのいずれにも適用可能である。また、本実施の形態における回転子2の極数は10であるが、2n倍(nは自然数)であれば、本発明は適用可能である。 The wound body 6 includes, for example, a 10 pole 9 slot concentrated winding configuration, a 10 pole 12 slot concentrated winding configuration, a 12 pole 9 slot concentrated winding configuration, a 14 pole 12 slot concentrated winding configuration, 4 poles. 24-slot distributed winding configuration, 4-pole 36-slot distributed winding configuration, 6-pole 36-slot distributed winding configuration, 8-pole 48-slot distributed winding configuration, 4-pole 12-slot wave winding configuration, 4-pole The present invention can be applied to any known combination of the number of poles and the number of slots, such as a 12-slot wave winding configuration and a 6-pole 18-slot wave winding configuration. Further, the number of poles of the rotor 2 in the present embodiment is 10, but the present invention is applicable if it is 2n times (n is a natural number).
 図6及び図7に示すように、本実施の形態における電動機要素14は、実質的に円筒状の固定子1と、固定子1の内側に回転自在に保持される回転子2とを有する。回転子2の中心にはシャフト孔3が設けられる。シャフト孔3にシャフト(図示せず)が挿通された状態で、回転子2とシャフトとが固定される。なお、シャフトの両端部は、シャフトを回転自在に支承する一対の軸受を具備する。図6及び図7においては、シャフト及び軸受については、自明なものであり、図示していない。 As shown in FIGS. 6 and 7, the electric motor element 14 in the present embodiment includes a substantially cylindrical stator 1 and a rotor 2 that is rotatably held inside the stator 1. A shaft hole 3 is provided at the center of the rotor 2. The rotor 2 and the shaft are fixed in a state where a shaft (not shown) is inserted into the shaft hole 3. Note that both ends of the shaft include a pair of bearings that rotatably support the shaft. 6 and 7, the shaft and the bearing are obvious and are not shown.
 固定子1は、実質的に円筒状のヨーク部4、及び、ヨーク部4の内側に延出するティース部5を有する固定子1のコア7と、ティース部5の各々に絶縁電線を巻装して設ける巻装体6とを有している。ティース部5と巻装体6との間には、両者を電気的に絶縁するインシュレータ(図示省略)を設ける。回転子2は、円柱状の回転子2のコア9と、回転子2の周方向に複数(本例においては10箇所)形成された配置孔11の各々にボンド磁石部20を、具備する。なお、巻装体6を構成する絶縁電線の芯線の材質には、不可避不純物と、銅、銅合金、アルミニウム又はアルミニウム合金のいずれかを含むものが用いられる。固定子1のコア7は、電磁鋼板の積層体によって構成される。電磁鋼板を打ち抜き加工し、ヨーク部とティース部とを含む固定子コアシートを形成し、複数枚の固定子コアシートを積層して、固定子1のコア7である電磁鋼板の積層体を構成する。電磁鋼板は、主成分として、Fe及びSiを含み、副成分としては特に限定されない。電磁鋼板の成分には、特定し得ない不可避不純物が含まれる。電磁鋼板の表面は、絶縁性の被膜を具備する。上記に相当するものとして、例えば、固定子1のコア7には、35H300と呼称される新日鐵住金株式会社製の電磁鋼板を用いてもよい。なお、35H300の厚み寸法は、0.35mmである。 The stator 1 includes a substantially cylindrical yoke portion 4, a core 7 of the stator 1 having a tooth portion 5 extending inside the yoke portion 4, and an insulated wire wound around each of the tooth portions 5. And a wound body 6 provided. Between the teeth part 5 and the wound body 6, an insulator (not shown) that electrically insulates both is provided. The rotor 2 includes a bonded magnet portion 20 in each of a core 9 of the columnar rotor 2 and a plurality of arrangement holes 11 formed in the circumferential direction of the rotor 2 (10 locations in this example). In addition, as a material of the core wire of the insulated wire constituting the wound body 6, a material containing inevitable impurities and any of copper, copper alloy, aluminum, or aluminum alloy is used. The core 7 of the stator 1 is constituted by a laminated body of electromagnetic steel plates. An electromagnetic steel sheet is punched to form a stator core sheet including a yoke part and a tooth part, and a plurality of stator core sheets are laminated to form a laminated body of electromagnetic steel sheets as the core 7 of the stator 1 To do. The electromagnetic steel sheet contains Fe and Si as main components, and is not particularly limited as subcomponents. The components of the electrical steel sheet include inevitable impurities that cannot be specified. The surface of the electrical steel sheet has an insulating coating. As a thing equivalent to the above, you may use the electromagnetic steel plate by Nippon Steel & Sumikin Co., Ltd. called 35H300 for the core 7 of the stator 1, for example. The thickness dimension of 35H300 is 0.35 mm.
 図8は、実施の形態2におけるボンド磁石部要部の磁化方向を示す図である。本実施の形態においては、回転子2のコア9に、固定子1のコア7に用いられる35H300と呼称される電磁鋼板を採用しても良い。上述のとおり、回転子2のコア9に、35H300と呼称される電磁鋼板を採用する場合においても、ボンド磁石部20におけるボンド磁石部要部20cの磁化方向20aを、回転子2の外周との間のq軸線分と、磁化方向20aの仮想延長直線20bと、によって挟まれる角部の角度θを、30度から150度の範囲とすることによって、ボンド磁石部20の減磁を抑制可能である。モータロック時に固定子1の側から発生した磁界が逆磁界となって作用し、この逆磁界が回転子2の実質的な径方向から流入してボンド磁石部20に減磁を生じさせる現象を抑制可能とする。モータロック時の固定子1の側から発生した磁界の方向と、ボンド磁石部20の要部の磁化方向20aとは、互いの方向が逆方向で向き合うことは無く、相違しているため、ボンド磁石部20の減磁は抑制されるものと考察される。 FIG. 8 is a diagram showing the magnetization direction of the main part of the bonded magnet in the second embodiment. In the present embodiment, an electromagnetic steel plate called 35H300 used for the core 7 of the stator 1 may be employed for the core 9 of the rotor 2. As described above, even when an electromagnetic steel plate called 35H300 is adopted for the core 9 of the rotor 2, the magnetization direction 20a of the main part 20c of the bonded magnet part in the bonded magnet part 20 is set to the outer periphery of the rotor 2. The demagnetization of the bonded magnet unit 20 can be suppressed by setting the angle θ between the corners sandwiched by the q-axis line between them and the virtual extended straight line 20b of the magnetization direction 20a to be in the range of 30 degrees to 150 degrees. is there. The magnetic field generated from the stator 1 side when the motor is locked acts as a reverse magnetic field, and this reverse magnetic field flows from the substantial radial direction of the rotor 2 to cause demagnetization in the bond magnet unit 20. It can be suppressed. The direction of the magnetic field generated from the side of the stator 1 when the motor is locked and the magnetization direction 20a of the main part of the bond magnet unit 20 are not opposite to each other and are different from each other. It is considered that the demagnetization of the magnet unit 20 is suppressed.
 ボンド磁石部20は、少なくとも磁石粉末と樹脂材料を含む。磁石粉末の磁性材料の種類は、特に限定されないが、例えば、Nd-Fe-B系磁石粉末、Sm-Co系磁石粉末、Sm-Fe-N系磁石粉末、フェライト系磁石粉末、又はこれらの混合物などから適宜選択される。ボンド磁石部20の軸方向に対して垂直な面の断面形状は、実質的な円弧形状の場合を示すが、この形状に限定されるものではない。長方形、台形、V字形など、電動機要素の仕様に適した態様が適宜選択される。 The bonded magnet unit 20 includes at least magnet powder and a resin material. The type of magnetic material of the magnet powder is not particularly limited. For example, Nd—Fe—B magnet powder, Sm—Co magnet powder, Sm—Fe—N magnet powder, ferrite magnet powder, or a mixture thereof Etc. are selected as appropriate. The cross-sectional shape of the surface perpendicular to the axial direction of the bond magnet unit 20 shows a case of a substantially arc shape, but is not limited to this shape. A mode suitable for the specifications of the motor element, such as a rectangle, a trapezoid, and a V shape, is appropriately selected.
 本実施の形態における回転子2の体格であるが、回転子2の直径は、30mmから60mmの範囲である。回転子2の回転軸の長手方向の長さ寸法(円柱形状の長さ寸法)は、15mmから60mmの範囲である。このような回転子2の体格の場合においては、回転子2の回転軸に対して垂直方向の断面におけるボンド磁石部20の厚み寸法は少なくとも2mm程度を要する。なお、固定子1の体格は、回転子2の体格に応じて選択される。 Although it is the physique of the rotor 2 in this Embodiment, the diameter of the rotor 2 is the range of 30 mm to 60 mm. The length dimension in the longitudinal direction of the rotation axis of the rotor 2 (columnar length dimension) is in the range of 15 mm to 60 mm. In the case of such a physique of the rotor 2, the thickness dimension of the bonded magnet portion 20 in a cross section perpendicular to the rotation axis of the rotor 2 needs to be at least about 2 mm. The physique of the stator 1 is selected according to the physique of the rotor 2.
 ボンド磁石部20におけるボンド磁石部要部20cの磁化方向20aを、回転子2の外周との間のq軸線分と、磁化方向20aの仮想延長直線20bと、によって挟まれる角部の角度θを、30度から150度とするときの、ボンド磁石部20におけるボンド磁石部要部20cが占める範囲は以下である。回転子2の直径を60mm程度とするときは、回転子2の外径近傍から回転子2の内部の直径20mm程度までであることが好ましい。回転子2の直径を30mm程度とするときは、回転子2の外径近傍から回転子2の内部の直径10mm程度までであることが好ましい。 The angle θ of the corner sandwiched between the magnetization direction 20a of the bonded magnet portion 20c in the bonded magnet portion 20 and the q-axis line between the outer periphery of the rotor 2 and the virtual extension straight line 20b of the magnetization direction 20a is defined as The range occupied by the main part 20c of the bonded magnet part 20 in the bonded magnet part 20 when 30 degrees to 150 degrees is as follows. When the diameter of the rotor 2 is about 60 mm, it is preferable that the diameter is from the vicinity of the outer diameter of the rotor 2 to the diameter of about 20 mm inside the rotor 2. When the diameter of the rotor 2 is about 30 mm, it is preferable that the diameter is from the vicinity of the outer diameter of the rotor 2 to the diameter of about 10 mm inside the rotor 2.
 また、本実施の形態における電動機要素においては、回転子2は、磁気的突極性を有しており、マグネットトルクを発生するd軸磁束通路構成部と、リラクタンストルクを発生するq軸磁束通路構成部とを含む。これらのd軸磁束通路構成部及びq軸磁束通路構成部は、少なくともボンド磁石部及び鋼板のどちらかの積層体を含む。 Further, in the electric motor element according to the present embodiment, the rotor 2 has magnetic saliency, and a d-axis magnetic flux path configuration section that generates magnet torque and a q-axis magnetic flux path configuration that generates reluctance torque. Part. These d-axis magnetic flux path constituent parts and q-axis magnetic flux path constituent parts include at least a laminate of either a bond magnet part or a steel plate.
 本実施の形態における電動機要素の回転子2に含まれる鋼板は、鋼板の成分に少なくとも、Feと、0.8wt%を上限値とするSiと、を含んでも良い。本実施の形態における構成によれば、鋼板のSi含有量を僅かな量にしたことから、鋼板の電気伝導率は電磁鋼板の電気伝導率よりも小さい。外部からの逆磁界による電磁誘導によって生じる鋼板の渦電流は、電磁鋼板における渦電流よりも大きな値を示す。外部からの逆磁界は、この回転子2の外周付近における渦電流によって打ち消され、ボンド磁石部の減磁が生じることを抑制する効果を高める。 The steel plate included in the rotor 2 of the motor element in the present embodiment may include at least Fe and Si having an upper limit value of 0.8 wt% in the steel plate components. According to the configuration in the present embodiment, since the Si content of the steel sheet is made small, the electrical conductivity of the steel sheet is smaller than the electrical conductivity of the electromagnetic steel sheet. The eddy current of the steel sheet generated by electromagnetic induction due to the reverse magnetic field from the outside shows a larger value than the eddy current in the electromagnetic steel sheet. The reverse magnetic field from the outside is canceled out by the eddy current in the vicinity of the outer periphery of the rotor 2, and the effect of suppressing the occurrence of demagnetization of the bonded magnet portion is enhanced.
 本実施の形態における電動機要素の回転子2に含まれる鋼板は、絶縁被膜を有しない鋼板である。つまり、回転子2のコアを鋼板の積層体として構成することによって、鋼板の素地面同士が接する。また、鋼板には、鋼板の素地面同士の電気的導通を高める導電性材料を塗布してもよい。この構成によって、回転子2の外周付近における渦電流は生じ易い。外部からの逆磁界は、この渦電流によって打ち消され、ボンド磁石部の減磁が生じることを抑制する効果を高める。 The steel plate included in the rotor 2 of the motor element in the present embodiment is a steel plate that does not have an insulating coating. That is, by forming the core of the rotor 2 as a laminated body of steel plates, the ground surfaces of the steel plates are in contact with each other. Moreover, you may apply | coat to the steel plate the electroconductive material which raises the electrical continuity between the base materials of a steel plate. With this configuration, eddy currents are likely to occur near the outer periphery of the rotor 2. The reverse magnetic field from the outside is canceled out by this eddy current, and the effect of suppressing the occurrence of demagnetization of the bonded magnet portion is enhanced.
 本実施の形態における電動機要素の回転子2に含まれる鋼板は、0.35mmを厚み寸法の下限値とする鋼板である。なお、モータロック時に固定子1の側から発生した磁界が、鋼板の厚み寸法を増すことにより、回転子2の外周付近における渦電流を更に多く生じさせて、ボンド磁石部の減磁を抑制可能である。電磁鋼板の場合は、その厚み寸法を、0.5mm程度としても良い。本実施の形態における電動機要素に含まれる鋼板は、鋼板の成分に少なくとも、Feと、0.8wt%を上限値とするSiと、を含んでも良い。鋼板の厚み寸法を0.5mm程度としても良い。例えば、鋼板の厚み寸法を0.5mm程度として、50H470、50H400又は50H350と呼称される新日鐵住金株式会社製の電磁鋼板を用いても良い。この構成によって、回転子2の外周付近における渦電流は生じ易い。外部からの逆磁界は、この渦電流によって打ち消され、ボンド磁石部の減磁が生じることを抑制する効果を高める。 The steel plate included in the rotor 2 of the electric motor element in the present embodiment is a steel plate having 0.35 mm as the lower limit of the thickness dimension. The magnetic field generated from the side of the stator 1 when the motor is locked increases the thickness of the steel plate, thereby generating more eddy currents near the outer periphery of the rotor 2 and suppressing demagnetization of the bond magnet portion. It is. In the case of an electromagnetic steel sheet, the thickness dimension may be about 0.5 mm. The steel plate included in the electric motor element in the present embodiment may include at least Fe and Si having an upper limit of 0.8 wt% in the steel plate components. The thickness dimension of the steel plate may be about 0.5 mm. For example, a steel sheet made by Nippon Steel & Sumikin Co., Ltd. called 50H470, 50H400 or 50H350 may be used with the thickness dimension of the steel sheet being about 0.5 mm. With this configuration, eddy currents are likely to occur near the outer periphery of the rotor 2. The reverse magnetic field from the outside is canceled out by this eddy current, and the effect of suppressing the occurrence of demagnetization of the bonded magnet portion is enhanced.
 なお、鋼板の素地面には、自然酸化による酸化膜が不可避的に生じる。したがって、本実施の形態における電動機要素は、鋼板の素地面同士が接する構成と、鋼板が素地面の自然酸化による酸化膜を介して接する構成と、を含む。また、鋼板の素地面に不可避的に生じる自然酸化による酸化膜を抑制することを意図して、回転子2の表面の少なくとも一部に、回転子2の表面を覆う被膜を具備しても良い。この構成によって、回転子2の外周付近における渦電流は生じ易い。外部からの逆磁界は、この渦電流によって打ち消され、ボンド磁石部の減磁が生じることを抑制する効果を高める。 It should be noted that an oxide film due to natural oxidation is unavoidably formed on the base of the steel plate. Therefore, the electric motor element in the present embodiment includes a configuration in which the ground surfaces of the steel plates are in contact with each other and a configuration in which the steel plates are in contact with each other through an oxide film formed by natural oxidation of the ground surface. In addition, a coating covering the surface of the rotor 2 may be provided on at least a part of the surface of the rotor 2 in order to suppress an oxide film due to natural oxidation inevitably occurring on the ground surface of the steel plate. . With this configuration, eddy currents are likely to occur near the outer periphery of the rotor 2. The reverse magnetic field from the outside is canceled out by this eddy current, and the effect of suppressing the occurrence of demagnetization of the bonded magnet portion is enhanced.
 本実施の形態の電動機要素を回転駆動させる際に、なんらかの要因によって電動機要素がロックした場合には、回転子2の回転が止まった状態で固定子1からの回転磁界が回転子2への逆磁界として作用する場合がある。その状況を図9に模式的に示す。図9は、本実施の形態の電動機要素のモータロック時において、固定子からの回転磁界が回転子へ逆磁界として印加された状態を示す説明図である。図9に示す矢印15は、上述の逆磁界を模式的に示す。上述のとおり、この逆磁界は回転磁界である。このため、この逆磁界が回転子2に搭載された磁石の減磁を引き起こす方向に印加されると、磁石が減磁する場合も起こり得る。このため、従来から問題として認識されていた。 When the motor element of the present embodiment is rotationally driven, if the motor element is locked due to some factor, the rotating magnetic field from the stator 1 is reversed to the rotor 2 while the rotation of the rotor 2 is stopped. May act as a magnetic field. The situation is schematically shown in FIG. FIG. 9 is an explanatory diagram showing a state in which the rotating magnetic field from the stator is applied as a reverse magnetic field to the rotor when the motor element of the present embodiment is locked. An arrow 15 shown in FIG. 9 schematically shows the above-described reverse magnetic field. As described above, this reverse magnetic field is a rotating magnetic field. For this reason, when this reverse magnetic field is applied in a direction that causes demagnetization of the magnet mounted on the rotor 2, the magnet may be demagnetized. For this reason, it was conventionally recognized as a problem.
 なお、本実施の形態における、鋼板又は電磁鋼板を使用した電動機要素のコア(固定子1のコア及び回転子2のコア)の製造方法は、以下である。金属材料等の製造メーカから供給されたロール状の鋼板又は電磁鋼板を、巻き出し機によってプレス機へ送る。鋼板又は電磁鋼板は、プレス機に設置された金型によって所定の軸方向断面形状のコアシートに打ち抜かれる。このコアシートを積層して一体化することで、コア(鋼板又は電磁鋼板からの加工品であるコアシートを積層して構成する積層体をコアと称する)を形成する。 In addition, the manufacturing method of the core of the motor element (the core of the stator 1 and the core of the rotor 2) using the steel plate or the electromagnetic steel plate in the present embodiment is as follows. A rolled steel plate or electromagnetic steel plate supplied from a manufacturer of metal materials or the like is sent to a press machine by an unwinding machine. A steel plate or an electromagnetic steel plate is punched into a core sheet having a predetermined axial cross-sectional shape by a mold installed in a press. By laminating and integrating the core sheets, a core (a laminated body formed by laminating a core sheet that is a processed product from a steel plate or an electromagnetic steel plate is referred to as a core) is formed.
 上述のとおり、モータロック時には、固定子1の側からの磁界が回転子2に達すると、回転子2の外周付近で、固定子1からの磁界に対する渦電流をより多く生じる。この渦電流による磁界は、外部からの磁界を打ち消す方向に作用する。この結果、外部からの磁界である固定子1からの磁界は、回転子2の外周付近で打ち消され、固定子1からの磁界が影響する回転子2の内部の領域は僅かなものとなり、ボンド磁石部へ作用する磁束の量も減らすことが可能となる。したがって、ボンド磁石部の減磁は、抑制可能なものとなる。 As described above, when the magnetic field from the stator 1 side reaches the rotor 2 when the motor is locked, more eddy current is generated in the vicinity of the outer periphery of the rotor 2 with respect to the magnetic field from the stator 1. The magnetic field due to this eddy current acts in a direction to cancel the magnetic field from the outside. As a result, the magnetic field from the stator 1, which is a magnetic field from the outside, is canceled near the outer periphery of the rotor 2, and the area inside the rotor 2 that is affected by the magnetic field from the stator 1 becomes small. It is also possible to reduce the amount of magnetic flux acting on the magnet part. Therefore, demagnetization of the bonded magnet portion can be suppressed.
 本発明は、電動機要素及び電動機の回転子に含むボンド磁石部への逆磁界の印加による減磁を抑制する。したがって、本発明は、信頼性を高めた電動機及び電動機要素を提供可能とする。 The present invention suppresses demagnetization due to application of a reverse magnetic field to the bond magnet part included in the motor element and the rotor of the motor. Therefore, the present invention can provide an electric motor and an electric motor element with improved reliability.
 1 固定子
 2 回転子
 2d d軸
 2q q軸
 2r q軸線分
 3 シャフト孔
 4 ヨーク部
 5 ティース部
 6 巻装体
 7 コア
 8 インシュレータ
 9 コア
 10 ボンド磁石部
 10a 磁化方向
 10b 磁化方向仮想延長直線
 10c ボンド磁石部要部
 11 配置孔
 12 矢印
 13 矢印
 14 電動機要素
 15 矢印
 16 矢印
 20 ボンド磁石部
 20a 磁化方向
 20b 仮想延長直線
 20c ボンド磁石部要部
 θ 角度
 θ1 角度
 θ2 角度
 θn 角度
DESCRIPTION OF SYMBOLS 1 Stator 2 Rotor 2d d-axis 2q q-axis 2r q-axis line segment 3 Shaft hole 4 Yoke part 5 Teeth part 6 Winding body 7 Core 8 Insulator 9 Core 10 Bond magnet part 10a Magnetization direction 10b Magnetization direction virtual extension straight line 10c Bond Magnet part 11 Arrangement hole 12 Arrow 13 Arrow 14 Motor element 15 Arrow 16 Arrow 20 Bonded magnet part 20a Magnetizing direction 20b Virtual extension straight line 20c Bonded magnet part essential part θ angle θ1 angle θ2 angle θn angle

Claims (21)

  1. 固定子と、複数の磁極を有する回転子と、を含む電動機要素であって、
    前記回転子は、磁気的突極性を有する構成を含み、
    前記磁気的突極性を有する構成は、前記固定子からの回転磁界によって発生する回転トルクの成分のうちのマグネットトルクを発生させるための複数のd軸磁束通路と、前記回転トルクの成分のうちのリラクタンストルクを発生させるための複数のq軸磁束通路とを含み、
    前記複数のd軸磁束通路の各々の一部分にボンド磁石部を含み、前記複数のq軸磁束通路の各々の一部分に前記ボンド磁石部、又は前記ボンド磁石部とは別のボンド磁石部と接する隣接部を含み、
    前記複数の磁極の中心と、前記回転子の回転軸の中心と、を結ぶ直線の延長線をd軸とし、前記d軸に対して電気角で90度ずれ、且つ前記回転子の前記回転軸の中心を通過する直線をq軸として、
    前記q軸に対して近接の箇所に位置する前記ボンド磁石部の要部であるボンド磁石部要部における磁化方向は、前記磁化方向の磁化方向仮想延長直線と、前記q軸との交差でなす交点における4つの角のうちの一つの角であり、
    前記一つの角は、前記q軸に含まれる線分のうちの、前記交点と前記回転子の外周との間のq軸線分と、前記磁化方向仮想延長直線と、によって挟まれる角部であり、
    前記角部の角度は、30度から150度の範囲である電動機要素。
    An electric motor element including a stator and a rotor having a plurality of magnetic poles,
    The rotor includes a configuration having magnetic saliency,
    The configuration having the magnetic saliency includes a plurality of d-axis magnetic flux passages for generating a magnet torque out of the rotational torque components generated by the rotating magnetic field from the stator, and the rotational torque components. A plurality of q-axis magnetic flux paths for generating reluctance torque,
    A part of each of the plurality of d-axis magnetic flux paths includes a bond magnet part, and a part of each of the plurality of q-axis magnetic flux paths is adjacent to the bond magnet part or a bond magnet part different from the bond magnet part. Part
    An extension of a straight line connecting the centers of the plurality of magnetic poles and the center of the rotation axis of the rotor is defined as a d-axis, and an electrical angle of 90 degrees with respect to the d-axis, and the rotation axis of the rotor A straight line passing through the center of
    The magnetization direction in the main part of the bond magnet part, which is the main part of the bond magnet part located near the q axis, is formed by the intersection of the magnetization direction virtual extension straight line of the magnetization direction and the q axis. One of the four corners at the intersection,
    The one corner is a corner portion sandwiched between the q-axis line segment between the intersection and the outer periphery of the rotor, and the magnetization direction virtual extension straight line, of the line segments included in the q-axis. ,
    The motor element having an angle of the corner in a range of 30 degrees to 150 degrees.
  2. 前記角度が、30度から90度の範囲である請求項1記載の電動機要素。 The motor element according to claim 1, wherein the angle is in a range of 30 degrees to 90 degrees.
  3. 前記角度が、40度から90度の範囲である請求項1記載の電動機要素。 The motor element according to claim 1, wherein the angle is in a range of 40 degrees to 90 degrees.
  4. 前記角度が、50度から90度の範囲である請求項1記載の電動機要素。 The motor element according to claim 1, wherein the angle is in a range of 50 degrees to 90 degrees.
  5. 前記角度が、60度から90度の範囲である請求項1記載の電動機要素。 The electric motor element according to claim 1, wherein the angle is in a range of 60 degrees to 90 degrees.
  6. 前記角度が、70度から90度の範囲である請求項1記載の電動機要素。 The motor element according to claim 1, wherein the angle is in a range of 70 degrees to 90 degrees.
  7. 前記角度が、30度から110度の範囲である請求項1記載の電動機要素。 The motor element according to claim 1, wherein the angle is in a range of 30 degrees to 110 degrees.
  8. 前記角度が、30度から130度の範囲である請求項1記載の電動機要素。 The electric motor element according to claim 1, wherein the angle is in a range of 30 degrees to 130 degrees.
  9. 前記回転子の前記回転軸に対して、垂直方向の断面における前記ボンド磁石部の断面形状は、V字状の形状である請求項1記載の電動機要素。 The electric motor element according to claim 1, wherein a cross-sectional shape of the bond magnet portion in a cross section perpendicular to the rotation axis of the rotor is a V-shape.
  10. 前記回転子の前記回転軸に対して、垂直方向の断面における前記ボンド磁石部の断面形状は、U字状の形状である請求項1記載の電動機要素。 2. The electric motor element according to claim 1, wherein a cross-sectional shape of the bond magnet portion in a cross section perpendicular to the rotation axis of the rotor is a U-shape.
  11. 前記回転子の前記回転軸に対して、垂直方向の断面における前記ボンド磁石部の断面形状は、円弧状の形状である請求項1記載の電動機要素。 2. The electric motor element according to claim 1, wherein a cross-sectional shape of the bond magnet portion in a cross section in a direction perpendicular to the rotation axis of the rotor is an arc shape.
  12. 前記回転子の前記回転軸に対して、垂直方向の断面における前記ボンド磁石部の厚み寸法の下限値は2mmである請求項1記載の電動機要素。 The electric motor element according to claim 1, wherein a lower limit value of a thickness dimension of the bond magnet portion in a cross section in a vertical direction with respect to the rotation axis of the rotor is 2 mm.
  13. 前記回転子の直径は、30mmから60mmの範囲である請求項1記載の電動機要素。 The electric motor element according to claim 1, wherein the diameter of the rotor ranges from 30 mm to 60 mm.
  14. 前記複数のd軸磁束通路の各々の一部分、及び、前記複数のq軸磁束通路の各々の一部分は、複数枚の鋼板を積層する積層体を含み、前記鋼板の成分は、Feと、0.8wt%を上限値とするSiと、を含む請求項1記載の電動機要素。 A part of each of the plurality of d-axis magnetic flux paths and a part of each of the plurality of q-axis magnetic flux paths include a laminate in which a plurality of steel sheets are laminated. The electric motor element according to claim 1, comprising Si having an upper limit of 8 wt%.
  15. 前記回転子が含む積層体は、鋼板の各々同士の素地面同士が接する構成を含む請求項1記載の電動機要素。 The electric motor element according to claim 1, wherein the laminate included in the rotor includes a configuration in which the ground surfaces of the steel plates are in contact with each other.
  16. 前記回転子が含む積層体は、鋼板の各々同士の素地面同士が接する構成と、前記鋼板同士の素地面同士の自然酸化による酸化膜を介して接する構成と、を含む請求項1記載の電動機要素。 2. The electric motor according to claim 1, wherein the laminate included in the rotor includes a configuration in which the ground surfaces of the steel plates are in contact with each other and a configuration in which the ground surfaces of the steel plates are in contact with each other through an oxide film formed by natural oxidation. element.
  17. 前記回転子が含む前記積層体は、0.35mmを厚み寸法の下限値とする鋼板を含む請求項1記載の電動機要素。 The electric motor element according to claim 1, wherein the laminated body included in the rotor includes a steel plate having a lower limit value of a thickness dimension of 0.35 mm.
  18. 前記回転子が、前記回転子の表面を覆う被膜を具備する請求項1記載の電動機要素。 The electric motor element according to claim 1, wherein the rotor includes a coating covering a surface of the rotor.
  19. 前記固定子は、実質的に円筒状のヨーク部と、前記ヨーク部の内側に延出する複数のティース部とを有する前記固定子のコアと、前記複数のティース部の各々に巻装する絶縁電線の巻装体とを含み、
    前記固定子の前記コアは、電磁鋼板の積層体を含む請求項1記載の電動機要素。
    The stator includes a substantially cylindrical yoke portion, a core of the stator having a plurality of tooth portions extending inside the yoke portion, and an insulation wound around each of the plurality of tooth portions. Including a wire wound body,
    The electric motor element according to claim 1, wherein the core of the stator includes a laminate of electromagnetic steel sheets.
  20. 請求項1記載の電動機要素と、前記電動機要素の回転トルクを出力する出力軸と、前記出力軸を回転自在に支承する軸受とを含む電動機。 An electric motor comprising: the electric motor element according to claim 1; an output shaft that outputs rotational torque of the electric motor element; and a bearing that rotatably supports the output shaft.
  21. 請求項1記載の電動機要素と、前記電動機要素の回転トルクを出力する出力軸と、前記出力軸を回転自在に支承する軸受とを含む電動機、を搭載する装置。 An apparatus comprising: the electric motor element according to claim 1; an electric motor including an output shaft that outputs rotational torque of the electric motor element; and a bearing that rotatably supports the output shaft.
PCT/JP2018/015754 2017-04-24 2018-04-16 Electric motor element, electric motor, and device WO2018198866A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019514407A JPWO2018198866A1 (en) 2017-04-24 2018-04-16 Motor elements, motors, equipment
CN201880026351.6A CN110537314A (en) 2017-04-24 2018-04-16 Electric motor assembly, motor, device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017085303 2017-04-24
JP2017-085303 2017-04-24

Publications (1)

Publication Number Publication Date
WO2018198866A1 true WO2018198866A1 (en) 2018-11-01

Family

ID=63918276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015754 WO2018198866A1 (en) 2017-04-24 2018-04-16 Electric motor element, electric motor, and device

Country Status (3)

Country Link
JP (1) JPWO2018198866A1 (en)
CN (1) CN110537314A (en)
WO (1) WO2018198866A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020145782A (en) * 2019-03-04 2020-09-10 本田技研工業株式会社 Rotor and rotary electric machine
JPWO2021090667A1 (en) * 2019-11-07 2021-05-14
WO2022080110A1 (en) * 2020-10-15 2022-04-21 株式会社デンソー Rotor and rotary electric machine
WO2022080010A1 (en) * 2020-10-15 2022-04-21 株式会社デンソー Rotor and rotating electric machine
JP2022538752A (en) * 2020-05-26 2022-09-06 安徽美芝精密制造有限公司 motors, compressors, and refrigerators
WO2022239851A1 (en) * 2021-05-13 2022-11-17 株式会社デンソー Rotor and rotary electric machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107133A (en) * 1999-10-05 2001-04-17 Nkk Corp Manufacture of high phosphorus extra low carbon steel
JP2005020991A (en) * 2003-06-04 2005-01-20 Hitachi Metals Ltd Rotor and manufacturing method therefor
JP2011229358A (en) * 2010-03-29 2011-11-10 Toyota Industries Corp Electric compressor
JP2017005916A (en) * 2015-06-12 2017-01-05 株式会社ジェイテクト Manufacturing method of embedded magnet type rotor
JP2017051051A (en) * 2015-09-04 2017-03-09 Jfeスチール株式会社 Laminate iron core manufacturing apparatus and laminate iron core manufacturing method
WO2017038489A1 (en) * 2015-09-01 2017-03-09 三菱電機株式会社 Rotor, rotating electric machine, electric compressor, and refrigeration/air-conditioning device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777809A (en) * 2004-04-06 2010-07-14 日立金属株式会社 Rotor and manufacture method thereof
JP5942178B1 (en) * 2014-09-17 2016-06-29 パナソニックIpマネジメント株式会社 Electric motor and electric device including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107133A (en) * 1999-10-05 2001-04-17 Nkk Corp Manufacture of high phosphorus extra low carbon steel
JP2005020991A (en) * 2003-06-04 2005-01-20 Hitachi Metals Ltd Rotor and manufacturing method therefor
JP2011229358A (en) * 2010-03-29 2011-11-10 Toyota Industries Corp Electric compressor
JP2017005916A (en) * 2015-06-12 2017-01-05 株式会社ジェイテクト Manufacturing method of embedded magnet type rotor
WO2017038489A1 (en) * 2015-09-01 2017-03-09 三菱電機株式会社 Rotor, rotating electric machine, electric compressor, and refrigeration/air-conditioning device
JP2017051051A (en) * 2015-09-04 2017-03-09 Jfeスチール株式会社 Laminate iron core manufacturing apparatus and laminate iron core manufacturing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11283316B2 (en) 2019-03-04 2022-03-22 Honda Motor Co., Ltd. Rotor and rotating electrical machine
JP2020145782A (en) * 2019-03-04 2020-09-10 本田技研工業株式会社 Rotor and rotary electric machine
JPWO2021090667A1 (en) * 2019-11-07 2021-05-14
WO2021090667A1 (en) * 2019-11-07 2021-05-14 株式会社デンソー Rotor and method for manufacturing rotor
CN113646994A (en) * 2019-11-07 2021-11-12 株式会社电装 Rotor and method for manufacturing rotor
CN113646994B (en) * 2019-11-07 2024-08-20 株式会社电装 Rotor and method for manufacturing rotor
JP7501693B2 (en) 2019-11-07 2024-06-18 株式会社デンソー Rotating electric machine and method for manufacturing the same
US11996738B2 (en) 2019-11-07 2024-05-28 Denso Corporation Rotor and method for manufacturing rotor
JP2023053154A (en) * 2019-11-07 2023-04-12 株式会社デンソー Rotor and method for manufacturing rotor
JP7423661B2 (en) 2020-05-26 2024-01-29 安徽美芝精密制造有限公司 Motors, compressors, and refrigeration equipment
JP2022538752A (en) * 2020-05-26 2022-09-06 安徽美芝精密制造有限公司 motors, compressors, and refrigerators
WO2022080010A1 (en) * 2020-10-15 2022-04-21 株式会社デンソー Rotor and rotating electric machine
JPWO2022080110A1 (en) * 2020-10-15 2022-04-21
WO2022080110A1 (en) * 2020-10-15 2022-04-21 株式会社デンソー Rotor and rotary electric machine
WO2022239851A1 (en) * 2021-05-13 2022-11-17 株式会社デンソー Rotor and rotary electric machine

Also Published As

Publication number Publication date
JPWO2018198866A1 (en) 2020-03-12
CN110537314A (en) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2018198866A1 (en) Electric motor element, electric motor, and device
JP5889340B2 (en) Rotor of embedded permanent magnet electric motor, electric motor provided with the rotor, compressor provided with the electric motor, and air conditioner provided with the compressor
JP4169055B2 (en) Rotating electric machine
EP2490319B1 (en) Axial gap motor
CN108475971B (en) Magnetizing method, rotor, motor and scroll compressor
KR20130054198A (en) Rotor and permanent magnetic rotating machine
JP2008136298A (en) Rotator of rotary electric machine, and rotary electric machine
JP5365074B2 (en) Axial gap type rotating electrical machine
JP2000245085A (en) Motor
WO2021065687A1 (en) Rotor and motor
US8698369B2 (en) Rotor of rotating electrical machine
CN111953097A (en) Rotating electrical machine
JPH0870541A (en) Permanent magnet-type rotating electric machine
JP2013132124A (en) Core for field element
US11710994B2 (en) Rotating electrical machine
US12057740B2 (en) Rotary electric machine
JP6509355B2 (en) Permanent magnet motor for electric power steering
JP2018098936A (en) Magnet unit
JPH089610A (en) Permanent magnet rotating electric machine
WO2023276514A1 (en) Rotor, method for manufacturing same, and electric motor
JP5128800B2 (en) Hybrid permanent magnet rotating electric machine
JP5197551B2 (en) Permanent magnet rotating electric machine
JP5740250B2 (en) Permanent magnet rotating electric machine
JP5884464B2 (en) Rotating electric machine
JPH07298587A (en) Permanent-magnet rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514407

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790990

Country of ref document: EP

Kind code of ref document: A1