WO2018198710A1 - Liquid crystal display panel and electronic device - Google Patents

Liquid crystal display panel and electronic device Download PDF

Info

Publication number
WO2018198710A1
WO2018198710A1 PCT/JP2018/014584 JP2018014584W WO2018198710A1 WO 2018198710 A1 WO2018198710 A1 WO 2018198710A1 JP 2018014584 W JP2018014584 W JP 2018014584W WO 2018198710 A1 WO2018198710 A1 WO 2018198710A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
liquid crystal
display panel
crystal display
semiconductor film
Prior art date
Application number
PCT/JP2018/014584
Other languages
French (fr)
Japanese (ja)
Inventor
広大 徳増
信弥 稲毛
信彦 小田
昌宏 甲斐田
津野 仁志
Original Assignee
ソニー株式会社
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社, ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニー株式会社
Priority to JP2019515199A priority Critical patent/JP7110182B2/en
Publication of WO2018198710A1 publication Critical patent/WO2018198710A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • This technology relates to a liquid crystal display panel and an electronic device having a transistor and a storage capacitor.
  • a liquid crystal display panel is used as a light modulation element (light valve) in a projector (projection display device) or the like.
  • the liquid crystal display panel has a liquid crystal layer between the pixel electrode and the counter substrate, and the potential of the pixel electrode is temporarily held in a storage capacitor (for example, Patent Documents 1 and 2). ).
  • image quality may be deteriorated due to coupling between a plurality of wirings.
  • a liquid crystal display panel includes a semiconductor film provided with a liquid crystal layer and a channel region, a transistor that drives the liquid crystal layer for each pixel, a channel region of the semiconductor film, and a semiconductor
  • the three electrodes are arranged in a position overlapping the third electrode in plan view, and are provided between the wiring facing the semiconductor film with the third electrode interposed therebetween, and between the wiring and the third electrode.
  • a shielding electrode electrically connected to the.
  • An electronic apparatus includes the liquid crystal display panel according to the embodiment of the present technology.
  • a storage capacitor is configured by the first electrode, the second electrode, and the third electrode that are arranged at positions overlapping each other in plan view.
  • the shielding electrode is provided between the wiring to which the predetermined potential is supplied and the third electrode constituting the storage capacitor, the influence of the coupling from the wiring to the third electrode can be suppressed.
  • the shielding electrode is provided between the third electrode and the wiring, the influence of the coupling from the wiring to the third electrode is suppressed. Can do. Therefore, it is possible to suppress the occurrence of image quality defects.
  • FIG. 2 is a schematic plan view illustrating a schematic configuration of a drive substrate illustrated in FIG. 1.
  • FIG. 3 is a schematic cross-sectional view taken along line III-III shown in FIG.
  • FIG. 4 is a schematic sectional view taken along line IV-IV shown in FIG. 2.
  • FIG. 3 is a schematic plan view illustrating a planar configuration of the shielding electrode illustrated in FIG. 2 together with a signal line.
  • 6 is a schematic cross-sectional view illustrating a schematic configuration of a drive substrate according to Comparative Example 1.
  • FIG. 10 is a schematic cross-sectional view illustrating a schematic configuration of a drive substrate according to Comparative Example 2.
  • FIG. 7 is a diagram illustrating a leakage current of the storage capacitor illustrated in FIG. 2 and the storage capacitor illustrated in FIG. 6. It is a figure showing the longitudinal crosstalk of the drive board
  • FIG. 1 illustrates a schematic cross-sectional configuration of a liquid crystal display panel 1 according to an embodiment of the present technology.
  • the liquid crystal display panel 1 is used, for example, as a light modulation element of a projection display device (projection display device 200 in FIG. 10 described later).
  • the liquid crystal display panel 1 includes a liquid crystal layer 30 between a drive substrate 10 and a counter substrate 20 facing each other.
  • a planarizing layer 10P Between the driving substrate 10 and the liquid crystal layer 30, a planarizing layer 10P, a pixel electrode 10E, a protective layer 10C, and an alignment film 10AF are provided in this order from a position close to the driving substrate 10. Between the counter substrate 20 and the liquid crystal layer 30, a counter electrode 20E and an alignment film 20AF are provided in this order from a position close to the counter substrate 20.
  • Polarizing plates 10PZ and 20PZ are bonded to the surfaces of the drive substrate 10 and the counter substrate 20 opposite to the opposing surfaces, respectively.
  • FIG. 2 shows a schematic plan configuration of the drive substrate 10.
  • FIG. 3 shows a cross-sectional configuration along the line III-III shown in FIG. 2, and
  • FIG. 4 shows an IV-type shown in FIG. Each of the cross-sectional configurations along line IV is shown.
  • the drive substrate 10 has, for example, a scanning line WSL, a transistor Tr, a storage capacitor Cs, a light shielding film 17, a shielding electrode 18, and a signal line DTL (wiring) in this order on the support substrate 11.
  • a fourth interlayer insulating film ID is provided between the IC, the shielding electrode 18 and the signal line DTL.
  • the support substrate 11 is composed of a plate-like member such as quartz, glass, silicon, or a plastic film
  • the scanning line WSL provided on the support substrate 11 extends along a predetermined direction (for example, the X direction and the Y direction in FIG. 2).
  • the scanning line WSL is made of a low reflectance material such as tungsten silicide (WSi). It is preferable to use a silicide-based semiconductor material having conductivity for the scan line WSL.
  • the scanning line WSL may be composed of tungsten (W), titanium (Ti), molybdenum (Mo), chromium (Cr), tantalum (Ta), or a silicide compound thereof.
  • the thickness of the scanning line WSL (the size in the Y direction in FIGS. 3 and 4) is, for example, 200 nm.
  • the scanning line WSL has a thickness of 30 nm to 400 nm, for example.
  • the first interlayer insulating film IA covers the scanning line WSL and is provided over the entire surface of the support substrate 11.
  • the first interlayer insulating film IA is preferably planarized by, for example, a CMP (Chemical Mechanical Polishing) process. Since the first interlayer insulating film IA is planarized, workability when forming an upper layer pattern is improved. Therefore, the yield can be improved.
  • the first interlayer insulating film IA is made of, for example, silicon oxide (SiO 2 ).
  • the transistor Tr has the semiconductor film 12, the gate insulating film 13, and the gate electrode 14 in this order on the first interlayer insulating film IA.
  • the transistor Tr is, for example, a TFT element having an LDD (Lightly Doped Drain) structure.
  • the liquid crystal layer 30 is driven for each pixel by the transistor Tr.
  • the semiconductor film 12 is provided in a selective region on the first interlayer insulating film IA and extends in a predetermined direction (for example, the Y direction in FIG. 2).
  • the semiconductor film 12 has a channel region 12a facing the gate electrode 14, and a pair of LDD regions 12b disposed on both sides of the channel region 12a and adjacent to the channel region 12a.
  • a source / drain region of the semiconductor film 12 is provided outside the pair of LDD regions 12b (on the side opposite to the channel region 12a).
  • the source region of the semiconductor film 12 is electrically connected to the signal line DTL, and the drain region of the semiconductor film 12 is electrically connected to the storage capacitor Cs.
  • the semiconductor film 12 is made of, for example, amorphous silicon or crystalline silicon.
  • the LDD region 12b is doped with, for example, an n-type impurity at a low concentration.
  • the source / drain region has a lower resistance value (lower resistance) than that of the channel region 12a, for example, by being doped with an n-type impurity having a higher concentration than that of the LDD region 12b.
  • the channel region 12a and the pair of LDD regions 12b of the semiconductor film 12 are disposed at positions facing the scanning line WSL.
  • the gate insulating film 13 is for electrically insulating the semiconductor film 12 and the gate electrode 14, and is provided between the semiconductor film 12 and the gate electrode 14.
  • the gate insulating film 13 is made of, for example, silicon oxide (SiO 2 ) or silicon nitride (SiN).
  • Such a gate insulating film 13 is formed by, for example, a thermal oxidation method or a CVD (Chemical Vapor Deposition) method.
  • the gate electrode 14 is provided on the gate insulating film 13 in a predetermined pattern.
  • the gate electrode 14 has, for example, an “H” shape in plan view so as to straddle the semiconductor film 12 in the width direction (X direction in FIG. 2).
  • the gate electrode 14 includes a portion that overlaps the channel region 12 a of the semiconductor film 12 and exposes the LDD region 12 b in a plan view, and portions that extend on both sides of the semiconductor film 12 in parallel with the semiconductor film 12.
  • the gate electrode 14 faces the scanning line WSL and is electrically connected to the scanning line WSL via connection holes H3 and H4 provided in the first interlayer insulating film IA.
  • the connection holes H3 and H4 are disposed on both sides of the semiconductor film 12 in a plan view, for example.
  • the gate electrode 14 has, for example, a stacked structure in which a first conductive film 14A and a second conductive film 14B are stacked in order from a position close to the gate insulating film 13.
  • the first conductive film 14A is made of, for example, a polysilicon film to which an impurity such as phosphorus (P) is added.
  • the second conductive film 14B is made of a low reflectance material such as a tungsten silicide film.
  • the thickness of the first conductive film 14A is, for example, 40 nm to 1000 nm, and the thickness of the second conductive film 14B is, for example, 30 nm to 400 nm.
  • the second conductive film 14 ⁇ / b> B can be fixed to the gate insulating film 13. It is sufficient that at least the second conductive film 14B is buried in the connection holes H3 and H4. By providing the second conductive film 14B in the connection holes H3 and H4, the incidence of light on the channel region 12a and the LDD region 12b of the semiconductor film 12 can be suppressed.
  • the gate electrode 14 is formed as follows, for example. First, the first conductive film 14 ⁇ / b> A is formed at a position facing the channel region 12 a of the semiconductor film 12.
  • connection holes H3 and H4 are formed in the first interlayer insulating film IA by dry etching. Thereafter, a second conductive film 14B is formed on the region including the inside of the connection holes H3 and H4 and on the first conductive film 14A. Thereby, the gate electrode 14 is formed.
  • the second interlayer insulating film IB is provided on the entire surface of the support substrate 11 so as to cover the gate electrode 14.
  • the second interlayer insulating film IB is made of, for example, silicon oxide, like the first interlayer insulating film IA.
  • the storage capacitor Cs is provided in a predetermined region on the second interlayer insulating film IB and covers the transistor Tr. Specifically, the storage capacitor Cs is provided at a position overlapping the semiconductor film 12 and the gate electrode 14 in plan view, and covers at least the channel region 12 a and LDD region 12 b of the semiconductor film 12 and the gate electrode 14.
  • the storage capacitor Cs has, for example, the same width as the scanning line WSL, and is disposed at a position overlapping a part of the scanning line WSL in plan view.
  • the channel region 12a and LDD region 12b of the semiconductor film 12 and the gate electrode 14 have their lower surfaces covered with the scanning lines WSL and their upper surfaces covered with the storage capacitor Cs.
  • the storage capacitor Cs includes the first electrode 15A, the dielectric film DFA (first dielectric film), the second electrode 16, the dielectric film DFB (second dielectric film), and the second interlayer insulating film IB. Three electrodes 15B are provided in this order (FIGS. 3 and 4). The first electrode 15A, the second electrode 16, and the third electrode 15B are disposed at positions overlapping each other in plan view, and the first electrode 15A and the third electrode 15B are electrically connected. That is, the storage capacitor Cs is a stacked capacitor. Thereby, it is possible to secure a large storage capacity while suppressing the occupied area.
  • the first electrode 15A is electrically connected to the drain region of the semiconductor film 12 through a connection hole H1 provided in the second interlayer insulating film IB. Therefore, a pixel potential is supplied to the first electrode 15A.
  • the second electrode 16 faces the first electrode 15A with the dielectric film DFA in between.
  • the second electrode 16 is electrically connected to the shield electrode 18 and is supplied with, for example, a common potential (Vcom potential).
  • the third electrode 15B faces the first electrode 15A with the second electrode 16 therebetween, and the dielectric film DFB is disposed between the third electrode 15B and the second electrode 16. For example, a pixel potential is supplied to the third electrode 15B electrically connected to the first electrode 15A.
  • the first electrode 15A, the second electrode 16, and the third electrode 15B are made of a polysilicon film to which an impurity such as phosphorus (P) is added.
  • the dielectric films DFA and DFB are made of, for example, a silicon nitride film.
  • the dielectric films DFA and DFB are preferably made of an insulating film having a dielectric constant higher than that of the silicon oxide film.
  • the dielectric film DFA has, for example, the same planar shape as that of the second electrode 16, and the dielectric film DFB has, for example, the same planar shape as that of the third electrode 15B.
  • the light shielding film 17 on the storage capacitor Cs is for preventing light irradiation to the transistor Tr.
  • the light shielding film 17 has the same planar shape as the third electrode 15B, and is provided at a position overlapping the third electrode 15B in plan view. That is, the light shielding film 17 covers at least the channel region 12 a and the LDD region 12 b of the semiconductor film 12 and the gate electrode 14.
  • the light shielding film 17 is made of, for example, a light-shielding refractory metal or a refractory metal silicide.
  • An example of the light-shielding refractory metal is tungsten
  • an example of the light-shielding refractory metal silicide is tungsten silicide.
  • the third interlayer insulating film IC is provided over the entire surface of the support substrate 11 so as to cover the light shielding film 17 and the storage capacitor Cs.
  • the third interlayer insulating film IC is made of, for example, silicon oxide, like the first interlayer insulating film IA and the second interlayer insulating film IB. Providing the third interlayer insulating film IC having a thickness of 90 nm or more can suppress the occurrence of a breakdown voltage failure.
  • the third interlayer insulating film IC may be formed of a silicon nitride film having a thickness of 20 nm to 30 nm, for example.
  • the capacitance is held between the third electrode 15B and the shielding electrode 18 by using the third interlayer insulating film IC having a higher dielectric constant than that of the silicon oxide film. That is, the third electrode 15B and the shielding electrode 18 constitute a capacitive element.
  • FIG. 5 is a schematic plan view showing the shape of the shielding electrode 18 together with the storage capacitor Cs and the signal line DTL.
  • the shield electrode 18 on the third interlayer insulating film IC is disposed between the storage capacitor Cs and the signal line DTL.
  • a common potential is supplied to the shield electrode 18 electrically connected to the second electrode 16 of the storage capacitor Cs.
  • the shielding electrode 18 covers, for example, at least the channel region 12a and the LDD region 12b of the semiconductor film 12 and the gate electrode 14.
  • a shielding electrode 18 is made of, for example, a light-shielding refractory metal or a refractory metal silicide.
  • An example of the light-shielding refractory metal is tungsten, and an example of the light-shielding refractory metal silicide is tungsten silicide. Thereby, irradiation of light to the transistor Tr can be more effectively prevented.
  • the thickness of the shielding electrode 18 is, for example, 75 nm to 125 nm.
  • the shielding electrode 18 has a thickness of 100 nm.
  • the fourth interlayer insulating film ID is provided over the entire surface of the support substrate 11 so as to cover the shielding electrode 18.
  • the fourth interlayer insulating film ID is made of, for example, silicon oxide, like the first interlayer insulating film IA, the second interlayer insulating film IB, and the third interlayer insulating film IC.
  • the signal line DTL on the fourth interlayer insulating film ID is disposed at a position overlapping the third electrode 15B in plan view, and the shielding electrode 18 is provided between the signal line DTL and the storage capacitor Cs as described above. It has been.
  • the signal line DTL extends, for example, in a direction parallel to the extending direction of the semiconductor film 12 (Y direction in FIG. 2), and is provided to face the semiconductor film 12 with the shielding electrode 18 therebetween. .
  • the signal line DTL is electrically connected to the source region of the semiconductor film 12 through a connection hole H2 that penetrates the fourth interlayer insulating film ID, the third interlayer insulating film IC, and the second interlayer insulating film IB. A signal line potential is supplied to the signal line DTL.
  • the signal line DTL is made of a metal material such as tungsten silicide (WSi), aluminum (Al), titanium (Ti), or copper (Cu).
  • the signal line DTL may be configured by a laminated film including a plurality of metals.
  • the thickness of the signal line DTL is, for example, 100 nm to 1000 nm.
  • a first connection wiring 19A and a second connection wiring 19B are provided in the same layer as the signal line DTL.
  • the first connection wiring 19A is for electrically connecting the first electrode 15A and the third electrode 15B of the storage capacitor Cs.
  • the first connection wiring 19A is electrically connected to the first electrode 15A and the third electrode 15B through connection holes H5 and H6 provided in the fourth interlayer insulating film ID and the third interlayer insulating film IC.
  • the second connection wiring 19 ⁇ / b> B is for electrically connecting the second electrode 16 and the shielding electrode 18.
  • the second connection wiring 19B is electrically connected to the shielding electrode 18 through the connection hole H7 provided in the fourth interlayer insulating film ID, and is provided in the fourth interlayer insulating film ID and the third interlayer insulating film IC.
  • the second electrode 16 is electrically connected through the connection hole H8.
  • the first connection wiring 19A and the second connection wiring 19B are formed in the same process as the signal line DTL, are made of the same material as the signal line DTL, and have the same thickness.
  • the planarization layer 10P is for planarizing the surface of the drive substrate 10, and is provided on the entire surface of the drive substrate 10, for example.
  • the planarizing layer 10P is made of, for example, an epoxy resin or an acrylic resin.
  • the pixel electrode 10E on the planarization layer 10P is provided for each pixel (pixel 2 in FIG. 11 described later), and is electrically connected to, for example, the transistor Tr.
  • the pixel electrode 10E is made of, for example, a transparent conductive film.
  • the transparent conductive film include indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), and indium gallium zinc-containing oxide (IGZO).
  • the protective layer 10C that covers the pixel electrode 10E plays a role of preventing the corrosion of the pixel electrode 10E.
  • the protective layer 10C is preferably made of an inorganic material that is chemically more stable than the constituent materials of the alignment films 10AF and 20AF. Specifically, for example, silicon oxide (SiO 2 ) or silicon nitride (SiN) can be used as a constituent material of the protective layer 10C.
  • the thickness of the protective layer 10C is, for example, 30 nm to 70 nm.
  • the protective layer 10C is preferably formed using a method that is chemically more stable than vapor deposition, and can be formed by, for example, CVD or sputtering.
  • the alignment film 10AF is provided between the protective layer 10C and the liquid crystal layer 30, and the alignment film 20AF is provided between the counter electrode 20E and the liquid crystal layer 30.
  • the alignment films 10AF and 20AF are for controlling the alignment of the liquid crystal layer 30 and are made of an inorganic material such as silicon oxide.
  • the thickness of the alignment films 10AF and 20AF is, for example, about 120 nm to 360 nm.
  • the alignment films 10AF and 20AF can be formed using, for example, a vapor deposition method.
  • the liquid crystal layer 30 is provided between the alignment film 10AF and the alignment film 20AF.
  • it is composed of liquid crystal driven in VA (Vertical Alignment) mode, TN (Twisted Nematic) mode, ECB (Electrically controlled ring birefringence) mode, FFS (Fringe Field Switching) mode or IPS (In Plane Switching) mode. ing.
  • the counter electrode 20E is provided in common to all pixels, for example, and is held at a common potential.
  • a video voltage is supplied to the liquid crystal layer 30 by the counter electrode 20E and the pixel electrode 10E.
  • a transparent conductive material can be used in the same manner as the pixel electrode 10E.
  • the counter substrate 20 is made of a plate-like member such as quartz, glass, silicon, or a plastic film, for example, like the support substrate 11.
  • a color filter layer, a black matrix layer, an overcoat layer, and the like may be provided between the counter substrate 20 and the counter electrode 20E.
  • the polarizing plates 10PZ and 20PZ are arranged in, for example, a crossed Nicols, so that only light (polarized light) in a predetermined vibration direction can pass through the polarizing plates 10PZ and 20PZ.
  • the light transmittance in the liquid crystal layer 30 is controlled for each pixel, and light having a contrast corresponding to the input image signal is emitted.
  • the transistor Tr is electrically connected to the pixel electrode 10E, and performs switching control of the pixel electrode 10E.
  • the shielding electrode 18 (common potential) is provided between the signal line DTL sharing the signal line potential and the third electrode 15B (pixel potential) constituting the storage capacitor Cs. Therefore, the influence of the coupling from the signal line DTL to the third electrode 15B is reduced.
  • this will be described in detail using comparative examples (Comparative Examples 1 and 2).
  • FIG. 6 illustrates a schematic cross-sectional configuration of a drive substrate (drive substrate 101) according to Comparative Example 1.
  • the drive substrate 101 has a storage capacitor Cs in which the first electrode 115A, the second electrode 116, and the third electrode 115B are stacked in this order.
  • the first electrode 115A and the third electrode 115B are electrically connected via the first connection wiring 119A, and are held at a common potential, for example.
  • the second electrode 116 is electrically connected to the semiconductor film 12 through the connection hole H100, and the second connection wiring 119B for supplying a pixel potential is electrically connected to the second electrode 116.
  • the second electrode 116 on the first electrode 115A is electrically connected to the semiconductor film 12, the first electrode 115A is patterned before the connection hole H100 is formed.
  • the dielectric film DFA is contaminated by the resist.
  • the hydrofluoric acid treatment or the like is performed to remove the oxide film formed on the dielectric film DFA, the surface of the dielectric film DFA is damaged. Due to the resist contamination and the damage on the surface of the dielectric film DFA, there is a possibility that leakage occurs in the storage capacitor Cs.
  • the second electrode 116 may be formed in two steps, but in this case, the number of steps increases.
  • FIG. 7 shows a schematic cross-sectional configuration of a drive substrate (drive substrate 102) according to Comparative Example 2.
  • the first electrode 15A is electrically connected to the semiconductor film 12 through the connection hole H1.
  • the third electrode 15B (pixel potential) electrically connected to the first electrode 15A is affected by a vertical electric field from the signal line DTL (signal line potential), and coupling is likely to occur between them. For this reason, image quality such as crosstalk may occur in the drive substrate 102.
  • the shielding electrode 18 (common potential) is provided between the signal line DTL and the third electrode 15B, a vertical electric field from the signal line DTL to the third electrode 15B is generated. It is shielded and the coupling between them is less likely to occur. Thereby, in the liquid crystal display panel 1, the occurrence of image quality defects such as crosstalk due to the coupling between the signal line DTL and the third electrode 15B can be suppressed.
  • FIG. 8 shows the leakage current of the storage capacitor Cs between the drive substrate 10 and the drive substrate 101.
  • the first electrode 15 ⁇ / b> A is electrically connected to the semiconductor film 12, so that it is possible to suppress the occurrence of a leakage current of the storage capacitor Cs due to resist contamination and damage to the surface of the dielectric film DFA.
  • FIG. 9A shows the vertical crosstalk between the driving substrate 10 and the driving substrate 102.
  • the vertical axis in FIG. 9A represents the crosstalk value CTK (%) obtained by the following equation (1).
  • Wi and Wi ′ in Expression (1) represent the luminance of adjacent windows around the black window, as shown in FIG. 9B.
  • CTK (%) ⁇ (Wi′ ⁇ Wi) / Wi ⁇ ⁇ 100 (1)
  • the shielding electrode 18 is provided between the third electrode 15B (pixel potential) and the signal line DTL (signal line potential), the third electrode from the signal line DTL is provided.
  • the influence of coupling to 15B can be suppressed. Therefore, it is possible to suppress the occurrence of image quality defects.
  • the incidence of light in the oblique direction to the semiconductor film 12 can be suppressed, and the occurrence of light leakage can be suppressed.
  • the light shielding film 17 that covers the third electrode 15B it is possible to more effectively suppress the incidence of light in the oblique direction to the semiconductor film 12.
  • the first storage electrode 15A, the second electrode 16, and the third electrode 15B form a stacked storage capacitor Cs, it is possible to maintain a large capacity while reducing the occupied area. Therefore, the aperture ratio of the liquid crystal display panel 1 can be increased or the pitch can be reduced.
  • the liquid crystal display panel 1 of the present technology can be applied to an electronic device such as a projection display device.
  • FIG. 10 is a diagram illustrating a configuration example of a projection display device (projection display device 200) to which the liquid crystal display panel 1 is applied as a light modulation element.
  • the projection display device 200 is a display device that projects an image on a screen, for example.
  • the projection display device 200 is connected to an external image supply device such as a computer such as a PC or various image players via an I / F (interface), and is based on an image signal input to the I / F. Projection onto a screen or the like.
  • the configuration of the projection display device 200 described below is an example, and the projection display device according to the present technology is not limited to such a configuration.
  • the projection display device 200 includes a light source 211, a multi-lens array 212, a PbS array 213, a focus lens 214, a mirror 215, dichroic mirrors 216 and 217, light modulation elements 218a to 218c, a dichroic prism 219, and a projection lens 220.
  • the liquid crystal display panel 1 of the above-described embodiment is used for the light modulation elements 218a to 218c.
  • the light source 211 emits the light emitted by the light emitting unit 211a to the multi-lens array 212 by the reflector 211b.
  • the multi-lens array 212 has a structure in which a plurality of lens elements are provided in an array, and condenses light emitted from the light source 211.
  • the PbS array 213 polarizes the light collected by the multi-lens array 212 into light having a predetermined polarization direction, for example, a P-polarized wave.
  • the focus lens 214 condenses the light converted into light having a predetermined polarization direction by the PbS array 213.
  • the dichroic mirror 216 transmits red light R out of light incident through the focus lens 214 and the mirror 215 and reflects green light G and blue light B.
  • the red light R transmitted by the dichroic mirror 216 is guided to the light modulation element 218a through the mirror 215.
  • the dichroic mirror 217 transmits the blue light B out of the light reflected by the dichroic mirror 216 and reflects the green light G.
  • the green light G reflected by the dichroic mirror 217 is guided to the light modulation element 218b.
  • the blue light B transmitted by the dichroic mirror 217 is guided to the light modulation element 218 c via the mirror 215.
  • Each of the light modulation elements 218a to 218c light-modulates each incident color light, and the light-modulated color light enters the dichroic prism 219.
  • the dichroic prism 219 synthesizes each color light that has been incident after being light-modulated into one optical axis. Each synthesized color light is projected onto a screen or the like via the projection lens 220.
  • FIG. 11 shows an example of the overall configuration of the light modulation elements 218a to 218c of FIG.
  • the light modulation elements 218a to 218c include, for example, the above-described liquid crystal display panel 1 and a drive circuit 40 that drives the liquid crystal display panel 1.
  • the drive circuit 40 includes a display control unit 41, a data driver 42, and a gate driver 43.
  • the liquid crystal display panel 1 has a pixel portion 1A in which a plurality of pixels 2 are formed in a matrix and a peripheral portion 1B.
  • the liquid crystal display panel 1 displays an image based on a video signal Din input from the outside by actively driving each pixel 2 by a data driver 42 and a gate driver 43.
  • the liquid crystal display panel 1 includes a plurality of scanning lines WSL extending in the row direction, a plurality of signal lines DTL extending in the column direction, and a plurality of common potential lines COM extending in the row direction. . Pixels 2 are provided corresponding to the intersections between the signal lines DTL and the scanning lines WSL. Each signal line DTL is connected to an output end (not shown) of the data driver 42. Each scanning line WSL is connected to an output terminal (not shown) of the gate driver 43. Each common potential line COM is connected to, for example, an output terminal (not shown) of a circuit that outputs a fixed potential.
  • the display controller 41 stores, for example, the supplied video signal Din in a frame memory for each screen (for each display of one frame).
  • the display control unit 41 has a function of controlling the data driver 42 and the gate driver 43 that drive the liquid crystal display panel 1 to operate in conjunction with each other.
  • the display control unit 41 supplies, for example, a scanning timing control signal to the data driver 42, and the data driver 42 receives an image signal for one horizontal line based on the image signal held in the frame memory.
  • a display timing control signal is supplied.
  • the data driver 42 supplies, for example, a video signal Din for one horizontal line supplied from the display control unit 41 to each pixel 2 as a signal voltage. Specifically, the data driver 42 supplies, for example, a signal voltage corresponding to the video signal Din to each pixel 2 constituting one horizontal line selected by the gate driver 43 via the signal line DTL. It is.
  • the gate driver 43 has a function of selecting the pixel 2 to be driven according to a scanning timing control signal supplied from the display control unit 41, for example. Specifically, the gate driver 43 applies, for example, a selection pulse to the gate electrode 14 of the transistor Tr of the pixel 2 via the scanning line WSL, thereby the pixel 2 formed in a matrix in the pixel portion 1A. One row is selected as a drive target. In these pixels 2, one horizontal line is displayed according to the signal voltage supplied from the data driver 42. In this way, for example, the gate driver 43 sequentially scans one horizontal line at a time in a time-division manner, and performs display over the entire display area.
  • FIG. 12 illustrates an example of a circuit configuration of the pixel 2.
  • Each pixel 2 is provided with a pixel circuit 4.
  • Each pixel circuit 4 is provided corresponding to the intersection of the scanning line WSL and the signal line DTL.
  • the pixel circuit 4 includes a transistor Tr that writes a signal voltage to the pixel 2 and a storage capacitor Cs that holds the voltage written to the pixel 2.
  • One of the storage capacitors Cs (first electrode 15A and third electrode 15B) is connected to the drain region of the semiconductor film 12, and the other (second electrode 16) is connected to the common potential line COM.
  • the projection display device 200 In the projection display device 200, three light modulation elements 218a to 218c corresponding to the three primary colors red, green, and blue are combined to display all colors. That is, the projection display device 200 is a so-called three-plate projection display device.
  • the liquid crystal display panel 1 includes a television device, a desktop personal computer monitor, a notebook personal computer, an imaging device such as a video camera and a digital still camera, a PDA (Personal Digital Assistant), a mobile phone.
  • a television device a desktop personal computer monitor
  • a notebook personal computer an imaging device such as a video camera and a digital still camera
  • a PDA Personal Digital Assistant
  • the present invention can also be applied to electronic devices such as telephones and smartphones.
  • the present technology has been described with reference to the embodiment, the present technology is not limited to the above-described embodiment, and various modifications can be made.
  • the components, arrangement, number, and the like of the liquid crystal display panel exemplified in the above embodiment are merely examples, and it is not necessary to include all the components, and may further include other components. .
  • a display panel having a liquid crystal layer as a display layer has been described as an example.
  • the present invention is not limited to this, and the present invention is applied to other display layers such as an organic EL (Electro Luminescence) layer or an electrophoretic layer. It is also possible to do.
  • the semiconductor film 12 may be made of a material other than crystalline silicon and amorphous silicon, for example, an oxide semiconductor material or an organic semiconductor material.
  • the present technology may be configured as follows.
  • a liquid crystal layer A transistor having a semiconductor film provided with a channel region and driving the liquid crystal layer for each pixel; A first electrode that covers the channel region of the semiconductor film and is electrically connected to the semiconductor film; A second electrode facing the first electrode; A third electrode opposed to the first electrode with the second electrode in between and electrically connected to the first electrode;
  • the wiring is disposed at a position overlapping the third electrode, and the wiring is opposed to the semiconductor film with the third electrode in between.
  • a liquid crystal display panel comprising: a shielding electrode provided between the wiring and the third electrode and electrically connected to the second electrode.
  • the shielding electrode is made of a light shielding material.
  • the liquid crystal display panel according to (1) or (2) further including a connection wiring that connects the shielding electrode and the second electrode.
  • the wiring is held at the signal line potential, The liquid crystal display panel according to (3) or (4), wherein a common potential is supplied to the connection wiring.
  • LDD Lightly Doped Drain
  • the liquid crystal display panel is A liquid crystal layer; A transistor having a semiconductor film provided with a channel region and driving the liquid crystal layer for each pixel; A first electrode that covers the channel region of the semiconductor film and is electrically connected to the semiconductor film; A second electrode facing the first electrode; A third electrode opposed to the first electrode with the second electrode in between and electrically connected to the first electrode; In a plan view, the wiring is disposed at a position overlapping the third electrode, and the wiring is opposed to the semiconductor film with the third electrode in between.
  • An electronic device comprising: a shielding electrode provided between the wiring and the third electrode and electrically connected to the second electrode. Solid-state imaging device.

Abstract

A liquid crystal display panel provided with: a liquid crystal layer; transistors for driving the liquid crystal layer in each pixel, the transistors having a semiconductor film in which a channel region is provided; a first electrode electrically connected to the semiconductor film, the first electrode covering the channel region of the semiconductor film; a second electrode facing the first electrode; a third electrode electrically connected to the first electrode, the third electrode facing the first electrode with the second electrode therebetween; a wiring facing the semiconductor film with the third electrode therebetween, the wiring being disposed in a position superposed on the third electrode in plan view; and a shielding electrode provided between the wiring and the third electrode and electrically connected to the second electrode.

Description

液晶表示パネルおよび電子機器Liquid crystal display panel and electronic equipment
 本技術は、トランジスタおよび保持容量を有する液晶表示パネルおよび電子機器に関する。 This technology relates to a liquid crystal display panel and an electronic device having a transistor and a storage capacitor.
 例えばプロジェクタ(投射型表示装置)等には、光変調素子(ライトバルブ)として液晶表示パネルが用いられている。液晶表示パネルは、画素電極と対向基板との間に液晶層を有しており、画素電極の電位が、保持容量に一時的に保持されるようになっている(例えば、特許文献1,2)。 For example, a liquid crystal display panel is used as a light modulation element (light valve) in a projector (projection display device) or the like. The liquid crystal display panel has a liquid crystal layer between the pixel electrode and the counter substrate, and the potential of the pixel electrode is temporarily held in a storage capacitor (for example, Patent Documents 1 and 2). ).
特開2013-80040号公報JP2013-80040A 特開2010-237687号公報JP 2010-237687 A
 このような液晶表示パネルでは、複数の配線間でのカップリングに起因して画質不良が発生するおそれがある。 In such a liquid crystal display panel, image quality may be deteriorated due to coupling between a plurality of wirings.
 したがって、画質不良の発生を抑えることが可能な液晶表示パネルおよび電子機器を提供することが望ましい。 Therefore, it is desirable to provide a liquid crystal display panel and an electronic device that can suppress the occurrence of image quality defects.
 本技術の一実施の形態の液晶表示パネルは、液晶層と、チャネル領域が設けられた半導体膜を有し、液晶層を画素毎に駆動するトランジスタと、半導体膜のチャネル領域を覆うとともに、半導体膜に電気的に接続された第1電極と、第1電極に対向する第2電極と、第2電極を間にして第1電極に対向するとともに、第1電極に電気的に接続された第3電極と、平面視で、第3電極に重なる位置に配置されるとともに、第3電極を間にして半導体膜に対向する配線と、配線と第3電極との間に設けられ、第2電極に電気的に接続された遮蔽電極とを備えたものである。 A liquid crystal display panel according to an embodiment of the present technology includes a semiconductor film provided with a liquid crystal layer and a channel region, a transistor that drives the liquid crystal layer for each pixel, a channel region of the semiconductor film, and a semiconductor A first electrode electrically connected to the membrane; a second electrode opposed to the first electrode; and a second electrode opposed to the first electrode and electrically connected to the first electrode The three electrodes are arranged in a position overlapping the third electrode in plan view, and are provided between the wiring facing the semiconductor film with the third electrode interposed therebetween, and between the wiring and the third electrode. And a shielding electrode electrically connected to the.
 本技術の一実施の形態の電子機器は、上記本技術の一実施の形態の液晶表示パネルを備えたものである。 An electronic apparatus according to an embodiment of the present technology includes the liquid crystal display panel according to the embodiment of the present technology.
 本技術の一実施の形態の液晶表示パネルおよび電子機器では、互いに平面視で重なる位置に配置された第1電極、第2電極および第3電極により保持容量が構成される。ここで、所定の電位が供給される配線と、保持容量を構成する第3電極との間に遮蔽電極が設けられているので、配線から第3電極へのカップリングの影響が抑えられる。 In the liquid crystal display panel and the electronic device according to the embodiment of the present technology, a storage capacitor is configured by the first electrode, the second electrode, and the third electrode that are arranged at positions overlapping each other in plan view. Here, since the shielding electrode is provided between the wiring to which the predetermined potential is supplied and the third electrode constituting the storage capacitor, the influence of the coupling from the wiring to the third electrode can be suppressed.
 本技術の一実施の形態の液晶表示パネルおよび電子機器によれば、第3電極と配線との間に遮蔽電極を設けるようにしたので、配線から第3電極へのカップリングの影響を抑えることができる。よって、画質不良の発生を抑えることが可能となる。 According to the liquid crystal display panel and the electronic device according to the embodiment of the present technology, since the shielding electrode is provided between the third electrode and the wiring, the influence of the coupling from the wiring to the third electrode is suppressed. Can do. Therefore, it is possible to suppress the occurrence of image quality defects.
 尚、上記内容は本開示の一例である。本開示の効果は、上述したものに限らず、他の異なる効果であってもよいし、更に他の効果を含んでいてもよい。 The above content is an example of the present disclosure. The effects of the present disclosure are not limited to those described above, and may be other different effects or may include other effects.
本技術の一実施の形態に係る液晶表示パネルの概略構成を表す断面模式図である。It is a cross-sectional schematic diagram showing the schematic structure of the liquid crystal display panel which concerns on one embodiment of this technique. 図1に示した駆動基板の概略構成を表す平面模式図である。FIG. 2 is a schematic plan view illustrating a schematic configuration of a drive substrate illustrated in FIG. 1. 図2に示したIII-III線に沿った断面模式図である。FIG. 3 is a schematic cross-sectional view taken along line III-III shown in FIG. 図2に示したIV-IV線に沿った断面模式図である。FIG. 4 is a schematic sectional view taken along line IV-IV shown in FIG. 2. 図2に示した遮蔽電極の平面構成を信号線とともに表す平面模式図である。FIG. 3 is a schematic plan view illustrating a planar configuration of the shielding electrode illustrated in FIG. 2 together with a signal line. 比較例1に係る駆動基板の概略構成を表す断面模式図である。6 is a schematic cross-sectional view illustrating a schematic configuration of a drive substrate according to Comparative Example 1. FIG. 比較例2に係る駆動基板の概略構成を表す断面模式図である。10 is a schematic cross-sectional view illustrating a schematic configuration of a drive substrate according to Comparative Example 2. FIG. 図2に示した保持容量と図6に示した保持容量のリーク電流を表す図である。FIG. 7 is a diagram illustrating a leakage current of the storage capacitor illustrated in FIG. 2 and the storage capacitor illustrated in FIG. 6. 図2に示した駆動基板と図7に示した駆動基板の縦クロストークを表す図である。It is a figure showing the longitudinal crosstalk of the drive board | substrate shown in FIG. 2, and the drive board | substrate shown in FIG. 図9Aに示したクロストーク値について説明するための図である。It is a figure for demonstrating the crosstalk value shown to FIG. 9A. 図1に示した液晶表示パネルが適用される投射型表示装置の構成を表す図である。It is a figure showing the structure of the projection type display apparatus with which the liquid crystal display panel shown in FIG. 1 is applied. 図10に示した光変調素子の全体構成を表す模式図である。It is a schematic diagram showing the whole structure of the light modulation element shown in FIG. 図11に示した画素の画素回路の一例を表す図である。It is a figure showing an example of the pixel circuit of the pixel shown in FIG.
 以下、本技術の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
  1.実施の形態
    第3電極と信号線(配線)との間に遮蔽電極を有する液晶パネル
  2.適用例
    投射型表示装置
Hereinafter, embodiments of the present technology will be described in detail with reference to the drawings. The description will be given in the following order.
1. 1. Embodiment A liquid crystal panel having a shielding electrode between a third electrode and a signal line (wiring). Application example Projection display
 〔実施の形態〕
 (構成)
 図1は、本技術の一実施の形態に係る液晶表示パネル1の模式的な断面構成を表したものである。この液晶表示パネル1は、例えば、投射型表示装置(後述の図10の投射型表示装置200)の光変調素子として用いられるものである。液晶表示パネル1は、互いに対向する駆動基板10および対向基板20の間に液晶層30を有している。
Embodiment
(Constitution)
FIG. 1 illustrates a schematic cross-sectional configuration of a liquid crystal display panel 1 according to an embodiment of the present technology. The liquid crystal display panel 1 is used, for example, as a light modulation element of a projection display device (projection display device 200 in FIG. 10 described later). The liquid crystal display panel 1 includes a liquid crystal layer 30 between a drive substrate 10 and a counter substrate 20 facing each other.
 駆動基板10と液晶層30との間には、駆動基板10に近い位置から、平坦化層10P,画素電極10E、保護層10Cおよび配向膜10AFがこの順に設けられている。対向基板20と液晶層30との間には、対向基板20に近い位置から、対向電極20Eおよび配向膜20AFがこの順に設けられている。駆動基板10および対向基板20の互いの対向面と反対の面には、それぞれ偏光板10PZ,20PZが貼り合わされている。 Between the driving substrate 10 and the liquid crystal layer 30, a planarizing layer 10P, a pixel electrode 10E, a protective layer 10C, and an alignment film 10AF are provided in this order from a position close to the driving substrate 10. Between the counter substrate 20 and the liquid crystal layer 30, a counter electrode 20E and an alignment film 20AF are provided in this order from a position close to the counter substrate 20. Polarizing plates 10PZ and 20PZ are bonded to the surfaces of the drive substrate 10 and the counter substrate 20 opposite to the opposing surfaces, respectively.
 図2は、駆動基板10の模式的な平面構成を表したものであり、図3は、図2に示したIII-III線に沿った断面構成、図4は、図2に示したIV-IV線に沿った断面構成をそれぞれ表している。駆動基板10は、支持基板11上に、例えば、走査線WSL、トランジスタTr、保持容量Cs、遮光膜17、遮蔽電極18および信号線DTL(配線)をこの順に有している。走査線WSLとトランジスタTrとの間に第1層間絶縁膜IA、トランジスタTrと保持容量Csとの間に第2層間絶縁膜IB、保持容量Csと遮蔽電極18との間に第3層間絶縁膜IC、遮蔽電極18と信号線DTLとの間に第4層間絶縁膜IDが、それぞれ設けられている。支持基板11は、例えば石英,ガラス,シリコンまたはプラスチックフィルムなどの板状部材により構成されている。 2 shows a schematic plan configuration of the drive substrate 10. FIG. 3 shows a cross-sectional configuration along the line III-III shown in FIG. 2, and FIG. 4 shows an IV-type shown in FIG. Each of the cross-sectional configurations along line IV is shown. The drive substrate 10 has, for example, a scanning line WSL, a transistor Tr, a storage capacitor Cs, a light shielding film 17, a shielding electrode 18, and a signal line DTL (wiring) in this order on the support substrate 11. A first interlayer insulating film IA between the scanning line WSL and the transistor Tr, a second interlayer insulating film IB between the transistor Tr and the storage capacitor Cs, and a third interlayer insulating film between the storage capacitor Cs and the shielding electrode 18. A fourth interlayer insulating film ID is provided between the IC, the shielding electrode 18 and the signal line DTL. The support substrate 11 is composed of a plate-like member such as quartz, glass, silicon, or a plastic film.
 支持基板11上に設けられた走査線WSLは、所定の方向(例えば、図2のX方向およびY方向)に沿って延在している。走査線WSLは、例えばタングステンシリサイド(WSi)などの低反射率材料により構成されている。走査線WSLには、導電性を有するシリサイド系半導体材料を用いることが好ましい。タングステン(W),チタン(Ti),モリブデン(Mo),クロム(Cr)およびタンタル(Ta)あるいはこれらのシリサイド化合物等により走査線WSLを構成するようにしてもよい。走査線WSLの厚み(図3,4のY方向の大きさ)は、例えば、200nmである。走査線WSLは、例えば30nm~400nmの厚みを有している。 The scanning line WSL provided on the support substrate 11 extends along a predetermined direction (for example, the X direction and the Y direction in FIG. 2). The scanning line WSL is made of a low reflectance material such as tungsten silicide (WSi). It is preferable to use a silicide-based semiconductor material having conductivity for the scan line WSL. The scanning line WSL may be composed of tungsten (W), titanium (Ti), molybdenum (Mo), chromium (Cr), tantalum (Ta), or a silicide compound thereof. The thickness of the scanning line WSL (the size in the Y direction in FIGS. 3 and 4) is, for example, 200 nm. The scanning line WSL has a thickness of 30 nm to 400 nm, for example.
 第1層間絶縁膜IAは、走査線WSLを覆い、支持基板11の全面にわたって設けられている。第1層間絶縁膜IAは、例えばCMP(Chemical Mechanical Polishing)処理等により平坦化されていることが好ましい。第1層間絶縁膜IAが平坦化されていることにより、上層のパターンを形成する際の加工性が高まる。したがって、歩留まりを向上させることが可能となる。第1層間絶縁膜IAは、例えば酸化シリコン(SiO2)により構成されている。 The first interlayer insulating film IA covers the scanning line WSL and is provided over the entire surface of the support substrate 11. The first interlayer insulating film IA is preferably planarized by, for example, a CMP (Chemical Mechanical Polishing) process. Since the first interlayer insulating film IA is planarized, workability when forming an upper layer pattern is improved. Therefore, the yield can be improved. The first interlayer insulating film IA is made of, for example, silicon oxide (SiO 2 ).
 トランジスタTrは、第1層間絶縁膜IA上に、半導体膜12、ゲート絶縁膜13およびゲート電極14をこの順に有している。このトランジスタTrは、例えばLDD(Lightly Doped Drain)構造を有するTFT素子である。このトランジスタTrにより、液晶層30が画素毎に駆動されるようになっている。 The transistor Tr has the semiconductor film 12, the gate insulating film 13, and the gate electrode 14 in this order on the first interlayer insulating film IA. The transistor Tr is, for example, a TFT element having an LDD (Lightly Doped Drain) structure. The liquid crystal layer 30 is driven for each pixel by the transistor Tr.
 半導体膜12は、第1層間絶縁膜IA上の選択的な領域に設けられ、所定の方向(例えば、図2のY方向)に延びている。半導体膜12は、ゲート電極14と対向するチャネル領域12aと、チャネル領域12aの両側に、チャネル領域12aに隣接して配置された一対のLDD領域12bとを有している。LDD領域12bを設けることによりトランジスタTrオフ(OFF)時のリーク電流を低減させることができる。一対のLDD領域12bの外側(チャネル領域12aと反対側)には、半導体膜12のソース・ドレイン領域が設けられている。半導体膜12のソース領域は、信号線DTLに電気的に接続され、半導体膜12のドレイン領域は、保持容量Csに電気的に接続されている。半導体膜12は、例えば非晶質シリコンまたは結晶シリコン等により構成されている。LDD領域12bには、例えばn型の不純物が低濃度でドーピングされている。ソース・ドレイン領域は、例えばLDD領域12bよりも高濃度のn型の不純物がドーピングされることにより、チャネル領域12aよりもその抵抗値が低くなっている(低抵抗化されている)。半導体膜12のチャネル領域12aおよび一対のLDD領域12bは、走査線WSLに対向する位置に配置されている。 The semiconductor film 12 is provided in a selective region on the first interlayer insulating film IA and extends in a predetermined direction (for example, the Y direction in FIG. 2). The semiconductor film 12 has a channel region 12a facing the gate electrode 14, and a pair of LDD regions 12b disposed on both sides of the channel region 12a and adjacent to the channel region 12a. By providing the LDD region 12b, leakage current when the transistor Tr is turned off can be reduced. A source / drain region of the semiconductor film 12 is provided outside the pair of LDD regions 12b (on the side opposite to the channel region 12a). The source region of the semiconductor film 12 is electrically connected to the signal line DTL, and the drain region of the semiconductor film 12 is electrically connected to the storage capacitor Cs. The semiconductor film 12 is made of, for example, amorphous silicon or crystalline silicon. The LDD region 12b is doped with, for example, an n-type impurity at a low concentration. The source / drain region has a lower resistance value (lower resistance) than that of the channel region 12a, for example, by being doped with an n-type impurity having a higher concentration than that of the LDD region 12b. The channel region 12a and the pair of LDD regions 12b of the semiconductor film 12 are disposed at positions facing the scanning line WSL.
 ゲート絶縁膜13は、半導体膜12とゲート電極14とを電気的に絶縁するためのものであり、半導体膜12とゲート電極14との間に設けられている。ゲート絶縁膜13は、例えば酸化シリコン(SiO2)または窒化シリコン(SiN)により構成されている。このようなゲート絶縁膜13は、例えば、熱酸化法またはCVD(Chemical Vapor Deposition)法により形成されている。 The gate insulating film 13 is for electrically insulating the semiconductor film 12 and the gate electrode 14, and is provided between the semiconductor film 12 and the gate electrode 14. The gate insulating film 13 is made of, for example, silicon oxide (SiO 2 ) or silicon nitride (SiN). Such a gate insulating film 13 is formed by, for example, a thermal oxidation method or a CVD (Chemical Vapor Deposition) method.
 ゲート電極14は、ゲート絶縁膜13上に所定のパターンで設けられている。このゲート電極14は、例えば、半導体膜12を幅方向(図2のX方向)に跨ぐように、平面視で「H」の形状を有している。具体的には、ゲート電極14は、平面視で半導体膜12のチャネル領域12aに重なるとともにLDD領域12bを露出させる部分と、半導体膜12の両側に、半導体膜12と平行に延びる部分とにより構成されている。ゲート電極14は、走査線WSLに対向しており、第1層間絶縁膜IAに設けられた接続孔H3,H4を介して走査線WSLに電気的に接続されている。この接続孔H3,H4は、例えば、平面視で半導体膜12の両側に配置されている。 The gate electrode 14 is provided on the gate insulating film 13 in a predetermined pattern. The gate electrode 14 has, for example, an “H” shape in plan view so as to straddle the semiconductor film 12 in the width direction (X direction in FIG. 2). Specifically, the gate electrode 14 includes a portion that overlaps the channel region 12 a of the semiconductor film 12 and exposes the LDD region 12 b in a plan view, and portions that extend on both sides of the semiconductor film 12 in parallel with the semiconductor film 12. Has been. The gate electrode 14 faces the scanning line WSL and is electrically connected to the scanning line WSL via connection holes H3 and H4 provided in the first interlayer insulating film IA. The connection holes H3 and H4 are disposed on both sides of the semiconductor film 12 in a plan view, for example.
 ゲート電極14は、例えば、ゲート絶縁膜13に近い位置から順に第1導電膜14Aおよび第2導電膜14Bが積層された積層構造を有している。第1導電膜14Aは、例えば、リン(P)などの不純物を添加したポリシリコン膜により構成されている。第2導電膜14Bは、例えばタングステンシリサイド膜等の低反射率材料により構成されている。第1導電膜14Aの厚みは、例えば40nm~1000nmであり、第2導電膜14Bの厚みは、例えば30nm~400nmである。このように第1導電膜14Aを遮光性の第2導電膜14Bとゲート絶縁膜13との間に設けることにより、ゲート絶縁膜13に対して第2導電膜14Bを固定することができる。接続孔H3,H4には、少なくとも第2導電膜14Bが埋設されていればよい。接続孔H3,H4に第2導電膜14Bを設けることにより、半導体膜12のチャネル領域12aおよびLDD領域12bへの光の入射を抑えることができる。ゲート電極14は、例えば以下のように形成する。まず、半導体膜12のチャネル領域12aに対向する位置に第1導電膜14Aを形成する。続いて、ドライエッチングにより第1層間絶縁膜IAに接続孔H3,H4を形成する。その後に、この接続孔H3,H4内を含む領域と、第1導電膜14A上とに第2導電膜14Bを成膜する。これにより、ゲート電極14が形成される。 The gate electrode 14 has, for example, a stacked structure in which a first conductive film 14A and a second conductive film 14B are stacked in order from a position close to the gate insulating film 13. The first conductive film 14A is made of, for example, a polysilicon film to which an impurity such as phosphorus (P) is added. The second conductive film 14B is made of a low reflectance material such as a tungsten silicide film. The thickness of the first conductive film 14A is, for example, 40 nm to 1000 nm, and the thickness of the second conductive film 14B is, for example, 30 nm to 400 nm. Thus, by providing the first conductive film 14 </ b> A between the light-shielding second conductive film 14 </ b> B and the gate insulating film 13, the second conductive film 14 </ b> B can be fixed to the gate insulating film 13. It is sufficient that at least the second conductive film 14B is buried in the connection holes H3 and H4. By providing the second conductive film 14B in the connection holes H3 and H4, the incidence of light on the channel region 12a and the LDD region 12b of the semiconductor film 12 can be suppressed. The gate electrode 14 is formed as follows, for example. First, the first conductive film 14 </ b> A is formed at a position facing the channel region 12 a of the semiconductor film 12. Subsequently, connection holes H3 and H4 are formed in the first interlayer insulating film IA by dry etching. Thereafter, a second conductive film 14B is formed on the region including the inside of the connection holes H3 and H4 and on the first conductive film 14A. Thereby, the gate electrode 14 is formed.
 第2層間絶縁膜IBは、ゲート電極14を覆うようにして支持基板11の全面に設けられている。この第2層間絶縁膜IBは、第1層間絶縁膜IAと同様に、例えば酸化シリコンにより構成されている。 The second interlayer insulating film IB is provided on the entire surface of the support substrate 11 so as to cover the gate electrode 14. The second interlayer insulating film IB is made of, for example, silicon oxide, like the first interlayer insulating film IA.
 保持容量Csは、第2層間絶縁膜IB上の所定の領域に設けられ、トランジスタTrを覆っている。具体的には、保持容量Csは、半導体膜12およびゲート電極14と平面視で重なる位置に設けられ、少なくとも、半導体膜12のチャネル領域12aおよびLDD領域12bとゲート電極14とを覆っている。保持容量Csは、例えば走査線WSLと同程度の幅を有しており、走査線WSLの一部と平面視で重なる位置に配置されている。半導体膜12のチャネル領域12aおよびLDD領域12bとゲート電極14とは、その下面が走査線WSLに覆われ、その上面が保持容量Csに覆われている。 The storage capacitor Cs is provided in a predetermined region on the second interlayer insulating film IB and covers the transistor Tr. Specifically, the storage capacitor Cs is provided at a position overlapping the semiconductor film 12 and the gate electrode 14 in plan view, and covers at least the channel region 12 a and LDD region 12 b of the semiconductor film 12 and the gate electrode 14. The storage capacitor Cs has, for example, the same width as the scanning line WSL, and is disposed at a position overlapping a part of the scanning line WSL in plan view. The channel region 12a and LDD region 12b of the semiconductor film 12 and the gate electrode 14 have their lower surfaces covered with the scanning lines WSL and their upper surfaces covered with the storage capacitor Cs.
 この保持容量Csは、第2層間絶縁膜IB上に、第1電極15A、誘電体膜DFA(第1誘電体膜)、第2電極16、誘電体膜DFB(第2誘電体膜)および第3電極15Bをこの順に有するものである(図3,図4)。第1電極15A、第2電極16および第3電極15Bは、互いに平面視で重なる位置に配置され、第1電極15Aと第3電極15Bとは、電気的に接続されている。即ち、この保持容量Csは、積層型の容量素子である。これにより、占有面積を抑えつつ、大きな保持容量を確保することが可能となる。 The storage capacitor Cs includes the first electrode 15A, the dielectric film DFA (first dielectric film), the second electrode 16, the dielectric film DFB (second dielectric film), and the second interlayer insulating film IB. Three electrodes 15B are provided in this order (FIGS. 3 and 4). The first electrode 15A, the second electrode 16, and the third electrode 15B are disposed at positions overlapping each other in plan view, and the first electrode 15A and the third electrode 15B are electrically connected. That is, the storage capacitor Cs is a stacked capacitor. Thereby, it is possible to secure a large storage capacity while suppressing the occupied area.
 第1電極15Aは、第2層間絶縁膜IBに設けられた接続孔H1を介して半導体膜12のドレイン領域に電気的に接続されている。したがって、この第1電極15Aには、画素電位が供給されるようになっている。第2電極16は、誘電体膜DFAを間にして第1電極15Aに対向している。この第2電極16は、遮蔽電極18と電気的に接続されており、例えば、共通電位(Vcom電位)が供給されるようになっている。第3電極15Bは、第2電極16を間にして第1電極15Aに対向しており、第3電極15Bと第2電極16との間に誘電体膜DFBが配置されている。第1電極15Aに電気的に接続された第3電極15Bには、例えば画素電位が供給されるようになっている。第1電極15A、第2電極16および第3電極15Bは、例えばリン(P)などの不純物を添加したポリシリコン膜により構成されている。誘電体膜DFA,DFBは、例えば窒化シリコン膜により構成されている。誘電体膜DFA,DFBは、酸化シリコン膜よりも高い誘電率を有する絶縁膜により構成することが好ましい。誘電体膜DFAは、例えば、第2電極16と同一の平面形状を有しており、誘電体膜DFBは、例えば、第3電極15Bと同一の平面形状を有している。 The first electrode 15A is electrically connected to the drain region of the semiconductor film 12 through a connection hole H1 provided in the second interlayer insulating film IB. Therefore, a pixel potential is supplied to the first electrode 15A. The second electrode 16 faces the first electrode 15A with the dielectric film DFA in between. The second electrode 16 is electrically connected to the shield electrode 18 and is supplied with, for example, a common potential (Vcom potential). The third electrode 15B faces the first electrode 15A with the second electrode 16 therebetween, and the dielectric film DFB is disposed between the third electrode 15B and the second electrode 16. For example, a pixel potential is supplied to the third electrode 15B electrically connected to the first electrode 15A. The first electrode 15A, the second electrode 16, and the third electrode 15B are made of a polysilicon film to which an impurity such as phosphorus (P) is added. The dielectric films DFA and DFB are made of, for example, a silicon nitride film. The dielectric films DFA and DFB are preferably made of an insulating film having a dielectric constant higher than that of the silicon oxide film. The dielectric film DFA has, for example, the same planar shape as that of the second electrode 16, and the dielectric film DFB has, for example, the same planar shape as that of the third electrode 15B.
 保持容量Cs上の遮光膜17は、トランジスタTrへの光の照射を防ぐためのものである。この遮光膜17は、例えば、第3電極15Bと同じ平面形状を有しており、平面視で第3電極15Bに重なる位置に設けられている。即ち、遮光膜17は、半導体膜12の少なくともチャネル領域12aおよびLDD領域12bとゲート電極14とを覆っている。遮光膜17は、例えば、遮光性の高融点金属または高融点金属シリサイド化物により構成されている。遮光性の高融点金属としては、例えば、タングステンが挙げられ、遮光性の高融点金属シリサイド化物としては、例えば、タングステンシリサイドが挙げられる。 The light shielding film 17 on the storage capacitor Cs is for preventing light irradiation to the transistor Tr. For example, the light shielding film 17 has the same planar shape as the third electrode 15B, and is provided at a position overlapping the third electrode 15B in plan view. That is, the light shielding film 17 covers at least the channel region 12 a and the LDD region 12 b of the semiconductor film 12 and the gate electrode 14. The light shielding film 17 is made of, for example, a light-shielding refractory metal or a refractory metal silicide. An example of the light-shielding refractory metal is tungsten, and an example of the light-shielding refractory metal silicide is tungsten silicide.
 第3層間絶縁膜ICは、遮光膜17および保持容量Csを覆って、支持基板11の全面にわたり設けられている。第3層間絶縁膜ICは、第1層間絶縁膜IA,第2層間絶縁膜IBと同様に、例えば酸化シリコンにより構成されている。90nm以上の厚みを有する第3層間絶縁膜ICを設けることにより、耐圧不良の発生を抑えることができる。 The third interlayer insulating film IC is provided over the entire surface of the support substrate 11 so as to cover the light shielding film 17 and the storage capacitor Cs. The third interlayer insulating film IC is made of, for example, silicon oxide, like the first interlayer insulating film IA and the second interlayer insulating film IB. Providing the third interlayer insulating film IC having a thickness of 90 nm or more can suppress the occurrence of a breakdown voltage failure.
 第3層間絶縁膜ICは、例えば20nm~30nmの厚みの窒化シリコン膜により構成するようにしてもよい。例えば酸化シリコン膜よりも高い誘電率を有する第3層間絶縁膜ICを用いることにより、第3電極15Bと遮蔽電極18との間に容量が保持される。即ち、第3電極15Bおよび遮蔽電極18により、容量素子が構成される。 The third interlayer insulating film IC may be formed of a silicon nitride film having a thickness of 20 nm to 30 nm, for example. For example, the capacitance is held between the third electrode 15B and the shielding electrode 18 by using the third interlayer insulating film IC having a higher dielectric constant than that of the silicon oxide film. That is, the third electrode 15B and the shielding electrode 18 constitute a capacitive element.
 図5は、保持容量Csおよび信号線DTLとともに、遮蔽電極18の形状を表す平面模式図である。第3層間絶縁膜IC上の遮蔽電極18は、保持容量Csと信号線DTLとの間に配置されている。保持容量Csの第2電極16に電気的に接続された遮蔽電極18には、例えば共通電位が供給されている。詳細は後述するが、本実施の形態では、この遮蔽電極18が設けられているので、信号線DTLから保持容量Cs(第3電極15B)へのカップリングの影響が抑えられる。 FIG. 5 is a schematic plan view showing the shape of the shielding electrode 18 together with the storage capacitor Cs and the signal line DTL. The shield electrode 18 on the third interlayer insulating film IC is disposed between the storage capacitor Cs and the signal line DTL. For example, a common potential is supplied to the shield electrode 18 electrically connected to the second electrode 16 of the storage capacitor Cs. Although details will be described later, in the present embodiment, since the shielding electrode 18 is provided, the influence of the coupling from the signal line DTL to the storage capacitor Cs (third electrode 15B) can be suppressed.
 遮蔽電極18は、例えば、半導体膜12の少なくともチャネル領域12aおよびLDD領域12bとゲート電極14とを覆っている。このような遮蔽電極18は、例えば、遮光性の高融点金属または高融点金属シリサイド化物により構成されている。遮光性の高融点金属としては、例えば、タングステンが挙げられ、遮光性の高融点金属シリサイド化物としては、例えば、タングステンシリサイドが挙げられる。これにより、トランジスタTrへの光の照射を、より効果的に防ぐことができる。遮蔽電極18の厚みは、例えば、75nm~125nmである。例えば、遮蔽電極18は、100nmの厚みを有している。 The shielding electrode 18 covers, for example, at least the channel region 12a and the LDD region 12b of the semiconductor film 12 and the gate electrode 14. Such a shielding electrode 18 is made of, for example, a light-shielding refractory metal or a refractory metal silicide. An example of the light-shielding refractory metal is tungsten, and an example of the light-shielding refractory metal silicide is tungsten silicide. Thereby, irradiation of light to the transistor Tr can be more effectively prevented. The thickness of the shielding electrode 18 is, for example, 75 nm to 125 nm. For example, the shielding electrode 18 has a thickness of 100 nm.
 第4層間絶縁膜IDは、遮蔽電極18を覆って、支持基板11の全面にわたり設けられている。第4層間絶縁膜IDは、第1層間絶縁膜IA,第2層間絶縁膜IBおよび第3層間絶縁膜ICと同様に、例えば酸化シリコンにより構成されている。 The fourth interlayer insulating film ID is provided over the entire surface of the support substrate 11 so as to cover the shielding electrode 18. The fourth interlayer insulating film ID is made of, for example, silicon oxide, like the first interlayer insulating film IA, the second interlayer insulating film IB, and the third interlayer insulating film IC.
 第4層間絶縁膜ID上の信号線DTLは、平面視で第3電極15Bに重なる位置に配置されており、前述のように、信号線DTLと保持容量Csとの間に遮蔽電極18が設けられている。この信号線DTLは、例えば半導体膜12の延在方向と平行方向(図2のY方向)に延在しており、遮蔽電極18を間にして、半導体膜12に対向して設けられている。信号線DTLは、第4層間絶縁膜ID、第3層間絶縁膜ICおよび第2層間絶縁膜IBを貫通する接続孔H2を介して半導体膜12のソース領域に電気的に接続されている。信号線DTLは、信号線電位が供給されるようになっている。信号線DTLは、例えばタングステンシリサイド(WSi),アルミニウム(Al),チタン(Ti)または銅(Cu)等の金属材料により構成されている。複数の金属を含む積層膜により信号線DTLを構成するようにしてもよい。信号線DTLの厚みは、例えば100nm~1000nmである。 The signal line DTL on the fourth interlayer insulating film ID is disposed at a position overlapping the third electrode 15B in plan view, and the shielding electrode 18 is provided between the signal line DTL and the storage capacitor Cs as described above. It has been. The signal line DTL extends, for example, in a direction parallel to the extending direction of the semiconductor film 12 (Y direction in FIG. 2), and is provided to face the semiconductor film 12 with the shielding electrode 18 therebetween. . The signal line DTL is electrically connected to the source region of the semiconductor film 12 through a connection hole H2 that penetrates the fourth interlayer insulating film ID, the third interlayer insulating film IC, and the second interlayer insulating film IB. A signal line potential is supplied to the signal line DTL. The signal line DTL is made of a metal material such as tungsten silicide (WSi), aluminum (Al), titanium (Ti), or copper (Cu). The signal line DTL may be configured by a laminated film including a plurality of metals. The thickness of the signal line DTL is, for example, 100 nm to 1000 nm.
 第4層間絶縁膜ID上には、信号線DTLと同層に、例えば、第1接続配線19Aおよび第2接続配線19Bが設けられている。第1接続配線19Aは、保持容量Csの第1電極15Aと第3電極15Bとを電気的に接続するためのものである。第1接続配線19Aは、第4層間絶縁膜IDおよび第3層間絶縁膜ICに設けられた接続孔H5,H6を介して第1電極15A,第3電極15Bに電気的に接続されている。第2接続配線19Bは、第2電極16と遮蔽電極18とを電気的に接続するためのものである。第2接続配線19Bは、第4層間絶縁膜IDに設けられた接続孔H7を介して遮蔽電極18に電気的に接続されるとともに、第4層間絶縁膜IDおよび第3層間絶縁膜ICに設けられた接続孔H8を介して第2電極16に電気的に接続されている。第1接続配線19Aおよび第2接続配線19Bは、例えば、信号線DTLと同一工程で形成されており、信号線DTLと同一の材料で構成され、同一の厚みを有している。 On the fourth interlayer insulating film ID, for example, a first connection wiring 19A and a second connection wiring 19B are provided in the same layer as the signal line DTL. The first connection wiring 19A is for electrically connecting the first electrode 15A and the third electrode 15B of the storage capacitor Cs. The first connection wiring 19A is electrically connected to the first electrode 15A and the third electrode 15B through connection holes H5 and H6 provided in the fourth interlayer insulating film ID and the third interlayer insulating film IC. The second connection wiring 19 </ b> B is for electrically connecting the second electrode 16 and the shielding electrode 18. The second connection wiring 19B is electrically connected to the shielding electrode 18 through the connection hole H7 provided in the fourth interlayer insulating film ID, and is provided in the fourth interlayer insulating film ID and the third interlayer insulating film IC. The second electrode 16 is electrically connected through the connection hole H8. For example, the first connection wiring 19A and the second connection wiring 19B are formed in the same process as the signal line DTL, are made of the same material as the signal line DTL, and have the same thickness.
 平坦化層10Pは、駆動基板10の表面を平坦化するためのものであり、例えば、駆動基板10の全面に設けられている。この平坦化層10Pは、例えば、エポキシ樹脂またはアクリル樹脂等により構成されている。 The planarization layer 10P is for planarizing the surface of the drive substrate 10, and is provided on the entire surface of the drive substrate 10, for example. The planarizing layer 10P is made of, for example, an epoxy resin or an acrylic resin.
 平坦化層10P上の画素電極10Eは、画素(後述の図11の画素2)毎に配設されており、例えばトランジスタTrに電気的に接続されている。この画素電極10Eは、例えば透明導電膜により構成されている。透明導電膜としては、例えば、インジウム錫酸化物(ITO),インジウム亜鉛酸化物(IZO),酸化亜鉛(ZnO)またはインジウムガリウム亜鉛含有酸化物(IGZO)等が挙げられる。 The pixel electrode 10E on the planarization layer 10P is provided for each pixel (pixel 2 in FIG. 11 described later), and is electrically connected to, for example, the transistor Tr. The pixel electrode 10E is made of, for example, a transparent conductive film. Examples of the transparent conductive film include indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), and indium gallium zinc-containing oxide (IGZO).
 画素電極10Eを覆う保護層10Cは、画素電極10Eの腐食を防止する役割を担っている。この保護層10Cは、配向膜10AF,20AFの構成材料よりも化学的に安定な無機材料により構成されていることが好ましい。具体的には、保護層10Cの構成材料として、例えば、酸化シリコン(SiO2)または窒化シリコン(SiN)を用いることができる。保護層10Cの厚みは、例えば30nm~70nmである。保護層10Cは、蒸着法よりも化学的に安定な手法を用いて形成することが好ましく、例えば、CVD法またはスパッタ法により形成することができる。 The protective layer 10C that covers the pixel electrode 10E plays a role of preventing the corrosion of the pixel electrode 10E. The protective layer 10C is preferably made of an inorganic material that is chemically more stable than the constituent materials of the alignment films 10AF and 20AF. Specifically, for example, silicon oxide (SiO 2 ) or silicon nitride (SiN) can be used as a constituent material of the protective layer 10C. The thickness of the protective layer 10C is, for example, 30 nm to 70 nm. The protective layer 10C is preferably formed using a method that is chemically more stable than vapor deposition, and can be formed by, for example, CVD or sputtering.
 配向膜10AFは、保護層10Cと液晶層30との間に設けられ、配向膜20AFは、対向電極20Eと液晶層30との間に設けられている。この配向膜10AF,20AFは、液晶層30の配向制御を行うためのものであり、例えばシリコン酸化物等の無機材料により構成されている。配向膜10AF,20AFの厚みは、例えば、120nm~360nm程度である。配向膜10AF,20AFは、例えば蒸着法を用いて形成することができる。 The alignment film 10AF is provided between the protective layer 10C and the liquid crystal layer 30, and the alignment film 20AF is provided between the counter electrode 20E and the liquid crystal layer 30. The alignment films 10AF and 20AF are for controlling the alignment of the liquid crystal layer 30 and are made of an inorganic material such as silicon oxide. The thickness of the alignment films 10AF and 20AF is, for example, about 120 nm to 360 nm. The alignment films 10AF and 20AF can be formed using, for example, a vapor deposition method.
 液晶層30は、配向膜10AFと配向膜20AFとの間に設けられている。例えばVA(Vertical Alignment:垂直配向)モード,TN(Twisted Nematic)モード,ECB(Electrically controlled birefringence)モード,FFS(Fringe Field Switching)モードあるいはIPS(In Plane Switching)モード等により駆動される液晶により構成されている。 The liquid crystal layer 30 is provided between the alignment film 10AF and the alignment film 20AF. For example, it is composed of liquid crystal driven in VA (Vertical Alignment) mode, TN (Twisted Nematic) mode, ECB (Electrically controlled ring birefringence) mode, FFS (Fringe Field Switching) mode or IPS (In Plane Switching) mode. ing.
 対向電極20Eは、例えば全ての画素に共通して設けられ、共通電位に保持されている。この対向電極20Eおよび画素電極10Eにより、液晶層30へ映像電圧が供給されるようになっている。対向電極20Eには、上記画素電極10Eと同様に、例えば、透明導電材料を用いることができる。 The counter electrode 20E is provided in common to all pixels, for example, and is held at a common potential. A video voltage is supplied to the liquid crystal layer 30 by the counter electrode 20E and the pixel electrode 10E. For the counter electrode 20E, for example, a transparent conductive material can be used in the same manner as the pixel electrode 10E.
 対向基板20は、例えば、支持基板11と同様に、石英,ガラス,シリコンまたはプラスチックフィルムなどの板状部材により構成されている。対向基板20と対向電極20Eとの間には、カラーフィルタ層,ブラックマトリクス層およびオーバーコート層等が設けられていてもよい。 The counter substrate 20 is made of a plate-like member such as quartz, glass, silicon, or a plastic film, for example, like the support substrate 11. A color filter layer, a black matrix layer, an overcoat layer, and the like may be provided between the counter substrate 20 and the counter electrode 20E.
 偏光板10PZ,20PZは、例えばクロスニコル配置されており、所定の振動方向の光(偏光)のみが偏光板10PZ,20PZを通過できるようになっている。 The polarizing plates 10PZ and 20PZ are arranged in, for example, a crossed Nicols, so that only light (polarized light) in a predetermined vibration direction can pass through the polarizing plates 10PZ and 20PZ.
(動作)
 液晶表示パネル1では、液晶層30での光透過率が画素毎に制御され、入力された画像信号に応じたコントラストの光が出射されるようになっている。トランジスタTrは、画素電極10Eに電気的に接続されており、画素電極10Eをスイッチング制御する。
(Operation)
In the liquid crystal display panel 1, the light transmittance in the liquid crystal layer 30 is controlled for each pixel, and light having a contrast corresponding to the input image signal is emitted. The transistor Tr is electrically connected to the pixel electrode 10E, and performs switching control of the pixel electrode 10E.
(作用・効果)
 本実施の形態の液晶表示パネル1では、信号線電位が共有される信号線DTLと、保持容量Csを構成する第3電極15B(画素電位)との間に遮蔽電極18(共通電位)が設けられているので、信号線DTLから第3電極15Bへのカップリングの影響が軽減される。以下、これについて、比較例(比較例1,2)を用いて詳細に説明する。
(Action / Effect)
In the liquid crystal display panel 1 of the present embodiment, the shielding electrode 18 (common potential) is provided between the signal line DTL sharing the signal line potential and the third electrode 15B (pixel potential) constituting the storage capacitor Cs. Therefore, the influence of the coupling from the signal line DTL to the third electrode 15B is reduced. Hereinafter, this will be described in detail using comparative examples (Comparative Examples 1 and 2).
 図6は、比較例1に係る駆動基板(駆動基板101)の模式的な断面構成を表したものである。この駆動基板101は、第1電極115A、第2電極116および第3電極115Bがこの順に積層された保持容量Csを有している。第1電極115Aおよび第3電極115Bは、第1接続配線119Aを介して電気的に接続されており、例えば共通電位に保持されている。第2電極116は、接続孔H100を介して半導体膜12に電気的に接続されているこの第2電極116には、画素電位を供給する第2接続配線119Bが電気的に接続されている。 FIG. 6 illustrates a schematic cross-sectional configuration of a drive substrate (drive substrate 101) according to Comparative Example 1. The drive substrate 101 has a storage capacitor Cs in which the first electrode 115A, the second electrode 116, and the third electrode 115B are stacked in this order. The first electrode 115A and the third electrode 115B are electrically connected via the first connection wiring 119A, and are held at a common potential, for example. The second electrode 116 is electrically connected to the semiconductor film 12 through the connection hole H100, and the second connection wiring 119B for supplying a pixel potential is electrically connected to the second electrode 116.
 このような駆動基板101では、第1電極115A上の第2電極116を半導体膜12に電気的に接続するので、接続孔H100を形成する前に、第1電極115Aのパターニングを行う。第1電極115Aのパターニングを行うと、誘電体膜DFAがレジストにより汚染される。あるいは、誘電体膜DFAに形成された酸化膜を除去するため、フッ酸処理等を施すと、誘電体膜DFA表面の損傷が生じる。これらレジスト汚染および誘電体膜DFA表面の損傷により、保持容量Csにリークが発生するおそれがある。また、レジスト汚染および誘電体膜DFA表面の損傷の影響を抑えるため、第2電極116を2回に分けて成膜することも考え得るが、この場合には、工程数が増える。 In such a drive substrate 101, since the second electrode 116 on the first electrode 115A is electrically connected to the semiconductor film 12, the first electrode 115A is patterned before the connection hole H100 is formed. When the first electrode 115A is patterned, the dielectric film DFA is contaminated by the resist. Alternatively, when the hydrofluoric acid treatment or the like is performed to remove the oxide film formed on the dielectric film DFA, the surface of the dielectric film DFA is damaged. Due to the resist contamination and the damage on the surface of the dielectric film DFA, there is a possibility that leakage occurs in the storage capacitor Cs. In order to suppress the influence of resist contamination and damage to the surface of the dielectric film DFA, the second electrode 116 may be formed in two steps, but in this case, the number of steps increases.
 図7は、比較例2に係る駆動基板(駆動基板102)の模式的な断面構成を表したものである。この駆動基板102の保持容量Csでは、第1電極15Aが接続孔H1を介して半導体膜12に電気的に接続されている。このような駆動基板102では、第2電極16と半導体膜12とは接続されないので、誘電体膜DFAのレジスト汚染および表面の損傷等は発生しない。しかしながら、第1電極15Aに電気的に接続された第3電極15B(画素電位)は、信号線DTL(信号線電位)から縦電界の影響を受け、これらの間にカップリングが生じやすい。このため、駆動基板102ではクロストーク等の画質不良が発生するおそれがある。 FIG. 7 shows a schematic cross-sectional configuration of a drive substrate (drive substrate 102) according to Comparative Example 2. In the storage capacitor Cs of the drive substrate 102, the first electrode 15A is electrically connected to the semiconductor film 12 through the connection hole H1. In such a drive substrate 102, since the second electrode 16 and the semiconductor film 12 are not connected, resist contamination and surface damage of the dielectric film DFA do not occur. However, the third electrode 15B (pixel potential) electrically connected to the first electrode 15A is affected by a vertical electric field from the signal line DTL (signal line potential), and coupling is likely to occur between them. For this reason, image quality such as crosstalk may occur in the drive substrate 102.
 これに対し、本実施の形態では、信号線DTLと第3電極15Bとの間に、遮蔽電極18(共通電位)を設けるようにしたので、信号線DTLから第3電極15Bへの縦電界が遮蔽され、これらの間のカップリングが生じにくくなる。これにより、液晶表示パネル1では、信号線DTLと第3電極15Bとの間のカップリングに起因したクロストーク等の画質不良の発生を抑えることができる。 In contrast, in the present embodiment, since the shielding electrode 18 (common potential) is provided between the signal line DTL and the third electrode 15B, a vertical electric field from the signal line DTL to the third electrode 15B is generated. It is shielded and the coupling between them is less likely to occur. Thereby, in the liquid crystal display panel 1, the occurrence of image quality defects such as crosstalk due to the coupling between the signal line DTL and the third electrode 15B can be suppressed.
 図8は、駆動基板10と駆動基板101との保持容量Csのリーク電流を表している。駆動基板10では、第1電極15Aを半導体膜12に電気的に接続するので、レジスト汚染および誘電体膜DFA表面の損傷等に起因した保持容量Csのリーク電流の発生を抑えることができる。 FIG. 8 shows the leakage current of the storage capacitor Cs between the drive substrate 10 and the drive substrate 101. In the drive substrate 10, the first electrode 15 </ b> A is electrically connected to the semiconductor film 12, so that it is possible to suppress the occurrence of a leakage current of the storage capacitor Cs due to resist contamination and damage to the surface of the dielectric film DFA.
 図9Aは、駆動基板10および駆動基板102の縦クロストークを表したものである。図9Aの縦軸は下記式(1)により求められるクロストーク値CTK(%)を表す。式(1)のWi,Wi’は、図9Bに示したように、黒ウィンドウの周囲の、隣り合うウィンドウの輝度を表している。駆動基板10では、遮蔽電極18が設けられているので、信号線DTLから第3電極15Bへの縦電界の影響が軽減され、縦クロストークの発生を抑えることができる。

CTK(%) = { (Wi’- Wi)/Wi } × 100・・・(1)
FIG. 9A shows the vertical crosstalk between the driving substrate 10 and the driving substrate 102. The vertical axis in FIG. 9A represents the crosstalk value CTK (%) obtained by the following equation (1). Wi and Wi ′ in Expression (1) represent the luminance of adjacent windows around the black window, as shown in FIG. 9B. In the drive substrate 10, since the shielding electrode 18 is provided, the influence of the vertical electric field from the signal line DTL to the third electrode 15B is reduced, and the occurrence of vertical crosstalk can be suppressed.

CTK (%) = {(Wi′−Wi) / Wi} × 100 (1)
 以上説明したように、本実施の形態では、第3電極15B(画素電位)と信号線DTL(信号線電位)との間に遮蔽電極18を設けるようにしたので、信号線DTLから第3電極15Bへのカップリングの影響を抑えることができる。よって、画質不良の発生を抑えることが可能となる。 As described above, in the present embodiment, since the shielding electrode 18 is provided between the third electrode 15B (pixel potential) and the signal line DTL (signal line potential), the third electrode from the signal line DTL is provided. The influence of coupling to 15B can be suppressed. Therefore, it is possible to suppress the occurrence of image quality defects.
 更に、遮蔽電極18に遮光性材料を用いることにより、半導体膜12への斜め方向の光の入射が抑えられ、光リークの発生を抑えることができる。加えて、第3電極15Bを覆う遮光膜17を設けることにより、より効果的に半導体膜12への斜め方向の光の入射を抑えることができる。 Furthermore, by using a light shielding material for the shielding electrode 18, the incidence of light in the oblique direction to the semiconductor film 12 can be suppressed, and the occurrence of light leakage can be suppressed. In addition, by providing the light shielding film 17 that covers the third electrode 15B, it is possible to more effectively suppress the incidence of light in the oblique direction to the semiconductor film 12.
 また、第1電極15A、第2電極16および第3電極15Bにより、積層型の保持容量Csを構成しているので、占有面積を小さくしつつ、大きな容量を保持することができる。したがって、液晶表示パネル1の開口率を高め、あるいは、ピッチを狭くすることが可能となる。 In addition, since the first storage electrode 15A, the second electrode 16, and the third electrode 15B form a stacked storage capacitor Cs, it is possible to maintain a large capacity while reducing the occupied area. Therefore, the aperture ratio of the liquid crystal display panel 1 can be increased or the pitch can be reduced.
〔適用例〕
 本技術の液晶表示パネル1は、例えば投射型表示装置等の電子機器に適用することができる。
[Application example]
The liquid crystal display panel 1 of the present technology can be applied to an electronic device such as a projection display device.
 図10は、光変調素子として液晶表示パネル1が適用された投射型表示装置(投射型表示装置200)の構成例を示す図である。この投射型表示装置200は、例えばスクリーンに画像を投射する表示装置である。投射型表示装置200は、例えばPC等のコンピュータや各種画像プレーヤ等の外部の画像供給装置にI/F(インターフェイス)を介して接続されており、このI/Fに入力される画像信号に基づいて、スクリーン等への投影を行うものである。なお、以下に説明する投射型表示装置200の構成は一例であり、本技術に係る投射型表示装置は、このような構成に限定されるものではない。 FIG. 10 is a diagram illustrating a configuration example of a projection display device (projection display device 200) to which the liquid crystal display panel 1 is applied as a light modulation element. The projection display device 200 is a display device that projects an image on a screen, for example. The projection display device 200 is connected to an external image supply device such as a computer such as a PC or various image players via an I / F (interface), and is based on an image signal input to the I / F. Projection onto a screen or the like. The configuration of the projection display device 200 described below is an example, and the projection display device according to the present technology is not limited to such a configuration.
 投射型表示装置200は、光源211、マルチレンズアレイ212、PbSアレイ213、フォーカスレンズ214、ミラー215、ダイクロイックミラー216、217、光変調素子218a~218c、ダイクロイックプリズム219、および投写レンズ220を備える。光変調素子218a~218cに、例えば上記実施の形態の液晶表示パネル1が用いられている。 The projection display device 200 includes a light source 211, a multi-lens array 212, a PbS array 213, a focus lens 214, a mirror 215, dichroic mirrors 216 and 217, light modulation elements 218a to 218c, a dichroic prism 219, and a projection lens 220. For example, the liquid crystal display panel 1 of the above-described embodiment is used for the light modulation elements 218a to 218c.
 光源211は、発光部211aによって発光された光を、リフレクタ211bによってマルチレンズアレイ212に対して出射する。マルチレンズアレイ212は、複数のレンズ素子がアレイ状に設けられた構造であり、光源211から出射された光を集光する。PbSアレイ213は、マルチレンズアレイ212によって集光された光を、所定の偏光方向の光、例えばP偏光波に偏光する。フォーカスレンズ214は、PbSアレイ213によって所定の偏光方向の光に変換された光を集光する。 The light source 211 emits the light emitted by the light emitting unit 211a to the multi-lens array 212 by the reflector 211b. The multi-lens array 212 has a structure in which a plurality of lens elements are provided in an array, and condenses light emitted from the light source 211. The PbS array 213 polarizes the light collected by the multi-lens array 212 into light having a predetermined polarization direction, for example, a P-polarized wave. The focus lens 214 condenses the light converted into light having a predetermined polarization direction by the PbS array 213.
 ダイクロイックミラー216は、フォーカスレンズ214、ミラー215を介して入射してきた光のうちの赤色光Rを透過し、緑色光G、青色光Bを反射する。ダイクロイックミラー216によって透過された赤色光Rは、ミラー215を介して光変調素子218aに導かれる。 The dichroic mirror 216 transmits red light R out of light incident through the focus lens 214 and the mirror 215 and reflects green light G and blue light B. The red light R transmitted by the dichroic mirror 216 is guided to the light modulation element 218a through the mirror 215.
 ダイクロイックミラー217は、ダイクロイックミラー216によって反射された光のうちの青色光Bを透過し、緑色光Gを反射する。ダイクロイックミラー217によって反射された緑色光Gは、光変調素子218bに導かれる。一方、ダイクロイックミラー217によって透過された青色光Bは、ミラー215を介して光変調素子218cに導かれる。 The dichroic mirror 217 transmits the blue light B out of the light reflected by the dichroic mirror 216 and reflects the green light G. The green light G reflected by the dichroic mirror 217 is guided to the light modulation element 218b. On the other hand, the blue light B transmitted by the dichroic mirror 217 is guided to the light modulation element 218 c via the mirror 215.
 光変調素子218a~218cの各々は、入射された各色光を光変調し、光変調された各色光をダイクロイックプリズム219に入射する。ダイクロイックプリズム219は、光変調されて入射してきた各色光を1つの光軸に合成する。合成された各色光は、投写レンズ220を介してスクリーン等に投影される。 Each of the light modulation elements 218a to 218c light-modulates each incident color light, and the light-modulated color light enters the dichroic prism 219. The dichroic prism 219 synthesizes each color light that has been incident after being light-modulated into one optical axis. Each synthesized color light is projected onto a screen or the like via the projection lens 220.
 図11は、図10の光変調素子218a~218cの全体構成の一例を表したものである。光変調素子218a~218cは、例えば、上述した液晶表示パネル1と、液晶表示パネル1を駆動する駆動回路40とを備えたものである。駆動回路40は、表示制御部41と、データドライバ42と、ゲートドライバ43とを有している。 FIG. 11 shows an example of the overall configuration of the light modulation elements 218a to 218c of FIG. The light modulation elements 218a to 218c include, for example, the above-described liquid crystal display panel 1 and a drive circuit 40 that drives the liquid crystal display panel 1. The drive circuit 40 includes a display control unit 41, a data driver 42, and a gate driver 43.
 液晶表示パネル1は、複数の画素2がマトリクス状に形成された画素部1Aと、その周辺部1Bとを有するものである。液晶表示パネル1は、各画素2をデータドライバ42およびゲートドライバ43によってアクティブ駆動することにより、外部から入力された映像信号Dinに基づく画像を表示するものである。 The liquid crystal display panel 1 has a pixel portion 1A in which a plurality of pixels 2 are formed in a matrix and a peripheral portion 1B. The liquid crystal display panel 1 displays an image based on a video signal Din input from the outside by actively driving each pixel 2 by a data driver 42 and a gate driver 43.
 液晶表示パネル1は、行方向に延在する複数の走査線WSLと、列方向に延在する複数の信号線DTLと、行方向に延在する複数の共通電位線COMとを有している。信号線DTLと走査線WSLとの交差部分に対応して、画素2が設けられている。各信号線DTLは、データドライバ42の出力端(図示せず)に接続されている。各走査線WSLは、ゲートドライバ43の出力端(図示せず)に接続されている。各共通電位線COMは、例えば、固定の電位を出力する回路の出力端(図示せず)に接続されている。 The liquid crystal display panel 1 includes a plurality of scanning lines WSL extending in the row direction, a plurality of signal lines DTL extending in the column direction, and a plurality of common potential lines COM extending in the row direction. . Pixels 2 are provided corresponding to the intersections between the signal lines DTL and the scanning lines WSL. Each signal line DTL is connected to an output end (not shown) of the data driver 42. Each scanning line WSL is connected to an output terminal (not shown) of the gate driver 43. Each common potential line COM is connected to, for example, an output terminal (not shown) of a circuit that outputs a fixed potential.
 表示制御部41は、例えば供給される映像信号Dinを1画面ごと(1フレームの表示ごと)にフレームメモリに格納して保持するものである。表示制御部41は、また、例えば、液晶表示パネル1を駆動するデータドライバ42およびゲートドライバ43が連動して動作するように制御する機能を有している。具体的には、表示制御部41は、例えば、データドライバ42に走査タイミング制御信号を供給し、データドライバ42に、フレームメモリに保持されている画像信号に基づいた1水平ライン分の画像信号と表示タイミング制御信号を供給するようになっている。 The display controller 41 stores, for example, the supplied video signal Din in a frame memory for each screen (for each display of one frame). For example, the display control unit 41 has a function of controlling the data driver 42 and the gate driver 43 that drive the liquid crystal display panel 1 to operate in conjunction with each other. Specifically, the display control unit 41 supplies, for example, a scanning timing control signal to the data driver 42, and the data driver 42 receives an image signal for one horizontal line based on the image signal held in the frame memory. A display timing control signal is supplied.
 データドライバ42は、例えば表示制御部41から供給される1水平ライン分の映像信号Dinを、各画素2に信号電圧として供給するものである。具体的には、データドライバ42は、例えば、映像信号Dinに対応する信号電圧を、ゲートドライバ43により選択された1水平ラインを構成する各画素2に、信号線DTLを介してそれぞれ供給するものである。 The data driver 42 supplies, for example, a video signal Din for one horizontal line supplied from the display control unit 41 to each pixel 2 as a signal voltage. Specifically, the data driver 42 supplies, for example, a signal voltage corresponding to the video signal Din to each pixel 2 constituting one horizontal line selected by the gate driver 43 via the signal line DTL. It is.
 ゲートドライバ43は、例えば表示制御部41から供給される走査タイミング制御信号に応じて、駆動対象の画素2を選択する機能を有している。具体的には、ゲートドライバ43は、例えば、走査線WSLを介して、選択パルスを画素2のトランジスタTrのゲート電極14に印加することにより、画素部1Aにマトリックス状に形成されている画素2のうちの1行を駆動対象として選択するようになっている。そして、これらの画素2では、データドライバ42から供給される信号電圧に応じて、1水平ラインの表示がなされる。このようにして、ゲートドライバ43は、例えば、時分割的に1水平ラインずつ順次走査を行い、表示領域全体に亘った表示を行うようになっている。 The gate driver 43 has a function of selecting the pixel 2 to be driven according to a scanning timing control signal supplied from the display control unit 41, for example. Specifically, the gate driver 43 applies, for example, a selection pulse to the gate electrode 14 of the transistor Tr of the pixel 2 via the scanning line WSL, thereby the pixel 2 formed in a matrix in the pixel portion 1A. One row is selected as a drive target. In these pixels 2, one horizontal line is displayed according to the signal voltage supplied from the data driver 42. In this way, for example, the gate driver 43 sequentially scans one horizontal line at a time in a time-division manner, and performs display over the entire display area.
 次に、画素2の回路構成について説明する。図12は、画素2の回路構成の一例を表わしたものである。各画素2には、画素回路4が設けられている。各画素回路4は、走査線WSLおよび信号線DTLの交差部分に対応して設けられている。画素回路4は、画素2に信号電圧を書き込むトランジスタTrと、画素2に書き込んだ電圧を保持する保持容量Csとにより構成されている。保持容量Csの一方(第1電極15A,第3電極15B)は、半導体膜12のドレイン領域に接続されており、他方(第2電極16)は、共通電位線COMに接続されている。 Next, the circuit configuration of the pixel 2 will be described. FIG. 12 illustrates an example of a circuit configuration of the pixel 2. Each pixel 2 is provided with a pixel circuit 4. Each pixel circuit 4 is provided corresponding to the intersection of the scanning line WSL and the signal line DTL. The pixel circuit 4 includes a transistor Tr that writes a signal voltage to the pixel 2 and a storage capacitor Cs that holds the voltage written to the pixel 2. One of the storage capacitors Cs (first electrode 15A and third electrode 15B) is connected to the drain region of the semiconductor film 12, and the other (second electrode 16) is connected to the common potential line COM.
 投射型表示装置200では、色の3原色である赤、緑、青の3色に対応した3つの光変調素子218a~218cが組み合わされ、あらゆる色が表示される。即ち、投射型表示装置200は、いわゆる3板式の投射型表示装置である。 In the projection display device 200, three light modulation elements 218a to 218c corresponding to the three primary colors red, green, and blue are combined to display all colors. That is, the projection display device 200 is a so-called three-plate projection display device.
 液晶表示パネル1は、上記投射型表示装置の他、テレビジョン装置、デスクトップ型のパーソナルコンピュータのモニタ、ノート型パーソナルコンピュータ、ビデオカメラおよびデジタルスチルカメラなどの撮像装置、PDA(Personal Digital Assistant),携帯電話機およびスマートフォン等の電子機器にも適用可能である。 In addition to the projection display device, the liquid crystal display panel 1 includes a television device, a desktop personal computer monitor, a notebook personal computer, an imaging device such as a video camera and a digital still camera, a PDA (Personal Digital Assistant), a mobile phone. The present invention can also be applied to electronic devices such as telephones and smartphones.
 以上、実施の形態を挙げて本技術を説明したが、本技術は上記実施の形態に限定されるものではなく、種々変形可能である。例えば、上記実施の形態において例示した液晶表示パネルの構成要素、配置および数等は、あくまで一例であり、全ての構成要素を備える必要はなく、また、他の構成要素を更に備えていてもよい。 Although the present technology has been described with reference to the embodiment, the present technology is not limited to the above-described embodiment, and various modifications can be made. For example, the components, arrangement, number, and the like of the liquid crystal display panel exemplified in the above embodiment are merely examples, and it is not necessary to include all the components, and may further include other components. .
 また、上記実施の形態では、表示層として液晶層を有する表示パネルを例に挙げて説明したが、これに限らず、有機EL(Electro  Luminescence)層または電気泳動層等の他の表示層に適用することも可能である。 In the above embodiment, a display panel having a liquid crystal layer as a display layer has been described as an example. However, the present invention is not limited to this, and the present invention is applied to other display layers such as an organic EL (Electro Luminescence) layer or an electrophoretic layer. It is also possible to do.
 更に、半導体膜12は、結晶シリコンおよびアモルファスシリコン以外の材料により構成するようにしてもよく、例えば、酸化物半導体材料または有機半導体材料等により構成するようにしてもよい。 Furthermore, the semiconductor film 12 may be made of a material other than crystalline silicon and amorphous silicon, for example, an oxide semiconductor material or an organic semiconductor material.
 なお、本明細書に記載された効果はあくまで例示であってこれに限定されるものではなく、また他の効果があってもよい。 It should be noted that the effects described in the present specification are merely examples and are not limited to these, and other effects may be obtained.
 なお、本技術は、以下のような構成も可能である。
(1)
 液晶層と、
 チャネル領域が設けられた半導体膜を有し、前記液晶層を画素毎に駆動するトランジスタと、
 前記半導体膜の前記チャネル領域を覆うとともに、前記半導体膜に電気的に接続された第1電極と、
 前記第1電極に対向する第2電極と、
 前記第2電極を間にして前記第1電極に対向するとともに、前記第1電極に電気的に接続された第3電極と、
 平面視で、前記第3電極に重なる位置に配置されるとともに、前記第3電極を間にして前記半導体膜に対向する配線と、
 前記配線と前記第3電極との間に設けられ、前記第2電極に電気的に接続された遮蔽電極と
 を備えた液晶表示パネル。
(2)
 前記遮蔽電極は、遮光性材料により構成されている
 前記(1)に記載の液晶表示パネル。
(3)
 更に、前記遮蔽電極および前記第2電極を接続する接続配線を含む
 前記(1)または(2)に記載の液晶表示パネル。
(4)
 前記接続配線は、前記配線と同層に設けられている
 前記(3)に記載の液晶表示パネル。
(5)
 前記配線は信号線電位に保持され、
 前記接続配線には共通電位が供給される
 前記(3)または(4)に記載の液晶表示パネル。
(6)
 更に、前記トランジスタに設けられたゲート電極と、
 前記半導体膜を間にして、前記ゲート電極に対向する走査線とを含む
 前記(1)ないし(5)のうちいずれか1つに記載の液晶表示パネル。
(7)
 前記半導体膜は、前記チャネル領域に隣接するLDD(Lightly Doped Drain)領域を有する
 前記(1)ないし(6)のうちいずれか1つに記載の液晶表示パネル。
(8)
 前記ゲート電極は、前記半導体膜に近い位置から順に、ポリシリコンを含む第1導電膜と、遮光性を有する第2導電膜とを有する
 前記(6)に記載の液晶表示パネル。
(9)
 更に、前記第1電極と前記第2電極との間の第1誘電体膜と、
 前記第2電極と前記第3電極との間の第2誘電体膜とを含む
 前記(1)ないし(8)のうちいずれか1つに記載の液晶表示パネル。
(10)
 更に、前記第3電極を覆う遮光膜を含む
 前記(1)ないし(9)のうちいずれか1つに記載の液晶表示パネル。
(11)
 前記第1電極、前記第2電極および前記第3電極はポリシリコンを含む
 前記(1)ないし(10)のうちいずれか1つに記載の液晶表示パネル。
(12)
 液晶表示パネルを備え、
 前記液晶表示パネルは、
 液晶層と、
 チャネル領域が設けられた半導体膜を有し、前記液晶層を画素毎に駆動するトランジスタと、
 前記半導体膜の前記チャネル領域を覆うとともに、前記半導体膜に電気的に接続された第1電極と、
 前記第1電極に対向する第2電極と、
 前記第2電極を間にして前記第1電極に対向するとともに、前記第1電極に電気的に接続された第3電極と、
 平面視で、前記第3電極に重なる位置に配置されるとともに、前記第3電極を間にして前記半導体膜に対向する配線と、
 前記配線と前記第3電極との間に設けられ、前記第2電極に電気的に接続された遮蔽電極とを含む
 電子機器。
 固体撮像装置。
Note that the present technology may be configured as follows.
(1)
A liquid crystal layer;
A transistor having a semiconductor film provided with a channel region and driving the liquid crystal layer for each pixel;
A first electrode that covers the channel region of the semiconductor film and is electrically connected to the semiconductor film;
A second electrode facing the first electrode;
A third electrode opposed to the first electrode with the second electrode in between and electrically connected to the first electrode;
In a plan view, the wiring is disposed at a position overlapping the third electrode, and the wiring is opposed to the semiconductor film with the third electrode in between.
A liquid crystal display panel, comprising: a shielding electrode provided between the wiring and the third electrode and electrically connected to the second electrode.
(2)
The liquid crystal display panel according to (1), wherein the shielding electrode is made of a light shielding material.
(3)
The liquid crystal display panel according to (1) or (2), further including a connection wiring that connects the shielding electrode and the second electrode.
(4)
The liquid crystal display panel according to (3), wherein the connection wiring is provided in the same layer as the wiring.
(5)
The wiring is held at the signal line potential,
The liquid crystal display panel according to (3) or (4), wherein a common potential is supplied to the connection wiring.
(6)
A gate electrode provided in the transistor;
The liquid crystal display panel according to any one of (1) to (5), including a scanning line facing the gate electrode with the semiconductor film interposed therebetween.
(7)
The liquid crystal display panel according to any one of (1) to (6), wherein the semiconductor film has an LDD (Lightly Doped Drain) region adjacent to the channel region.
(8)
The liquid crystal display panel according to (6), wherein the gate electrode includes, in order from a position close to the semiconductor film, a first conductive film containing polysilicon and a second conductive film having a light shielding property.
(9)
A first dielectric film between the first electrode and the second electrode;
The liquid crystal display panel according to any one of (1) to (8), including a second dielectric film between the second electrode and the third electrode.
(10)
The liquid crystal display panel according to any one of (1) to (9), further including a light shielding film that covers the third electrode.
(11)
The liquid crystal display panel according to any one of (1) to (10), wherein the first electrode, the second electrode, and the third electrode include polysilicon.
(12)
With a liquid crystal display panel,
The liquid crystal display panel is
A liquid crystal layer;
A transistor having a semiconductor film provided with a channel region and driving the liquid crystal layer for each pixel;
A first electrode that covers the channel region of the semiconductor film and is electrically connected to the semiconductor film;
A second electrode facing the first electrode;
A third electrode opposed to the first electrode with the second electrode in between and electrically connected to the first electrode;
In a plan view, the wiring is disposed at a position overlapping the third electrode, and the wiring is opposed to the semiconductor film with the third electrode in between.
An electronic device comprising: a shielding electrode provided between the wiring and the third electrode and electrically connected to the second electrode.
Solid-state imaging device.
 本出願は、日本国特許庁において2017年4月27日に出願された日本特許出願番号第2017-87947号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2017-87947 filed on April 27, 2017 at the Japan Patent Office. The entire contents of this application are incorporated herein by reference. This is incorporated into the application.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (12)

  1.  液晶層と、
     チャネル領域が設けられた半導体膜を有し、前記液晶層を画素毎に駆動するトランジスタと、
     前記半導体膜の前記チャネル領域を覆うとともに、前記半導体膜に電気的に接続された第1電極と、
     前記第1電極に対向する第2電極と、
     前記第2電極を間にして前記第1電極に対向するとともに、前記第1電極に電気的に接続された第3電極と、
     平面視で、前記第3電極に重なる位置に配置されるとともに、前記第3電極を間にして前記半導体膜に対向する配線と、
     前記配線と前記第3電極との間に設けられ、前記第2電極に電気的に接続された遮蔽電極と
     を備えた液晶表示パネル。
    A liquid crystal layer;
    A transistor having a semiconductor film provided with a channel region and driving the liquid crystal layer for each pixel;
    A first electrode that covers the channel region of the semiconductor film and is electrically connected to the semiconductor film;
    A second electrode facing the first electrode;
    A third electrode opposed to the first electrode with the second electrode in between and electrically connected to the first electrode;
    In a plan view, the wiring is disposed at a position overlapping the third electrode, and the wiring is opposed to the semiconductor film with the third electrode in between.
    A liquid crystal display panel, comprising: a shielding electrode provided between the wiring and the third electrode and electrically connected to the second electrode.
  2.  前記遮蔽電極は、遮光性材料により構成されている
     請求項1に記載の液晶表示パネル。
    The liquid crystal display panel according to claim 1, wherein the shielding electrode is made of a light shielding material.
  3.  更に、前記遮蔽電極および前記第2電極を接続する接続配線を含む
     請求項1に記載の液晶表示パネル。
    The liquid crystal display panel according to claim 1, further comprising a connection wiring that connects the shielding electrode and the second electrode.
  4.  前記接続配線は、前記配線と同層に設けられている
     請求項3に記載の液晶表示パネル。
    The liquid crystal display panel according to claim 3, wherein the connection wiring is provided in the same layer as the wiring.
  5.  前記配線は信号線電位に保持され、
     前記接続配線には共通電位が供給される
     請求項3に記載の液晶表示パネル。
    The wiring is held at the signal line potential,
    The liquid crystal display panel according to claim 3, wherein a common potential is supplied to the connection wiring.
  6.  更に、前記トランジスタに設けられたゲート電極と、
     前記半導体膜を間にして、前記ゲート電極に対向する走査線とを含む
     請求項1に記載の液晶表示パネル。
    A gate electrode provided in the transistor;
    The liquid crystal display panel according to claim 1, further comprising a scanning line facing the gate electrode with the semiconductor film interposed therebetween.
  7.  前記半導体膜は、前記チャネル領域に隣接するLDD(Lightly Doped Drain)領域を有する
     請求項1に記載の液晶表示パネル。
    The liquid crystal display panel according to claim 1, wherein the semiconductor film has an LDD (Lightly Doped Drain) region adjacent to the channel region.
  8.  前記ゲート電極は、前記半導体膜に近い位置から順に、ポリシリコンを含む第1導電膜と、遮光性を有する第2導電膜とを有する
     請求項6に記載の液晶表示パネル。
    The liquid crystal display panel according to claim 6, wherein the gate electrode includes, in order from a position close to the semiconductor film, a first conductive film containing polysilicon and a second conductive film having a light shielding property.
  9.  更に、前記第1電極と前記第2電極との間の第1誘電体膜と、
     前記第2電極と前記第3電極との間の第2誘電体膜とを含む
     請求項1に記載の液晶表示パネル。
    A first dielectric film between the first electrode and the second electrode;
    The liquid crystal display panel according to claim 1, comprising a second dielectric film between the second electrode and the third electrode.
  10.  更に、前記第3電極を覆う遮光膜を含む
     請求項1に記載の液晶表示パネル。
    The liquid crystal display panel according to claim 1, further comprising a light-shielding film that covers the third electrode.
  11.  前記第1電極、前記第2電極および前記第3電極はポリシリコンを含む
     請求項1に記載の液晶表示パネル。
    The liquid crystal display panel according to claim 1, wherein the first electrode, the second electrode, and the third electrode include polysilicon.
  12.  液晶表示パネルを備え、
     前記液晶表示パネルは、
     液晶層と、
     チャネル領域が設けられた半導体膜を有し、前記液晶層を画素毎に駆動するトランジスタと、
     前記半導体膜の前記チャネル領域を覆うとともに、前記半導体膜に電気的に接続された第1電極と、
     前記第1電極に対向する第2電極と、
     前記第2電極を間にして前記第1電極に対向するとともに、前記第1電極に電気的に接続された第3電極と、
     平面視で、前記第3電極に重なる位置に配置されるとともに、前記第3電極を間にして前記半導体膜に対向する配線と、
     前記配線と前記第3電極との間に設けられ、前記第2電極に電気的に接続された遮蔽電極とを含む
     電子機器。
    With a liquid crystal display panel,
    The liquid crystal display panel is
    A liquid crystal layer;
    A transistor having a semiconductor film provided with a channel region and driving the liquid crystal layer for each pixel;
    A first electrode that covers the channel region of the semiconductor film and is electrically connected to the semiconductor film;
    A second electrode facing the first electrode;
    A third electrode opposed to the first electrode with the second electrode in between and electrically connected to the first electrode;
    In a plan view, the wiring is disposed at a position overlapping the third electrode, and the wiring is opposed to the semiconductor film with the third electrode in between.
    An electronic device comprising: a shielding electrode provided between the wiring and the third electrode and electrically connected to the second electrode.
PCT/JP2018/014584 2017-04-27 2018-04-05 Liquid crystal display panel and electronic device WO2018198710A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019515199A JP7110182B2 (en) 2017-04-27 2018-04-05 Liquid crystal display panels and electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017087947 2017-04-27
JP2017-087947 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018198710A1 true WO2018198710A1 (en) 2018-11-01

Family

ID=63919803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014584 WO2018198710A1 (en) 2017-04-27 2018-04-05 Liquid crystal display panel and electronic device

Country Status (2)

Country Link
JP (1) JP7110182B2 (en)
WO (1) WO2018198710A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020160208A (en) * 2019-03-26 2020-10-01 セイコーエプソン株式会社 Electro-optic device and electronic apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221071A (en) * 2010-04-05 2011-11-04 Seiko Epson Corp Electro-optic device and electronic equipment
JP2011221119A (en) * 2010-04-06 2011-11-04 Seiko Epson Corp Electro-optic device, electronic equipment, and manufacturing method of electro-optic device
JP2012198386A (en) * 2011-03-22 2012-10-18 Seiko Epson Corp Electro-optic device, projection type display device and electronic equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3358613B2 (en) 2000-03-23 2002-12-24 日本電気株式会社 LCD light valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221071A (en) * 2010-04-05 2011-11-04 Seiko Epson Corp Electro-optic device and electronic equipment
JP2011221119A (en) * 2010-04-06 2011-11-04 Seiko Epson Corp Electro-optic device, electronic equipment, and manufacturing method of electro-optic device
JP2012198386A (en) * 2011-03-22 2012-10-18 Seiko Epson Corp Electro-optic device, projection type display device and electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020160208A (en) * 2019-03-26 2020-10-01 セイコーエプソン株式会社 Electro-optic device and electronic apparatus

Also Published As

Publication number Publication date
JPWO2018198710A1 (en) 2020-03-05
JP7110182B2 (en) 2022-08-01

Similar Documents

Publication Publication Date Title
US9030458B2 (en) Electro-optical device and electronic apparatus
KR101896377B1 (en) Liquid crystal display device having minimized bezzel
JP4306737B2 (en) Electro-optical device substrate, electro-optical device, and electronic apparatus
JP2013080040A (en) Electrooptical device, method for manufacturing electrooptical device, and electronic equipment
JP2007226175A (en) Liquid crystal device and electronic equipment
JP2017072741A (en) Electro-optical device, electronic apparatus, manufacturing method of electro-optical device
TWI274309B (en) Electro-optical device and electronic machine
US8698967B2 (en) Electro-optic device, electronic device, and method of manufacturing electro-optic device
US10241370B2 (en) Semiconductor device and projection-type display unit
JP5176814B2 (en) Electro-optical device, electronic apparatus, and method of manufacturing electro-optical device
JP2008225034A (en) Electro-optical device and electronic equipment
JP2010096966A (en) Electro-optical apparatus, method for manufacturing same, and electronic device
JP4674544B2 (en) Manufacturing method of electro-optical device
JP4857775B2 (en) Electro-optic device
JP7288612B2 (en) Liquid crystal displays and electronic devices
JP5919890B2 (en) Electro-optical device and electronic apparatus
JP7110182B2 (en) Liquid crystal display panels and electronic equipment
JP2012155198A (en) Electro-optic device and electronic apparatus
JP2003280020A (en) Electrooptical device, method for manufacturing the same, and electronic apparatus
US11294222B2 (en) Manufacturing method for electro-optical device, electro-optical device, and electronic apparatus
JP2009069247A (en) Electro-optical apparatus, manufacturing method thereof, electronic equipment, and wiring structure
JP2007065440A (en) Electrooptical device and electronic equipment
JP2020034822A (en) Electro-optical device and electronic apparatus
JP2022079973A (en) Electro-optical device, method for manufacturing electro-optical device, and electronic apparatus
JP5482279B2 (en) Electro-optical device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515199

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790523

Country of ref document: EP

Kind code of ref document: A1