WO2018198674A1 - Light measurement device - Google Patents

Light measurement device Download PDF

Info

Publication number
WO2018198674A1
WO2018198674A1 PCT/JP2018/013729 JP2018013729W WO2018198674A1 WO 2018198674 A1 WO2018198674 A1 WO 2018198674A1 JP 2018013729 W JP2018013729 W JP 2018013729W WO 2018198674 A1 WO2018198674 A1 WO 2018198674A1
Authority
WO
WIPO (PCT)
Prior art keywords
integration
integrator
period
time
exposure
Prior art date
Application number
PCT/JP2018/013729
Other languages
French (fr)
Japanese (ja)
Inventor
増田 敏
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020197031389A priority Critical patent/KR102426522B1/en
Priority to JP2019515183A priority patent/JP7188382B2/en
Publication of WO2018198674A1 publication Critical patent/WO2018198674A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Definitions

  • the present invention relates to an optical measurement device.
  • an optical sensor receives light from the display, outputs a photocurrent according to the received light, an integrator integrates the output photocurrent, and an integrated signal And the measurement value is measured from the integrated signal output by the calculation unit.
  • the integration time indicating the length of the integration period in which the integrator integrates the optical signal.
  • the brightness and chromaticity of the display periodically change with time, including transient response. For this reason, the measurement of the brightness
  • the period of time change of luminance and chromaticity of the display is equal to the reciprocal of the frame rate or the length of the vertical synchronization (Vsync) period. For this reason, the integration time is limited to the reciprocal of the frame rate or an integral multiple of the length of the Vsync period.
  • the period of the time change of the brightness and chromaticity is set to the frame rate in order to measure the correct brightness and chromaticity without being affected by flicker. It is assumed that it is twice the reciprocal of or the length of the Vsync period, and the integration time is limited to an integral multiple of the period.
  • a plurality of gains can be selected in the integrator in order to widen the range of luminance that can be measured, and the selected gain is changed when the exposure is not proper exposure. For example, when the exposure is over or under than the proper exposure, gain down or gain up is performed, respectively.
  • the technique described in Patent Document 1 is an example, and a wide luminance range from low luminance to high luminance can be measured while realizing a high S / N ratio.
  • a neutral density filter in another optical measurement device, in order to widen the range of brightness that can be measured, a neutral density filter (ND filter) can be inserted in the optical path of light incident on the optical sensor, and the exposure is over the proper exposure. In some cases, a neutral density filter is inserted into the optical path to reduce the amount of light incident on the optical sensor.
  • ND filter neutral density filter
  • the conventional optical measuring device has a dimming mechanism (ND mechanism) for inserting an ND filter, which must be able to select a large number of gains in the integrating circuit in order to widen the range of luminance that can be measured.
  • ND mechanism dimming mechanism
  • the integration time is limited as described above, so that the appropriate exposure changes according to the length of the Vsync period, and the saturation value for the luminance changes. . This increases the number of necessary gains and increases the load on the optical measurement device.
  • the range of luminance that can be measured with a small number of gains can also be increased by increasing the gain pitch that indicates the difference between two adjacent gains in a small number of selectable gains.
  • the gain pitch is increased, there arises a problem that a measurement condition occurs in which the exposure is under the proper exposure at the selected gain.
  • the invention described below aims to solve this problem.
  • the problem to be solved by the invention described below is to widen the range of luminance that can be measured by the optical measurement device without complicating the optical measurement device.
  • the optical sensor receives the light from the display and outputs a photocurrent according to the light, and the integrator continuously integrates the photocurrent in time and outputs an integrated signal.
  • Requirement accuracy for measurement values, approximate brightness of light, and period of time change of light brightness and chromaticity are acquired.
  • the exposure time is determined from the required accuracy and approximate brightness.
  • the integration time is determined so that the integrator is not saturated and the exposure time is a common multiple of the period and the integration time.
  • the exposure period consists of at least one integration period, the length of the exposure period is the determined exposure time, the length of each of the at least one integration period is the determined integration time, and the integrator has at least one integration period
  • the integrator is controlled to integrate the photocurrent and output at least one integrated signal.
  • Measured value is calculated from at least one integral signal.
  • the range of luminance that can be measured by the optical measuring device can be expanded without complicating the optical measuring device.
  • 1 is a block diagram illustrating an optical measurement device according to a first embodiment. It is a flowchart which illustrates the flow of measurement in the optical measuring device of 1st Embodiment. It is a figure which illustrates the look-up table (LUT) for determining exposure time from the request
  • LUT look-up table
  • FIG. 1 is a block diagram illustrating an optical measurement device according to the first embodiment.
  • FIG. 2 is a flowchart illustrating a measurement flow in the optical measurement device according to the first embodiment.
  • the optical measurement device 1000 measures the luminance and chromaticity of a display, and includes an optical sensor 1020, an integrator 1021, a control unit 1022, and a peripheral unit 1023.
  • the optical measurement device 1000 may include components other than these components.
  • the optical sensor 1020 receives light from the display and outputs a photocurrent corresponding to the received light. Further, the integrator 1021 integrates the output photocurrent and outputs an integration signal corresponding to the amount of charge accumulated by the integration. Further, the control unit 1022 calculates a measurement value from the output integration signal.
  • the integrator 1021 includes an integration circuit 1040, an integration circuit 1041, a switch 1042, and a switch 1043.
  • Integration circuits 1040 and 1041 integrate the photocurrent.
  • Switches 1042 and 1043 switch an integration circuit that integrates the photocurrent between the integration circuit 1040 and the integration circuit 1041 in accordance with control by the control unit 1022. For this reason, the integrator 1021 can integrate the photocurrent continuously in time without interruption.
  • the integrator 1021 may have a plurality of selectable gains. This further expands the range of luminance that can be measured.
  • the control unit 1022 is a computer that operates according to an installed program, and includes a required accuracy acquisition unit 1060, an approximate luminance acquisition unit 1061, a period acquisition unit 1062, an exposure time determination unit 1063, an integration time determination unit 1064, and an integrator control unit. 1065 and a calculation unit 1066 are provided. Hardware that does not execute the program may be responsible for all or part of the processing performed by the computer.
  • the peripheral unit 1023 includes a display unit 1080 and an operation unit 1081.
  • steps S101 to S105 shown in FIG. 2 are executed.
  • step S101 measurement conditions are acquired.
  • the measurement condition may be acquired from an operation on a hardware switch provided in the operation unit 1081 or acquired from an operation performed using the operation unit 1081 on a graphical user interface (GUI) displayed on the display unit 1080. May be.
  • GUI graphical user interface
  • the required accuracy acquisition unit 1060 acquires the required S / N ratio for the measured value.
  • the requested accuracy acquisition unit 1060 is designated by accepting designation of one mode included in the three modes of the high accuracy mode, the standard mode, and the high speed mode respectively corresponding to the three required S / N ratios.
  • the required S / N ratio corresponding to the mode is acquired.
  • the method for obtaining the required S / N ratio may be changed.
  • the request accuracy acquisition unit 1060 receives a specification of one accuracy range included in a plurality of accuracy ranges respectively corresponding to a plurality of request S / N ratios, thereby request S / O corresponding to the specified accuracy range. You may acquire N ratio.
  • the accuracy range is expressed by, for example, “...% or less”, “...% to.
  • the required accuracy other than the required S / N ratio may be acquired.
  • the period acquisition unit 1062 acquires the Vsync time that is the length of the vertical synchronization (Vsync) period that matches the period of time change of the luminance and chromaticity of the display.
  • the Vsync time is acquired from an operation performed using the operation unit 1081 on the GUI displayed on the display unit 1080.
  • the Vsync frequency may be acquired, and the Vsync time may be acquired from the acquired Vsync frequency.
  • the method for acquiring the Vsync time may be changed.
  • the Vsync signal may be input to the period acquisition unit 1062, and the Vsync time may be acquired from the Vsync signal input to the period acquisition unit 1062.
  • Step S102 the approximate brightness of the light from the display is acquired.
  • Step S102 may be executed simultaneously with step S101.
  • the integrator control unit 1065 controls the integrator 1021. The control is performed so that the integrator 1021 integrates the photocurrent during an initial integration period preceding a plurality of integration periods described later and outputs an initial integration signal.
  • the approximate brightness acquisition unit 1061 acquires the approximate brightness of light from the display from the initial integration signal.
  • the initial integration period may be short.
  • the method of obtaining the approximate brightness may be changed. One example will be described later.
  • the exposure time determination unit 1063 determines the exposure time from the acquired required S / N ratio and the approximate brightness.
  • the exposure time can be changed according to the required S / N.
  • the exposure time may be determined by a function having the required S / N ratio and approximate luminance as variables, or may be determined by a look-up table (LUT).
  • the function is a function represented by, for example, the formula (1).
  • F (required S / N ratio, approximate brightness) included in Expression (1) is an integer.
  • the LUT is a look-up table for determining the exposure time from the required S / N ratio and the approximate brightness shown in FIG. 3, for example.
  • Exposure time Vsync time ⁇ f (required S / N ratio, approximate brightness) (1)
  • the integration time determination unit 1064 sets the maximum desaturation integration time, which is the upper limit of an appropriate integration time that can ensure the S / N ratio without the integrator 1021 being saturated from the acquired approximate brightness. decide. In addition, the integration time determination unit 1064 sets the integration time and the number of repetitions so that the integration time is shorter than the determined maximum unsaturated integration time, and the determined exposure time is the common multiple of the acquired Vsync time and integration time. decide. As a result, the integration time in which the integrator 1021 is not saturated and the exposure time is a common multiple of the Vsync time and the integration time is determined.
  • the integration time is preferably the longest condition that satisfies the above-mentioned conditions that satisfy the expressions (2) and (3).
  • the common multiple is preferably the least common multiple.
  • the determination of the exposure time, the determination of the maximum unsaturated integration time, and the determination of the integration time are performed in separate steps, but may be performed in the same step.
  • the integration time may be directly determined by an LUT that determines the integration time from the required S / N ratio, the Vsync frequency, and the approximate luminance so as to satisfy the above-described condition, as shown in FIG.
  • the integrator control unit 1065 controls the integrator 1021.
  • the exposure period is composed of a plurality of integration periods
  • the number of the plurality of integration periods is the determined number of repetitions
  • the length of the exposure period is the determined exposure time
  • the length of each of the plurality of integration periods The integration time is determined
  • the integrator 1021 integrates the photocurrent during a plurality of integration periods and outputs a plurality of integration signals, respectively. Thereby, the measurement by the determined measurement conditions is performed.
  • the measurement value is calculated and output.
  • the calculation unit 1066 acquires a plurality of integration signal values respectively indicating the magnitudes of the output plurality of integration signals, and calculates the average value of the acquired plurality of integration signal values per unit time. Then, the necessary calculation processing is performed on the value obtained by the conversion, and the measured values of luminance and chromaticity are calculated. Thereby, the measured values of luminance and chromaticity are calculated from the plurality of integrated signals. The method of calculating the measurement values of luminance and chromaticity may be changed. In addition, the computing unit 1066 outputs computed brightness and chromaticity computation values.
  • the number of selectable gains can be reduced, the load on the optical measurement device can be reduced, and the optical measurement device can be simplified. For this reason, the range of luminance that can be measured by the optical measuring device can be expanded without complicating the optical measuring device.
  • FIGS. 5 and 6 shows a display to be measured by the optical measurement device of the first embodiment and a state of an integrator provided in the optical measurement device. It is a timing chart which illustrates the example of the time change of.
  • FIG. 5 shows an example when the Vsync frequency of the display is high.
  • FIG. 6 shows an example when the Vsync frequency of the display is low.
  • an exposure period 1100 having an exposure time necessary for ensuring a required S / N ratio is equally divided into eight Vsync periods 1120.
  • the Vsync time is, for example, about 1 millisecond to 2 seconds.
  • the exposure period 1100 is equally divided into five integration periods 1140. For this reason, the exposure time is a common multiple of the integration time and the Vsync time.
  • the integration time is shorter than the maximum unsaturated integration time.
  • an exposure period 1160 having an exposure time necessary to ensure the required S / N ratio is equally divided into four Vsync periods 1180.
  • the Vsync time is, for example, about 1 millisecond to 2 seconds.
  • the exposure period 1160 is equally divided into five integration periods 1200. For this reason, the exposure time is a common multiple of the integration time and the Vsync time.
  • the integration time is shorter than the maximum unsaturated integration time.
  • FIG. 7 is a timing chart illustrating an example of a time change in the state of the optical measurement device according to the first embodiment and the integrator provided in the optical measurement device.
  • the state of the optical measurement device 1000 changes from the standby state 1220 to the measurement state 1240 at the timing T1 when the measurement command is received from the operator, and the exposure time has elapsed from the timing T1.
  • the measurement state 1240 changes to the standby state 1260.
  • the state of the integrator 1021 changes from the state 1280 in which the integration circuit reset operation is performed at the timing T1 to the state 1300 in which the integration operation is performed, and at the timing T2.
  • the state changes from the state 1300 in which the integration operation is performed to the state 1320 in which the integration circuit reset operation is performed.
  • the integrator 1021 is in the state 1280 and 1320 in which the integration circuit reset operation is being performed when the optical measurement device 1000 is in the standby state 1220 and 1260, respectively, and the optical measurement device 1000 is in the measurement state 1240. In this case, the integration operation is being performed 1300.
  • the integrator 1021 can always integrate the optical signal and output the integrated signal even in the states 1280 and 1320 in which the integration circuit reset operation is performed. For this reason, the integrator control unit 1065 controls the integrator 1021 to integrate the photocurrent and output the standby integration signal in the standby integration period 1340 that repeatedly arrives, and the approximate luminance acquisition unit 1061
  • the approximate luminance may be acquired by regarding the standby integration period that has just arrived as the initial integration period. As a result, the approximate luminance is acquired before the timing T1 at which the measurement is started, so that the time required for the measurement is shortened.
  • the length of the standby integration period 1340 that repeatedly arrives may be the shortest settable time.
  • Optical Measuring Device 1020 Optical Sensor 1021 Integrator 1022 Control Unit 1060 Required Accuracy Acquisition Unit 1061 Approximate Luminance Acquisition Unit 1062 Period Acquisition Unit 1063 Exposure Time Determination Unit 1064 Integration Time Determination Unit 1065 Integrator Control Unit 1066 Operation Unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention broadens the brightness range that can be measured by a light measurement device without making the light measurement device more complicated. In this light measurement device, a light sensor receives light from a display and outputs a photocurrent corresponding to the light. An integrator continuously integrates the photocurrent over time and outputs an integrated signal. A required measured value accuracy, approximate light brightness, and period of variation in light brightness and color over time are acquired. An exposure time is determined from the required accuracy and the approximate brightness. An integration time is determined such that the integrator is not saturated and the exposure time is a common multiple of the period and integration time. The integrator is controlled such that an exposure period includes at least one integration period, the length of the exposure period is the determined exposure time, the individual length of at least one integration period is the determined integration time, and the integrator integrates the photocurrent in at least one integration period and outputs at least one integrated signal for each integration period. A measured value is calculated from the at least one integrated signal.

Description

光計測装置Optical measuring device
 本発明は、光計測装置に関する。 The present invention relates to an optical measurement device.
 ディスプレイの輝度及び色度を計測する光計測装置においては、光センサーがディスプレイからの光を受光し受光した光に応じた光電流を出力し、積分器が出力された光電流を積分し積分信号を出力し、演算部が出力された積分信号から計測値を計測する。しかし、積分器が光信号を積分する積分期間の長さを示す積分時間には、制約がある。 In an optical measurement device that measures the brightness and chromaticity of a display, an optical sensor receives light from the display, outputs a photocurrent according to the received light, an integrator integrates the output photocurrent, and an integrated signal And the measurement value is measured from the integrated signal output by the calculation unit. However, there is a restriction on the integration time indicating the length of the integration period in which the integrator integrates the optical signal.
 ディスプレイの輝度及び色度は、過渡応答を含み、周期的に時間変化する。このため、ディスプレイの輝度及び色度の計測は、ディスプレイの輝度及び色度の周期的な時間変化に同期して行われなければならない。したがって、積分時間は、ディスプレイの輝度及び色度の時間変化の周期の整数倍に制限される。 The brightness and chromaticity of the display periodically change with time, including transient response. For this reason, the measurement of the brightness | luminance and chromaticity of a display must be performed synchronizing with the periodic time change of the brightness | luminance and chromaticity of a display. Therefore, the integration time is limited to an integral multiple of the period of time change of the luminance and chromaticity of the display.
 ディスプレイの輝度及び色度の時間変化の周期は、フレームレートの逆数又は垂直同期(Vsync)期間の長さに一致する。このため、積分時間は、フレームレートの逆数又はVsync期間の長さの整数倍に制限される。ただし、焼き付き防止のために反転駆動が行われる液晶ディスプレイ(LCD)においては、原理上フリッカーが発生する。このため、光計測装置がLCDの輝度及び色度を計測する場合は、フリッカーの影響を受けずに正確な輝度及び色度を計測するために、輝度及び色度の時間変化の周期がフレームレートの逆数の2倍又はVsync期間の長さの2倍であるとみなされ、積分時間が当該周期の整数倍に制限される。 The period of time change of luminance and chromaticity of the display is equal to the reciprocal of the frame rate or the length of the vertical synchronization (Vsync) period. For this reason, the integration time is limited to the reciprocal of the frame rate or an integral multiple of the length of the Vsync period. However, in a liquid crystal display (LCD) in which inversion driving is performed to prevent burn-in, flicker occurs in principle. For this reason, when the optical measuring device measures the brightness and chromaticity of the LCD, the period of the time change of the brightness and chromaticity is set to the frame rate in order to measure the correct brightness and chromaticity without being affected by flicker. It is assumed that it is twice the reciprocal of or the length of the Vsync period, and the integration time is limited to an integral multiple of the period.
 光計測装置においては、計測できる輝度の範囲を広げるために、積分器において複数のゲインを選択できるようにされ、露光が適正露光でない場合には選択されるゲインが変更される。例えば、露光が適正露光よりオーバー又はアンダーである場合にはそれぞれゲインダウン又はゲインアップが行われる。特許文献1に記載された技術は、その一例であり、高いS/N比を実現しながら低輝度から高輝度までの広い輝度の範囲を計測できるようにしている。 In the optical measurement device, a plurality of gains can be selected in the integrator in order to widen the range of luminance that can be measured, and the selected gain is changed when the exposure is not proper exposure. For example, when the exposure is over or under than the proper exposure, gain down or gain up is performed, respectively. The technique described in Patent Document 1 is an example, and a wide luminance range from low luminance to high luminance can be measured while realizing a high S / N ratio.
 また、別の光計測装置においては、計測できる輝度の範囲を広げるために、光センサーに入射する光の光路に減光フィルター(NDフィルター)を挿入できるようにされ、露光が適正露光よりオーバーである場合には減光フィルターが光路に挿入され光センサーに入射する光の光量が減少させられる。 In another optical measurement device, in order to widen the range of brightness that can be measured, a neutral density filter (ND filter) can be inserted in the optical path of light incident on the optical sensor, and the exposure is over the proper exposure. In some cases, a neutral density filter is inserted into the optical path to reduce the amount of light incident on the optical sensor.
特開2005-321313号公報JP 2005-321313 A
 しかし、従来の光計測装置には、計測できる輝度の範囲を広げるために、積分回路において多数のゲインを選択できるようにしなければならない、NDフィルターを挿入するための減光機構(ND機構)を設けなければならない等の問題があった。このため、計測が行われる環境の変動、計測対象の個体ばらつき等に対する補正を行うために、多くの補正値及び演算が必要になり、そのための記憶容量が必要になっていた。例えば、多数のゲインにそれぞれ対応する多数のオフセット・ゲイン補正、環境補正値等が必要になっていた。 However, the conventional optical measuring device has a dimming mechanism (ND mechanism) for inserting an ND filter, which must be able to select a large number of gains in the integrating circuit in order to widen the range of luminance that can be measured. There was a problem such as having to be provided. For this reason, in order to correct for changes in the environment in which the measurement is performed, individual variations in the measurement target, etc., many correction values and calculations are required, and a storage capacity for that is required. For example, a large number of offset / gain corrections, environmental correction values and the like corresponding to a large number of gains are required.
 特に、光計測装置がディスプレイの輝度及び色度を計測する場合は、積分時間が先述のように制限されるため、Vsync期間の長さに応じて適正露光が変化し輝度に対する飽和値が変化する。このため、必要なゲインの数が増加し、光計測装置にかかる負荷が大きくなる。 In particular, when the optical measuring device measures the luminance and chromaticity of the display, the integration time is limited as described above, so that the appropriate exposure changes according to the length of the Vsync period, and the saturation value for the luminance changes. . This increases the number of necessary gains and increases the load on the optical measurement device.
 少数のゲインにより計測できる輝度の範囲を広げることも、選択できる少数のゲインにおいて隣接するふたつのゲインの差を示すゲインピッチを大きくすることにより可能である。しかし、ゲインピッチを大きくした場合は、選択されたゲインにおいて露光が適正露光よりアンダーとなる計測条件が発生するという問題が発生する。 The range of luminance that can be measured with a small number of gains can also be increased by increasing the gain pitch that indicates the difference between two adjacent gains in a small number of selectable gains. However, when the gain pitch is increased, there arises a problem that a measurement condition occurs in which the exposure is under the proper exposure at the selected gain.
 以下で説明する発明は、この問題を解決することを目的とする。以下で説明する発明が解決しようとする課題は、光計測装置を複雑にすることなく光計測装置が計測できる輝度の範囲を広げることである。 The invention described below aims to solve this problem. The problem to be solved by the invention described below is to widen the range of luminance that can be measured by the optical measurement device without complicating the optical measurement device.
 光計測装置においては、光センサーが、ディスプレイからの光を受光し、光に応じた光電流を出力し、積分器が、時間的に連続して光電流を積分し積分信号を出力する。 In the optical measuring device, the optical sensor receives the light from the display and outputs a photocurrent according to the light, and the integrator continuously integrates the photocurrent in time and outputs an integrated signal.
 計測値に対する要求精度、光の概算輝度並びに光の輝度及び色度の時間変化の周期が取得される。 Requirement accuracy for measurement values, approximate brightness of light, and period of time change of light brightness and chromaticity are acquired.
 要求精度及び概算輝度から露光時間が決定される。積分器が飽和せず露光時間が周期及び積分時間の公倍数となるように積分時間が決定される。 The exposure time is determined from the required accuracy and approximate brightness. The integration time is determined so that the integrator is not saturated and the exposure time is a common multiple of the period and the integration time.
 露光期間が少なくともひとつの積分期間からなり、露光期間の長さが決定された露光時間となり、少なくともひとつの積分期間の各々の長さが決定された積分時間となり、積分器が少なくともひとつの積分期間に光電流を積分し少なくともひとつの積分信号をそれぞれ出力するように積分器が制御される。 The exposure period consists of at least one integration period, the length of the exposure period is the determined exposure time, the length of each of the at least one integration period is the determined integration time, and the integrator has at least one integration period The integrator is controlled to integrate the photocurrent and output at least one integrated signal.
 少なくともひとつの積分信号から計測値が演算される。 Measured value is calculated from at least one integral signal.
 以下で説明する発明によれば、光計測装置を複雑にすることなく光計測装置が計測できる輝度の範囲を広げることができる。 According to the invention described below, the range of luminance that can be measured by the optical measuring device can be expanded without complicating the optical measuring device.
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
第1実施形態の光計測装置を図示するブロック図である。1 is a block diagram illustrating an optical measurement device according to a first embodiment. 第1実施形態の光計測装置における計測の流れを図示するフローチャートである。It is a flowchart which illustrates the flow of measurement in the optical measuring device of 1st Embodiment. 第1実施形態の光計測装置における、要求S/N比及び概算輝度から露光時間を決定するためのルックアップテーブル(LUT)を図示する図である。It is a figure which illustrates the look-up table (LUT) for determining exposure time from the request | requirement S / N ratio and approximate brightness in the optical measuring device of 1st Embodiment. 第1実施形態の光計測装置における、要求S/N比、垂直同期(Vsync)周波数及び概算輝度から積分時間を決定するためのルックアップテーブル(LUT)を図示する図である。It is a figure which illustrates the look-up table (LUT) for determining integration time from the request | requirement S / N ratio, a vertical-synchronization (Vsync) frequency, and approximate brightness in the optical measuring device of 1st Embodiment. 第1実施形態の光計測装置による計測の対象となるディスプレイ及び当該光計測装置に備えられる積分器の状態の時間変化の例を図示するタイミングチャートである。It is a timing chart which illustrates the example of the time change of the state of the display used as the object of measurement by the optical measuring device of a 1st embodiment, and the integrator with which the said optical measuring device is provided. 第1実施形態の光計測装置による計測の対象となるディスプレイ及び当該光計測装置に備えられる積分器の状態の時間変化の例を図示するタイミングチャートである。It is a timing chart which illustrates the example of the time change of the state of the display used as the object of measurement by the optical measuring device of a 1st embodiment, and the integrator with which the optical measuring device is provided. 第1実施形態の光計測装置及び当該光計測装置に備えられる積分器の状態の時間変化の例を図示するタイミングチャートである。It is a timing chart which illustrates the example of the time change of the state of the optical measuring device of a 1st embodiment, and the integrator with which the said optical measuring device is equipped.
 1 光計測装置
 図1は、第1実施形態の光計測装置を図示するブロック図である。図2は、第1実施形態の光計測装置における計測の流れを図示するフローチャートである。
1 Optical Measurement Device FIG. 1 is a block diagram illustrating an optical measurement device according to the first embodiment. FIG. 2 is a flowchart illustrating a measurement flow in the optical measurement device according to the first embodiment.
 図1に図示される光計測装置1000は、ディスプレイの輝度及び色度を計測し、光センサー1020、積分器1021、制御部1022及び周辺部1023を備える。光計測装置1000がこれらの構成物以外の構成物を備えてもよい。 1 measures the luminance and chromaticity of a display, and includes an optical sensor 1020, an integrator 1021, a control unit 1022, and a peripheral unit 1023. The optical measurement device 1000 may include components other than these components.
 光計測装置1000においては、光センサー1020が、ディスプレイからの光を受光し、受光した光に応じた光電流を出力する。また、積分器1021が、出力された光電流を積分し、積分により蓄積された電荷の量に応じた積分信号を出力する。さらに、制御部1022が、出力された積分信号から計測値を演算する。 In the optical measuring device 1000, the optical sensor 1020 receives light from the display and outputs a photocurrent corresponding to the received light. Further, the integrator 1021 integrates the output photocurrent and outputs an integration signal corresponding to the amount of charge accumulated by the integration. Further, the control unit 1022 calculates a measurement value from the output integration signal.
 積分器1021は、積分回路1040、積分回路1041、スイッチ1042及びスイッチ1043を備える。 The integrator 1021 includes an integration circuit 1040, an integration circuit 1041, a switch 1042, and a switch 1043.
 積分回路1040及び1041は、光電流を積分する。スイッチ1042及び1043は、制御部1022による制御にしたがって光電流を積分する積分回路を積分回路1040と積分回路1041との間で切り替える。このため、積分器1021は、光電流を時間的に連続して途切れることなく積分できる。 Integration circuits 1040 and 1041 integrate the photocurrent. Switches 1042 and 1043 switch an integration circuit that integrates the photocurrent between the integration circuit 1040 and the integration circuit 1041 in accordance with control by the control unit 1022. For this reason, the integrator 1021 can integrate the photocurrent continuously in time without interruption.
 積分器1021が、選択可能な複数のゲインを有してもよい。これにより、計測できる輝度の範囲がさらに広がる。 The integrator 1021 may have a plurality of selectable gains. This further expands the range of luminance that can be measured.
 制御部1022は、インストールされたプログラムにしたがって動作するコンピューターであり、要求精度取得部1060、概算輝度取得部1061、周期取得部1062、露光時間決定部1063、積分時間決定部1064、積分器制御部1065及び演算部1066を備える。コンピューターが担う処理の全部又は一部を、プログラムを実行しないハードウェアが担ってもよい。 The control unit 1022 is a computer that operates according to an installed program, and includes a required accuracy acquisition unit 1060, an approximate luminance acquisition unit 1061, a period acquisition unit 1062, an exposure time determination unit 1063, an integration time determination unit 1064, and an integrator control unit. 1065 and a calculation unit 1066 are provided. Hardware that does not execute the program may be responsible for all or part of the processing performed by the computer.
 周辺部1023は、表示部1080及び操作部1081を備える。 The peripheral unit 1023 includes a display unit 1080 and an operation unit 1081.
 計測においては、操作者からの計測命令の受信に応答して、図2に示されるステップS101からステップS105までが実行される。 In measurement, in response to receiving a measurement command from the operator, steps S101 to S105 shown in FIG. 2 are executed.
 ステップS101においては、測定条件が取得される。測定条件は、操作部1081に備えられるハードウェアスイッチに対する操作から取得されてもよいし、表示部1080に表示されるグラフィカルユーザーインターフェース(GUI)に対して操作部1081を用いて行われる操作から取得されてもよい。 In step S101, measurement conditions are acquired. The measurement condition may be acquired from an operation on a hardware switch provided in the operation unit 1081 or acquired from an operation performed using the operation unit 1081 on a graphical user interface (GUI) displayed on the display unit 1080. May be.
 測定条件の取得においては、要求精度取得部1060が、計測値に対する要求S/N比を取得する。要求精度取得部1060は、3個の要求S/N比にそれぞれ対応する高精度モード、標準モード及び高速モードという3個のモードに含まれる1個のモードの指定を受け付けることにより、指定されたモードに対応する要求S/N比を取得する。要求S/N比の取得方法が変更されてもよい。例えば、要求精度取得部1060が、複数の要求S/N比にそれぞれ対応する複数の精度範囲に含まれる1個の精度範囲の指定を受け付けることにより、指定された精度範囲に対応する要求S/N比を取得してもよい。精度範囲は、例えば、「・・・%以下」、「・・・%から・・・%まで」等により表現される。要求S/N比以外の要求精度が取得されてもよい。 In the acquisition of measurement conditions, the required accuracy acquisition unit 1060 acquires the required S / N ratio for the measured value. The requested accuracy acquisition unit 1060 is designated by accepting designation of one mode included in the three modes of the high accuracy mode, the standard mode, and the high speed mode respectively corresponding to the three required S / N ratios. The required S / N ratio corresponding to the mode is acquired. The method for obtaining the required S / N ratio may be changed. For example, the request accuracy acquisition unit 1060 receives a specification of one accuracy range included in a plurality of accuracy ranges respectively corresponding to a plurality of request S / N ratios, thereby request S / O corresponding to the specified accuracy range. You may acquire N ratio. The accuracy range is expressed by, for example, “...% or less”, “...% to. The required accuracy other than the required S / N ratio may be acquired.
 また、測定条件の取得においては、周期取得部1062が、ディスプレイの輝度及び色度の時間変化の周期に一致する垂直同期(Vsync)期間の長さであるVsync時間を取得する。Vsync時間は、表示部1080に表示されるGUIに対して操作部1081を用いて行われる操作から取得される。Vsync周波数が取得され、取得されたVsync周波数からVsync時間が取得されてもよい。Vsync時間の取得方法が変更されてもよい。例えば、周期取得部1062にVsync信号が入力され、周期取得部1062が入力されたVsync信号からVsync時間を取得してもよい。反転駆動が行われる液晶ディスプレイの輝度及び色度が計測される場合は、Vsync時間に代えて、液晶ディスプレイの輝度及び色度の時間変化の周期に一致する、Vsync時間の2倍の時間が取得される。 In the measurement condition acquisition, the period acquisition unit 1062 acquires the Vsync time that is the length of the vertical synchronization (Vsync) period that matches the period of time change of the luminance and chromaticity of the display. The Vsync time is acquired from an operation performed using the operation unit 1081 on the GUI displayed on the display unit 1080. The Vsync frequency may be acquired, and the Vsync time may be acquired from the acquired Vsync frequency. The method for acquiring the Vsync time may be changed. For example, the Vsync signal may be input to the period acquisition unit 1062, and the Vsync time may be acquired from the Vsync signal input to the period acquisition unit 1062. When the luminance and chromaticity of a liquid crystal display that is driven in reverse are measured, instead of the Vsync time, a time that is twice the Vsync time that matches the period of time change of the luminance and chromaticity of the liquid crystal display is acquired. Is done.
 続くステップS102においては、ディスプレイからの光の概算輝度が取得される。ステップS102がステップS101と同時に実行されてもよい。 In the subsequent step S102, the approximate brightness of the light from the display is acquired. Step S102 may be executed simultaneously with step S101.
 概算輝度の取得においては、積分器制御部1065が、積分器1021を制御する。制御は、積分器1021が後述する複数の積分期間に先行する初期積分期間に光電流を積分し初期積分信号を出力するように行われる。また、概算輝度取得部1061が、初期積分信号からディスプレイからの光の概算輝度を取得する。初期積分期間は、短くてもかまわない。概算輝度の取得の方法が変更されてもよい。その一例は後述する。 In acquiring the approximate brightness, the integrator control unit 1065 controls the integrator 1021. The control is performed so that the integrator 1021 integrates the photocurrent during an initial integration period preceding a plurality of integration periods described later and outputs an initial integration signal. The approximate brightness acquisition unit 1061 acquires the approximate brightness of light from the display from the initial integration signal. The initial integration period may be short. The method of obtaining the approximate brightness may be changed. One example will be described later.
 続くステップS103においては、計測条件が決定される。 In subsequent step S103, measurement conditions are determined.
 計測条件の決定においては、露光時間決定部1063が、取得された要求S/N比及び概算輝度から露光時間を決定する。露光時間は、要求S/Nに応じて変更可能である。露光時間は、要求S/N比及び概算輝度を変数に持つ関数により決定されてもよいし、ルックアップテーブル(LUT)により決定されてもよい。当該関数は、例えば式(1)で表される関数である。式(1)に含まれるf(要求S/N比,概算輝度)は、整数である。当該LUTは、例えば図3に図示される要求S/N比及び概算輝度から露光時間を決定するためのルックアップテーブルである。 In determining the measurement conditions, the exposure time determination unit 1063 determines the exposure time from the acquired required S / N ratio and the approximate brightness. The exposure time can be changed according to the required S / N. The exposure time may be determined by a function having the required S / N ratio and approximate luminance as variables, or may be determined by a look-up table (LUT). The function is a function represented by, for example, the formula (1). F (required S / N ratio, approximate brightness) included in Expression (1) is an integer. The LUT is a look-up table for determining the exposure time from the required S / N ratio and the approximate brightness shown in FIG. 3, for example.
 露光時間=Vsync時間×f(要求S/N比,概算輝度)・・・(1) Exposure time = Vsync time × f (required S / N ratio, approximate brightness) (1)
 また、計測条件の取得においては、積分時間決定部1064が、取得された概算輝度から積分器1021が飽和せずS/N比を確保できる適正な積分時間の上限である最大非飽和積分時間を決定する。加えて、積分時間決定部1064が、決定された最大非飽和積分時間より積分時間が短く、決定された露光時間が取得されたVsync時間及び積分時間の公倍数となるように積分時間及び繰り返し回数を決定する。これにより、積分器1021が飽和せず露光時間がVsync時間及び積分時間の公倍数となる積分時間が決定される。 Further, in the acquisition of the measurement conditions, the integration time determination unit 1064 sets the maximum desaturation integration time, which is the upper limit of an appropriate integration time that can ensure the S / N ratio without the integrator 1021 being saturated from the acquired approximate brightness. decide. In addition, the integration time determination unit 1064 sets the integration time and the number of repetitions so that the integration time is shorter than the determined maximum unsaturated integration time, and the determined exposure time is the common multiple of the acquired Vsync time and integration time. decide. As a result, the integration time in which the integrator 1021 is not saturated and the exposure time is a common multiple of the Vsync time and the integration time is determined.
 積分時間は、望ましくは、式(2)及び(3)を満たすような、先述の条件を満たす最長のものである。また、公倍数は、望ましくは最小公倍数である。これらにより、積分器1021が飽和しない範囲内で積分器1021に蓄積される電荷が増加し、S/N比が改善される。 The integration time is preferably the longest condition that satisfies the above-mentioned conditions that satisfy the expressions (2) and (3). The common multiple is preferably the least common multiple. As a result, the charge accumulated in the integrator 1021 increases within a range where the integrator 1021 is not saturated, and the S / N ratio is improved.
 繰り返し回数=Int(露光時間/最大非飽和積分時間)+1・・・(2)
 積分時間=露光時間/繰り返し回数・・・(3)
Number of repetitions = Int (exposure time / maximum desaturation integration time) +1 (2)
Integration time = exposure time / number of repetitions (3)
 露光時間の決定、最大非飽和積分時間の決定及び積分時間の決定は、別工程において行われるが、同一工程において行われてもよい。例えば、図4に図示される、先述の条件を満たすように要求S/N比、Vsync周波数及び概算輝度から積分時間を決定するLUTにより積分時間が直接的に決定されてもよい。 The determination of the exposure time, the determination of the maximum unsaturated integration time, and the determination of the integration time are performed in separate steps, but may be performed in the same step. For example, the integration time may be directly determined by an LUT that determines the integration time from the required S / N ratio, the Vsync frequency, and the approximate luminance so as to satisfy the above-described condition, as shown in FIG.
 続くステップS104においては、計測が行われる。 In the subsequent step S104, measurement is performed.
 計測においては、積分器制御部1065が、積分器1021を制御する。制御は、露光期間が複数の積分期間からなり、複数の積分期間の数が決定された繰り返し回数になり、露光期間の長さが決定された露光時間となり、複数の積分期間の各々の長さが決定された積分時間になり、積分器1021が複数の積分期間に光電流を積分し複数の積分信号をそれぞれ出力するように行われる。これにより、決定された計測条件による計測が行われる。 In measurement, the integrator control unit 1065 controls the integrator 1021. In the control, the exposure period is composed of a plurality of integration periods, the number of the plurality of integration periods is the determined number of repetitions, the length of the exposure period is the determined exposure time, and the length of each of the plurality of integration periods The integration time is determined, and the integrator 1021 integrates the photocurrent during a plurality of integration periods and outputs a plurality of integration signals, respectively. Thereby, the measurement by the determined measurement conditions is performed.
 続くステップS105においては、計測値の演算及び出力が行われる。 In the subsequent step S105, the measurement value is calculated and output.
 計測値の演算及び出力においては、演算部1066が、出力された複数の積分信号の大きさをそれぞれ示す複数の積分信号値を取得し、取得した複数の積分信号値の平均値を単位時間当たりの値に換算し、換算により得られた値に必要な演算処理を行い輝度及び色度の計測値を演算する。これにより、複数の積分信号から輝度及び色度の計測値が演算される。輝度及び色度の計測値の演算の方法が変更されてもよい。加えて、演算部1066は、演算した輝度及び色度の演算値を出力する。 In the calculation and output of the measurement value, the calculation unit 1066 acquires a plurality of integration signal values respectively indicating the magnitudes of the output plurality of integration signals, and calculates the average value of the acquired plurality of integration signal values per unit time. Then, the necessary calculation processing is performed on the value obtained by the conversion, and the measured values of luminance and chromaticity are calculated. Thereby, the measured values of luminance and chromaticity are calculated from the plurality of integrated signals. The method of calculating the measurement values of luminance and chromaticity may be changed. In addition, the computing unit 1066 outputs computed brightness and chromaticity computation values.
 第1実施形態の光計測装置におけるこのような計測によれば、選択可能なゲインの数を減らすことができ、光計測装置にかかる負荷を減らすことができ、光計測装置を簡潔にできる。このため、光計測装置を複雑にすることなく光計測装置が計測できる輝度の範囲を広げることができる。 According to such measurement in the optical measurement device of the first embodiment, the number of selectable gains can be reduced, the load on the optical measurement device can be reduced, and the optical measurement device can be simplified. For this reason, the range of luminance that can be measured by the optical measuring device can be expanded without complicating the optical measuring device.
 2 計測条件における露光時間、積分時間及びVsync時間の関係
 図5及び図6の各々は、第1実施形態の光計測装置による計測の対象となるディスプレイ及び当該光計測装置に備えられる積分器の状態の時間変化の例を図示するタイミングチャートである。
2 Relationship between exposure time, integration time, and Vsync time under measurement conditions Each of FIGS. 5 and 6 shows a display to be measured by the optical measurement device of the first embodiment and a state of an integrator provided in the optical measurement device. It is a timing chart which illustrates the example of the time change of.
 図5は、ディスプレイのVsync周波数が高い場合の例を示す。図6は、ディスプレイのVsync周波数が低い場合の例を示す。 FIG. 5 shows an example when the Vsync frequency of the display is high. FIG. 6 shows an example when the Vsync frequency of the display is low.
 図5に図示される例においては、要求S/N比を確保するために必要な露光時間を有する露光期間1100が、8個のVsync期間1120に等分割される。Vsync時間は、例えば1ミリ秒から2秒程度である。また、露光期間1100が、5個の積分期間1140に等分割される。このため、露光時間は、積分時間及びVsync時間の公倍数となっている。積分時間は、最大非飽和積分時間より短い。 In the example illustrated in FIG. 5, an exposure period 1100 having an exposure time necessary for ensuring a required S / N ratio is equally divided into eight Vsync periods 1120. The Vsync time is, for example, about 1 millisecond to 2 seconds. The exposure period 1100 is equally divided into five integration periods 1140. For this reason, the exposure time is a common multiple of the integration time and the Vsync time. The integration time is shorter than the maximum unsaturated integration time.
 図6に図示される例においては、要求S/N比を確保するために必要な露光時間を有する露光期間1160が、4個のVsync期間1180に等分割される。Vsync時間は、例えば1ミリ秒から2秒程度である。また、露光期間1160が、5個の積分期間1200に等分割される。このため、露光時間は、積分時間及びVsync時間の公倍数となっている。積分時間は、最大非飽和積分時間より短い。 In the example illustrated in FIG. 6, an exposure period 1160 having an exposure time necessary to ensure the required S / N ratio is equally divided into four Vsync periods 1180. The Vsync time is, for example, about 1 millisecond to 2 seconds. Further, the exposure period 1160 is equally divided into five integration periods 1200. For this reason, the exposure time is a common multiple of the integration time and the Vsync time. The integration time is shorter than the maximum unsaturated integration time.
 3 概算輝度を取得する方法の別例
 図7は、第1実施形態の光計測装置及び当該光計測装置に備えられる積分器の状態の時間変化の例を図示するタイミングチャートである。
3 Another Example of Method for Obtaining Approximate Luminance FIG. 7 is a timing chart illustrating an example of a time change in the state of the optical measurement device according to the first embodiment and the integrator provided in the optical measurement device.
 図7(a)に図示されるように、光計測装置1000の状態は、操作者から計測命令を受信したタイミングT1に待機状態1220から計測状態1240に変化し、タイミングT1から露光時間が経過したタイミングT2に計測状態1240から待機状態1260に変化する。 As shown in FIG. 7A, the state of the optical measurement device 1000 changes from the standby state 1220 to the measurement state 1240 at the timing T1 when the measurement command is received from the operator, and the exposure time has elapsed from the timing T1. At timing T2, the measurement state 1240 changes to the standby state 1260.
 また、図7(b)に図示されるように、積分器1021の状態は、タイミングT1に積分回路リセット動作を行っている状態1280から積分動作を行っている状態1300に変化し、タイミングT2に積分動作を行っている状態1300から積分回路リセット動作を行っている状態1320に変化する。したがって、積分器1021は、光計測装置1000が待機状態1220及び1260である場合は、それぞれ積分回路リセット動作を行っている状態1280及び1320となっており、光計測装置1000が計測状態1240である場合は、積分動作を行っている状態1300となっている。 Further, as shown in FIG. 7B, the state of the integrator 1021 changes from the state 1280 in which the integration circuit reset operation is performed at the timing T1 to the state 1300 in which the integration operation is performed, and at the timing T2. The state changes from the state 1300 in which the integration operation is performed to the state 1320 in which the integration circuit reset operation is performed. Accordingly, the integrator 1021 is in the state 1280 and 1320 in which the integration circuit reset operation is being performed when the optical measurement device 1000 is in the standby state 1220 and 1260, respectively, and the optical measurement device 1000 is in the measurement state 1240. In this case, the integration operation is being performed 1300.
 積分器1021は、積分回路リセット動作を行っている状態1280及び1320においても、常時光信号を積分でき積分信号を出力できる。このため、積分器制御部1065が、繰り返し到来する待機時積分期間1340に光電流を積分し待機時積分信号を出力するように積分器1021を制御し、概算輝度取得部1061が、露光期間の直前に到来した待機時積分期間を初期積分期間とみなして概算輝度を取得してもよい。これにより、計測が開始されるタイミングT1の前に概算輝度が取得されるので、計測に要する時間が短縮される。繰り返し到来する待機時積分期間1340の長さは、設定可能な最短時間としてもよい。 The integrator 1021 can always integrate the optical signal and output the integrated signal even in the states 1280 and 1320 in which the integration circuit reset operation is performed. For this reason, the integrator control unit 1065 controls the integrator 1021 to integrate the photocurrent and output the standby integration signal in the standby integration period 1340 that repeatedly arrives, and the approximate luminance acquisition unit 1061 The approximate luminance may be acquired by regarding the standby integration period that has just arrived as the initial integration period. As a result, the approximate luminance is acquired before the timing T1 at which the measurement is started, so that the time required for the measurement is shortened. The length of the standby integration period 1340 that repeatedly arrives may be the shortest settable time.
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
 1000 光計測装置
 1020 光センサー
 1021 積分器
 1022 制御部
 1060 要求精度取得部
 1061 概算輝度取得部
 1062 周期取得部
 1063 露光時間決定部
 1064 積分時間決定部
 1065 積分器制御部
 1066 演算部
1000 Optical Measuring Device 1020 Optical Sensor 1021 Integrator 1022 Control Unit 1060 Required Accuracy Acquisition Unit 1061 Approximate Luminance Acquisition Unit 1062 Period Acquisition Unit 1063 Exposure Time Determination Unit 1064 Integration Time Determination Unit 1065 Integrator Control Unit 1066 Operation Unit

Claims (6)

  1.  ディスプレイからの光を受光し、前記光に応じた光電流を出力する光センサーと、
     時間的に連続して前記光電流を積分し積分信号を出力する積分器と、
     計測値に対する要求精度を取得する要求精度取得部と、
     前記光の概算輝度を取得する概算輝度取得部と、
     前記光の輝度及び色度の時間変化の周期を取得する周期取得部と、
     前記要求精度及び前記概算輝度から露光時間を決定する露光時間決定部と、
     前記積分器の積分時間を、前記積分器が飽和せず前記露光時間が前記周期及び前記積分時間の公倍数となるように決定する積分時間決定部と、
     露光期間が少なくともひとつの積分期間からなり、前記露光期間の長さが前記露光時間となり、前記少なくともひとつの積分期間の各々の長さが前記積分時間となり、前記積分器が前記少なくともひとつの積分期間に前記光電流を積分し少なくともひとつの積分信号をそれぞれ出力するように前記積分器を制御する積分器制御部と、
     前記少なくともひとつの積分信号から前記計測値を演算する演算部と、
    を備える光計測装置。
    A photosensor that receives light from the display and outputs a photocurrent according to the light;
    An integrator that continuously integrates the photocurrent in time and outputs an integrated signal;
    A request accuracy acquisition unit for acquiring the request accuracy for the measurement value;
    An approximate brightness acquisition unit for acquiring the approximate brightness of the light;
    A period acquisition unit that acquires a period of time change in luminance and chromaticity of the light;
    An exposure time determination unit that determines an exposure time from the required accuracy and the approximate brightness;
    An integration time determining unit that determines an integration time of the integrator so that the integrator is not saturated and the exposure time is a common multiple of the period and the integration time;
    The exposure period is composed of at least one integration period, the length of the exposure period is the exposure time, the length of each of the at least one integration period is the integration time, and the integrator is the at least one integration period. An integrator controller for controlling the integrator so as to integrate the photocurrent and output at least one integral signal,
    A computing unit for computing the measured value from the at least one integrated signal;
    An optical measurement device comprising:
  2.  前記積分器制御部は、前記積分器が前記少なくともひとつの積分期間に先行する初期積分期間に前記光電流を積分し初期積分信号を出力するように前記積分器を制御し、
     前記概算輝度取得部は、前記初期積分信号から前記概算輝度を取得する
    請求項1の光計測装置。
    The integrator control unit controls the integrator so that the integrator integrates the photocurrent and outputs an initial integration signal in an initial integration period preceding the at least one integration period;
    The optical measurement device according to claim 1, wherein the approximate brightness acquisition unit acquires the approximate brightness from the initial integration signal.
  3.  前記積分器制御部は、繰り返し到来する待機時積分期間に前記光電流を積分し待機時積分信号を出力するように前記積分器を制御し、
     前記初期積分期間は、前記露光期間の直前に到来した待機時積分期間である
    請求項2の光計測装置。
    The integrator control unit controls the integrator to output the standby integration signal by integrating the photocurrent during the standby integration period that repeatedly arrives,
    The optical measurement apparatus according to claim 2, wherein the initial integration period is a standby integration period that arrives immediately before the exposure period.
  4.  前記公倍数は、最小公倍数である
    請求項1から3までのいずれかの光計測装置。
    The optical measurement apparatus according to claim 1, wherein the common multiple is a least common multiple.
  5.  前記露光時間は、前記要求精度に応じて変更可能である
    請求項1から4までのいずれかの光計測装置。
    The optical measurement apparatus according to claim 1, wherein the exposure time can be changed according to the required accuracy.
  6.  前記積分器は、選択可能な複数のゲインを有する
    請求項1から5までのいずれかの光計測装置。
    The optical measuring device according to claim 1, wherein the integrator has a plurality of selectable gains.
PCT/JP2018/013729 2017-04-27 2018-03-30 Light measurement device WO2018198674A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197031389A KR102426522B1 (en) 2017-04-27 2018-03-30 optical instrumentation
JP2019515183A JP7188382B2 (en) 2017-04-27 2018-03-30 Optical measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017088253 2017-04-27
JP2017-088253 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018198674A1 true WO2018198674A1 (en) 2018-11-01

Family

ID=63920434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013729 WO2018198674A1 (en) 2017-04-27 2018-03-30 Light measurement device

Country Status (4)

Country Link
JP (1) JP7188382B2 (en)
KR (1) KR102426522B1 (en)
TW (1) TWI770161B (en)
WO (1) WO2018198674A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262514A (en) * 1999-03-12 2000-09-26 Toshiba Corp Data collection system for x-ray computed tomograph
JP2005303818A (en) * 2004-04-14 2005-10-27 Konica Minolta Photo Imaging Inc Imaging apparatus
JP2005321313A (en) * 2004-05-10 2005-11-17 Hamamatsu Photonics Kk Photodetector
JP2012026915A (en) * 2010-07-26 2012-02-09 Hioki Ee Corp Photometric device
JP2012175277A (en) * 2011-02-18 2012-09-10 Olympus Corp Imaging apparatus, image generating method, and image generating program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101411627B1 (en) 2006-10-24 2014-06-25 소니 주식회사 Imaging device and reproduction control device
JP5266952B2 (en) * 2008-08-19 2013-08-21 オムロン株式会社 Optical measuring apparatus and measuring method
JP6014428B2 (en) * 2012-09-07 2016-10-25 日置電機株式会社 Photometric device
JP2016070775A (en) 2014-09-30 2016-05-09 セイコーエプソン株式会社 Spectrometer and spectrometry method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262514A (en) * 1999-03-12 2000-09-26 Toshiba Corp Data collection system for x-ray computed tomograph
JP2005303818A (en) * 2004-04-14 2005-10-27 Konica Minolta Photo Imaging Inc Imaging apparatus
JP2005321313A (en) * 2004-05-10 2005-11-17 Hamamatsu Photonics Kk Photodetector
JP2012026915A (en) * 2010-07-26 2012-02-09 Hioki Ee Corp Photometric device
JP2012175277A (en) * 2011-02-18 2012-09-10 Olympus Corp Imaging apparatus, image generating method, and image generating program

Also Published As

Publication number Publication date
JPWO2018198674A1 (en) 2020-03-05
JP7188382B2 (en) 2022-12-13
KR102426522B1 (en) 2022-07-27
KR20190133030A (en) 2019-11-29
TWI770161B (en) 2022-07-11
TW201842308A (en) 2018-12-01

Similar Documents

Publication Publication Date Title
JP3974629B2 (en) Liquid crystal display device aging compensation method, liquid crystal display aging compensation device, computer program, and liquid crystal display device
EP1727360B1 (en) Automatic gain control circuit
US10283033B2 (en) Driving method for display panel, driving circuit and display device
US8519927B2 (en) Display control apparatus and method of determining driving parameter for overdrive
US8368685B2 (en) Image display apparatus
WO2010044256A1 (en) Brightness correction device and brightness correction method
JP2004287420A (en) Display method, display control unit, and display device
EP2750388A2 (en) Image projection apparatus and method of controlling same
RU2014139709A (en) MULTI-SCREEN DISPLAY DEVICE
JP2017011367A5 (en)
JP2007163557A (en) Display device, and method for controlling luminance thereof
US20200252536A1 (en) Two-dimensional flicker measurement apparatus and two-dimensional flicker measurement method
JP4573719B2 (en) Image display device, white balance adjustment device, white balance adjustment system, and white balance adjustment method
WO2018198674A1 (en) Light measurement device
JP2014134764A (en) Display device and method of controlling the same
WO2014155446A1 (en) Display device
CN104394328B (en) Auto iris control method
KR100708933B1 (en) System and method of auto exposure control
JP2006201285A (en) Display apparatus and scrolling control method
JP2008145644A (en) Display device
JP2011164356A (en) Display device and display method
KR100830333B1 (en) Adapted piecewise linear processing device
US8159453B2 (en) Display device and method for controlling backlight thereof
US20210134247A1 (en) Display control apparatus
KR100570599B1 (en) Method and apparatus to control drive-power for plasma display panel and a plasma display panel device having that apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515183

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197031389

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790032

Country of ref document: EP

Kind code of ref document: A1