WO2018198542A1 - 無細胞タンパク質合成用反応混合物、これを用いた無細胞タンパク質合成方法、及び無細胞タンパク質合成用キット - Google Patents

無細胞タンパク質合成用反応混合物、これを用いた無細胞タンパク質合成方法、及び無細胞タンパク質合成用キット Download PDF

Info

Publication number
WO2018198542A1
WO2018198542A1 PCT/JP2018/008793 JP2018008793W WO2018198542A1 WO 2018198542 A1 WO2018198542 A1 WO 2018198542A1 JP 2018008793 W JP2018008793 W JP 2018008793W WO 2018198542 A1 WO2018198542 A1 WO 2018198542A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
protein synthesis
reaction mixture
free protein
acid
Prior art date
Application number
PCT/JP2018/008793
Other languages
English (en)
French (fr)
Inventor
俊将 本間
Original Assignee
Spiber株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spiber株式会社 filed Critical Spiber株式会社
Publication of WO2018198542A1 publication Critical patent/WO2018198542A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a reaction mixture for cell-free protein synthesis, a cell-free protein synthesis method using the same, and a cell-free protein synthesis kit.
  • Recombinant protein production methods include in vivo methods including culturing transformed cells and in vitro using cell-derived extracts (cell extracts) called so-called cell-free protein synthesis methods. The method is known.
  • in vitro cell-free protein synthesis methods (1) can direct resources for protein synthesis to the exclusive production of the protein of interest ( 2) Since it is not involved in cell growth or survival, the synthetic environment can be flexibly changed, including conditions such as tRNA level changes reflecting the codon usage of genes, redox potential, pH, and ionic strength, 3) A protein product that has been purified and properly folded can be easily recovered as it is, (4) A non-naturally-isotopically labeled amino acid can be incorporated, and (5) In vivo unstable, insoluble or cellular It is possible to synthesize proteins that are toxic, and (6) combine proteins that are difficult to make in vivo because they require unique cofactors.
  • Non-patent Document 1 Non-patent Document 1
  • the cell-free protein synthesis method has a low production efficiency because the reaction duration for synthesizing the protein is short.
  • a continuous flow system using a dialysis membrane has been developed that supplies the substrate consumed by the translation reaction and removes by-products that inhibit the reaction by dialysis.
  • it is necessary to continuously add a reagent in order to increase the amount of protein synthesis by this continuous flow system, it is necessary to continuously add a reagent, and there is a problem that the cost of the reagent increases.
  • Patent Document 1 As another approach to increase the reaction duration, a certain result has been obtained by reviewing the energy regeneration system in the in vitro reaction (Patent Document 1, Non-Patent Document 2). It has succeeded in synthesizing 700 mg / L in 10 hours (Non-patent Document 3).
  • Non-patent Document 4 it is described that in a cell-free protein synthesis system using a cell extract derived from Escherichia coli, it is not preferable to add a high concentration of salt and glycerol to the template DNA (Non-patent Document 4).
  • An object of the present invention is to provide a novel approach for increasing the amount of protein synthesis in a cell-free protein synthesis method.
  • the present inventors can increase the synthesis amount of the target protein by adding glycerol to the reaction mixture for cell-free protein synthesis.
  • the present inventors have found that this can be done and have completed the present invention.
  • a reaction mixture for cell-free protein synthesis comprising a cell extract obtained from E. coli and glycerol.
  • the energy sources are ATP, GTP, glucose, ribose, pyruvate, phosphoenolpyruvate, carbamoyl phosphate, acetyl phosphate, creatine phosphate, phosphopyruvate, glyceraldehyde-3-phosphate, 3-phosphoglycerate and glucose-6 -At least one selected from the group consisting of phosphate, citric acid, cis-aconitic acid, isocitric acid, ⁇ -ketoglutaric acid, succinyl CoA, succinic acid, fumaric acid, malic acid, oxaloacetic acid, glyoxylic acid and glutamic acid, The reaction mixture according to [4].
  • a cell-free protein synthesis kit comprising a cell extract obtained from E. coli and glycerol, a template nucleic acid, a substrate for protein synthesis of interest, and / or an energy source.
  • the reaction mixture for cell-free protein synthesis of the present invention contains a cell extract obtained from E. coli and glycerol, so that the amount of target protein synthesized can be increased.
  • the amount of protein synthesis in the method can be increased by using a cell-free protein synthesis reaction mixture obtained by adding glycerol to a cell extract obtained from E. coli.
  • the protein production efficiency can be improved.
  • Test Example 1 a growth curve (black triangle) of BL21 strain cultured in a modified 2 ⁇ YTPG medium using glycerol as a carbon source and a growth curve of BL21 strain cultured in a normal 2 ⁇ YTPG medium using glucose as a carbon source It is a graph which shows the comparison of (black circle). In Test Example 2, it is a graph showing the results of measuring the fluorescence intensity of GFP synthesized by the cell-free protein synthesis method over time.
  • Example 1 it is a graph which shows the result of having measured the fluorescence intensity of GFP synthesized by the cell-free protein synthesis method with time.
  • the black circles show the results using the reaction mixture for cell-free protein synthesis without glycerol (0 mM), the black triangles show the results using the reaction mixture for cell-free protein synthesis added with 100 mM glycerol, and the black squares The result using the reaction mixture for cell-free protein synthesis which added glycerol 200 mM is shown.
  • reaction mixture for cell-free protein synthesis contains a cell extract obtained from E. coli and glycerol.
  • the cell extract according to the present embodiment means a solid, liquid, or mixture thereof obtained by destroying E. coli.
  • the cell extract contains factors necessary for transcription of RNA using DNA as a template and factors necessary for protein translation, which are contained in E. coli cells. Examples of these factors include ribosome, aminoacylated tRNA synthetase, translation initiation factor and translation termination factor. Using the reaction mixture containing the cell extract, a transcription and translation reaction system can be reconstructed in vitro to synthesize proteins.
  • the cell extract according to the present embodiment can be obtained, for example, through 1) a step of culturing E. coli, and 2) a step of collecting the cultured E. coli to obtain a cell extract.
  • the gene related to the endogenous protein is previously removed from the Escherichia coli strain to be used by a known genetic engineering technique. Also good.
  • a medium for culturing Escherichia coli it is a liquid medium containing a carbon source, a nitrogen source and inorganic salts that can be assimilated by Escherichia coli. It may be used.
  • the carbon source for example, glucose, sucrose, maltose, glycerol can be used.
  • glucose and glycerol are preferable, and glycerol is more preferable.
  • nitrogen source examples include ammonium salts of inorganic acids or organic acids such as ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, and ammonium phosphate, other nitrogen-containing compounds, and peptone, meat extract, yeast extract, corn steep liquor, Casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digested products thereof can be used.
  • inorganic acids or organic acids such as ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, and ammonium phosphate, other nitrogen-containing compounds, and peptone, meat extract, yeast extract, corn steep liquor, Casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digested products thereof can be used.
  • inorganic salts examples include monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, and calcium carbonate.
  • the medium for culturing Escherichia coli include, for example, a modified 2 ⁇ YTPG medium (Table 1) in which the glucose in the 2 ⁇ YTPG medium and the 2 ⁇ YTPG medium are replaced with glycerol.
  • a known antifoaming agent examples include ADEKA (registered trademark) LG-295S.
  • the addition amount of the antifoaming agent may be, for example, 0.5 to 2 ml / L, and preferably 1 ml / L.
  • the pH of the medium may be 6 to 8, for example, and is preferably pH 7.
  • the pH of the medium can be adjusted using NaOH or the like.
  • T7 RNA polymerase or the like when E. coli capable of expressing T7 RNA polymerase or the like is used, a cell extract containing T7 RNA polymerase or the like in advance can be obtained.
  • an inducing agent such as IPTG
  • an inducing agent such as IPTG may be added to the medium.
  • the culture is preferably performed under aerobic conditions such as shaking culture or deep aeration stirring culture.
  • the culture temperature can be, for example, 15 to 40 ° C.
  • the pH of the culture medium during the culture is preferably maintained at 3.0 to 9.0.
  • the pH during culture can be adjusted using an inorganic acid, an organic acid, an alkaline solution, urea, calcium carbonate, ammonia, or the like.
  • Cultivation may be performed, for example, until the initial to late logarithmic growth is reached, and is preferably performed until the middle phase of logarithmic growth is reached.
  • the culture time is within these ranges, a cell extract with better protein synthesis efficiency can be obtained.
  • the middle phase of logarithmic growth is usually reached by culturing at a culture temperature of 36 ° C. for 4 to 6 hours.
  • fed-batch culture in which a medium (feed solution) is fed into the culture solution continuously or intermittently according to the passage of the culture time may be performed.
  • the fed-batch culture may be performed in E. coli according to a known method.
  • the carbon source mentioned in the above culture medium can be used as the carbon source in the feed solution.
  • glycerol when used in the culture medium, it is preferable to use glycerol as the carbon source of the feed solution.
  • a feed solution prepared by adjusting the concentration of the carbon source according to the growth of the cells may be prepared. However, a feed solution containing 30 to 70% of the carbon source is cultured in an appropriate amount according to the growth of the cells. It may be added inside.
  • Step 2 Step of recovering cultured E. coli and obtaining cell extract
  • the step of recovering E. coli cultured in step 1) and obtaining the cell extract from the recovered E. coli is used in the art for the purpose of cell-free protein synthesis. Can be carried out by known methods. For example, it can be performed according to the protocols described in Non-Patent Document 1 and Non-Patent Document 2. Specific methods for obtaining the cell extract include, for example, the following methods for recovering E. coli cells and destroying the recovered E. coli cells.
  • the cells are collected from the culture solution and kept at a low temperature until a cell extract is obtained. Specifically, it can be carried out at a low temperature of, for example, 0 to 15 ° C., preferably 2 to 10 ° C.
  • Examples of the method for recovering E. coli cells from the E. coli culture solution include a centrifugation method and a filtration method.
  • E. coli cells can be recovered by centrifuging at 4 ° C. and 7,000 to 14,000 ⁇ g for 20 to 50 minutes.
  • the washing solution a solution containing an inorganic salt and a compound having a buffering action, for example, an S30 buffer solution or the like is used.
  • the S30 buffer can be prepared as follows. For example, 6.06 g of 2-amino-2-hydroxymethyl-1,3-propanediol, 15.0 g of magnesium acetate tetrahydrate and 29.4 g of potassium acetate were added to about 450 ml of pure water, preferably milli-Q or the like. Dissolves in ultrapure water.
  • the obtained S30 buffer solution can be stored at 4 ° C., diluted 10-fold with ultrapure water immediately before use, and added with 1M DTT aqueous solution to a final concentration of 2 mM.
  • the step of washing E. coli cells using a solution containing the above-mentioned inorganic salt and a compound exhibiting a buffering action is performed by, for example, suspending the recovered cells in the solution and centrifuging.
  • the recovering step can be performed by repeating, for example, 2 to 3 times.
  • the suspension can be efficiently homogenized by using a homogenizer or the like.
  • the cells can be collected from the homogenized suspension by, for example, centrifuging for 10 to 50 minutes at 4 ° C. and 9,000 to 14,000 ⁇ g.
  • the washed cells can be stored at -80 ° C. Freezing at ⁇ 80 ° C. is preferably performed by rapid cooling using liquid nitrogen or the like.
  • Examples of means for destroying E. coli cells include means using a lytic enzyme such as an ultrasonic crusher, a French press, a high-pressure homogenizer, a dynomill, a mortar, glass beads, and lysozyme.
  • a lytic enzyme such as an ultrasonic crusher, a French press, a high-pressure homogenizer, a dynomill, a mortar, glass beads, and lysozyme.
  • a lytic enzyme such as an ultrasonic crusher, a French press, a high-pressure homogenizer, a dynomill, a mortar, glass beads, and lysozyme.
  • a lytic enzyme such as an ultrasonic crusher, a French press, a high-pressure homogenizer, a dynomill, a mortar, glass beads, and lysozyme.
  • it may be performed at a pressure of 600 to 1,700 bar and a flow rate of about 1 ml / min. From a
  • a cell suspension obtained by resuspending the collected cells in a solution (for example, S30 buffer) containing the above-described inorganic salt and a compound having a buffering action is used. It is preferable.
  • the bacterial cell suspension include a bacterial cell suspension obtained by adding a solution such as 1 to 2 mL of S30 buffer per 1 g of recovered bacterial cells.
  • a solution such as 1 to 2 mL of S30 buffer per 1 g of recovered bacterial cells.
  • a cell extract from which cell debris and genomic DNA have been removed It is preferable to use a cell extract from which cell debris and genomic DNA have been removed.
  • the removing method include a centrifugal separation method and a filtration method. For example, the process of centrifuging for 20 to 50 minutes at 4 ° C under conditions of 10,000 to 30,000 xg and obtaining the supernatant is repeated 2 to 3 times, for example, to remove cell debris and genomic DNA. can do.
  • a cell extract excluding endogenous nucleic acids Insoluble components generated by the treatment with the activated mix added can be removed by a centrifugal separation method or the like under the same conditions as described above. By this operation, endogenous RNA can be removed. Endogenous nucleic acid can be decomposed by further adding a nuclease or the like. When added, it is preferable to add a nuclease inhibitor after the treatment. Endogenous amino acids, nucleic acids, nucleosides and the like can also be removed by dialysis.
  • the cell extract can be stored at ⁇ 80 ° C. Freezing at ⁇ 80 ° C. is preferably performed by rapid cooling using liquid nitrogen or the like.
  • the content of the cell extract in the reaction mixture for cell-free protein synthesis may be 5 to 70% (volume / volume) based on the total amount of the reaction mixture, and may be 10 to 50% (volume / volume). Capacity), 20-40% (capacity / capacity), and 20-30% (capacity / capacity).
  • the wet cell (g) / reaction mixture (mL) ratio used to obtain the cell extract may be 0.01-1 g / mL, and may be 0.05-0.3 g / mL. .
  • the content of glycerol in the reaction mixture for cell-free protein synthesis according to the present embodiment is not particularly limited as long as the optimal addition concentration is determined in accordance with the composition of the reaction mixture, and for example, the total amount of the reaction mixture Based on the above, it may be 10 to 500 mM, 20 to 300 mM, 40 to 200 mM, or 80 to 100 mM.
  • the reaction mixture for cell-free protein synthesis can contain at least one of the following components (i) to (viii) as necessary.
  • Template nucleic acid The template nucleic acid only needs to contain DNA or RNA encoding the target protein to be expressed and DNA or RNA containing an appropriate expression control region, and can be in either linear or circular form. May be. Examples of the expression control region include a promoter sequence, terminator sequence, enhancer sequence, poly A addition signal, and ribosome binding sequence.
  • the template nucleic acid preferably contains at least one promoter and DNA encoding the target protein.
  • the amount of template nucleic acid to be added is preferably 0.1 to 50 ⁇ g / mL, more preferably 1 to 20 ⁇ g / mL, based on the total volume of the reaction mixture.
  • the template nucleic acid may be designed so that a fusion protein incorporating a tag sequence can be synthesized so that the synthesized protein can be easily detected or purified.
  • a tag sequence for example, an affinity tag such as a histidine tag (His tag) utilizing specific affinity (binding, affinity) with other molecules, glutathione that specifically binds to glutathione-S- Examples include tag sequences such as transferase (GST) and maltose binding protein (MBP) that specifically binds to maltose.
  • GST transferase
  • MBP maltose binding protein
  • an “epitope tag” using an antigen-antibody reaction may be used. Examples of the epitope tag include HA (peptide sequence of influenza virus hemagglutinin) tag, myc tag, and FLAG tag. Further, a tag sequence that can be separated with a specific protease can also be used.
  • RNA polymerase When the template nucleic acid is DNA, RNA polymerase can be included. As the RNA polymerase, an RNA polymerase that recognizes one or more transcription factors targeting the template nucleic acid can be used.
  • the reaction mixture of the present invention preferably contains T7 RNA polymerase from the viewpoint of improving the production efficiency of the target protein. T7 RNA polymerase may be added when preparing the reaction mixture. As described above, T7 RNA polymerase is added to the cell extract using a strain such as BL21 (DE3) capable of expressing T7 RNA polymerase. It may be included.
  • (Iii) Energy source If the cell extract lacks the energy required for protein synthesis, it is preferable to include an additional energy source in the reaction mixture.
  • the energy source can also be added or supplemented during the protein synthesis reaction.
  • energy sources include ATP, GTP, glucose, ribose, pyruvate, phosphoenolpyruvate (PEP), carbamoyl phosphate, acetyl phosphate, creatine phosphate, phosphopyruvate, glyceraldehyde-3-phosphate, 3-phosphoglycerate
  • Examples thereof include rate, glucose-6-phosphate, citric acid, cis-aconitic acid, isocitric acid, ⁇ -ketoglutaric acid, succinyl CoA, succinic acid, fumaric acid, malic acid, oxaloacetic acid, glyoxylic acid and glutamic acid.
  • inorganic phosphoric acid In the case of an energy source that does not contain phosphate groups
  • the reaction mixture may contain amino acids necessary for synthesizing the target protein.
  • amino acids all 20 kinds of amino acids constituting a protein (alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, Tryptophan, tyrosine and valine. The same shall apply hereinafter.), And may be appropriately selected from the 20 types in consideration of the target protein and the reagent used. Unnatural amino acids may also be used. When an unnatural amino acid is used, a factor such as tRNA or aminoacylated tRNA synthetase modified to introduce the unnatural amino acid into a protein may be added.
  • the reaction mixture can contain a substrate for RNA synthesis as a substrate for target protein synthesis.
  • a substrate for RNA synthesis examples include ribonucleotides such as ribonucleotide triphosphate (rNTP) and ribonucleotide monophosphate (rNMP), and ribonucleosides such as adenosine.
  • the reaction mixture can contain polyamines.
  • polyamines that can be included in the reaction mixture include spermine, spermidine, and putrescine.
  • the reaction mixture can contain a salt.
  • Salts that can be included in the reaction mixture include, for example, potassium, magnesium, ammonium, and manganese salts of acetic acid, glutamic acid, or sulfuric acid.
  • the reaction mixture can include an oxidation / reduction regulator.
  • the oxidation / reduction regulator include DTT, ascorbic acid, glutathione, and / or oxides thereof.
  • ribosome transfer RNA
  • optional translation factors eg, translation initiation factor, elongation factor termination factor, ribosome recycling factor, etc.
  • cofactors thereof aminoacyl tRNA synthetase (ARS), methionyl tRNA formyl transfer Enzyme (MTF), polymer compound (eg, polyethylene glycol, dextran, diethylaminoethyl dextran, quaternary aminoethyl and aminoethyldextran), nuclease, nuclease inhibitor, protein stabilizer, chaperone, solubilizer, non-denaturing interface
  • An active substance for example, Triton X100 or the like may be added to the reaction mixture as necessary.
  • Cell-free protein synthesis method The cell-free protein synthesis method according to this embodiment can be performed using the reaction mixture of the present invention.
  • Cell-free protein synthesis using the reaction mixture of the present invention should be performed according to the known methods described in Non-Patent Document 1, Non-Patent Document 2, or Non-Patent Document 3, for example, except that the composition of the reaction mixture is different. Can do.
  • the cell-free protein synthesis method using the reaction mixture of the present invention can utilize both a dialysis method and a batch method.
  • protein synthesis is performed in a closed system consisting of an internal solution containing the above reaction mixture and an external solution containing a substrate and an energy source for synthesis of the target protein separated by a dialysis membrane such as an ultrafiltration membrane.
  • a dialysis membrane such as an ultrafiltration membrane.
  • a substrate for synthesizing a target protein, an energy source, and the like are supplied from an external solution to the reaction mixture via a dialysis membrane, and extra by-products in the reaction mixture can be diffused into the external solution. Therefore, the reaction can be continued for a longer time.
  • the batch method is a synthesis method in which the reaction mixture containing all the components necessary for protein synthesis is mixed with the reaction solution and uniformly contained in the reaction solution, and the reaction is performed.
  • the reaction time is shorter than that of the dialysis method.
  • Cell sources, glycerol, energy sources other than glycerol are premixed and glycerol can also be used as a source of other energy sources before placing the template nucleic acid.
  • the mixed solution can be used as a reaction mixture in a batch method and / or an external solution in a dialysis method.
  • a protein synthesis system can be performed at a lower cost compared to the PANOx type using NTP or PEP.
  • Protein synthesis may be performed at 20 to 40 ° C., for example, and is preferably performed at 30 ° C.
  • the reaction time for protein synthesis by the batch method reaches almost maximum production in 2 to 8 hours when glycerol is not added.
  • a reaction mixture for cell-free protein synthesis to which glycerol is added is used, protein synthesis continues for 10 hours or more after the cell extract and glycerol are mixed. Therefore, the reaction time is 10 minutes after mixing glycerol. It is preferably ⁇ 40 hours, more preferably 10 to 25 hours.
  • the kit for cell-free protein synthesis according to this embodiment includes a cell extract obtained from E. coli and glycerol.
  • Glycerol may be pre-mixed with the cell extract and included in the kit as a cell extract containing glycerol (cell extract obtained from E. coli) and is included in the kit independently of the cell extract. It may be.
  • the kit may contain a template nucleic acid, a substrate for target protein synthesis, and / or an energy source.
  • the template nucleic acid, the substrate for synthesizing the target protein, and the energy source may be mixed in advance with the cell extract, and may be included in the kit independently of the cell extract.
  • the kit may further contain the above-mentioned RNA polymerase, polyamines, salt, oxidation / reduction regulator, and other additives. These additives may be mixed in advance with the cell extract, and may be included in the kit independently of the cell extract.
  • E. coli culture (Cultivation of E. coli using glycerol as a carbon source) Escherichia coli BL21 strain (Novagen) was cultured in a flask in 2 ⁇ YT medium (1.6% Bacto Tripton, 1% Yeast Extract, 0.5% NaCl) until OD 600 was 4.2.
  • the culture solution was modified 2 ⁇ YTPG medium with the composition of Table 1 using glycerol as a carbon source (Adeka (registered trademark) LG-295S was added as an antifoaming agent at 1 ml / L and adjusted to pH 7 with NaOH). 500 mL OD 600 was added to a 0.05 is entered a 1L jar fermenter.
  • the same strain was cultured in the same manner using a normal 2 ⁇ YTPG medium using glucose (18 g / L) as a carbon source.
  • the culture temperature was maintained at 36 ° C., and the culture was performed at a constant pH of 7.0.
  • the dissolved oxygen concentration was maintained at 2.4 mg / L or more.
  • the growth curve is shown in FIG. Modified 2 ⁇ YTPG medium and specific growth rate when cultured in a conventional 2 ⁇ YTPG medium was respectively 1.08H -1 and 0.74h -1. This result is presumed to suggest that ribosomes in cells cultured with glycerol and enzymes of the energy regeneration system have higher activity.
  • Cultivation using glycerol as a carbon source yields a culture solution with a preferred cell concentration in a shorter time than culture using glucose as a carbon source, so cell extracts can be obtained in a shorter time. It was shown that.
  • the culture solution 2L of the BL21 strain was centrifuged under conditions of 7,000 ⁇ g, 4 ° C., and 20 minutes to recover 31 g of wet cells.
  • the cells were washed with an S30 buffer solution (pH 8.2) containing 10 mM Tris-acetic acid, 14 mM magnesium acetate, 60 mM potassium acetate and 2 mM DTT, and then rapidly cooled to ⁇ 80 ° C. using liquid nitrogen.
  • the microbial cell crushed material was centrifuged twice under the conditions of 20,400 ⁇ g, 4 ° C. and 30 minutes to remove the microbial cell residue.
  • 200 ⁇ L of the centrifugal supernatant is composed of 300 mM Tris-acetic acid, 13.2 mM magnesium acetate, 13.2 mM ATP, 4.4 mM DTT, 6.7 U / mL pyruvate kinase, 84 mM phosphoenolpyruvate, and protein 20 60 ⁇ L of activation mix containing all kinds of amino acids (0.04 mM each) was added and incubated at 30 ° C. for 150 minutes.
  • the mixture was centrifuged at 20,400 ⁇ g, 4 ° C. for 30 minutes, and the insoluble fraction was removed to obtain 230 ⁇ L of cell extract.
  • a DNA fragment (2) containing the replication origin and the ampicillin resistance gene sequence was prepared by the PCR method.
  • DNA fragment (1) and DNA fragment (2) were fused by a known In-Fusion reaction and transformed into E. coli HST08. After culturing the transformed E. coli, the plasmid was extracted using QIAGEN Plasmid Kit (manufactured by Qiagen).
  • a DNA fragment (3) containing the T7 promoter, RBS, T7 terminator, origin of replication and ampicillin resistance gene sequence was prepared by PCR.
  • the DNA fragment (4) containing the Holly-GFP gene was prepared by PCR using T5-HollyGFP (manufactured by Cosmo Bio).
  • DNA fragment (3) and DNA fragment (4) were fused by a known In-Fusion reaction and transformed into E. coli HST08. After culturing the transformed E. coli, pUC-GFP was extracted using QIAGEN Plasmid Kit (manufactured by Qiagen) and used as a template nucleic acid for cell-free protein synthesis reaction.
  • the pUC-GFP for template nucleic acid has high purity (A260 / A280 is 1.8 or more, A260 / A230 is 2.0 or more) using a spectrophotometer, and the nucleotide sequence is determined using a DNA sequencer. Reading and confirming that there were no unnecessary mutations.
  • Cell-free protein synthesis reaction 10 ⁇ L of the master mix containing the compound of Table 2, 6 ⁇ L of the prepared cell extract, 1 ⁇ L of 40 mM DTT aqueous solution, 2 ⁇ L of 0.2 g / L pUC-GFP (template nucleic acid) and 1 ⁇ L of 1000 U / ⁇ L T7 RNA polymerase were added to the reaction in a total volume of 20 ⁇ L.
  • a mixture (liquid) was prepared.
  • a negative control (NC) prepared by adding 2 ⁇ L of RO water instead of pUC-GFP was prepared.
  • the reaction mixture was transferred to a 384-well microplate, and the amount of GFP synthesis was compared by measuring the fluorescence intensity over time while incubating at 30 ° C. using a microplate reader TECANinfinite F200 (manufactured by Tecan Japan Co., Ltd.).
  • FIG. 2 shows the measurement result of the fluorescence intensity.
  • the fluorescence intensity of GFP in the case of using a cell extract derived from E. coli cultured in a medium containing glycerol as a carbon source is a cell derived from E. coli cultured in a medium containing glucose as a carbon source.
  • the value was about 2 times higher than the fluorescence intensity of GFP when the extract was used (FIG. 2).
  • the amount of GFP synthesized by the cell-free protein synthesis method using cell extracts derived from E. coli cultured in a medium containing glycerol as a carbon source is the same as the cell extract derived from E. coli cultured in a medium containing glucose as a carbon source. Compared with the cell-free protein synthesis method using, it was shown to be about twice as much.
  • Example 1 Cell-free protein synthesis (influence of glycerol)] (Culture using glycerol as a carbon source)
  • the BW25113 strain lacking the rna gene was prepared by the method of Datsenko and Wanner, the deletion was introduced into the T7 Express strain (New England Biolabs) by P1 transduction, and the T7 Express strain lacking the rna gene was prepared.
  • the rna gene is a gene involved in the synthesis of ribonuclease I and is involved in the stability of mRNA.
  • the T7 Express strain lacking the rna gene was cultured in a flask in 2 ⁇ YT medium (1.6% Bacto Tripton, 1% Yeast Extract, 0.5% NaCl) until the OD 600 was 3.5.
  • the culture broth contained 2.1 L of modified 2 ⁇ YTPG medium (added 1 ml / L of ADEKA (registered trademark) LG-295S as an antifoam agent and adjusted to pH 7 using NaOH) with the composition shown in Table 1
  • the 3 L jar fermenter was added to an OD 600 of 0.05 and main culture was performed.
  • the main culture was performed while maintaining the culture temperature at 36 ° C., controlling the culture medium at a constant pH of 7.0, and maintaining the dissolved oxygen concentration in the medium at 2.4 mg / L or higher.
  • OD 600 reached 2
  • 1 mM IPTG was added to the medium to induce T7 RNA polymerase. Thereafter, the culture was continued until the mid-log OD 600 reached 12.
  • the culture solution 2L of the T7 Express strain cultured as described above was centrifuged at 7,000 ⁇ g, 4 ° C. for 20 minutes to recover 31 g of wet cells.
  • the cells were washed with S30 buffer (pH 8.2) containing 10 mM Tris-acetic acid, 14 mM magnesium acetate, 60 mM potassium acetate, and 2 mM DTT, and then rapidly cooled to ⁇ 80 ° C. using liquid nitrogen.
  • the microbial cell crushed material was centrifuged twice under the conditions of 20,400 ⁇ g, 4 ° C. and 30 minutes to remove the microbial cell residue.
  • the obtained supernatant was used as a cell extract.
  • reaction mixture When preparing the above reaction mixture, it was prepared on ice in order to prevent the progress of the protein synthesis reaction before observation. 20 ⁇ L of the reaction mixture was placed in a 384-well microplate, and the amount of GFP synthesis was compared by measuring the fluorescence intensity over time while incubating at 30 ° C. using a microplate reader TECANinfine F200. FIG. 3 shows the measurement result of the fluorescence intensity.
  • the glycerol-added system was less productive than the non-added system up to several tens of hours, but the GFP synthesis rate was improved thereafter.
  • the system with 100 mM glycerol added about twice the amount of GFP produced was finally obtained, and the effect of adding glycerol could be confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、大腸菌から得られた細胞抽出物と、グリセロールとを含む、無細胞タンパク質合成用反応混合物に関する。本発明はまた、当該反応混合物を用いた無細胞タンパク質合成方法にも関する。本発明は更に、大腸菌から得られた細胞抽出物、及びグリセロール、並びに鋳型核酸、目的タンパク質合成のための基質、及び/又はエネルギー源を含む、無細胞タンパク質合成用キットにも関する。

Description

無細胞タンパク質合成用反応混合物、これを用いた無細胞タンパク質合成方法、及び無細胞タンパク質合成用キット
 本発明は、無細胞タンパク質合成用反応混合物、これを用いた無細胞タンパク質合成方法、及び無細胞タンパク質合成用キットに関する。
 組換えタンパク質の生産方法としては、形質転換された細胞を培養することを含む、インビボでの方法と、いわゆる無細胞タンパク質合成方法と呼ばれる、細胞由来の抽出物(細胞抽出物)を用いるインビトロでの方法が知られている。
 工業規模でのタンパク質の生産方法としては、現段階ではインビボでの方法が優れていると考えられている。しかしながら、インビボでの方法と比較して、インビトロでの無細胞タンパク質合成方法は、(1)タンパク質の合成のための資源を、目的とするタンパク質の独占的な産生に向けることができる点、(2)細胞の増殖又は生存に関わることがないため、遺伝子のコドン使用を反映させたtRNAレベルの変更、酸化還元電位、pH、及びイオン強度といった条件等、合成環境を柔軟に変更できる点、(3)精製されて適切に折りたたまれたタンパク質産物をそのまま簡単に回収できる点、(4)非天然で同位体標識されたアミノ酸を組み入れことができる点、(5)インビボで不安定、不溶性又は細胞毒性であるタンパク質を合成することができる点、(6)独特の補因子を必要とするためにインビボでは作ることが難しいタンパク質を合成することができる点、及び(7)インビボにおける発現のためのクローニング、細胞の形質転換等のプロセスを回避することができる点等の利点を有すると考えられる。このため、インビトロでの無細胞タンパク質合成方法は、この分野の基盤技術になりつつあり、ある程度、確立された方法となっている(非特許文献1)。
 しかしながら、インビボでの方法と比較して、無細胞タンパク質合成方法は、タンパク質を合成するための反応持続時間が短いため、生産効率が低い。この反応持続時間を増加させるため、翻訳反応により消費される基質を供給するとともに、反応を阻害する副産物を透析により除去する透析膜を使用した連続的流系が開発された。しかしながら、この連続的流系によりタンパク質合成量を増加させるためには連続的に試薬を追加することが必要となり、試薬等のコストが嵩む等の問題があった。
 反応持続時間を増加させる別のアプローチとして、インビトロでの反応におけるエネルギー再生系を見直すことにより、一定の成果が得られており(特許文献1、非特許文献2)、顆粒球マクロファージコロニー刺激因子を10時間で700mg/L合成することに成功している(非特許文献3)。
 さらに、大腸菌由来の細胞抽出物を用いた無細胞タンパク質合成システムにおいて、鋳型DNAへの高濃度の塩及びグリセロールの添加は好ましくないことが記載されている(非特許文献4)。
 工業規模での生産においては、生産量及びコストにおいて更なる改善するために、無細胞タンパク質合成用反応混合物の最適組成が求められている。
特許第5259046号公報
Methods in molecular biology,vol.267,Recombinant Gene Expression:Reviews and Protocols,Second Edition,Humana Press Inc.,Totowa,NJ,pp.169-182 Mol. Syst. Biol.,2008年,vol.4,No.220,pp.1-10 Biotechnol. Bioeng.,2011年,vol.108,No.7,pp.1570-1578 The S30 T7 High-Yield Protein Expression System,PROMEGA NOTES,2008年9月,NUMBER 100,pp.9-10
 本発明は、無細胞タンパク質合成方法においてタンパク質合成量を増加させるための新規なアプローチを提供することを目的とする。
 本発明者らは、無細胞タンパク質合成方法におけるタンパク質合成に関する反応条件を鋭意検討した結果、無細胞タンパク質合成用反応混合物にグリセロールを添加することにより、目的とするタンパク質の合成量を増加させることができることを見出し、本発明を完成するに至った。
 すなわち、本発明は、例えば、以下の各発明に関する。
[1]
 大腸菌から得られた細胞抽出物と、グリセロールとを含む、無細胞タンパク質合成用反応混合物。
[2]
 上記大腸菌が、T7 RNAポリメラーゼを発現する大腸菌である、[1]に記載の反応混合物。
[3]
 上記大腸菌が、グリセロールを炭素源とした培地で培養した大腸菌である、[1]又は[2]に記載の反応混合物。
[4]
 鋳型核酸、目的タンパク質合成のための基質、及びエネルギー源をさらに含む、[1]~[3]のいずれかに記載の反応混合物。
[5]
 上記鋳型核酸が、少なくとも1つのプロモーター及び目的タンパク質をコードするDNAを含む、[4]に記載の反応混合物。
[6]
 上記エネルギー源が、ATP、GTP、グルコース、リボース、ピルベート、ホスホエノールピルベート、カルバモイルホスフェート、アセチルホスフェート、クレアチンホスフェート、ホスホピルベート、グリセルアルデヒド-3-ホスフェート、3-ホスホグリセレート及びグルコース-6-ホスフェート、クエン酸、cis-アコニット酸、イソクエン酸、α-ケトグルタル酸、スクシニルCoA、コハク酸、フマル酸、リンゴ酸、オキサロ酢酸、グリオキシル酸及びグルタミン酸からなる群より選ばれる少なくとも1種である、[4]に記載の反応混合物。
[7]
 [1]~[6]のいずれかに記載の反応混合物を用いた無細胞タンパク質合成方法。
[8]
 大腸菌から得られた細胞抽出物、及びグリセロール、並びに鋳型核酸、目的タンパク質合成のための基質、及び/又はエネルギー源を含む、無細胞タンパク質合成用キット。
[9]
 [7]に記載の無細胞タンパク質合成方法により得られるタンパク質。
 本発明の無細胞タンパク質合成用反応混合物は、大腸菌から得られた細胞抽出物とグリセロールとを含有することにより、目的タンパク質の合成量を増加させることができる。また、本発明の無細胞タンパク質合成方法によれば、大腸菌から得られた細胞抽出物にグリセロールを添加した無細胞タンパク質合成用反応混合物を用いることにより、当該方法におけるタンパク質の合成量を増加させることができ、それによりタンパク質の生産効率を向上することができる。
試験例1において、グリセロールを炭素源とした改変2×YTPG培地により培養したBL21株の増殖曲線(黒三角)と、グルコースを炭素源とした通常の2×YTPG培地により培養したBL21株の増殖曲線(黒丸)の比較を示すグラフである。 試験例2において、無細胞タンパク質合成方法により合成したGFPの蛍光強度を経時的に測定した結果を示すグラフである。白三角は、改変2×YTPG培地により培養したBL21株を用いた結果、白丸は通常の2×YTPG培地により培養したBL21株を用いた結果を示し、黒三角及び黒丸はpUC-GFPの代わりに水を加えたネガティブコントロール(NC)の結果を示す(黒三角:改変2×YTPG培地、黒丸:通常の2×YTPG培地)。 実施例1において、無細胞タンパク質合成方法により合成したGFPの蛍光強度を経時的に測定した結果を示すグラフである。黒丸は、グリセロール無添加(0mM)の無細胞タンパク質合成用反応混合物を用いた結果を示し、黒三角は、グリセロール100mMを添加した無細胞タンパク質合成用反応混合物を用いた結果を示し、黒四角はグリセロール200mMを添加した無細胞タンパク質合成用反応混合物を用いた結果を示す。
 以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は、以下の実施形態に限定されるものではない。
〔無細胞タンパク質合成用反応混合物〕
 本発明の無細胞タンパク質合成用反応混合物は、大腸菌から得られた細胞抽出物と、グリセロールとを含む。
(細胞抽出物)
 本実施形態に係る細胞抽出物は、大腸菌を破壊して得られた、固体、液体又はその混合物を意味する。細胞抽出物には、大腸菌細胞内に含まれていた、DNAを鋳型としたRNAの転写に必要な因子、並びにタンパク質の翻訳に必要な因子が含まれる。これらの因子としては、例えば、リボソーム、アミノアシル化tRNA合成酵素、翻訳開始因子及び翻訳終結因子が挙げられる。この細胞抽出物を含む反応混合物を用いて、インビトロで転写及び翻訳の反応系を再構成してタンパク質を合成させることができる。
 本実施形態に係る細胞抽出物は、例えば、1)大腸菌を培養する工程、2)培養した大腸菌を回収し、細胞抽出物を得る工程を経て得ることができる。
1)大腸菌を培養する工程
 細胞抽出物の作製に用いる大腸菌としては、エシェリヒア・コリに属する微生物であればいずれも用いることができ、例えば、エシェリヒア・コリ A19、BL21(ノバジェン社)、BL21(DE3)(ライフテクノロジーズ社)、BLR(DE3)(メルクミリポア社)、DH1、GI698、HB101、JM109、K5(ATCC23506)、K-12、KY3276、MC1000、MG1655(ATCC47076)、NMR2、No.49、Rosetta(DE3)(ノバジェン社)、TB1、Tuner(ノバジェン社)、Tuner(DE3)(ノバジェン社)、W1485、W3110(ATCC27325)、XL1-Blue、XL2-Blue等の株を挙げることができる。
 また、細胞抽出物中にタンパク質合成に不利益を及ぼす内因性タンパク質が含まれる場合には、公知の遺伝子工学的手法により、使用する大腸菌株から当該内因性タンパク質に関連する遺伝子を予め除去してもよい。
 大腸菌を培養するための培地としては、大腸菌が資化し得る炭素源、窒素源及び無機塩類等を含有する液体培地であり、培養を効率的に行える培地であれば天然培地、合成培地のいずれを用いてもよい。
 炭素源としては、例えば、グルコース、スクロース、マルトース、グリセロールを用いることができる。炭素源としては、グルコース及びグリセロールが好ましく、グリセロールがより好ましい。
 窒素源としては、例えば、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム及びリン酸アンモニウム等の無機酸又は有機酸のアンモニウム塩、その他の含窒素化合物、並びにペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕及び大豆粕加水分解物、各種発酵菌体及びその消化物を用いることができる。
 無機塩としては、例えば、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅及び炭酸カルシウムを用いることができる。
 大腸菌を培養するための培地の具体例としては、例えば、2×YTPG培地、2×YTPG培地のグルコースをグリセロールに替えた、改変2×YTPG培地(表1)等を挙げることができる。培養時の発泡を防ぐために、当該培地に公知の消泡剤を添加することが好ましい。消泡剤としては、例えばアデカ(登録商標)LG-295S等が挙げられる。消泡剤の添加量としては、例えば、0.5~2ml/Lであってよく、1ml/Lであることが好ましい。培地のpHは、例えば、6~8であってよく、pH7であることが好ましい。培地のpHの調整は、NaOH等を用いて行うことができる。
Figure JPOXMLDOC01-appb-T000001
 また、T7 RNAポリメラーゼ等の発現が可能な大腸菌を用いた場合には、T7 RNAポリメラーゼ等を予め含んだ細胞抽出物が得られる。T7 RNAポリメラーゼ等の発現がIPTGのような誘導剤により惹起される場合には培地にIPTG等の誘導剤を加えればよい。
 培養は、振盪培養又は深部通気攪拌培養等の好気的条件下で行うことが好ましい。培養温度は、例えば、15~40℃で行うことができる。培養中の培養培地のpHは3.0~9.0に保持することが好ましい。培養中のpHの調整は、無機酸、有機酸、アルカリ溶液、尿素、炭酸カルシウム及びアンモニア等を用いて行うことができる。
 培養は、例えば、対数増殖初期~後期に達するまで行ってよく、対数増殖中期に達するまで行うのが好ましい。培養時間がこれらの範囲にあることで、タンパク質合成効率がより優れる細胞抽出物を得ることができる。培養培地として改変2×YTPG培地を用いる場合には、培養温度36℃で、4~6時間培養することで通常対数増殖中期に達する。
 高濃度の菌体培養液を得るために、培養時間の経過に応じて連続的又は断続的に培地(フィード液)を培養液中へ流加する流加培養を行ってもよい。流加培養は大腸菌において公知の方法に準じて行えば良い。また、この流加培養において、フィード液中の炭素源としては、上記培養培地で挙げた炭素源を用いることができる。例えば、培養培地においてグリセロールを用いた場合には、フィード液の炭素源としてグリセロールを用いることが好ましい。炭素源の濃度を菌体の増殖に応じて調製したフィード液を準備してもよいが、30~70%の炭素源を含むフィード液を、菌体の増殖に合わせて適切な量で培養液中へ添加してもよい。
2)培養した大腸菌を回収し、細胞抽出物を得る工程
 1)の工程で培養した大腸菌を回収し、回収した大腸菌から細胞抽出物を得る工程は、無細胞タンパク質合成の目的のために当該分野において既知の方法により行うことができる。例えば、非特許文献1及び非特許文献2に記載のプロトコルに準じて行うことができる。細胞抽出物を得るための具体的な方法としては、例えば以下のような、大腸菌の菌体を回収し、回収した大腸菌の菌体を破壊する方法等を挙げることができる。
 2)の工程において、培養液から菌体を回収し、細胞抽出物を得るまでは低温に保って行うことが好ましい。具体的には、例えば、0~15℃、好ましくは2~10℃の低温に保って行うことができる。
 大腸菌培養液から大腸菌の菌体を回収する方法としては、遠心分離法、濾過法を挙げることができる。例えば、4℃、7,000~14,000×gの条件で20~50分間、遠心分離することにより大腸菌の菌体を回収することができる。
 回収後に、培地成分等を除去するため、回収した大腸菌の菌体を洗浄する工程を含むことが好ましい。洗浄溶液としては、無機塩及び緩衝作用を示す化合物を含んだ溶液、例えば、S30緩衝液等が用いられる。S30緩衝液は以下のように調製することができる。例えば、2-アミノ-2-ヒドロキシメチル-1,3-プロパンジオール6.06g、酢酸マグネシウム四水和物15.0g及び酢酸カリウム29.4gを約450mlの純水、好ましくはmilli-Q等の超純水に溶解する。溶解後、酢酸でpH8.2に調整し、500mlにメスアップし、0.22μmのフィルターで滅菌する。得られたS30緩衝液は4℃で保存することができ、使用直前に超純水で10倍に希釈し、最終濃度が2mMになるよう1M DTT水溶液を加えたものを使用する。
 上記の無機塩及び緩衝作用を示す化合物を含んだ溶液(例えばS30緩衝液)を用いて大腸菌の菌体を洗浄する工程は、例えば、回収した菌体を、当該溶液に懸濁し、遠心分離で回収する工程を例えば2~3回繰り返すことにより行うことができる。懸濁はホモジナイザー等を用いることにより効率的に均質化できる。均質化した懸濁液からの菌体の回収は、例えば4℃、9,000~14,000×gの条件で10~50分間遠心分離することにより行うことができる。
 当該洗浄した菌体は-80℃で保存することができる。-80℃での凍結は、液体窒素等を用いた急冷による方法が好ましい。
 大腸菌の菌体を破壊する手段としては、例えば、超音波破砕機、フレンチプレス、高圧ホモゲナイザー、ダイノミル、乳鉢、ガラスビーズ及びリゾチーム等の溶菌酵素を用いる手段を挙げることができる。例えば、高圧ホモゲナイザーを用いて菌体を破砕する場合には、600~1,700barの圧力で、約1ml/分の流速の条件で行えばよい。実用的な観点では、600~1000barの圧力で数回破砕を繰り返すことが好ましい。破壊前後の液を粒度分布計で分析することにより破壊の状況を確認することができる。菌体破壊液にはDTTを最終濃度1mMになるように添加することが好ましい。
 大腸菌の菌体を破壊する方法においては、上記の無機塩及び緩衝作用を示す化合物を含んだ溶液(例えばS30緩衝液)に、回収した菌体を再懸濁した、菌体懸濁液を用いることが好ましい。菌体懸濁液としては、例えば、回収した菌体1gあたり1~2mLのS30緩衝液等の溶液を添加することにより得た菌体懸濁液を挙げることができる。-80℃で保存した当該菌体を用いる場合には氷上で融解させて懸濁液を作製することが好ましい。
 細胞抽出物としては、細胞破片及びゲノムDNA等を除去したものを用いることが好ましい。除去する方法としては、遠心分離法、濾過法を挙げることができる。例えば、4℃、10,000~30,000×gの条件で20~50分間、遠心分離し、上清を取得する工程を、例えば2~3回繰り返すことにより細胞破片及びゲノムDNA等を除去することができる。
 また、細胞抽出物としては、1/3~1/4容量の活性化ミックス(300mM Tris-酢酸、pH8.2、13.2mM 酢酸マグネシウム、13.2mM ATP、4.4mM DTT、6.7U/mL ピルビン酸キナーゼ、84mM ホスホエノールピルビン酸、及びタンパク質を構成する20種類の全てのアミノ酸(各0.04mM))を加え、15~42℃、好ましくは20~37℃で、10~300分、好ましくは30~180分間インキュベートしたものを用いることができる。このような処理をした細胞抽出物を用いることにより効率よくタンパク質合成を行うことができる。
 さらに、細胞抽出物としては、内在性の核酸を除いたものを用いることが好ましい。上記活性化ミックスを加えた処理によって発生した不溶性成分は上記と同条件の遠心分離法等で除去できる。当該操作によって内在性のRNAを除去できる。内在性の核酸は、ヌクレアーゼ等を更に添加することにより分解できる。添加処理した場合には、処理後にヌクレアーゼ阻害剤を加えて処理することが好ましい。また、透析により内在性のアミノ酸、核酸及びヌクレオシド等を除くこともできる。
 当該細胞抽出物は-80℃で保存することができる。-80℃での凍結は、液体窒素等を用いた急冷による方法が好ましい。
(細胞抽出物の含有量)
 本実施形態に係る無細胞タンパク質合成用反応混合物中の細胞抽出物の含有量は、反応混合物全量を基準として、5~70%(容量/容量)であってよく、10~50%(容量/容量)であってよく、20~40%(容量/容量)であってよく、20~30%(容量/容量)であってよい。細胞抽出物を得るために用いた湿菌体(g)/反応混合物(mL)の割合は、0.01~1g/mLであってよく、0.05~0.3g/mLであってよい。
(グリセロール)
 本発明の無細胞タンパク質合成用反応混合物は、更にグリセロールを添加したものを用いることが重要である。
(グリセロールの含有量)
 本実施形態に係る無細胞タンパク質合成用反応混合物中のグリセロールの含有量は、反応混合物の組成に応じて適時最適添加濃度を決めればよく、特に制限されるものではないが、例えば、反応混合物全量を基準として、10~500mMであってよく、20~300mMであってよく、40~200mMであってよく、80~100mMであってよい。
(反応混合物のその他成分)
 本実施形態に係る無細胞タンパク質合成用反応混合物は、必要に応じて以下の(i)~(viii)の成分の少なくとも1種を含むことができる。
(i)鋳型核酸
 鋳型核酸は、発現させたい目的タンパク質をコードするDNA又はRNAと、適当な発現調節領域を含むDNA又はRNAを含んでいればよく、直鎖状及び環状の何れの形態であってもよい。発現調節領域としては、プロモーター配列、ターミネーター配列、エンハンサー配列、ポリA付加シグナル及びリボソーム結合配列などを挙げることができる。また、鋳型核酸は、少なくとも1つのプロモーター及び目的タンパク質をコードするDNAを含むことが好ましい。添加する鋳型核酸の量は、反応混合物全体の容量を基準として、0.1~50μg/mLであることが好ましく、1~20μg/mLであることがより好ましい。
 合成されたタンパク質を容易に検出あるいは精製できるよう、タグ配列を組み込んだ融合タンパク質が合成できるように鋳型核酸を設計してもよい。タグ配列としては、例えば、他の分子との特異的親和性(結合性、アフィニティ)を利用した、例えばヒスチジンタグ(Hisタグ)のようなアフィニティタグ、グルタチオンに特異的に結合するグルタチオン-S-トランスフェラーゼ(GST)、マルトースに特異的に結合するマルトース結合タンパク質(MBP)等のタグ配列を挙げることができる。また、抗原抗体反応を利用した「エピトープタグ」を利用しても良い。エピトープタグとしては、HA(インフルエンザウイルスのヘマグルチニンのペプチド配列)タグ、mycタグ、FLAGタグ等を挙げることができる。さらにタグ配列を特定のプロテアーゼで切り離せるようにしたものも利用できる。
(ii)RNAポリメラーゼ
 上記鋳型核酸がDNAである場合には、RNAポリメラーゼを含むことができる。RNAポリメラーゼとしては、上記鋳型核酸を対象とする1つ又は複数の転写因子を認識するRNAポリメラーゼを用いることができる。本発明の反応混合物は、目的タンパク質の生産効率を向上させる観点から、T7 RNAポリメラーゼを含むことが好ましい。T7 RNAポリメラーゼは、反応混合物を調製する際に添加してもよく、上述したように、T7 RNAポリメラーゼ等の発現が可能なBL21(DE3)等の株を用いて細胞抽出物にT7 RNAポリメラーゼが含まれるようにしてもよい。
(iii)エネルギー源
 細胞抽出物にタンパク質合成に必要なエネルギーが不足している場合には、反応混合物に追加的なエネルギー源を含めることが好ましい。また、エネルギー源は、タンパク質合成反応の間に添加又は補充することもできる。エネルギー源としては、例えば、ATP、GTP、グルコース、リボース、ピルベート、ホスホエノールピルベート(PEP)、カルバモイルホスフェート、アセチルホスフェート、クレアチンホスフェート、ホスホピルベート、グリセルアルデヒド-3-ホスフェート、3-ホスホグリセレート、グルコース-6-ホスフェート、クエン酸、cis-アコニット酸、イソクエン酸、α-ケトグルタル酸、スクシニルCoA、コハク酸、フマル酸、リンゴ酸、オキサロ酢酸、グリオキシル酸及びグルタミン酸等が挙げられる。リン酸基を含まないエネルギー源の場合、反応混合物に無機リン酸を加えることが好ましい。
(iv)目的タンパク質合成のための基質
 目的タンパク質合成のための基質として、反応混合物は、目的タンパク質を合成するために必要なアミノ酸を含むことができる。アミノ酸としては、タンパク質を構成する20種類の全てのアミノ酸(アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン及びバリンを指す。以下同様である。)を含んでもよく、目的タンパク質や用いる試薬等を考慮して当該20種類から適宜選択して用いてもよい。また、非天然アミノ酸を用いてもよい。非天然アミノ酸を用いる場合、非天然アミノ酸をタンパク質に導入するために必要な改変がなされたtRNA、アミノアシル化tRNA合成酵素等の因子を添加すればよい。
 上記鋳型核酸がDNAである場合には、反応混合物は目的タンパク質合成のための基質として、RNA合成のための基質を含むことができる。RNA合成のための基質としては、例えば、リボヌクレオチド三リン酸(rNTP)、リボヌクレオチド一リン酸(rNMP)等のリボヌクレオチド、アデノシン等のリボヌクレオシドが挙げられる。
(v)ポリアミン類
 反応混合物は、ポリアミン類を含むことができる。反応混合物に含め得るポリアミン類としては、例えば、スペルミン、スペルミジン及びプトレシン等が挙げられる。
(vi)塩
 反応混合物は、塩を含むことができる。反応混合物に含め得る塩としては、例えば、酢酸、グルタミン酸、又は硫酸のカリウム塩、マグネシウム塩、アンモニウム塩、及びマンガン塩が挙げられる。
(vii)酸化/還元調整剤
 反応混合物は、酸化/還元調整剤を含むことができる。酸化/還元調整剤としては、例えば、DTT、アスコルビン酸、グルタチオン、及び/又はそれらの酸化物が挙げられる。
(viii)その他の添加物
 また、必要に応じて反応混合物に、下記の成分を補充又は添加してもよい。すなわち、リボソーム、転移RNA(tRNA)、任意選択の翻訳因子(例えば、翻訳開始因子、伸長因子終結因子、リボソームリサイクリング因子等)及びその補因子、アミノアシルtRNA合成酵素(ARS)、メチオニルtRNAホルミル転移酵素(MTF)、高分子化合物(例えば、ポリエチレングリコール、デキストラン、ジエチルアミノエチルデキストラン、四級アミノエチル及びアミノエチルデキストラン等)、ヌクレアーゼ、ヌクレアーゼ阻害剤、タンパク質安定剤、シャペロン、可溶化剤、非変性界面活性物質(例えば、トリトンX100)等を必要に応じて反応混合物に添加してもよい。
 反応混合物の成分に関しては、例えば米国特許第7,338,789号及び同第7,351,563号、及び米国特許出願公開第2010/0184135号及び米国特許出願公開第2010/0093024号の記載を参考とすることができる。
〔無細胞タンパク質合成方法〕
 本実施形態に係る無細胞タンパク質合成方法は、本発明の反応混合物を用いて行うことができる。本発明の反応混合物を用いた無細胞タンパク質合成は、反応混合物の組成が異なる以外は、例えば、非特許文献1、非特許文献2又は非特許文献3に記載の公知の方法に準じて行うことができる。
 本発明の反応混合物を用いた無細胞タンパク質合成方法は、透析法及びバッチ法いずれも利用することができる。透析法の場合は、上記反応混合物を含む内液と限外濾過膜のような透析膜により隔離した目的タンパク質合成のための基質及びエネルギー源等を含む外液からなる閉鎖系でタンパク質の合成が行われる。透析法では、透析膜を介して、目的タンパク質合成のための基質及びエネルギー源等が外液から反応混合物に供給されるとともに、反応混合物中の余計な副産物を外液中に拡散させることができるため、より長時間、反応を持続させることができる。バッチ法は、タンパク質合成に必要な成分すべてを含む上記反応混合物を反応溶液と混合し、反応溶液中に均一に含ませ、反応を行う合成法であり、透析法と比較すると反応時間は短いが、結果がすぐに得られる。細胞抽出物、グリセロール、グリセロール以外のエネルギー源をあらかじめ混合し、鋳型核酸を入れる前に、グリセロールを他のエネルギー源の供給源としても使用できる。この場合、当該混合液をバッチ法の反応混合物及び/又は透析法の外液として使用できる。例えば、非特許文献3に記載のCytomim型無細胞タンパク質合成系を利用することにより、NTPやPEPを使用するPANOx型と比較して低コストでタンパク質合成系を行うことができる。
 タンパク質の合成は、例えば、20~40℃で行えばよく、30℃で行うのが好ましい。
 バッチ法によるタンパク質合成の反応時間は、グリセロール無添加の場合には2~8時間でほぼ最大生産量に達する。グリセロールを添加した無細胞タンパク質合成用反応混合物を用いた場合には、細胞抽出物とグリセロールを混合してから10時間以上タンパク質合成が継続するため、反応時間は、グリセロールを混合してから、10~40時間であることが好ましく、10~25時間であることがより好ましい。
〔無細胞タンパク質合成用キット〕
 本実施形態に係る無細胞タンパク質合成用キット(以下、「本キット」とも表す。)は、大腸菌から得られた細胞抽出物、及びグリセロールを含む。グリセロールは、細胞抽出物と予め混合され、グリセロールを含む細胞抽出物(大腸菌から得られた細胞抽出物)として本キットに含まれていてもよく、細胞抽出物とは独立して本キットに含まれていてもよい。本キットは、大腸菌から得られた細胞抽出物、及びグリセロールに加えて、鋳型核酸、目的タンパク質合成のための基質、及び/又はエネルギー源を含むものであってよい。鋳型核酸、目的タンパク質合成のための基質、及びエネルギー源は、上記細胞抽出物と予め混合されていてもよく、上記細胞抽出物とは独立して本キットに含まれていてもよい。また、本キットは、上述したRNAポリメラーゼ、ポリアミン類、塩、酸化/還元調整剤、その他の添加物をさらに含んでいてもよい。これらの添加物は、上記細胞抽出物と予め混合されていてもよく、上記細胞抽出物とは独立して本キットに含まれていてもよい。
 以下、実施例に基づいて本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
〔試験例1:大腸菌の培養〕
(グリセロールを炭素源とした大腸菌の培養)
 大腸菌BL21株(ノバジェン社)を2×YT培地(1.6%Bacto Tripton、1% Yeast Extract、0.5%NaCl)でOD600が4.2になるまでフラスコ培養した。
 当該培養液を、グリセロールを炭素源とした、表1の組成の改変2×YTPG培地(消泡剤としてアデカ(登録商標)LG-295Sを1ml/L添加し、NaOHを用いてpH7に調整)500mLが入った1LジャーファメンターにOD600が0.05になるように添加した。
 比較として、グルコース(18g/L)を炭素源とした通常の2×YTPG培地を用いて、同じ株を同様に培養した。培養温度は36℃に保ち、pH7.0で一定に制御して培養した。溶存酸素濃度は2.4mg/L以上に維持した。増殖曲線を図1に示す。改変2×YTPG培地と通常の2×YTPG培地で培養した際の比増殖速度は、それぞれ1.08h-1と0.74h-1であった。この結果は、グリセロールで培養した細胞内のリボソームやエネルギー再生系の酵素群がより高い活性を有することを示唆していると推察される。
 グリセロールを炭素源として用いた培養により、グルコースを炭素源として用いた培養よりも、より短時間で好ましい菌体濃度の培養液が得られることから、より短時間で細胞抽出物を得ることが可能であることが示された。
〔試験例2:無細胞タンパク質合成(細胞抽出物の影響)〕
(細胞抽出物の調製)
 上記試験例1と同様の方法により、改変2×YTPG培地及び通常の2×YTPG培地のそれぞれにおいて、対数中期OD600が12になるまで培養したBL21株を用いて、下記の方法で細胞抽出物を調製した。
 当該BL21株の培養液2Lを7,000×g、4℃、20分間の条件で遠心分離し、湿菌体31gを回収した。10mM Tris-酢酸、14mM 酢酸マグネシウム、60mM 酢酸カリウム及び2mM DTTを含むS30緩衝液(pH8.2)で菌体を洗浄した後、液体窒素を用いて-80℃に急冷した。
 菌体1gあたりS30緩衝液2mLを加えて解凍、懸濁し、GEA.Niro soavi社製の高圧ホモジナイザー(PandaPLUS2000)を使用して1300bar以上の圧で菌体を破砕した。
 次いで、菌体破砕物を20,400×g、4℃、30分間の条件で2回遠心分離を行い、菌体残渣を取り除いた。
 当該遠心分離上清200μLに、300mM Tris-酢酸、13.2mM 酢酸マグネシウム、13.2mM ATP、4.4mM DTT、6.7U/mL ピルビン酸キナーゼ、84mM ホスホエノールピルビン酸、及びタンパク質を構成する20種類の全てのアミノ酸(各0.04mM)を含む活性化ミックス60μLを加え、30℃で150分間インキュベートした。
 インキュベート後、20,400×g、4℃、30分間の条件で遠心分離を行い、不溶性画分を取り除くことで細胞抽出物230μLを得た。
(pUC-GFPの作製)
 pET3a(ノバジェン社)を利用し、T7プロモーター、リボソーム結合サイト(RBS)及びT7ターミネーターの配列を含むDNA断片(1)をPCR法によって調製した。
 pUC19(タカラバイオ株式会社)を利用し、複製起点及びアンピシリン耐性遺伝子の配列を含むDNA断片(2)をPCR法によって調製した。
 DNA断片(1)及びDNA断片(2)を公知のIn-Fusion反応により融合し、大腸菌HST08に形質転換した。形質転換した大腸菌を培養後、QIAGEN Plasmid Kit(株式会社キアゲン製)を使用し、プラスミドを抽出した。
 抽出したプラスミドを利用し、T7プロモーター、RBS、T7ターミネーター、複製起点及びアンピシリン耐性遺伝子の配列を含むDNA断片(3)をPCR法によって調製した。
 T5-HollyGFP(コスモバイオ株式会社製)を利用し、Holly-GFP遺伝子を含むDNA断片(4)をPCR法によって調整した。
 DNA断片(3)及びDNA断片(4)を公知のIn-Fusion反応により融合し、大腸菌HST08に形質転換した。形質転換した大腸菌を培養後、QIAGEN Plasmid Kit(株式会社キアゲン製)を使用し、pUC-GFPを抽出し、無細胞タンパク質合成反応の鋳型核酸として利用した。
 鋳型核酸用のpUC-GFPは、分光光度計を用いて高純度(A260/A280が1.8以上、A260/A230が2.0以上)であること、さらに、DNAシーケンサーを用いて塩基配列を読み取り、不必要な変異が入っていないことを確認した。
(無細胞タンパク質合成反応)
 表2の化合物を含むマスターミックス10μL、調製した細胞抽出物6μL、40mM DTT水溶液1μL、0.2g/L pUC-GFP(鋳型核酸)2μL及び1000U/μL T7 RNAポリメラーゼ1μLを加え、全量20μLの反応混合物(液体)を用意した。ネガティブコントロール(NC)としてpUC-GFPの代わりにRO水2μLを加えたものを用意した。384ウェルマイクロプレートに反応混合物を移し、マイクロプレートリーダーTECANinfiniteF200(テカンジャパン株式会社製)を使用して30℃でインキュベートしながら、経時的に蛍光強度を測定することで、GFP合成量を比較した。図2に蛍光強度の測定結果を示す。
Figure JPOXMLDOC01-appb-T000002
 反応を開始して5時間後、グリセロールを炭素源とした培地で培養した大腸菌由来の細胞抽出物を用いた場合のGFPの蛍光強度は、グルコースを炭素源とした培地で培養した大腸菌由来の細胞抽出物を用いた場合のGFPの蛍光強度よりも約2倍高い値を示した(図2)。これにより、グリセロールを炭素源とした培地で培養した大腸菌由来の細胞抽出物を用いた無細胞タンパク質合成方法によるGFPの合成量は、グルコースを炭素源とした培地で培養した大腸菌由来の細胞抽出物を用いた無細胞タンパク質合成方法と比較して、約2倍多いことが示された。
〔実施例1:無細胞タンパク質合成(グリセロールの影響)〕
(グリセロールを炭素源とした培養)
 Datsenko及びWannerの方法によりrna遺伝子を欠損したBW25113株を作製し、P1トランスダクションによってT7 Express株(ニューイングランドバイオラボ社)に欠損を導入し、rna遺伝子が欠損したT7 Express株を作製した。当該rna遺伝子はリボヌクレアーゼ Iの合成に関わる遺伝子であり、mRNAの安定性に関与する。
 上記rna遺伝子が欠損したT7 Express株を2×YT培地(1.6%Bacto Tripton、1% Yeast Extract、0.5%NaCl)でOD600が3.5になるまでフラスコ培養した。
 次いで、当該培養液を、表1の組成の改変2×YTPG培地(消泡剤としてアデカ(登録商標)LG-295Sを1ml/L添加し、NaOHを用いてpH7に調整)2.1Lが入った3LジャーファメンターにOD600が0.05になるように添加し、本培養を行った。
 本培養は、培養温度を36℃に保ち、培地のpH7.0で一定に制御し、培地の溶存酸素濃度は2.4mg/L以上に維持して行った。OD600が2に達した時点で、培地に1mM IPTGを加え、T7 RNAポリメラーゼを誘導した。その後、対数中期OD600が12になるまで培養を継続した。
(細胞抽出物の調製)
 上記のように培養したT7 Express株の培養液2Lを7,000×g、4℃、20分間の条件で遠心分離し、湿菌体31gを回収した。10mM Tris-酢酸、14mM 酢酸マグネシウム、60mM 酢酸カリウム、及び2mM DTTを含むS30緩衝液(pH8.2)で菌体を洗浄した後、液体窒素を用いて-80℃に急冷した。
 菌体1gあたりS30緩衝液2mLを加えて解凍、懸濁し、GEA.Niro soavi社製の高圧ホモジナイザー(PandaPLUS2000)を使用して1300bar以上の圧で菌体を破砕した。
 次いで、菌体破砕物を20,400×g、4℃、30分間の条件で2回遠心分離を行い、菌体残渣を取り除いた。得られた上清を細胞抽出物とした。
(鋳型核酸:pUC-GFP)
 鋳型核酸として、試験例2で作製したpUC-GFPを用いた。
(無細胞タンパク質合成反応)
 表2に示したマスターミックス及び当該マスターミックスにグリセロールを100mM(0.1%)又は200mM(0.2%)添加した3種類のマスターミックスを調製した。当該マスターミックス10μLに、調製した細胞抽出物6μL、40mM DTT水溶液1μL、0.2g/L pUC-GFP2μL及び超純水1μLを加え、全量20μLの反応混合物(液体)を用意した。
 上記反応混合物を調製する際、観察前のタンパク質合成反応の進行を防ぐため、氷上で調製した。384ウェルマイクロプレートに反応混合物20μLを入れ、マイクロプレートリーダーTECANinfiniteF200を使用して30℃でインキュベートしながら、経時的に蛍光強度を測定することで、GFP合成量を比較した。図3に蛍光強度の測定結果を示す。
 図3に示すとおり、グリセロール添加の系においては10数時間まで無添加の系より生産性が低くなっているが、以後GFPの合成速度は向上した。100mMのグリセロール添加の系では、最終的に約2倍のGFPの生産量を得ることができ、グリセロールの添加効果を確認することができた。
 一方で、200mMのグリセロール添加の系では生産性の向上は認められなかったが、初発のグリセロール濃度を下げる、又は分割若しくは連続投与の方法でグリセロールを添加すれば、反応初期における合成速度の停滞を回避でき、200mMのグリセロール添加の系においても充分生産性の向上が認められると予想される。

Claims (9)

  1.  大腸菌から得られた細胞抽出物と、グリセロールとを含む、無細胞タンパク質合成用反応混合物。
  2.  前記大腸菌が、T7 RNAポリメラーゼを発現する大腸菌である、請求項1に記載の反応混合物。
  3.  前記大腸菌が、グリセロールを炭素源とした培地で培養した大腸菌である、請求項1又は2に記載の反応混合物。
  4.  鋳型核酸、目的タンパク質合成のための基質、及びエネルギー源をさらに含む、請求項1~3のいずれか一項に記載の反応混合物。
  5.  前記鋳型核酸が、少なくとも1つのプロモーター及び目的タンパク質をコードするDNAを含む、請求項4に記載の反応混合物。
  6.  前記エネルギー源が、ATP、GTP、グルコース、リボース、ピルベート、ホスホエノールピルベート、カルバモイルホスフェート、アセチルホスフェート、クレアチンホスフェート、ホスホピルベート、グリセルアルデヒド-3-ホスフェート、3-ホスホグリセレート、グルコース-6-ホスフェート、クエン酸、cis-アコニット酸、イソクエン酸、α-ケトグルタル酸、スクシニルCoA、コハク酸、フマル酸、リンゴ酸、オキサロ酢酸、グリオキシル酸及びグルタミン酸からなる群より選ばれる少なくとも1種である、請求項4に記載の反応混合物。
  7.  請求項1~6のいずれか一項に記載の反応混合物を用いた無細胞タンパク質合成方法。
  8.  大腸菌から得られた細胞抽出物、及びグリセロール、並びに鋳型核酸、目的タンパク質合成のための基質、及び/又はエネルギー源を含む、無細胞タンパク質合成用キット。
  9.  請求項7記載の無細胞タンパク質合成方法により得られるタンパク質。
PCT/JP2018/008793 2017-04-28 2018-03-07 無細胞タンパク質合成用反応混合物、これを用いた無細胞タンパク質合成方法、及び無細胞タンパク質合成用キット WO2018198542A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017090067A JP2020127364A (ja) 2017-04-28 2017-04-28 無細胞タンパク質合成用反応混合物、これを用いた無細胞タンパク質合成方法、及び無細胞タンパク質合成用キット
JP2017-090067 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018198542A1 true WO2018198542A1 (ja) 2018-11-01

Family

ID=63919695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008793 WO2018198542A1 (ja) 2017-04-28 2018-03-07 無細胞タンパク質合成用反応混合物、これを用いた無細胞タンパク質合成方法、及び無細胞タンパク質合成用キット

Country Status (2)

Country Link
JP (1) JP2020127364A (ja)
WO (1) WO2018198542A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208640A (ja) * 2003-01-07 2004-07-29 Rengo Co Ltd 無細胞系タンパク質合成用酵母抽出液およびその調製方法、ならびにそれを用いた無細胞系タンパク質合成方法
WO2004111203A1 (ja) * 2003-06-10 2004-12-23 Shimadzu Corporation 哺乳動物培養細胞抽出液およびその調製方法、ならびに該抽出液を用いた無細胞系タンパク質合成方法
JP2005295914A (ja) * 2004-04-14 2005-10-27 Japan Biological Informatics Consortium 膜タンパク質の合成方法
JP2014097056A (ja) * 2012-10-19 2014-05-29 Institute Of National Colleges Of Technology Japan カイコ幼虫中部絹糸腺抽出液を用いた無細胞タンパク質合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208640A (ja) * 2003-01-07 2004-07-29 Rengo Co Ltd 無細胞系タンパク質合成用酵母抽出液およびその調製方法、ならびにそれを用いた無細胞系タンパク質合成方法
WO2004111203A1 (ja) * 2003-06-10 2004-12-23 Shimadzu Corporation 哺乳動物培養細胞抽出液およびその調製方法、ならびに該抽出液を用いた無細胞系タンパク質合成方法
JP2005295914A (ja) * 2004-04-14 2005-10-27 Japan Biological Informatics Consortium 膜タンパク質の合成方法
JP2014097056A (ja) * 2012-10-19 2014-05-29 Institute Of National Colleges Of Technology Japan カイコ幼虫中部絹糸腺抽出液を用いた無細胞タンパク質合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, H. ET AL.: "Preliminary study on preparation of E. coli cell -free system for protein expression.", FRONT. CHEM. ENG. CHINA, vol. 2, no. 2, 2008, pages 224 - 229 *
LIAN, Q. ET AL.: "The cost-efficiency realization in the escherichia coli-based cell -free protein synthesis systems.", APPL BIOCHEM BIOTECHNOL, vol. 174, 2014, pages 2351 - 2367 *

Also Published As

Publication number Publication date
JP2020127364A (ja) 2020-08-27

Similar Documents

Publication Publication Date Title
US7312049B2 (en) Total amino acid stabilization during cell-free protein synthesis
JP5815935B2 (ja) 外因性アミノ酸および新規atp再生システムを用いたインビトロ高分子生合成の方法
US7338789B2 (en) Methods of in vitro protein synthesis
US9410170B2 (en) Methods of in vitro protein synthesis
US6994986B2 (en) In vitro synthesis of polypeptides by optimizing amino acid metabolism
Yang et al. Simplifying and streamlining Escherichia coli‐based cell‐free protein synthesis
JP5798489B2 (ja) インビトロタンパク質合成システムを用いて非天然アミノ酸をタンパク質に選択的に導入するためのモノチャージシステム
US10865225B2 (en) Engineered alanyl-glutamine dipeptide biosynthetic enzyme and application thereof
US20130316397A1 (en) Cell-Free Polypeptide Synthesis
US11673921B2 (en) Cell-free protein synthesis platform derived from cellular extracts of Vibrio natriegens
WO2018198543A1 (ja) 無細胞タンパク質合成用反応混合物、これを用いた無細胞タンパク質合成方法、及び無細胞タンパク質合成用キット
WO2007061136A1 (ja) 非天然型アミノ酸を組み込んだタンパク質の製造方法
WO2018159647A1 (ja) 無細胞タンパク質合成用反応混合物、これを用いた無細胞タンパク質合成方法及び無細胞タンパク質合成用キット
Wang et al. IRES-mediated Pichia pastoris cell-free protein synthesis
WO2018198542A1 (ja) 無細胞タンパク質合成用反応混合物、これを用いた無細胞タンパク質合成方法、及び無細胞タンパク質合成用キット
JP2020507322A (ja) 人工エネルギー再生システムを必要としない新規の無真核細胞発現システム
Spirin et al. Cell-free protein synthesis systems: historical landmarks, classification, and general methods
JP2021052653A (ja) 構造タンパク質の製造方法
JP2020000070A (ja) L−システインの分解抑制

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP