WO2018198537A1 - 内燃機関の制御装置及び制御方法 - Google Patents

内燃機関の制御装置及び制御方法 Download PDF

Info

Publication number
WO2018198537A1
WO2018198537A1 PCT/JP2018/008597 JP2018008597W WO2018198537A1 WO 2018198537 A1 WO2018198537 A1 WO 2018198537A1 JP 2018008597 W JP2018008597 W JP 2018008597W WO 2018198537 A1 WO2018198537 A1 WO 2018198537A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
injection end
fuel
end timing
Prior art date
Application number
PCT/JP2018/008597
Other languages
English (en)
French (fr)
Inventor
高輔 神田
村井 淳
吉辰 中村
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201880003468.2A priority Critical patent/CN109690057A/zh
Publication of WO2018198537A1 publication Critical patent/WO2018198537A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration

Definitions

  • the present invention relates to a control device and a control method for controlling a fuel injection valve that injects fuel into an intake pipe of an internal combustion engine.
  • the fuel supply control device for an internal combustion engine disclosed in Patent Document 1 supplies fuel from the fuel injection valve in synchronization with the intake stroke when the intake air amount is small, and before the intake stroke starts when the intake air amount is large. Complete the fuel supply.
  • the present invention has been made in view of conventional circumstances, and an object of the present invention is to provide an internal combustion engine control apparatus and control method capable of improving exhaust properties by setting an injection end timing.
  • the injection end timing of the fuel injection valve is set to a timing advanced within the crank angle region after the intake top dead center as the load of the internal combustion engine increases.
  • the exhaust properties of the internal combustion engine can be improved by optimizing the injection end timing.
  • FIG. 1 is a system configuration diagram of an internal combustion engine in an embodiment of the present invention. It is a flowchart which shows the setting process of the injection end time in embodiment of this invention. It is a diagram which shows the correlation with the engine load and injection completion time in embodiment of this invention. It is a figure for demonstrating the condition where wall flow inflow amount increases with the excessive advance angle at the time of high load. It is a figure for demonstrating the condition where the amount of wall flow inflow increases by the excessive retardation at the time of low load. It is a diagram which shows the correlation with wall flow inflow amount at the time of low load, the number PN of discharge
  • FIG. 1 is a diagram showing an aspect of an internal combustion engine to which a control device and a control method according to the present invention are applied.
  • An internal combustion engine 1 shown in FIG. 1 is a spark ignition gasoline engine for vehicles, and includes an ignition device 4, a fuel injection valve 5, and the like in an engine body 1a.
  • the fuel injection valve 5 injects fuel into the intake pipe 2a in the vicinity of the umbrella portion of the intake valve 19. That is, the internal combustion engine 1 shown in FIG. 1 is a so-called port injection type internal combustion engine in which the fuel injection valve 5 injects fuel into the intake pipe 2a.
  • the air sucked through the air cleaner 7 is adjusted in flow rate by the throttle valve 8 a of the electric throttle 8, and then mixed with the fuel injected from the fuel injection valve 5 into the intake pipe 2 a to enter the combustion chamber 10. Sucked.
  • the electric throttle 8 is a device that opens and closes the throttle valve 8a with a throttle motor 8b, and includes a throttle opening sensor 8c that outputs a signal corresponding to the opening TPS of the throttle valve 8a.
  • the rotation speed detection device 6 outputs a signal of the rotation angle NE for each predetermined rotation angle of the crankshaft 17 by detecting the protrusion of the ring gear 14.
  • the water temperature sensor 15 outputs a signal corresponding to the temperature of the cooling water in the water jacket 18 provided in the engine body 1a (hereinafter referred to as the water temperature TW).
  • the flow rate detection device 9 is disposed upstream of the electric control throttle 8 and outputs a signal corresponding to the intake air flow rate QAR of the internal combustion engine 1. Further, the exhaust purification catalyst device 12 disposed in the exhaust pipe 3a purifies the exhaust gas of the internal combustion engine 1.
  • the air-fuel ratio sensor 11 is disposed in the exhaust pipe 3a on the upstream side of the exhaust purification catalyst device 12, and outputs a signal corresponding to the exhaust air-fuel ratio RABF (oxygen concentration).
  • the exhaust temperature sensor 16 is disposed in the exhaust pipe 3 a upstream of the exhaust purification catalyst device 12 and outputs a signal corresponding to the exhaust temperature TEX (° C.) at the inlet of the exhaust purification catalyst device 12.
  • Fuel is adjusted to a predetermined pressure by the fuel supply device 31 and supplied to the fuel injection valve 5.
  • the fuel supply device 31 includes a fuel tank 32, an electric fuel pump 33, a pressure regulator 34, a fuel supply pipe 35, a fuel return pipe 36, and a fuel pressure sensor 37.
  • the fuel pump 33 sucks the fuel in the fuel tank 32 and pumps the fuel to the fuel injection valve 5 through the fuel supply pipe 35.
  • One end of the fuel return pipe 36 is connected to the middle of the fuel supply pipe 35, the other end is opened in the fuel tank 32, and a pressure regulator 34 for returning the fuel to the fuel tank 32 through an orifice is interposed.
  • the pressure of the fuel supplied to the fuel injection valve 5 is detected by the fuel pressure sensor 37, and the pressure of the fuel supplied to the fuel injection valve 5 is controlled by controlling the drive voltage of the fuel pump 33 according to the fuel pressure detection value by the fuel pressure sensor 37. Is set to be variable.
  • the control device 13 incorporating the microcomputer outputs sensor signals such as the opening degree TPS, the intake air flow rate QAR, the rotation angle NE, the water temperature TW, the exhaust air / fuel ratio RABF, the exhaust temperature TEX, and the fuel pressure PF, which are output from the various sensors described above. Capture. Then, the control device 13 calculates a fuel injection pulse width TI (fuel injection amount) and injection timing based on the acquired sensor signal, and outputs a valve opening command signal corresponding to the fuel injection pulse width TI (ms) at the injection timing. It functions as a command output unit that outputs to the fuel injection valve 5.
  • sensor signals such as the opening degree TPS, the intake air flow rate QAR, the rotation angle NE, the water temperature TW, the exhaust air / fuel ratio RABF, the exhaust temperature TEX, and the fuel pressure PF, which are output from the various sensors described above. Capture. Then, the control device 13 calculates a fuel injection pulse width TI (fuel injection amount) and injection timing based
  • control device 13 also outputs command signals to the ignition device 4, the electric throttle 8, and the fuel pump 33 to control the ignition timing of the ignition device 4, the opening degree of the throttle valve 8 a, and the fuel pressure of the fuel injection valve 5.
  • the control device 13 inputs / outputs data (measurement results of various sensors and operation amounts output to various devices), an analog input circuit 20, an A / D conversion circuit 21, a digital input circuit 22, an output circuit 23, and An I / O circuit 24 is provided.
  • control device 13 includes a microcomputer including an MPU (Microprocessor Unit) 26, a ROM (Read Only Memory) 27, and a RAM (Random Access Memory) 28 in order to perform data arithmetic processing.
  • Sensor signals such as the intake air flow rate QAR, the opening degree TPS, the exhaust air / fuel ratio RABF, the exhaust gas temperature TEX, the water temperature TW, and the fuel pressure PF are input to the analog input circuit 20.
  • Various signals input to the analog input circuit 20 are respectively supplied to the A / D conversion circuit 21, converted into digital signals, and output onto the bus 25.
  • the signal of the rotation angle NE input to the digital input circuit 22 is output on the bus 25 via the I / O circuit 24.
  • Connected to the bus 25 are an MPU 26, a ROM 27, a RAM 28, a timer / counter (TMR / CNT) 29, and the like.
  • the MPU 26, ROM 27, and RAM 28 exchange data via the bus 25.
  • a clock signal is supplied from the clock generator 30 to the MPU 26, and the MPU 26 executes various calculations and processes in synchronization with the clock signal.
  • the ROM 27 is composed of, for example, an EEPROM (Electrically Erasable Programmable Read-Only Memory) capable of erasing and rewriting data, and stores a program for operating the control device 13, setting data, initial values, and the like.
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • the ROM 27 Information stored in the ROM 27 is read into the RAM 28 and the MPU 26 via the bus 25.
  • the RAM 28 is used as a work area for temporarily storing calculation results and processing results by the MPU 26.
  • the timer / counter 29 is used for measuring time, measuring various times, and the like. Calculation results and processing results by the MPU 26 are output to the bus 25 and then supplied from the output circuit 23 to the ignition device 4, the fuel injection valve 5, the electric throttle 8 and the fuel pump 33 via the I / O circuit 24. Is done.
  • the control device 13 calculates the injection end timing IET and the fuel injection pulse width TI (ms) based on the operating conditions of the internal combustion engine 1, and further calculates the crank angle converted value of the fuel injection pulse width TI.
  • the injection start timing IST is calculated based on the injection end timing IET.
  • the control device 13 detects the injection start timing IST based on the signal of the rotation angle NE and outputs a valve opening command signal having the fuel injection pulse width TI to the fuel injection valve 5.
  • the injection end timing IET and the injection start timing IST are represented by a crank angle with the intake top dead center (intake TDC) as a reference position.
  • FIG. 2 is a flowchart showing the procedure of the setting process of the injection end time IET by the control device 13, in other words, the function as the injection end time setting unit.
  • the control device 13 calculates the basic injection end timing IETb based on the load of the internal combustion engine 1.
  • the control device 13 obtains the fuel injection pulse width TI, the cylinder intake air amount, the throttle opening, the intake negative pressure, and the like as state quantities indicating the load of the internal combustion engine 1, and based on these, the basic injection end timing IETb is determined.
  • FIG. 3 is a diagram showing an aspect of the correlation between the engine load and the basic injection end timing IETb.
  • the control device 13 calculates the basic injection end timing IETb based on the engine load according to the correlation shown in FIG.
  • the control device 13 sets the basic injection end timing IETb to a timing that is advanced as the load of the internal combustion engine 1 becomes higher in the crank angle region after the intake top dead center.
  • the basic injection end timing IETb is preliminarily adapted based on experiments, simulations, and the like so as to suppress an increase in the wall flow inflow amount flowing into the cylinder from the intake pipe 2a according to a load change of the internal combustion engine 1. It has been done.
  • the wall flow inflow rate changes from a decrease change to an increase change (minimum) when the injection end timing IET is changed to advance or retard under the same engine load condition.
  • the wall flow inflow amount increases.
  • the injection end timing IET at which the wall flow inflow amount becomes a minimum value is a timing that is advanced more as the engine load is higher.
  • the control device 13 performs basic injection based on the correlation between the engine load and the basic injection end timing IETb determined so as to trace the injection end timing IET where the wall flow inflow amount becomes a value near the minimum value for each engine load.
  • the end time IETb is determined, and the injection end time IET at which the wall flow inflow amount becomes a minimum value is a more advanced time as the engine load is higher. Therefore, the basic injection end time IETb is determined by the internal combustion engine 1. It is set at a time when the angle is advanced as the load increases.
  • the setting range of the injection end timing IET in which the wall flow inflow amount is in the vicinity of the minimum value that is, the advance limit and delay limit of the injection end timing IET for suppressing the wall flow inflow amount in the vicinity of the minimum value.
  • the control device 13 is configured to change the basic injection end timing IETb in accordance with the engine load within the set range.
  • the fuel wall flow flowing into the cylinder from the intake pipe 2a adheres to the cylinder bore or the like and becomes steamed when the air-fuel mixture burns, thereby increasing the number of exhausted particles PN of the particulate matter and improving the exhaust properties of the internal combustion engine 1. It becomes a factor to worsen. Therefore, the control device 13 controls the injection timing of the fuel injection valve 5 based on the basic injection end timing IETb, thereby reducing the inflow amount of the wall flow, that is, the number of discharged particles PN as much as possible. The exhaust property of can be improved.
  • FIG. 4 is a diagram for explaining a situation in which the wall flow inflow increases when the internal combustion engine 1 is in a high load state.
  • FIG. 5 illustrates a situation in which the wall flow inflow increases in the low load state of the internal combustion engine 1. It is a figure for demonstrating.
  • injection end timing IET is excessively advanced while the internal combustion engine 1 is in a high load state, more fuel is injected toward the umbrella portion of the intake valve 19 while the intake valve 19 is closed. The amount of fuel adhering to the liquid in the umbrella portion of the intake valve 19 increases and a thick liquid film is formed.
  • the injection end timing IET is excessively retarded in a low load state of the internal combustion engine 1, the fuel injected toward the intake valve 19 while the intake valve 19 is open is deflected by the intake flow, The amount of fuel adhering to the intake port in a liquid state increases to form a thick liquid film.
  • the fuel that is thickly attached to the umbrella portion and the intake port of the intake valve 19 flows into the cylinder as a wall flow when the intake valve 19 is opened, and adheres to the cylinder bore and the like.
  • the fuel adhering to the cylinder bore is in a steamed state when the air-fuel mixture burns in the combustion chamber, and this increases the number PN of discharged particles of particulate matter. Therefore, the present inventors analyzed the correlation between the wall flow inflow amount and the number of discharged particles PN and the injection end timing IET, and obtained the characteristics of the injection end timing IET that can reduce the number of discharged particles PN as much as possible.
  • FIG. 6 shows the correlation between the number of discharged particles PN [N / cc] and the injection end timing IET [degATDC] and the wall flow inflow [mg] when the internal combustion engine 1 is warmed up at a low load near idling.
  • the correlation with the injection end timing IET [degATDC] is shown.
  • the wall flow inflow becomes the smallest when the injection end timing IET is approximately 30 deg to 90 deg after the intake top dead center (30 degATDC-90 degATDC), and this wall flow inflow becomes the smallest.
  • the emission particle number PN tended to be the smallest when the injection end time IET was reached.
  • FIG. 7 shows the correlation between the number of exhaust particles PN and the injection end timing IET and the wall flow inflow amount and the injection end timing IET when the internal combustion engine 1 is operated at a high load (full load) with the throttle fully open after warming up.
  • the correlation is shown.
  • the throttle end is fully opened and the injection end timing IET is 90 degATDC in which the wall flow inflow and the number of discharged particles PN are reduced by idling
  • the wall flow inflow and the number of discharged particles PN are larger than in idling.
  • the wall flow inflow and the number of discharged particles PN tended to decrease as the end time IET was advanced from 90 degATDC.
  • the wall flow inflow is suppressed to near the minimum amount at idling, and the injection end timing is further increased.
  • the IET is advanced to the intake top dead center (0 degATDC)
  • the wall flow inflow becomes the smallest.
  • the wall flow inflow increases as the injection end timing IET is advanced. Showed a trend.
  • the present inventors reduce the amount of unburned fuel (HC) discharged as the injection end timing IET approaches the intake top dead center after the intake top dead center at a high load (full load) with the throttle fully open.
  • HC unburned fuel
  • the control device 13 needs to determine the fuel injection pulse width TI at an earlier time as the injection end timing IET is advanced, and the follow-up delay of the fuel injection pulse width TI with respect to the load change becomes large, so There is a possibility that an air-fuel ratio shift will occur. That is, the control response of the fuel injection pulse width TI by the control device 13 decreases as the injection end timing IET is advanced. Thus, it can be said that the injection end timing IET before the intake top dead center does not significantly affect the reduction of unburned fuel (HC), and the injection end timing in terms of the control response of the fuel injection pulse width TI. An excessive advance of the IET is undesirable.
  • the injection end timing IET is set to 60 deg after the intake TDC (0 degATDC-60 degATDC) with a high load with the throttle fully open, the amount of unburned fuel (HC) is reduced as much as possible.
  • the wall flow inflow amount and the number of discharged particles PN can be reduced to the same level or less as that during idling, and a decrease in the control response of the fuel injection pulse width TI can be suppressed.
  • the present inventors set the injection end timing IET between 30 degATDC-90 degATDC at a low load near idling, and the injection end timing IET between 0 degATDC-60 degATDC at a high load at full throttle. As a result, the analysis result that the wall flow inflow amount and the number of discharged particles PN can be reduced as much as possible while suppressing the discharge amount of unburned fuel (HC).
  • the setting range of the injection end timing IET from the range of 30 degATDC-90 degATDC to the range of 0 degATDC-60 degATDC as the engine load increases
  • the point indicating 90 degATDC which is the retard limit of the injection end timing IET at a low load near idling
  • the point indicating 60 degATDC which is the delay limit of the injection end timing IET at a high load with the throttle fully open.
  • the line connecting the two lines becomes the retardation limit of the injection end timing IET that can suppress the wall flow inflow amount and the number of discharged particles PN under each load condition.
  • the point indicating 30 degATDC which is the advance angle limit of the injection end timing IET at a low load near idling and the intake top dead center which is the advance angle limit of the injection end timing IET at a high load with the throttle fully opened.
  • a line connecting a point indicating (0 degATDC) is an advance angle limit of the injection end timing IET under each load condition. Then, the control device 13 advances the injection end timing IET in accordance with the increase in the engine load within the range between the retard limit of the injection end timing IET and the advance limit of the injection end timing IET. By making the angle, the wall flow inflow amount and the number of discharged particles PN can be reduced as much as possible.
  • the control device 13 advances the injection end timing IET in accordance with the increase in the engine load within the crank angle range from the intake TDC to ATDC 90 deg, thereby suppressing the amount of unburned fuel (HC) emission.
  • the number of discharged particles PN due to wall flow inflow can be reduced as much as possible.
  • the control device 13 sets a crank angle near the advance angle limit within a range between the retard angle limit and the advance angle limit as the basic injection end timing IETb.
  • the control device 13 is not limited to the configuration in which the crank angle near the advance angle limit is set to the basic injection end timing IETb, and the control device 13 responds to an increase in engine load within the range between the retard angle limit and the advance angle limit.
  • Various characteristics for advancing the basic injection end timing IETb can be employed.
  • step S101 When the basic injection end timing IETb is set in step S101, the control device 13 proceeds to step S102, and sets the retardation correction value HIETD1 for the basic injection end timing IETb according to the spray particle diameter of the fuel injection valve 5.
  • the basic injection end timing IETb is a value adapted to the spray particle diameter of the reference fuel injection valve, whereas the fuel injection valve 5 having a spray particle diameter different from the reference fuel injection valve is employed.
  • the optimum value of the injection end timing IET is different.
  • the memory of the control device 13 is provided with a table that stores the retardation correction value HIETD1 for each of a plurality of different spray particle sizes (for each of a plurality of types of fuel injection valves), and the control device 13 is given from the outside.
  • the retard correction value HIETD1 is set based on the information on the spray particle size (type of fuel injection valve).
  • the spray particle diameter of the fuel injection valve 5 is smaller, the fuel spray is caused to flow into the intake flow and the fuel adhering to the cylinder bore decreases. Therefore, even if the injection end timing IET is delayed, the deterioration of the number PN of exhaust particles can be suppressed.
  • the in-cylinder direct entry rate of the fuel is improved, the decrease in the combustion chamber temperature is promoted, and knocking is improved.
  • the table in which the retardation correction value HIETD1 is stored for each of a plurality of different spray particle sizes is set so that the basic injection end timing IETb is delayed more as the spray particle size is smaller.
  • FIG. 8 shows an example of a table in which the retardation correction value HIETD1 is stored for each of a plurality of different spray particle sizes
  • FIG. 9 shows an aspect of the injection end timing IET as a result of applying the retardation correction value HIETD1. Show.
  • the table of retardation correction value HIETD1 shown in FIG. 8 is divided into three types of spray particle sizes of large, medium, and small, and the retardation correction value HIETD1 is set for each of the large, medium, and small spray particle sizes, and the spray particle size “small”.
  • the retard correction value HIETD11 is the largest and the basic injection end timing IETb is corrected to the most retarded timing
  • the retard correction value HIETD13 is the smallest and the basic injection end timing IETb is It is corrected to the most advanced time.
  • the retardation correction value HIETD13 at the spray particle size “large” is set to zero and correction is substantially performed.
  • the retard correction value HIETD12 at the spray particle size “medium” is used to retard the basic injection end timing IETb, and the retard correction value HIETD11 at the spray particle size “small” is set to the spray particle size “medium”.
  • the basic injection end timing IETb is set to a value that is retarded more than when “.”
  • the retardation correction value HIETD12 at the spray particle size “medium” is set to zero and the correction is substantially performed.
  • the retard correction value HIETD11 for the spray particle size “small” is used to retard the basic injection end timing IETb
  • the retard correction value HIETD13 for the spray particle size “large” is the basic injection end timing IETb. Is a value that advances.
  • the injection end timing IET as a result of applying the retard correction value HIETD1 is the latest in the crank angle region after the intake TDC when the spray particle size is “small” as shown in FIG.
  • the particle size is “large”, it becomes the fastest in the crank angle region after the intake TDC, and when the spray particle size is “medium”, the injection end timing IET at the spray particle size “small” and the spray particle size It is set to the injection end timing IET between the “large” injection end timing IET.
  • FIG. 10 is a diagram for explaining the effect of the process of delaying the injection end timing IET as the spray particle size is smaller, and illustrates the change in the charging efficiency and the number of discharged particles PN with respect to the injection end timing IET at a high load.
  • the spray particle size becomes smaller, the number of discharged particles PN at the injection end timing IET after the intake top dead center is reduced, and by delaying the injection end timing IET, the direct in-cylinder rate of the fuel is increased.
  • the reduction of the combustion chamber temperature is promoted, and as a result, the charging efficiency is improved and knocking is less likely to occur and the ignition timing can be further advanced.
  • step S103 the control device 13 determines whether or not the pressure of the fuel supplied to the fuel injection valve 5 to be controlled is variable, in other words, whether or not the internal combustion engine 1 has a variable fuel pressure system. Is determined.
  • the internal combustion engine 1 of the present embodiment is provided with a variable fuel pressure system, and the control device 13 proceeds to step S104 and corrects the retardation of the basic injection end timing IETb according to the fuel pressure set value (target fuel pressure value) in the variable fuel pressure system. Set the value HIETD2.
  • the injection end timing IET is delayed, the deterioration of the number of exhausted particles PN can be suppressed.
  • the control device 13 sets the retard correction value HIETD2 that retards the basic injection end timing IETb as the fuel pressure set value increases, thereby improving the charging efficiency and allowing the ignition timing to be advanced more. .
  • 11 and 12 are diagrams illustrating the difference in the injection timing depending on the fuel pressure setting value when the basic injection end timing IETb is corrected with the retard correction value HIETD2.
  • the control device 13 delays the injection end timing IET more in the crank angle range from the intake TDC to ATDC 90 deg when the fuel pressure set value is high than when it is low.
  • FIG. 13 is a diagram illustrating the difference in the spray particle size SMD, the number of exhausted particles PN, and the unburned fuel HC due to the difference in the fuel pressure setting value when the internal combustion engine 1 is warmed up at a low load near idling.
  • the spray particle size SMD is decreased by increasing the fuel pressure set value, and the spray particle size SMD is decreased. While the number of emitted particles PN was reduced, the decrease in the spray particle size SMD did not contribute to the improvement of the unburned fuel HC. That is, even when the internal combustion engine 1 is warmed up at a low load near idling, if the fuel pressure set value is increased, the spray particle size SMD is reduced, and the number of discharged particles PN can be improved.
  • FIG. 14 exemplifies the difference in the spray particle size SMD, the number of discharged particles PN, and the unburned fuel HC depending on the difference in the fuel pressure setting value when the internal combustion engine 1 is operated at a high load (full load) with the throttle fully opened after warming up. It is a figure to do.
  • the spray particle size SMD is decreased by increasing the fuel pressure set value, and the spray particle size SMD.
  • the decrease in the number of discharged particles PN is reduced by the decrease in, while the decrease in the spray particle size SMD does not contribute to the improvement of the unburned fuel HC.
  • the control device 13 sets the retardation correction value HIETD2 to zero in step S105 and sets the retardation correction value HIETD2.
  • the correction of the basic injection end timing IETb by is canceled.
  • the control device 13 sets the basic injection end timing IETb to the retard correction value HIETD1 and the retard in step S106.
  • the control device 13 obtains the injection start timing IST from the injection end timing IET and the crank angle converted value of the fuel injection pulse width TI, and at the injection start timing IST, the valve opening command signal (injection pulse). Signal) is output to the fuel injection valve 5 to terminate the fuel injection by the fuel injection valve 5 at the injection end timing IET.
  • control device 13 sets the injection end timing to a timing that is advanced as the load on the internal combustion engine increases within the crank angle region after the intake top dead center. Reduce the exhaust properties of the engine, specifically the number of exhausted particles PN.
  • control device 13 performs one or both of correction of the injection end timing IET according to the spray particle diameter (type of the fuel injection valve 5) of the fuel injection valve 5 and correction of the injection end timing IET according to the fuel pressure set value. Can be omitted.
  • control device 13 can correct the basic injection end timing IETb set according to the engine load according to the cooling water temperature representing the temperature of the internal combustion engine 1, and more specifically, the cooling water temperature is high.
  • the injection end timing IET can be delayed more in the crank angle range from the intake TDC to ATDC 90 deg (as the fuel spray is easily vaporized).
  • the control device 13 sets the basic injection end timing IETb set according to the engine load in the particulate form. Correction based on the particulate matter detected by the substance detection sensor, or learning processing for changing the correlation between the engine load and the basic injection end timing IETb based on the particulate matter detected by the particulate matter detection sensor can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

本願発明の内燃機関の制御装置は、燃料噴射弁の噴射終了時期を設定する噴射終了時期設定部と、前記噴射終了時期に燃料噴射を終了する開弁指令信号を燃料噴射弁に出力する指令出力部と、を有し、前記噴射終了時期設定部は、前記噴射終了時期を、内燃機関の負荷が高くなるほど、吸気上死点後のクランク角領域内で進角した時期に設定する。係る噴射終了時期の設定処理によって、壁流としてシリンダ内に流入する燃料の量が減り、排気における粒子状物質の排出粒子数PNが低減する。

Description

内燃機関の制御装置及び制御方法
 本発明は、内燃機関の吸気管内に燃料を噴射する燃料噴射弁を制御する制御装置及び制御方法に関する。
 特許文献1に開示される内燃機関の燃料供給制御装置は、吸入空気量が少ないときには吸気行程に同期させて燃料噴射弁から燃料を供給させ、吸入空気量が多いときには吸気行程が開始する前に燃料供給を完了させる。
特開2002-235580号公報
 ところで、内燃機関の吸気管内に燃料を噴射する燃料噴射弁を制御する制御装置が、機関負荷に応じて噴射時期を進角、遅角させる場合、噴射時期の過進角、過遅角によって吸気バルブの傘部や吸気ポート壁面に燃料の厚い液膜が形成され、吸気バルブの開弁後に燃料が壁流として筒内に流入してボアに付着し、ボアに付着した燃料が蒸し焼き状態となることで粒子状物質の排出粒子数PNが増え排気性状が悪化することがあった。
 本発明は、従来の実情に鑑みてなされたものであり、その目的は、噴射終了時期の設定によって排気性状を改善できる、内燃機関の制御装置及び制御方法を提供することにある。
 本発明によれば、その1つの態様において、燃料噴射弁の噴射終了時期を、内燃機関の負荷が高くなるほど、吸気上死点後のクランク角領域内で進角した時期に設定する。
 上記発明によると、噴射終了時期の適正化により内燃機関の排気性状を改善できる。
本発明の実施形態における内燃機関のシステム構成図である。 本発明の実施形態における噴射終了時期の設定処理を示すフローチャートである。 本発明の実施形態における機関負荷と噴射終了時期との相関を示す線図である。 高負荷時の過進角によって壁流流入量が増える状況を説明するための図である。 低負荷時の過遅角によって壁流流入量が増える状況を説明するための図である。 低負荷時における壁流流入量、排出粒子数PNと噴射終了時期との相関を示す線図である。 高負荷時における壁流流入量、排出粒子数PNと噴射終了時期との相関を示す線図である。 本発明の実施形態における遅角補正値HIETD1のテーブルを示す図である。 本発明の実施形態における噴霧粒径と噴射タイミングとの相関を示す図である。 高負荷時における排出粒子数PN、充填効率、ノック限界点火時期と噴射終了時期との相関を示す線図である。 本発明の実施形態における燃圧と噴射終了時期との相関を示す線図である。 本発明の実施形態における燃圧と噴射タイミングとの相関を示す図である。 低負荷時における噴霧粒径SMD、排出粒子数PN、未燃燃料HCと燃圧設定値との相関を示す線図である。 高負荷時における噴霧粒径SMD、排出粒子数PN、未燃燃料HCと燃圧設定値との相関を示す線図である。
 以下、本発明に係る内燃機関の制御装置及び制御方法の実施形態を図面に基づいて説明する。
 図1は、本発明に係る制御装置及び制御方法を適用する内燃機関の一態様を示す図である。
 図1に示す内燃機関1は、車両用の火花点火ガソリン機関であり、機関本体1aに点火装置4、燃料噴射弁5などを備える。
 燃料噴射弁5は、吸気バルブ19の傘部付近を指向して燃料を吸気管2a内に噴射する。つまり、図1に示す内燃機関1は、燃料噴射弁5が吸気管2a内に燃料を噴射する所謂ポート噴射式内燃機関である。
 エアークリーナ7を介して吸入される空気は、電制スロットル8のスロットルバルブ8aで流量を調節された後、燃料噴射弁5から吸気管2a内に噴射される燃料と混合して燃焼室10に吸引される。
 電制スロットル8は、スロットルモータ8bでスロットルバルブ8aを開閉する装置であり、スロットルバルブ8aの開度TPSに対応する信号を出力するスロットル開度センサ8cを備える。
 回転数検出装置6は、リングギア14の突起を検出することで、クランクシャフト17の所定回転角毎に回転角NEの信号を出力する。
 水温センサ15は、機関本体1aに設けられたウォータジャケット18内の冷却水の温度(以下、水温TWと称する)に対応する信号を出力する。
 流量検出装置9は、電制スロットル8の上流側に配置され、内燃機関1の吸入空気流量QARに対応する信号を出力する。
 また、排気管3aに配置される排気浄化触媒装置12は、内燃機関1の排気を浄化する。
 空燃比センサ11は、排気浄化触媒装置12の上流側の排気管3aに配置され、排気空燃比RABF(酸素濃度)に対応する信号を出力する。
 また、排気温度センサ16は、排気浄化触媒装置12の上流側の排気管3aに配置され、排気浄化触媒装置12の入口での排気温度TEX(℃)に対応する信号を出力する。
 燃料噴射弁5には燃料供給装置31によって燃料が所定圧力に調整されて供給される。
 燃料供給装置31は、燃料タンク32、電動式の燃料ポンプ33、プレッシャレギュレータ34、燃料供給配管35、燃料リターン配管36、燃圧センサ37を含んで構成される。
 燃料ポンプ33は、燃料タンク32内の燃料を吸引し、燃料供給配管35を介して燃料噴射弁5に燃料を圧送する。燃料リターン配管36は、一端が燃料供給配管35の途中に接続され、他端が燃料タンク32内に開放され、オリフィスを介して燃料を燃料タンク32に戻すプレッシャレギュレータ34が介装される。
 燃料噴射弁5に供給される燃料の圧力は燃圧センサ37で検出され、燃圧センサ37による燃圧検出値に応じた燃料ポンプ33の駆動電圧の制御によって、燃料噴射弁5に供給される燃料の圧力が可変に設定される。
 マイクロコンピュータを内蔵する制御装置13は、前述した各種センサから出力される、開度TPS、吸入空気流量QAR、回転角NE、水温TW、排気空燃比RABF、排気温度TEX、燃圧PFなどのセンサ信号を取り込む。
 そして、制御装置13は、取り込んだセンサ信号に基づき燃料噴射パルス幅TI(燃料噴射量)及び噴射タイミングを演算し、噴射タイミングにて燃料噴射パルス幅TI(ms)に応じた開弁指令信号を燃料噴射弁5に出力する指令出力部としての機能を有する。
 更に、制御装置13は、点火装置4、電制スロットル8、燃料ポンプ33にも指令信号を出力し、点火装置4の点火時期、スロットルバルブ8aの開度、燃料噴射弁5の燃圧を制御して、内燃機関1の運転を制御する。
 制御装置13は、データ(各種センサの計測結果や各種装置に出力する操作量)の入出力を行うために、アナログ入力回路20、A/D変換回路21、デジタル入力回路22、出力回路23及びI/O回路24を備える。
 また、制御装置13は、データの演算処理を行うために、MPU(Microprocessor Unit)26、ROM(Read Only Memory)27、RAM(Random Access Memory)28を含むマイクロコンピュータを備える。
 アナログ入力回路20には、吸入空気流量QAR、開度TPS、排気空燃比RABF、排気温度TEX、水温TW、及び、燃圧PFなどのセンサ信号が入力される。
 アナログ入力回路20に入力された各種信号は、それぞれA/D変換回路21に供給されてデジタル信号に変換され、バス25上に出力される。
 また、デジタル入力回路22に入力された回転角NEの信号は、I/O回路24を介してバス25上に出力される。
 バス25には、MPU26、ROM27、RAM28、タイマ/カウンタ(TMR/CNT)29等が接続されている。そして、MPU26、ROM27、RAM28は、バス25を介してデータの授受を行う。
 MPU26には、クロックジェネレータ30からクロック信号が供給され、MPU26は、クロック信号に同期して様々な演算や処理を実行する。
 ROM27は、例えばデータの消去と書き換えが可能なEEPROM(Electrically Erasable Programmable Read-Only Memory)で構成され、制御装置13を動作させるためのプログラム、設定データ及び初期値などを記憶する。
 ROM27が記憶する情報は、バス25を介してRAM28及びMPU26に読み込まれる。
 RAM28は、MPU26による演算結果や処理結果を一時的に記憶する作業領域として用いられる。
 なお、タイマ/カウンタ29は、時間の測定や様々な回数の測定などに用いられる。
 MPU26による演算結果や処理結果は、バス25上に出力された後、I/O回路24を介して出力回路23から点火装置4、燃料噴射弁5、電制スロットル8、燃料ポンプ33などに供給される。
 制御装置13は、燃料噴射弁5の制御において、内燃機関1の運転条件に基づき噴射終了時期IET及び燃料噴射パルス幅TI(ms)を演算し、更に、燃料噴射パルス幅TIのクランク角度換算値と噴射終了時期IETとに基づき噴射開始時期ISTを演算する。
 そして、制御装置13は、噴射開始時期ISTを回転角NEの信号などに基づき検出し、燃料噴射パルス幅TIの開弁指令信号を燃料噴射弁5に出力する。
 なお、噴射終了時期IET及び噴射開始時期ISTは、吸気上死点(吸気TDC)を基準位置とするクランク角度で表される。
 図2は、制御装置13による噴射終了時期IETの設定処理の手順、換言すれば、噴射終了時期設定部としての機能を示すフローチャートである。
 制御装置13は、ステップS101で、基本噴射終了時期IETbを内燃機関1の負荷に基づき演算する。
 ここで、制御装置13は、内燃機関1の負荷を示す状態量として、燃料噴射パルス幅TI、シリンダ吸入空気量、スロットル開度、吸気負圧などを求め、これらに基づき基本噴射終了時期IETbを設定する。
 図3は、機関負荷と基本噴射終了時期IETbとの相関の一態様を示す線図であり、制御装置13は、図3に示す相関にしたがって機関負荷に基づき基本噴射終了時期IETbを演算する。
 図3に示すように、制御装置13は、基本噴射終了時期IETbを、吸気上死点後のクランク角領域内で内燃機関1の負荷が高くなるほど進角した時期に設定する。
 ここで、基本噴射終了時期IETbは、吸気管2aから筒内に流入する壁流流入量が内燃機関1の負荷変化に応じて増大することを抑制するように、実験やシミュレーションなどに基づき予め適合されたものである。
 壁流流入量は、同一の機関負荷状態で噴射終了時期IETを進角・遅角変化させたときに減少変化から増大変化に切り替わるところ(極小)が存在し、壁流流入量が極小値となる噴射終了時期IETから噴射終了時期IETを過進角、過遅角すると壁流流入量は増大する。また、壁流流入量が極小値となる噴射終了時期IETは、機関負荷が高いほどより進角した時期になる。
 そこで、制御装置13は、機関負荷毎に壁流流入量が極小値近傍の値となる噴射終了時期IETをトレースするように定められた機関負荷と基本噴射終了時期IETbとの相関に基づき基本噴射終了時期IETbを決定するものであり、壁流流入量が極小値となる噴射終了時期IETは機関負荷が高いほどより進角した時期になることから、基本噴射終了時期IETbは、内燃機関1の負荷が高くなるほど進角した時期に設定される。
 換言すれば、壁流流入量が極小値近傍の値となる噴射終了時期IETの設定範囲、つまり、壁流流入量を極小値近傍に抑えるための噴射終了時期IETの進角限界及び遅角限界が実験やシミュレーションなどによって予め定められ、制御装置13は、係る設定範囲内で基本噴射終了時期IETbを機関負荷に応じて変化させるように構成される。
 吸気管2aから筒内に流入する燃料壁流は、シリンダボアなどに付着して混合気の燃焼時に蒸し焼き状態になることで、粒子状物質の排出粒子数PNを増やし、内燃機関1の排気性状を悪化させる要因になる。
 したがって、制御装置13は、基本噴射終了時期IETbに基づき燃料噴射弁5の噴射時期を制御することで、壁流流入量、引いては、排出粒子数PNを可及的に減らし、内燃機関1の排気性状を改善することができる。
 以下で、噴射終了時期IETと壁流流入量との相関を詳細に説明する。
 図4は、内燃機関1の高負荷状態で壁流流入量が増える状況を説明するための図であり、また、図5は、内燃機関1の低負荷状態で壁流流入量が増える状況を説明するための図である。
 内燃機関1の高負荷状態で噴射終了時期IETが過剰に進角されると、吸気バルブ19が閉じられている間に吸気バルブ19の傘部に向けて噴射される燃料が多くなり、その結果、吸気バルブ19の傘部に液状に付着する燃料量が多くなって厚い液膜を形成する。
 一方、内燃機関1の低負荷状態で噴射終了時期IETが過剰に遅角されると、吸気バルブ19が開いている間に吸気バルブ19を指向して噴射された燃料が吸気流動によって偏向し、吸気ポートに液状に付着する燃料量が多くなって厚い液膜を形成する。
 上記のようにして、吸気バルブ19の傘部や吸気ポートに厚く付着した燃料は、吸気バルブ19が開いたときにそのまま壁流として筒内に流入し、シリンダボアなどに付着する。そして、シリンダボアに付着した燃料は、燃焼室内で混合気が燃焼するときに蒸し焼き状態になり、これが粒子状物質の排出粒子数PNを増やす要因となる。
 そこで、本発明者等は、壁流流入量及び排出粒子数PNと噴射終了時期IETとの相関を解析し、排出粒子数PNを可及的に少なくできる噴射終了時期IETの特性を求めた。
 図6は、内燃機関1をアイドリング付近の低負荷で暖機運転させたときの排出粒子数PN[N/cc]と噴射終了時期IET[degATDC]との相関及び壁流流入量[mg]と噴射終了時期IET[degATDC]との相関を示す。
 アイドリング付近の低負荷では、噴射終了時期IETが概ね吸気上死点後30degから90degの間(30degATDC-90degATDC)であるときに壁流流入量が最も少なくなり、この壁流流入量が最も少なくなる噴射終了時期IETであるときに排出粒子数PNが最も小さくなる傾向を示した。
 一方、図7は、内燃機関1を暖機後にスロットル全開の高負荷(全負荷)で運転させたときの排出粒子数PNと噴射終了時期IETとの相関及び壁流流入量と噴射終了時期IETとの相関を示す。
 スロットル全開の高負荷では、噴射終了時期IETをアイドリングで壁流流入量及び排出粒子数PNが少なくなる90degATDCとすると、アイドリングのときよりも壁流流入量及び排出粒子数PNが大きくなるが、噴射終了時期IETを90degATDCから進角させるにしたがって壁流流入量及び排出粒子数PNが低下する傾向を示した。
 そして、スロットル全開の高負荷では、噴射終了時期IETを吸気上死点後60deg(60degATDC)まで進角させたときにアイドリングでの最小量付近にまで壁流流入量が抑えられ、更に噴射終了時期IETを吸気上死点(0degATDC)まで進角させたときに壁流流入量が最も小さくなり、吸気上死点前の領域では噴射終了時期IETを進角させるほど、壁流流入量が増大する傾向を示した。
 更に、本発明者等は、スロットル全開の高負荷(全負荷)において、噴射終了時期IETを吸気上死点後から吸気上死点に近づけるにしたがって未燃燃料(HC)の排出量が低下するものの、噴射終了時期IETを吸気上死点前に設定しても、噴射終了時期IETを吸気上死点としたときに比べて未燃燃料(HC)の排出量に有意な差が発生しないことを見出した。
 一方、制御装置13は、噴射終了時期IETが進角するほどより早い時点で燃料噴射パルス幅TIを確定する必要が生じ、負荷変化に対する燃料噴射パルス幅TIの追従遅れが大きくなって、過渡的に空燃比ずれが生じる可能性がある。つまり、制御装置13による燃料噴射パルス幅TIの制御応答は、噴射終了時期IETを進角させるほど低下することになる。
 このように、吸気上死点前の噴射終了時期IETは、未燃燃料(HC)の低減に有意に作用するとは言えず、また、燃料噴射パルス幅TIの制御応答の点からは噴射終了時期IETの過度の進角は好ましくない。
 したがって、スロットル全開の高負荷で、噴射終了時期IETを吸気TDCから吸気TDC後60degの間(0degATDC-60degATDC)に設定すれば、未燃燃料(HC)の排出量を可及的に抑えつつ、アイドリング時と同等以下に壁流流入量及び排出粒子数PNを低減でき、また、燃料噴射パルス幅TIの制御応答の低下を抑制できることになる。
 以上のようにして、本発明者等は、アイドリング付近の低負荷では噴射終了時期IETを30degATDC-90degATDCの間に設定し、スロットル全開の高負荷では、噴射終了時期IETを0degATDC-60degATDCの間にまで進角させることで、未燃燃料(HC)の排出量を抑えつつ、壁流流入量及び排出粒子数PNを可及的に低減できるという解析結果を得た。
 したがって、アイドリング付近の低負荷からスロットル全開の高負荷までの間の中間負荷領域では、機関負荷の増大に応じて30degATDC-90degATDCの範囲から0degATDC-60degATDCの範囲に向けて噴射終了時期IETの設定範囲を徐々に進角させることで、全ての負荷条件で、壁流流入量及び排出粒子数PNを可及的に低減することが可能である。
 つまり、図3において、アイドリング付近の低負荷での噴射終了時期IETの遅角限界である90degATDCを示す点と、スロットル全開の高負荷での噴射終了時期IETの遅角限界である60degATDCを示す点とを結んだ線が、各負荷条件で壁流流入量及び排出粒子数PNを抑えることができる噴射終了時期IETの遅角限界となる。
 また、図3において、アイドリング付近の低負荷での噴射終了時期IETの進角限界である30degATDCを示す点と、スロットル全開の高負荷での噴射終了時期IETの進角限界である吸気上死点(0degATDC)を示す点とを結んだ線が、各負荷条件での噴射終了時期IETの進角限界となる。
 そして、制御装置13は、噴射終了時期IETの遅角限界と噴射終了時期IETの進角限界とで挟まれる範囲内で、噴射終了時期IETを機関負荷の増大に応じて噴射終了時期IETを進角させることで、壁流流入量及び排出粒子数PNを可及的に低減できることになる。
 換言すれば、制御装置13は、吸気TDCからATDC90degまでのクランク角範囲内で機関負荷の増大に応じて噴射終了時期IETを進角させることで、未燃燃料(HC)の排出量を抑えつつ、壁流流入に因る排出粒子数PNを可及的に低減できる。
 図3に示す例では、制御装置13は、遅角限界と進角限界とで挟まれる範囲内の進角限界近傍のクランク角を基本噴射終了時期IETbに設定する。
 但し、進角限界近傍のクランク角を基本噴射終了時期IETbに設定する構成に限定されず、制御装置13は、遅角限界と進角限界とで挟まれる範囲内で、機関負荷の増大に応じて基本噴射終了時期IETbを進角させる種々の特性を採用できる。
 制御装置13は、ステップS101で基本噴射終了時期IETbを設定すると、ステップS102に進み、燃料噴射弁5の噴霧粒径に応じて基本噴射終了時期IETbの遅角補正値HIETD1を設定する。
 基本噴射終了時期IETbは、基準とする燃料噴射弁での噴霧粒径に適合させた値であるのに対し、係る基準燃料噴射弁とは異なる噴霧粒径の燃料噴射弁5が採用された場合、噴射終了時期IETの最適値が異なるようになる。
 そこで、制御装置13のメモリには、複数の異なる噴霧粒径毎(複数型式の燃料噴射弁毎)に遅角補正値HIETD1を記憶したテーブルが備えられ、制御装置13は、外部から与えられた噴霧粒径(燃料噴射弁の型式)の情報に基づき、遅角補正値HIETD1を設定する。
 ここで、燃料噴射弁5の噴霧粒径が小さいほど、燃料噴霧が吸気流動に流されてシリンダボアに付着する燃料が減るので、噴射終了時期IETを遅らせても排出粒子数PNの悪化を抑制できる一方、噴射終了時期IETを遅らせることで燃料の筒内直入率が向上して燃焼室温度の低下が促進され、ノッキングが改善される。
 そこで、複数の異なる噴霧粒径毎に遅角補正値HIETD1を記憶したテーブルは、噴霧粒径が小さいほど基本噴射終了時期IETbをより遅角させよう設定される。
 図8は、複数の異なる噴霧粒径毎に遅角補正値HIETD1を記憶したテーブルの一態様を示し、図9は、遅角補正値HIETD1を適用した結果としての噴射終了時期IETの一態様を示す。
 図8に示した遅角補正値HIETD1のテーブルは、噴霧粒径が大中小の3種類に分けられ、大中小の噴霧粒径毎に遅角補正値HIETD1が設定され、噴霧粒径「小」のときに遅角補正値HIETD11が最も大きく基本噴射終了時期IETbが最も遅角側の時期に補正され、噴霧粒径「大」のときに遅角補正値HIETD13が最も小さく基本噴射終了時期IETbが最も進角側の時期に補正される。
 なお、基本噴射終了時期IETbが、例えば図8のテーブルの噴霧粒径「大」に適合している場合、噴霧粒径「大」での遅角補正値HIETD13を零として実質的に補正が行われないようにし、噴霧粒径「中」での遅角補正値HIETD12は基本噴射終了時期IETbを遅角補正し、噴霧粒径「小」での遅角補正値HIETD11は、噴霧粒径「中」のときよりも基本噴射終了時期IETbをより大きく遅角させる値とする。
 また、基本噴射終了時期IETbが、例えば図8のテーブルの噴霧粒径「中」に適合している場合、噴霧粒径「中」での遅角補正値HIETD12を零として実質的に補正が行われないようにし、噴霧粒径「小」での遅角補正値HIETD11は基本噴射終了時期IETbを遅角補正し、噴霧粒径「大」での遅角補正値HIETD13は、基本噴射終了時期IETbを進角させる値とする。
 そして、遅角補正値HIETD1を適用した結果としての噴射終了時期IETは、図9に示すように、噴霧粒径「小」であるときが吸気TDC後のクランク角領域内で最も遅くなり、噴霧粒径「大」であるときが吸気TDC後のクランク角領域内で最も早くなり、噴霧粒径「中」であるときは、噴霧粒径「小」での噴射終了時期IETと、噴霧粒径「大」での噴射終了時期IETとの間の噴射終了時期IETに設定される。
 図10は、噴霧粒径が小さいほど噴射終了時期IETを遅角させる処理の効果を説明するための図であり、高負荷での噴射終了時期IETに対する充填効率、排出粒子数PNの変化を例示する。
 図10に示すように、噴霧粒径が小さくなると吸気上死点後の噴射終了時期IETでの排出粒子数PNが低減され、また、噴射終了時期IETを遅らせることで燃料の筒内直入率が向上して燃焼室温度の低下が促進され、その結果、充填効率が改善されるとともにノッキングが発生し難くなって点火時期をより進角できるようになる。
 次いで、制御装置13は、ステップS103で、制御対象の燃料噴射弁5に供給される燃料の圧力が可変であるか否か、換言すれば、内燃機関1が可変燃圧システムを備えているか否かを判別する。
 本実施形態の内燃機関1は可変燃圧システムを備えており、制御装置13は、ステップS104に進み、可変燃圧システムにおける燃圧設定値(目標燃圧値)に応じて基本噴射終了時期IETbの遅角補正値HIETD2を設定する。
 ここで、燃圧設定値が高いほど燃料噴射弁5の噴霧粒径が小さくなり、燃料噴射弁5の噴霧粒径が小さいほど、燃料噴霧が吸気流動に流されてシリンダボアに付着する燃料が減るので、噴射終了時期IETを遅らせても排出粒子数PNの悪化を抑制できる一方、噴射終了時期IETを遅らせることで燃料の筒内直入率が向上して燃焼室温度の低下が促進され、ノッキングが改善される。
 そこで、制御装置13は、燃圧設定値が高いほど基本噴射終了時期IETbをより遅角させる遅角補正値HIETD2を設定することで、充填効率を改善し、点火時期をより進角できるようにする。
 図11及び図12は、基本噴射終了時期IETbを遅角補正値HIETD2で補正したときの燃圧設定値による噴射タイミングの違いを例示する図である。
 図11及び図12に示すように、制御装置13は、燃圧設定値が高いときは、低いときに比べ、吸気TDCからATDC90degまでのクランク角範囲内で噴射終了時期IETをより遅角させる。
 図13は、内燃機関1をアイドリング付近の低負荷で暖機運転させたときの燃圧設定値の違いによる噴霧粒径SMD、排出粒子数PN、未燃燃料HCの違いを例示する図である。
 この図13に示すように、内燃機関1をアイドリング付近の低負荷で暖機運転させるときに、燃圧設定値を高くすることで噴霧粒径SMDが小さくなり、噴霧粒径SMDが小さくなることで排出粒子数PNが低減される一方、噴霧粒径SMDの低下は未燃燃料HCの改善に寄与しない結果となった。
 つまり、内燃機関1をアイドリング付近の低負荷で暖機運転させるときでも、燃圧設定値を高くすれば噴霧粒径SMDが小さくなり、排出粒子数PNを改善できる。
 図14は、内燃機関1を暖機後にスロットル全開の高負荷(全負荷)で運転させたときの燃圧設定値の違いによる噴霧粒径SMD、排出粒子数PN、未燃燃料HCの違いを例示する図である。
 この図14に示すように、内燃機関1を暖機後にスロットル全開の高負荷(全負荷)で運転させる場合も、燃圧設定値を高くすることで噴霧粒径SMDが小さくなり、噴霧粒径SMDが小さくなることで排出粒子数PNが低減される一方、噴霧粒径SMDの低下は未燃燃料HCの改善に寄与しない結果となった。
 なお、内燃機関1が可変燃圧システムを備えていない場合、つまり、燃圧設定値が固定である場合、制御装置13は、ステップS105で遅角補正値HIETD2を零に設定し、遅角補正値HIETD2による基本噴射終了時期IETbの補正をキャンセルする。
 制御装置13は、上記のようにして、基本噴射終了時期IETb、遅角補正値HIETD1、遅角補正値HIETD2を設定すると、ステップS106で、基本噴射終了時期IETbを遅角補正値HIETD1及び遅角補正値HIETD2で補正した結果を、最終的な噴射終了時期IET(IET=IETb+HIETD1+HIETD2)に設定する。
 そして、制御装置13は、噴射終了時期IETと燃料噴射パルス幅TIのクランク角換算値とから噴射開始時期ISTを求め、噴射開始時期ISTにて燃料噴射パルス幅TIの開弁指令信号(噴射パルス信号)を燃料噴射弁5に出力することで、燃料噴射弁5による燃料噴射を噴射終了時期IETで終了させる。
 以上のように、本実施形態によると、制御装置13は、噴射終了時期を吸気上死点後のクランク角領域内で前記内燃機関の負荷が高くなるほど進角した時期に設定することで、内燃機関の排気性状、詳しくは排出粒子数PNを低減する。
 上記実施形態で説明した各技術的思想は、矛盾が生じない限りにおいて、適宜組み合わせて使用することができる。
 また、好ましい実施形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の変形態様を採り得ることは自明である。
 例えば、制御装置13は、燃料噴射弁5の噴霧粒径(燃料噴射弁5の種別)に応じた噴射終了時期IETの補正と燃圧設定値に応じた噴射終了時期IETの補正との一方若しくは双方を省略することができる。
 また、制御装置13は、機関負荷に応じて設定した基本噴射終了時期IETbを、内燃機関1の温度を代表する冷却水温度に応じて補正することができ、詳細には、冷却水温度が高いほど(燃料噴霧が気化し易いほど)噴射終了時期IETを吸気TDCからATDC90degまでのクランク角範囲内でより遅角させることができる。
 また、内燃機関1が、例えば特開2017-40563号公報に開示されるような粒子状物質検出センサを備える場合、制御装置13は、機関負荷に応じて設定した基本噴射終了時期IETbを粒子状物質検出センサによって検出された粒子状物質に基づき補正したり、粒子状物質検出センサによって検出された粒子状物質に基づき機関負荷と基本噴射終了時期IETbとの相関を変更する学習処理を実施したりすることができる。
 1…内燃機関、2a…吸気管、5…燃料噴射弁、13…制御装置

Claims (8)

  1.  内燃機関の吸気管内に燃料を噴射する燃料噴射弁を制御する制御装置であって、
     前記制御装置は、
     前記燃料噴射弁の噴射終了時期を設定する噴射終了時期設定部と、
     前記噴射終了時期に燃料噴射を終了する開弁指令信号を前記燃料噴射弁に出力する指令出力部と、
     を有し、
     前記噴射終了時期設定部は、前記噴射終了時期を、前記内燃機関の負荷が高くなるほど、吸気上死点後のクランク角領域内で進角した時期に設定する、
     内燃機関の制御装置。
  2.  前記噴射終了時期設定部は、前記噴射終了時期を、前記燃料噴射弁の噴霧粒径が小さいほど、前記クランク角領域内で遅角した時期に設定する、請求項1記載の内燃機関の制御装置。
  3.  前記噴射終了時期設定部は、前記噴射終了時期を、前記燃料噴射弁に供給される燃料の圧力が高いほど、前記クランク角領域内で遅角した時期に設定する、請求項1記載の内燃機関の制御装置。
  4.  前記噴射終了時期設定部は、
     前記吸気管から筒内に流入する壁流流入量が前記内燃機関の負荷変化に応じて増大することを抑制するように前記噴射終了時期を設定する、
     請求項1記載の内燃機関の制御装置。
  5.  前記噴射終了時期設定部は、前記噴射終了時期を、前記内燃機関の負荷が高くなるほど、吸気上死点から吸気上死点後90degまでのクランク角領域内で進角した時期に設定する、請求項1記載の内燃機関の制御装置。
  6.  内燃機関の吸気管内に燃料を噴射する燃料噴射弁を制御する制御方法であって、
     前記内燃機関の負荷を検出する第1ステップと、
     前記内燃機関の負荷が高くなるほど、前記噴射終了時期を、吸気上死点後のクランク角領域内で進角した時期に設定する第2ステップと、
     前記噴射終了時期に燃料噴射を終了する開弁指令信号を前記燃料噴射弁に出力する第3ステップと、
     を含む、内燃機関の制御方法。
  7.  前記第2ステップは、前記噴射終了時期を、前記内燃機関の負荷が高くなるほど、前記クランク角領域内で進角した時期に設定し、前記燃料噴射弁の噴霧粒径が小さいほど、前記クランク角領域内で遅角した時期に設定する、請求項6記載の内燃機関の制御方法。
  8.  前記第2ステップは、前記噴射終了時期を、前記内燃機関の負荷が高くなるほど、前記クランク角領域内で進角した時期に設定し、前記燃料噴射弁に供給される燃料の圧力が高いほど、前記クランク角領域内で遅角した時期に設定する、請求項6記載の内燃機関の制御方法。
PCT/JP2018/008597 2017-04-24 2018-03-06 内燃機関の制御装置及び制御方法 WO2018198537A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880003468.2A CN109690057A (zh) 2017-04-24 2018-03-06 内燃机的控制装置以及控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-085100 2017-04-24
JP2017085100A JP6698580B2 (ja) 2017-04-24 2017-04-24 内燃機関の制御装置及び制御方法

Publications (1)

Publication Number Publication Date
WO2018198537A1 true WO2018198537A1 (ja) 2018-11-01

Family

ID=63918267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008597 WO2018198537A1 (ja) 2017-04-24 2018-03-06 内燃機関の制御装置及び制御方法

Country Status (3)

Country Link
JP (1) JP6698580B2 (ja)
CN (1) CN109690057A (ja)
WO (1) WO2018198537A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024201092A1 (ja) * 2023-03-31 2024-10-03 日産自動車株式会社 ハイブリッド車両の内燃機関の暖機制御方法および装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11148414A (ja) * 1998-09-14 1999-06-02 Hitachi Ltd 内燃機関の制御装置および制御方法
JP2000310150A (ja) * 1999-02-22 2000-11-07 Toyota Motor Corp 圧縮着火式内燃機関
JP2007315334A (ja) * 2006-05-29 2007-12-06 Hitachi Ltd 内燃機関の燃料噴射制御装置
JP2015059456A (ja) * 2013-09-18 2015-03-30 日立オートモティブシステムズ株式会社 内燃機関の制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3073118B2 (ja) * 1993-04-20 2000-08-07 株式会社日立製作所 筒内噴射式内燃機関
JPH07238849A (ja) * 1994-02-28 1995-09-12 Toyota Motor Corp 燃料噴射制御装置
CN102741532B (zh) * 2008-10-20 2016-01-27 丰田自动车株式会社 内燃机的控制装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11148414A (ja) * 1998-09-14 1999-06-02 Hitachi Ltd 内燃機関の制御装置および制御方法
JP2000310150A (ja) * 1999-02-22 2000-11-07 Toyota Motor Corp 圧縮着火式内燃機関
JP2007315334A (ja) * 2006-05-29 2007-12-06 Hitachi Ltd 内燃機関の燃料噴射制御装置
JP2015059456A (ja) * 2013-09-18 2015-03-30 日立オートモティブシステムズ株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
JP2018184835A (ja) 2018-11-22
JP6698580B2 (ja) 2020-05-27
CN109690057A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
JP4314585B2 (ja) 内燃機関の制御装置
JP2008202460A (ja) 内燃機関の制御装置
JP2005307847A (ja) 内燃機関の空気量算出装置
JP2009287532A (ja) 内燃機関の燃料噴射制御装置
JPH0681946B2 (ja) 過給機付き火花点火内燃機関のアンチノツク制御方法
US11168640B2 (en) Fuel injection control device
US10294875B2 (en) Control device for adjusting first and second fuel ratios
WO2018198537A1 (ja) 内燃機関の制御装置及び制御方法
JPS6036749A (ja) エンジンの燃料噴射制御装置
JP2008138579A (ja) 内燃機関の可変バルブタイミング制御装置
JP4529835B2 (ja) 内燃機関の制御装置
JP5490646B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP2006112385A (ja) 内燃機関の可変バルブタイミング制御装置
EP4006326A1 (en) Control method and control device for internal combustion engine
JP2007077842A (ja) 内燃機関の制御装置
JP2005337186A (ja) 内燃機関の制御装置
JP2010168931A (ja) 火花点火式内燃機関の点火時期制御装置
US9970382B2 (en) Direct injection internal combustion engine
JP2007291887A (ja) 筒内直噴ガソリンエンジン
JP4110534B2 (ja) 内燃機関の可変バルブ制御装置
JP2009057838A (ja) 内燃機関の制御装置
US7324890B2 (en) Ignition timing control apparatus for internal combustion engine
JP2009270483A (ja) 内燃機関の制御装置
WO2019159841A1 (ja) 燃焼制御装置
JPH09287525A (ja) 内燃機関の燃焼制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790982

Country of ref document: EP

Kind code of ref document: A1