WO2018198432A1 - ニッケル水素蓄電池及びその製造方法 - Google Patents

ニッケル水素蓄電池及びその製造方法 Download PDF

Info

Publication number
WO2018198432A1
WO2018198432A1 PCT/JP2017/046023 JP2017046023W WO2018198432A1 WO 2018198432 A1 WO2018198432 A1 WO 2018198432A1 JP 2017046023 W JP2017046023 W JP 2017046023W WO 2018198432 A1 WO2018198432 A1 WO 2018198432A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
separator
nickel
groove
storage battery
Prior art date
Application number
PCT/JP2017/046023
Other languages
English (en)
French (fr)
Inventor
仁 愛清
厚志 南形
祐樹 杉本
聡 河野
岡本 亮太
峻 園田
英明 篠田
高橋 英樹
昭人 柘植
直人 守作
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2018198432A1 publication Critical patent/WO2018198432A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nickel metal hydride storage battery and a method for manufacturing the same.
  • Nickel metal hydride storage batteries are used in batteries for vehicles such as forklifts, hybrid cars, and electric cars.
  • This type of nickel metal hydride storage battery has an electrode winding body in which a positive electrode and a negative electrode are wound with a separator interposed therebetween, or an electrode assembly in which a plurality of positive electrodes and negative electrodes are stacked with a separator interposed therebetween.
  • the nonwoven fabric is used as a separator and electrolyte solution is hold
  • the separator is disposed in close contact with the electrode so that the electrolytic solution held therein can be quickly supplied to the electrode (for example, Patent Document 1).
  • M is a hydrogen storage alloy as a negative electrode active material.
  • Positive electrode Ni (OH) 2 + OH ⁇ ⁇ NiOOH + H 2 O + e ⁇
  • Negative electrode M + H 2 O + e ⁇ ⁇ MH + OH ⁇
  • the positive electrode contracts and the negative electrode expands during charging. Since the amount of contraction of the positive electrode at this time is not exactly the same as the amount of expansion of the negative electrode, the distance between the electrodes in the stacking direction of the electrode assembly varies depending on the charging rate. In addition, during discharging, the positive electrode expands and the negative electrode contracts, contrary to charging. Since the amount of expansion of the positive electrode at this time is not exactly the same as the amount of contraction of the negative electrode, the distance between the electrodes in the stacking direction of the electrode assembly varies according to the charging rate, as in charging.
  • the separator disposed between the electrodes When the distance between the electrodes is reduced during charging / discharging, the separator disposed between the electrodes is compressed, and the electrolyte retained in the separator is transferred to the outside of the electrode assembly via the side peripheral surface of the separator. Pushed out. On the other hand, when the distance between the electrodes is increased, the thickness of the separator is restored as the distance between the electrodes increases. And with the restoration
  • the electrolytic solution present outside the separator is absorbed from the side peripheral surface of the separator, and moves to the inside of the separator through a gap between fibers in the nonwoven fabric. For this reason, a portion having a relatively large distance from the side peripheral surface in the separator requires a longer time for the electrolytic solution to reach than a portion having a relatively small distance.
  • the part which does not have electrolyte solution arises locally in a separator, and there exists a possibility of causing the increase in internal resistance.
  • the separator usually has a thickness of about 200 to 300 ⁇ m so that a sufficient amount of the electrolyte can be held inside and the electrolyte can be smoothly applied to the electrode. ing.
  • the porosity of the separator is decreased, and thus the amount of electrolytic solution that can be held in the separator is decreased. Further, as described above, when the thickness of the separator is restored, it takes a relatively long time for the electrolytic solution absorbed from the side peripheral surface of the separator to reach the entire separator. Furthermore, when the porosity of a separator is low, the gas produced at the time of charging / discharging of a nickel metal hydride storage battery tends to stay inside an electrode assembly. If the electrolyte does not move sufficiently or if gas stays inside the electrode assembly, there may be a portion where the electrolyte does not exist locally in the separator, leading to an increase in internal resistance. is there.
  • the amount of compression in the stacking direction of the electrode assembly is increased in order to smoothly supply the electrolyte solution to the electrode and to avoid the retention of gas inside the electrode assembly. There were limits.
  • One aspect of the present invention is an electrode assembly in which a plurality of electrodes are stacked with a separator interposed therebetween, A constraining member that abuts each end in the stacking direction of the electrode assembly and compresses the electrode assembly in the stacking direction;
  • the electrode is Metal foil, An active material layer provided on at least one surface of the metal foil; Provided on at least one of the surfaces in contact with the separator, and having a groove portion opened on a side peripheral surface of the electrode assembly;
  • the separator is A compression part interposed between the electrodes and compressed in the stacking direction;
  • the nickel-metal hydride storage battery has an uncompressed portion that extends outward from the compression portion and is thicker than the compression portion.
  • the nickel metal hydride storage battery has an electrode assembly in which a plurality of electrodes are stacked with separators interposed therebetween.
  • the electrode assembly is compressed in the stacking direction by a restraining member.
  • the separator has a compressed portion that is interposed between the electrodes and is compressed in the stacking direction, and an uncompressed portion that extends outward from the compressed portion and is thicker than the compressed portion. . That is, since the electrode assembly is compressed in the stacking direction, a portion interposed between the electrodes in the separator is compressed in the stacking direction by the electrode and an electrode adjacent to the electrode. Thereby, the compression part is formed in the part interposed between electrodes in a separator. And the non-compression part which is not compressed by the electrode in the lamination direction is formed around the compression part.
  • the compression part of the separator can press each electrode by the reaction force generated by the compression.
  • the active material can be prevented from peeling or dropping from the current collector of each electrode due to shrinkage or expansion during charge and discharge, and the capacity reduction at the initial stage of the charge and discharge cycle can be suppressed.
  • the non-compressed part of the separator is not compressed by the electrode, it is thicker than the compressed part.
  • the electrical insulation between the electrodes facing each other through the separator can be further enhanced.
  • At least one of the surfaces in contact with the separator in each electrode is provided with a groove portion opened in the side peripheral surface of the electrode assembly.
  • the electrolytic solution can be circulated in the groove during charging and discharging, and the electrolytic solution can be smoothly moved from the outside to the inside of the electrode assembly and the electrolytic solution can be moved from the inside to the outside of the electrode assembly.
  • the gas generated from the electrode during charging / discharging can be circulated in the groove portion, and the release of the gas from the inside of the electrode assembly to the outside can be promoted.
  • the separator when the electrode assembly is compressed in the stacking direction, the separator is swelled into the groove, and the porosity of the portion facing the groove is determined as the void in the other portion. Can be greater than the rate.
  • the electrolyte can be smoothly moved between the outside and inside of the electrode assembly during charging and discharging, and the gas from the inside to the outside of the electrode assembly can be transferred. Release can be facilitated. Then, when the thickness of the separator is restored, in addition to the absorption of the electrolyte from the side peripheral surface of the separator, the electrolyte is circulated in the groove so that the electrolyte can be quickly and smoothly applied to each part of the separator and the electrode. Can be supplied.
  • the electrolytic solution can be supplied quickly and smoothly to each part of the separator and the electrode via the groove. There is no need to retain the electrolyte. Therefore, the thickness of the separator can be made thinner than before while enabling the smooth supply of the electrolyte to the electrode. And by reducing the thickness of the separator, the internal resistance can be reduced more than before, and the power density of the nickel-metal hydride storage battery can be improved. In addition, by reducing the thickness of the separator, the dimension of the electrode assembly in the stacking direction can be reduced, and the energy density of the nickel metal hydride storage battery can be improved.
  • capacitance in the initial stage of a charging / discharging cycle can be suppressed.
  • the nickel metal hydride storage battery can smoothly supply the electrolyte solution to the electrodes and separators and promote the release of gas to the outside of the electrode assembly.
  • the nickel hydride storage battery can improve power density and energy density.
  • FIG. 2 is a cross-sectional view showing a main part of a nickel metal hydride storage battery in Example 1. It is an enlarged view of the non-compression part of the separator in FIG. It is an enlarged view of the groove part in FIG. It is the top view which looked at the electrode in Example 1 from the side which has a groove part. It is the top view which looked at the electrode provided with the groove part which the width
  • Example 2 it is the top view which looked at the electrode which has a liquid reservoir part from the side which has a groove part.
  • FIG. 6 is a cross-sectional view showing a main part of a nickel metal hydride storage battery equipped with a bipolar electrode in Example 3.
  • FIG. 10 is a perspective view of a bipolar electrode in Example 3. It is the top view which looked at the bipolar electrode in Example 3 from the positive electrode active material layer side.
  • FIG. 4 is a cross-sectional view showing a main part of a test cell in Experimental Example 1. 4 is a graph showing the results of a charge / discharge cycle test in Experimental Example 1. It is the top view which looked at the test body 1 in Experimental example 2 from the side which has a groove part.
  • Example 4 it is sectional drawing which shows the example of the groove part whose depth inside an electrode is deeper than the depth in an outer periphery edge.
  • Example 4 it is sectional drawing which shows the example of the groove part whose depth inside an electrode is deeper than the depth in an outer periphery edge.
  • Example 4 it is sectional drawing which shows the example of the groove part whose depth inside an electrode is deeper than the depth in an outer periphery edge. It is sectional drawing of the groove part which exhibits V shape in Example 5.
  • FIG. In Example 5, it is sectional drawing of the groove part which exhibits a rectangular shape.
  • Example 5, it is sectional drawing of the groove part provided with one corner
  • 10 is a perspective view of a secondary battery in Example 6.
  • FIG. FIG. 25 is an enlarged plan view of a liquid injection port in FIG. 24.
  • FIG. 26 is a cross-sectional view taken along line XXVI-XXVI in FIG. 25.
  • FIG. 27 is a cross-sectional view taken along the line XXVII-XXVII in FIG. 26. It is the top view which looked at the bipolar electrode in Example 6 from the positive electrode active material layer side.
  • the electrode assembly has a laminated structure in which a plurality of electrodes are laminated with separators interposed therebetween.
  • the electrode for example, a positive electrode in which a positive electrode active material layer is disposed on one or both sides of a metal foil as a current collector, or a negative electrode active material layer is disposed on one or both surfaces of a metal foil as a current collector.
  • a negative electrode can be employed.
  • a bipolar electrode having a metal foil as a current collector, a positive electrode active material layer disposed on the front side surface of the metal foil, and a negative electrode active material layer disposed on the back side surface is employed as the electrode. You can also. In this case, a plurality of single cells can be connected in series with a simple configuration in which bipolar electrodes are stacked. As a result, the electromotive force of the nickel metal hydride storage battery can be further increased.
  • the electrode has a groove portion opened on the outer peripheral edge of the electrode on at least one of the surfaces in contact with the separator.
  • the number of grooves, width, depth, cross-sectional shape, arrangement in a plan view when viewed from the thickness direction of the electrodes, and the like can be set in various modes according to desired characteristics.
  • the number of grooves may be one, or may be two or more.
  • the width of the groove may be constant over the entire length, or the width may vary depending on the position.
  • the depth of the groove may be shallower than the thickness of the electrode. For example, when a foil electrode is used, the bottom of the groove may reach the metal foil, or the bottom of the groove may remain in the active material layer.
  • the active material layer 22 is formed in a region other than the region corresponding to the groove portion 4 on the current collector portion 211. After the active material layer 22 is formed over the entire current collector portion 211, the region corresponding to the groove portion 4 is formed.
  • the groove 4 can be formed by a method such as removing the active material layer 22. When the bottom of the groove 4 remains in the active material layer 22, for example, the groove part is formed such that the active material layer 22 is formed so that the thickness of the active material layer 22 in the region corresponding to the groove 4 is thinner than the surroundings.
  • the groove 4 can also be formed by a method such as compressing the active material layer 22 in a region corresponding to 4.
  • At least one of the surfaces in contact with the separator 3 in each electrode 2 is provided with a groove portion 4 opened to the side peripheral surface 110 of the electrode assembly 11. Furthermore, in this example, the entire inner surface of the groove 4 is separated from the separator 3, and a gap is formed between the inner surface of the groove 4 and the separator 3. Therefore, the electrolytic solution is circulated in the groove portion 4 at the time of charging / discharging, and the electrolytic solution is smoothly moved from the outside to the inside of the electrode assembly 11 and the electrolytic solution is moved from the inside to the outside of the electrode assembly 11. be able to. As a result, the electrolytic solution can be supplied quickly and smoothly to each part of the separator 3 and the electrode 2 through the groove part 4. Furthermore, the gas generated from the electrode 2 at the time of charging / discharging can be circulated in the groove portion 4, and the release of the gas from the inside of the electrode assembly 11 to the outside can be promoted.
  • Example 1 This example is an example in which the effect of suppressing the decrease in capacity at the initial stage of the charge / discharge cycle, which is achieved by the compression of the electrode assembly 114, is evaluated.
  • FIG. 11 shows the test cell 104 used in this example.
  • the test cell 104 includes a side wall portion 13 having a rectangular tube shape and a restraining member 12 that closes an opening end surface of the side wall portion 13.
  • An electrode assembly 114 is accommodated in the internal space of the test cell 104.
  • the electrode assembly 114 of this example includes one positive electrode 204a, one negative electrode 204b, and the separator 3 interposed therebetween.
  • ⁇ Test body 4> In the test body 4, a positive electrode 204e having two groove portions 4 and two liquid reservoir portions 41 disposed between them was used (see FIG. 15).
  • the two groove portions 4 extend in a direction parallel to the long side of the current collector portion 211p, and are arranged so as to divide the positive electrode active material layer 22p into three equal parts in the short side direction of the current collector portion 211p. .
  • the two liquid reservoirs 41 are arranged along the outer peripheral edge 210 of the metal foil 21p, respectively, and have a rectangular shape.
  • the dimension of the liquid reservoir 41 in the long side direction of the current collector 211p is 3 mm. Others are the same as those of the test body 2.
  • ⁇ Test body 5> In the test body 5, a positive electrode 204f having two groove portions 4 and one liquid reservoir portion 41 disposed between them was used (see FIG. 16).
  • the two groove portions 4 extend in a direction parallel to the long side of the current collector portion 211p, and are arranged so as to divide the positive electrode active material layer 22p into three equal parts in the short side direction of the current collector portion 211p.
  • the liquid reservoir 41 is disposed in the center of the positive electrode active material layer 22p and has a rectangular shape.
  • the dimension of the liquid reservoir 41 in the long side direction of the current collector 211p is 6 mm. Others are the same as those of the test body 2.
  • the test body 1 having the groove part 4 does not have the groove part 4. Compared with the test body 7, the resistance for 10 seconds was small. Similarly, in a comparison between the test body 2 to 5 and the test body 8 in which the thickness of the compression part 31 in the separator 3 after compression is 20 ⁇ m, the test bodies 2 to 5 having the groove part 4 are not tested. Compared to body 8, the resistance was small for 10 seconds.
  • the electrode 205 of this example has a groove 405 whose depth inside the side peripheral surface 20 is deeper than the depth in the side peripheral surface 20. Therefore, the electrolytic solution pushed out from the separator 3 (not shown) compressed at the time of charging / discharging can be held in the groove portion 405. When the thickness of the separator is restored, the electrolytic solution held in the groove 405 can be supplied again to each part of the separator 3 and the electrode 205. As a result, the electrolyte solution can be supplied to the separator 3 and the electrode 205 more quickly and smoothly. Furthermore, the gas generated at the time of charging / discharging can be circulated in the groove portion, and the release of gas from the inside of the electrode assembly to the outside can be further promoted.
  • the electrode 206b shown in FIG. 22 has a groove 406b having a rectangular shape whose depth is smaller than the width in a cross section perpendicular to the longitudinal direction.
  • the groove portion 406b has two corner portions 43 on both sides of the bottom 42b in a cross section perpendicular to the longitudinal direction.
  • the radius of curvature R of the corner 43 is less than 0.5 times the depth of the groove 406b.
  • the electrode 206 (206a to 206c) of the present example has a groove portion 406 provided with one or more corner portions 43 extending along the longitudinal direction. Therefore, when the electrode assembly is compressed in the stacking direction, a gap can be formed between the separator 3 and the surface of the corner portion 43 as shown in FIGS. As a result, the flow resistance of the electrolyte and gas is further reduced, and the electrolyte is supplied to the separator 3 and the electrode 206 more quickly and smoothly, and the release of gas from the inside of the electrode assembly to the outside is further promoted. can do.
  • Example 6 This example is an example of the nickel-metal hydride storage battery 106 in which the groove 407 is opened at a position facing the liquid injection port 152 or the pressure release valve 153.
  • the nickel metal hydride storage battery 106 of this example has a substantially rectangular parallelepiped shape, and includes a case 15 having an open top surface and a bottom surface, and an electrode assembly 116 accommodated in the case 15. Yes.
  • the metal foil 24 of the termination electrodes 206 a and 206 c in the electrode assembly 116 is exposed on the top surface and the bottom surface of the case 15.
  • the metal foil 24 is in contact with a restraining member that compresses the electrode assembly 116 in the stacking direction.
  • a side wall 151 of the case 15 is provided with a liquid injection port 152 for injecting an electrolyte into the case 15 and a pressure release valve 153 for releasing gas from the case 15 to the outside of the case 15. .
  • the injection port 152 is closed by a stopper 154 for preventing leakage of the electrolytic solution.
  • the peripheral edge 241 of the metal foil 24 in the termination electrodes 206a and 206c and the peripheral edge 231 of the metal foil 23 in the bipolar electrode 206b are covered with a seal portion 155. These seal portions 155 are covered with a case 15. Further, the seal portions 155 adjacent in the stacking direction of the electrode assemblies 116 are bonded to each other.
  • a through hole 156 that penetrates the seal portion 155 is formed at a position facing the liquid injection port 152 in the seal portion 155. Further, as shown in FIGS. 26 and 27, on the front surface of the through hole 156, a groove portion 407b disposed at the center of the three groove portions 407a to 407c extending in the direction parallel to the long sides of the metal foils 23 and 24 is provided. Is open.
  • the nickel metal hydride storage battery 106 of this example has a case 15 that houses the electrode assembly 116 and a liquid injection port 152 that passes through the case 15 and injects an electrolyte into the case 15. Moreover, the groove part 407b of the electrode 206 is opened at a position facing the liquid injection port 152, as shown in FIGS.
  • the electrolytic solution injected from the liquid injection port 152 easily flows into the groove portion 407. And by making electrolyte solution flow in into the groove part 407, while making the separator 3 impregnate electrolyte solution rapidly, generation
  • Example 6 although the example of the nickel-metal hydride storage battery 106 in which the groove portion 407 is provided on the positive electrode active material layer 22p side in the bipolar electrode 206b is shown, the groove portion may be provided on the negative electrode active material layer 22n side, A groove may be provided on both the positive electrode active material layer 22p side and the negative electrode active material layer 22n side.
  • Example 6 although the example of the nickel-metal hydride storage battery 106 in which the liquid injection port 152 and the pressure release valve 153 were separately provided was shown, the liquid injection port was injected after injecting the electrolyte from the liquid injection port 152. A pressure relief valve 153 may be attached to 152.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

充放電サイクルの初期における容量の低下を抑制し、電極(2)への電解液の供給を円滑に行うことができ、パワー密度及びエネルギー密度の高いニッケル水素蓄電池(1)及びその製造方法を提供する。ニッケル水素蓄電池(1)は、複数の電極(2)がセパレータ(3)を介して積層された電極組立体(11)と、電極組立体(11)を積層方向に圧縮する拘束部材(12)とを有している。電極(2)は、金属箔(21)と、金属箔(21)の少なくとも一方の面上に設けられた活物質層(22)と、セパレータ(3)と接する面のうち少なくとも一方の面に設けられ、電極組立体(11)の側周面(110)に開口した溝部(4)とを有している。セパレータ(3)は、電極(2)同士の間に介在し、積層方向に圧縮された圧縮部(31)と、圧縮部(31)から外方に延設され、圧縮部よりも厚みの厚い非圧縮部(32)とを有している。

Description

ニッケル水素蓄電池及びその製造方法
 本発明は、ニッケル水素蓄電池及びその製造方法に関する。
 ニッケル水素蓄電池は、例えばフォークリフト、ハイブリッド自動車、電気自動車等の車両のバッテリーに用いられている。この種のニッケル水素蓄電池は、正極と負極とがセパレータを挟んで巻かれた電極捲回体、または、複数の正極と負極とがセパレータを介して積層された電極組立体を有している。また、セパレータとしては不織布が使用されており、不織布を構成する繊維同士の隙間に電解液が保持されている。セパレータは、その内部に保持された電解液を迅速に電極に供給することができるように、電極に密着して配置されている(例えば、特許文献1)。
 ニッケル水素蓄電池の各電極における充電時の反応は次の半反応式(1)~(2)で表される。なお、下記式(1)~(2)におけるMは、負極活物質としての水素吸蔵合金である。
正極:Ni(OH)2+OH- → NiOOH+H2O+e- ・・・(1)
負極:M+H2O+e- → MH+OH- ・・・(2)
 また、ニッケル水素蓄電池の各電極における放電時の反応は次の半反応式(3)~(4)で表される。
正極:NiOOH+H2O+e- → Ni(OH)2+OH- ・・・(3)
負極:MH+OH- → M+H2O+e- ・・・(4)
 ニッケル水素蓄電池においては、充電中に正極が収縮し、負極が膨張する。このときの正極の収縮量は負極の膨張量と厳密に同一ではないため、電極組立体の積層方向における電極間の距離は、充電率に応じて変動する。また、放電中には、充電中とは逆に、正極が膨張し、負極が収縮する。このときの正極の膨張量も負極の収縮量と厳密に同一ではないため、充電時と同様に、電極組立体の積層方向における電極間の距離は、充電率に応じて変動する。
 充放電中に電極間距離が狭くなった場合は、電極同士の間に配置されたセパレータが圧縮され、セパレータ内に保持された電解液が、セパレータの側周面を介して電極組立体の外部へ押し出される。一方、電極間距離が広くなった場合は、電極同士の距離の増大に伴ってセパレータの厚みが復元される。そして、セパレータの厚みの復元に伴って、セパレータから押し出された電解液がセパレータ内に吸収される。
 このとき、セパレータ外に存在する電解液は、セパレータの側周面から吸収され、不織布における繊維同士の間の隙間を通ってセパレータの内側へ移動する。そのため、セパレータ内における側周面からの距離が比較的大きい部位は、当該距離が比較的小さい部位に比べて、電解液が到達するまでに長い時間を要する。また、場合によっては、セパレータ内に局所的に電解液の存在しない部分が生じ、内部抵抗の増大を招くおそれもある。このような問題を回避するため、セパレータは、内部に十分な量の電解液を保持し、電極への電解液を円滑に行うことができるように、通常、200~300μm程度の厚みを有している。
特開平2-72564号公報
 ニッケル水素蓄電池の製造過程においては、蓄電池の組立が完了した後に、充電と放電とを数サイクル~数十サイクル繰り返して行い、各電極に含まれる活物質を活性化する作業が行われている。従来のニッケル水素蓄電池では、この活性化作業において、充放電中に電池の容量が急激に低下することがある。
 活性化作業中の容量の低下を引き起こす原因としては、例えば、充放電時の電極の収縮や膨張による、集電体からの活物質の剥離や脱落等が考えられる。それ故、集電体からの活物質の剥離や脱落を抑制するためには、蓄電池の組立作業において電極組立体を積層方向に圧縮し、各電極をセパレータにより押圧することが有効と考えられてきた。
 しかし、電極組立体の圧縮量を大きくすると、セパレータの空隙率が低下するため、セパレータ内に保持可能な電解液の量が減少する。また、上述したように、セパレータの厚みが復元する際に、セパレータの側周面から吸収された電解液がセパレータ全体に行き渡るためには比較的長い時間を要する。更に、セパレータの空隙率が低い場合、ニッケル水素蓄電池の充放電時に生じるガスが電極組立体の内部に滞留しやすくなる。そして、電解液の移動が不十分な場合や、電極組立体の内部にガスが滞留した場合には、セパレータ内に局所的に電解液の存在しない部分が生じ、内部抵抗の増加を招くおそれもある。
 それ故、従来のニッケル水素蓄電池では、電極へ電解液を円滑に供給するとともに、電極組立体の内部へのガスの滞留を回避するため、電極組立体の積層方向への圧縮量を大きくすることには限界があった。
 また、近年では、ニッケル水素蓄電池に接続されるモータ等の負荷容量の増大に伴い、セパレータの厚みを従来よりも薄くしてニッケル水素蓄電池のパワー密度やエネルギー密度を更に高めることが要求されている。しかし、セパレータの厚みを薄くすると、セパレータ内に保持可能な電解液の量が少なくなり、上述したように、電極への電解液の供給を円滑に行うことが難しくなるおそれがある。
 本発明は、かかる背景に鑑みてなされたものであり、充放電サイクルの初期における容量の低下を抑制し、電極への電解液の供給を円滑に行うとともに電極組立体の外部へのガスの放出を促進することができ、パワー密度及びエネルギー密度の高いニッケル水素蓄電池及びその製造方法を提供しようとするものである。
 本発明の一態様は、複数の電極がセパレータを介して積層された電極組立体と、
 上記電極組立体の積層方向における端部にそれぞれ当接し、上記電極組立体を積層方向に圧縮する拘束部材とを有し、
 上記電極は、
 金属箔と、
 上記金属箔の少なくとも一方の面上に設けられた活物質層と、
 上記セパレータと接する面のうち少なくとも一方の面に設けられ、上記電極組立体の側周面に開口した溝部とを有しており、
 上記セパレータは、
 上記電極同士の間に介在し、上記積層方向に圧縮された圧縮部と、
上記圧縮部から外方に延設され、上記圧縮部よりも厚みの厚い非圧縮部とを有している
、ニッケル水素蓄電池にある。
 上記ニッケル水素蓄電池は、複数の電極がセパレータを介して積層された電極組立体を有している。電極組立体は、拘束部材により積層方向に圧縮されている。また、セパレータは、電極同士の間に介在し、積層方向に圧縮された圧縮部と、圧縮部から外方に延設され、上記圧縮部よりも厚みの厚い非圧縮部とを有している。即ち、電極組立体が積層方向に圧縮されていることにより、セパレータにおける電極同士の間に介在する部分が、電極と、当該電極の隣の電極とによって積層方向に圧縮されている。これにより、セパレータにおける電極同士の間に介在する部分に圧縮部が形成されている。そして、圧縮部の周囲に、電極によって積層方向に圧縮されていない非圧縮部が形成されている。
 セパレータの圧縮部は、上記圧縮により生じた反力によって各電極を押圧することができる。その結果、充放電時の収縮や膨張に伴う各電極の集電体からの活物質の剥離や脱落等を抑制し、充放電サイクルの初期における容量の低下を抑制することができる。
 また、セパレータの非圧縮部は、電極によって圧縮されていないため、圧縮部よりも厚みが厚くなっている。このように、比較的厚みの厚い非圧縮部を圧縮部の周囲に設けることにより、セパレータを介して対面する電極同士の電気的な絶縁性をより高めることができる。
 また、各電極におけるセパレータと接する面のうち少なくとも一方の面には、電極組立体の側周面に開口した溝部が設けられている。これにより、充放電時に溝部内に電解液を流通させ、電極組立体の外部から内部への電解液の移動や、電極組立体の内部から外部への電解液の移動を円滑に行うことができる。また、充放電時に電極から発生したガスを溝部内に流通させ、電極組立体の内部から外部へのガスの放出を促進することができる。
 さらに、セパレータと接する面に溝部を設けることにより、電極組立体を積層方向に圧縮した際に、セパレータを溝部内に膨出させ、溝部に面する部分の空隙率を、それ以外の部分の空隙率よりも大きくすることができる。
 このように、各電極に上記溝部を設けることにより、充放電時における電極組立体の外部と内部との間の電解液の移動を円滑に行うとともに、電極組立体の内部から外部へのガスの放出を促進することができる。そして、セパレータの厚みが復元する際に、セパレータの側周面からの電解液の吸収に加えて、溝部内に電解液を流通させることにより、セパレータや電極の各部に迅速かつ円滑に電解液を供給することができる。
 また、上記ニッケル水素蓄電池においては、上述したように、溝部を介してセパレータや電極の各部に迅速かつ円滑に電解液を供給することができるため、セパレータの厚みを厚くしてセパレータ内に多量の電解液を保持させる必要がない。それ故、電極への円滑な電解液の供給を可能としつつ、セパレータの厚みを従来よりも薄くすることができる。そして、セパレータの厚みを薄くすることにより、従来よりも内部抵抗を低減し、ニッケル水素蓄電池のパワー密度を向上させることができる。また、セパレータの厚みを薄くすることにより、電極組立体の積層方向の寸法を低減し、ニッケル水素蓄電池のエネルギー密度を向上させることができる。
 以上のように、上記ニッケル水素蓄電池によれば、充放電サイクルの初期における容量の低下を抑制することができる。また、上記ニッケル水素蓄電池は、電極やセパレータへの電解液の供給を円滑に行うとともに電極組立体の外部へのガスの放出を促進することができる。更に、上記ニッケル水素蓄電池は、パワー密度及びエネルギー密度を向上させることができる。
実施例1における、ニッケル水素蓄電池の要部を示す断面図である。 図1における、セパレータの非圧縮部の拡大図である。 図1における、溝部の拡大図である。 実施例1における電極を、溝部を有する側から視た平面図である。 タブ部に近いほど幅が広がった溝部を備えた電極を、溝部を有する側から視た平面図である。 外周端縁に近いほど幅が広がった溝部を備えた電極を、溝部を有する側から視た平面図である。 実施例2における、液溜部を有する電極を、溝部を有する側から視た平面図である。 実施例3における、バイポーラ電極を備えたニッケル水素蓄電池の要部を示す断面図である。 実施例3における、バイポーラ電極の斜視図である。 実施例3におけるバイポーラ電極を、正極活物質層側から視た平面図である。 実験例1における、試験用セルの要部を示す断面図である。 実験例1における、充放電サイクル試験の結果を示すグラフである。 実験例2における試験体1を、溝部を有する側から見た平面図である。 実験例2における試験体3を、溝部を有する側から見た平面図である。 実験例2における試験体4を、溝部を有する側から見た平面図である。 実験例2における試験体5を、溝部を有する側から見た平面図である。 実験例2における試験体6を、溝部を有する側から見た平面図である。 実施例4における、電極の内側における深さが外周端縁における深さよりも深い溝部の例を示す断面図である。 実施例4における、電極の内側における深さが外周端縁における深さよりも深い溝部の例を示す断面図である。 実施例4における、電極の内側における深さが外周端縁における深さよりも深い溝部の例を示す断面図である。 実施例5における、V字状を呈する溝部の断面図である。 実施例5における、長方形状を呈する溝部の断面図である。 実施例5における、底面の片側に1か所の角部を備えた溝部の断面図である。 実施例6における、二次電池の斜視図である。 図24における、注液口の拡大平面図である。 図25のXXVI-XXVI線矢視断面図である。 図26のXXVII-XXVII線矢視断面図である。 実施例6におけるバイポーラ電極を正極活物質層側から視た平面図である。
 上記ニッケル水素蓄電池において、電極組立体は、複数の電極がセパレータを介して積層された積層構造を有している。電極としては、例えば、集電体としての金属箔の片面または両面上に正極活物質層が配置された正極や、集電体としての金属箔の片面または両面上に負極活物質層が配置された負極を採用することができる。
 また、電極として、集電体としての金属箔と、金属箔の表側面上に配置された正極活物質層と、裏側面上に配置された負極活物質層とを有するバイポーラ電極を採用することもできる。この場合には、バイポーラ電極を積層するという単純な構成により、複数の単セルを直列に接続することができる。その結果、ニッケル水素蓄電池の起電力をより高くすることができる。
 また、バイポーラ電極を用いる場合には、単極性の電極を用いる場合に比べて、電極の総数に対する単セルの数を増やすことができる。それ故、電極の総数が同じ場合には、単極性の電極を用いる場合に比べて単セルの数を多くすることができる。また、単セルの数が同じ場合には、単極性の電極を用いる場合に比べて電極の総数を少なくし、積層方向におけるニッケル水素蓄電池の寸法をより小さくすることができる。
 電極は、金属箔と、該金属箔の少なくとも一方の面上に設けられた活物質層とを有している。そのため、セパレータの圧縮部により活物質層を直接押圧することができる。それ故、電極組立体を圧縮することにより、金属箔からの活物質層の剥離や脱落をより効果的に抑制することができる。その結果、充放電サイクルの初期における容量の低下をより効果的に抑制することができる。
 電極は、セパレータと接する面のうち少なくとも一方の面に、当該電極の外周端縁に開口した溝部を有している。溝部の本数や幅、深さ、断面形状、電極の厚み方向から視た平面視における配置等は、所望する特性に合わせて種々の態様とすることができる。例えば、溝部の本数は1本であってもよいし、2本以上であってもよい。溝部の幅は、全長に亘って一定であってもよいし、位置に応じて幅が変化していてもよい。溝部の深さは、電極の厚みよりも浅ければよい。例えば箔電極を使用する場合には、溝部の底が金属箔まで到達していてもよいし、溝部の底が活物質層内にとどまっていてもよい。
 また、溝部の深さは、全長に亘って一定であってもよいし、位置に応じて深さが変化していてもよい。例えば、電極の外周端縁よりも内側における溝部の深さは、外周端縁における溝部の深さよりも深くなっていてもよい。この場合には、充放電時に圧縮されたセパレータから押し出された電解液を溝部内に保持することができる。そして、セパレータの厚みが復元する際に、溝部内に保持された電解液を再びセパレータや電極の各部に供給することができる。その結果、セパレータや電極への電解液の供給をより迅速かつ円滑に行うことができる。更に、充放電時に発生したガスを溝部内に流通させ、電極組立体の内部から外部へのガスの放出をより促進することができる。
 溝部の断面形状は、正方形状、長方形状、V字状、U字状、半円状等の種々の態様とすることができる。また、溝部は、その長手方向に沿って延設された角部を有しており、当該角部の表面は、溝部の長手方向に垂直な断面において、溝部の幅及び深さのうちいずれか小さい方の値の0.5倍未満の曲率半径を有していることが好ましい。かかる角部を備えた溝部の断面形状としては、例えば、正方形状、長方形状、V字状等があるが、これらの形状に限定されるものではない。
 溝部に上記角部を設けることにより、電極組立体を積層方向に圧縮した際に、セパレータと角部の表面との間に隙間を形成しやすくすることができる。セパレータと角部の表面との間に隙間が形成された場合には、充放電時に電解液及びガスが当該隙間を通過することができる。それ故、電解液及びガスの流通抵抗をより低減し、セパレータや電極への電解液の供給をより迅速かつ円滑に行うとともに、電極組立体の内部から外部へのガスの放出をより促進することができる。
また、溝部は、電極の厚み方向から視た平面視において直線状に延びていてもよいし、曲線状を呈していてもよい。2本以上の溝部を有する場合には、溝部同士を互いに交差させることもできる。
 溝部内に電解液が流通しやすくするためには、例えば、溝部の幅を広くする、あるいは溝部の本数を増やす等の方法により、電極の厚み方向から視た平面視における、電極全体の面積に対する溝部の面積の比率を大きくすることが好ましい。しかし、溝部の面積の比率が過度に大きくなると、電極の容量の低下、ひいては電池の容量の低下を招くおそれがある。
 溝部の内表面における少なくとも一部は、セパレータから離隔していることが好ましい。即ち、溝部の内表面とセパレータとの間に隙間が形成されていることが好ましい。この場合、充放電時に電解液及びガスが溝部とセパレータとの間の隙間を通過することができる。それ故、電解液及びガスの流通抵抗をより低減し、セパレータや電極への電解液の供給をより迅速かつ円滑に行うとともに、電極組立体の内部から外部へのガスの放出をより促進することができる。
 電極は、溝部を備えた面に、当該溝部に連なり、周囲よりも陥没した液溜部を有しており、電極の厚み方向から視た平面視における上記液溜部の幅が溝部よりも広くなっていることが好ましい。この場合には、充放電時に圧縮されたセパレータから押し出された電解液を液溜部に保持することができる。そして、セパレータの厚みが復元する際に、溝部を介して液溜部内に保持された電解液を再びセパレータや電極の各部に供給することができる。その結果、セパレータや電極への電解液の供給をより迅速かつ円滑に行うことができる。
 液溜部の配置や形状、深さは、種々の態様とすることができる。例えば、液溜部は、電極の厚み方向から視た平面視において、電極の外周端縁に配置されていてもよいし、この外周端縁よりも内側、即ち外周端縁から離隔した位置に配置されていてもよい。また、液溜部の形状は、電極の厚み方向から視た平面視において、四角形状、円状、楕円状等の種々の態様とすることができる。液溜部の深さは、溝部の深さと同一であってもよいし、溝部とは異なっていてもよい。
 液溜部は、上記電極の外周端縁よりも内側に配置されていることが好ましい。即ち、液溜部は、電極組立体の内部に設けられていることが好ましい。この場合には、充放電時にセパレータから押し出された電解液を、電極組立体の外部と、電極組立体の内部に配置された液溜部との両方に保持することができる。そして、充放電時に電極組立体の外部と内部との両方から電解液を供給することができるため、電解液がセパレータや電極の各部に到達する時間をより短縮することができる。その結果、セパレータや電極への電解液の供給をより迅速かつ円滑に行うことができる。
 電極組立体における複数の電極は、セパレータを介して積層されている。セパレータとしては、例えば、親水性官能基を有する不織布等の、ニッケル水素蓄電池用として公知のセパレータを使用することができる。この不織布を構成する樹脂としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のポリオレフィン系樹脂を採用することができる。
 セパレータは、電極同士の間に介在し、電極と、当該電極の隣の電極とによって積層方向に圧縮された圧縮部と、圧縮部から外方に延設され、圧縮部よりも厚みの厚い非圧縮部とを有している。圧縮部の厚みは、圧縮前、即ち、電極組立体を組み立てる前のセパレータの厚みよりも薄くなっている。
 セパレータの圧縮部の厚みは、圧縮前のセパレータの厚みをD(μm)、正極と負極の厚み公差をそれぞれ±d(μm)、±d(μm)とした場合に、D-(d+d)[μm]以下であることが好ましい。この場合には、電極の厚みが仮に薄い側に振れたとしても確実にセパレータを圧縮して活性化サイクル中の容量低下を抑制できる。また、セパレータの厚みを薄くすると、正極と負極との距離が短縮されるため、液抵抗が低下する。その結果、内部抵抗をより低減することができる。さらに、この場合には、積層方向における電極組立体の寸法をより小さくし、ニッケル水素蓄電池のパワー密度及びエネルギー密度をより向上させることができる。
 また、セパレータの圧縮部の厚みは、非圧縮部の厚みの51~99%であることが好ましい。この場合には、圧縮部の空隙率が過度に低くなることを回避しつつ、セパレータの厚みをより薄くすることができる。その結果、内部抵抗をより低減することができる。さらに、この場合には、積層方向における電極組立体の寸法をより小さくし、ニッケル水素蓄電池のパワー密度及びエネルギー密度をより向上させることができる。圧縮部の空隙率が過度に低くなることを回避しつつセパレータの厚みをより薄くする観点からは、セパレータの圧縮部の厚みを非圧縮部の厚みの55~90%とすることが好ましく、60~80%とすることがより好ましく、65~75%とすることがさらに好ましい。
 非圧縮部の厚みは、電極組立体の積層方向に圧縮されないため、圧縮部に比べて厚くなっている。非圧縮部の幅、即ち、圧縮部と非圧縮部との境界からセパレータの外周端縁までの距離が十分に広い場合には、セパレータの外周端縁において圧縮前のセパレータの厚みを維持したまま圧縮部を形成することができる。従って、かかる場合には、セパレータの外周端縁の厚みを測定することにより、圧縮前のセパレータの厚みを推定することができる。
 上記ニッケル水素蓄電池は、電極組立体を収容するケースと、ケースを貫通しケース内に電解液を注入するための注液口と、を有し、電極の溝部は、電極組立体の側周面における注液口に対面する位置に開口していてもよい。上記ニッケル水素蓄電池の組み立て作業においては、通常、電極組立体をケース内に収容した後に、注液口からケース内に電解液を注入し、電解液をセパレータに含浸させる。この際、電極の溝部を注液口と対面する位置に開口させることにより、注液口から注入された電解液が溝部内に流入しやすくなる。そして、電解液を溝部内に流入させることにより、セパレータに速やかに電解液を含浸させるとともに、電解液が含浸されていない部分の発生をより効果的に抑制することができる。
 また、上記ニッケル水素蓄電池は、電極組立体を収容するケースと、ケース上に配置されケース内からケースの外部へガスを放出するための圧力開放弁と、を有し、電極の溝部は、電極組立体の側周面における圧力開放弁に対面する位置に開口していてもよい。圧力開放弁は、通常使用時は閉鎖されており、ケース内の圧力が過度に高くなった場合に開放されるように構成されている。
 溝部を圧力開放弁と対面する位置に開口させる場合、充放電時に電極から発生したガスは、溝部内を移動して圧力開放弁の正面に到達しやすくなる。そのため、ガスの量が多くなるにつれて、圧力開放弁の周囲から電解液を排除することができる。その結果、ケース内の圧力が過度に高くなり、圧力開放弁が開放された際に、圧力開放弁から放出される電解液の量をより低減することができる。
 上記ニッケル水素蓄電池は、例えば、上述した電極とセパレータとを交互に積層して電極組立体を作製し、
 電極組立体における積層方向の両端に配置された電極に拘束部材を当接させ、
 拘束部材同士を互いに接近させて電極組立体をその積層方向に圧縮することにより、作製することができる。
 かかる製造方法を採用する場合、圧縮前のセパレータの厚みをD(μm)、正極と負極の厚み公差をそれぞれ±d(μm)、±d(μm)とした場合に、セパレータの圧縮率K(%)が下記式(5)を満たすようにセパレータを圧縮して圧縮部を形成することが好ましい。ここで、圧縮率K(%)とは、圧縮前のセパレータの厚みに対する、圧縮後におけるセパレータの圧縮部の厚みの比率を百分率で表した値をいう。
  K≦100×{D-(d+d)}/D ・・・(5)
 これにより、圧縮後の電極組立体において、セパレータの圧縮部による電極への押圧力を十分に大きくすることができる。その結果、各電極の集電体からの活物質の剥離や脱落等をより効果的に抑制し、充放電サイクルの初期における容量の低下をより効果的に抑制することができる。
 上述した容量の低下をより効果的に抑制する観点からは、セパレータの圧縮量を大きくし、セパレータの圧縮部による電極への押圧力をより大きくすることが好ましい。しかし、セパレータの圧縮量を大きくすると、圧縮部の空隙率の低下を招き、やがて圧縮部内に空隙が存在しない状態となる。この場合、圧縮したセパレータ内に電解液を保持できなくなり、内部抵抗の増加を招く恐れがある。また、圧縮部に空隙が存在しない状態から更にセパレータを圧縮しようとすると、圧縮部に空隙が存在している状態からの圧縮に比べて、圧縮に要する力が格段に増大する。その結果、拘束部材の質量の増大や、ニッケル水素蓄電池の大型化を招くおそれがある。
 上述したセパレータの過度の圧縮により生じる問題を回避するためには、セパレータの圧縮率K(%)が、圧縮前のセパレータの充填率(%)、即ち、100%から空隙率(%)を差し引いた値よりも大きくなるようにしてセパレータを圧縮すればよい。
 従って、上記圧縮において、セパレータの圧縮率K(%)が下記式(6)を満たすようにセパレータを圧縮して圧縮部を形成することにより、セパレータの過度の圧縮による問題を回避しつつ、電極への押圧力を大きくすることができる。なお、下記式(6)における記号Psは、圧縮前におけるセパレータの空隙率(%)である。
  100-Ps≦K≦100×{D-(da+db)}/D ・・・(6)
 また、上記圧縮において、セパレータの圧縮率K(%)が下記式(7)を満たすようにセパレータを圧縮して圧縮部を形成してもよい。なお、下記式(7)における記号Dgは、溝部の深さ(μm)である。
  Dg>D(100-K)/100 ・・・(7)
 この場合には、上記圧縮の後に、溝部の内表面の少なくとも一部をセパレータから離隔させ、溝部の内表面とセパレータとの間に確実に隙間を形成することができる。その結果、電解液及びガスの流通抵抗をより低減し、セパレータや電極への電解液の供給をより迅速かつ円滑に行うとともに、電極組立体の内部から外部へのガスの放出をより促進することができる。
(実施例1)
 上記ニッケル水素蓄電池の実施例を、図を用いて説明する。本例のニッケル水素蓄電池1は、図1に示すように、複数の電極2(2a~2d)がセパレータ3を介して積層された電極組立体11と、電極組立体11の積層方向における端部にそれぞれ当接し、電極組立体11を積層方向に圧縮する拘束部材12とを有している。
 図4に示すように、電極2は、金属箔21(21p、21n)と、金属箔21の少なくとも一方の面上に配置された活物質層22(22p、22n)と、セパレータ3と接する面のうち少なくとも一方の面に設けられ、電極組立体11の側周面110(図1参照)に開口した溝部4とを有している。また、図2に示すように、セパレータ3は、電極2同士の間に介在し、積層方向に圧縮された圧縮部31と、圧縮部31から外方に延設され、圧縮部31よりも厚みの厚い非圧縮部32とを有している。なお、図1においては、便宜上、セパレータ3を厚みが一定となるように簡略化して記載した。
 以下、本例のニッケル水素蓄電池1の構成をより詳細に説明する。ニッケル水素蓄電池1は全体として略直方体状を呈している。ニッケル水素蓄電池1の底面及び頂面には、拘束部材12が配置されている。また、ニッケル水素蓄電池1の側面は、両端が開口した略角筒状を呈する側壁部13から構成されている。側壁部13の開口端面は、それぞれ、拘束部材12により閉鎖されている。
 2つの拘束部材12のうち底面に配置された拘束部材12aは、側壁部13の開口端面を閉鎖するとともに、電極組立体11に当接している。
 また、頂面に配置された拘束部材12bは、側壁部13の開口端面を閉鎖する蓋部121と、蓋部121と電極組立体11との間に介在するスペーサー122とを有している。スペーサー122の厚みを変更することにより、後述するニッケル水素蓄電池1の組立作業において、電極組立体11の圧縮量を調整することができる。
 側壁部13と拘束部材12とにより囲まれた、ニッケル水素蓄電池1の内部空間には、電極組立体11及び電解液が収容されている。図1に示すように、底面に配置された拘束部材12を下方に向けた状態において、電解液の液面Eの高さは、各電極2の溝部4の位置よりも高くなっている。また、図には示さないが、側壁部13の外部には、負荷等の外部回路を接続するための電極端子と、ニッケル水素蓄電池1の内圧の過度の上昇を防止するための安全弁とが設けられている。電極端子は、電極組立体11における各電極2のタブ部212(図4参照)と電気的に接続されている。
 本例の電極組立体11は、電極2として、2枚の正極2a、2cと、2枚の負極2b、2dとを有している。正極2a、2cと負極2b、2dとは、積層方向に交互に配置されている。また、これらの電極2は、金属箔21(21p、21n)と、金属箔21の少なくとも一方の面上に配置された活物質層22(22p、22n)とを有している。
 より具体的には、2つの拘束部材12のうち底面側の拘束部材12aには、金属箔21pと、金属箔21pの片面上に設けられた正極活物質層22pとを有する終端正極2aが当接している(図1参照)。図4に示すように、終端正極2aの金属箔21pは、長方形状を呈する集電体部211pと、集電体部211pの角部から集電体部211pの長辺と平行な方向に延出したタブ部212pとを有している。正極活物質層22pは、集電体部211p上に設けられており、図1に示すように、セパレータ3に接している。
 また、終端正極2aは、集電体部211pの長辺と平行な方向に延び、終端正極2aの側周面20に開口した2本の溝部4を有している。図4に示すように、2本の溝部4は、正極活物質層22pを3等分するように配置されている。また、図1及び図3に示すように、溝部4の断面形状は長方形状であり、幅よりも深さの方が大きくなっている。溝部4の底42は集電体部211pまで到達している。
 また、図3に示すように、本例の溝部4は、底42の両側に、長手方向に沿って延設された2か所の角部43を有している。角部43の表面は、溝部4の長手方向に垂直な断面において、深さの0.5倍未満の曲率半径を有している。
 図1に示すように、終端正極2a上には、セパレータ3を介して中間負極2bが積層されている。中間負極2bは、金属箔21nと、金属箔21nの両面上に設けられた負極活物質層22nとを有している。図には示さないが、中間負極2bの金属箔21nは、終端正極2aの集電体部211pよりも一回り大きい長方形状を呈する集電体部211nと、集電体部211nの角部から集電体部211nの長辺と平行な方向に延出したタブ部212nと有している。負極活物質層22nは、集電体部211n上に設けられている。
 また、中間負極2bは、電極組立体11の積層方向における頂面側に、集電体部211nの長辺と平行な方向に延びる2本の溝部4を有している。これらの溝部4の配置および形状は、終端正極2aと同様である。
 中間負極2b上には、セパレータ3を介して中間正極2cが積層されている。中間正極2cは、金属箔21n及び負極活物質層22nに替えて金属箔21p及び正極活物質層22pを有している以外は、上述した中間負極2bと同様の構成を有している。
 中間正極2c上には、セパレータ3を介して終端負極2dが配置されている。終端負極2dは、頂面側の拘束部材12bに当接する金属箔21nと、金属箔21nの片面上に設けられ、セパレータ3に接する負極活物質層22nとを有している。なお、終端負極2dは、溝部4を有していない。
 上述した電極2a~2dの間には、セパレータ3が介在している。本例のセパレータ3は、具体的には、親水性官能基が付与されたポリオレフィン系樹脂の繊維からなる不織布である。
 また、本例のセパレータ3は、中間負極2b及び中間負極2dの集電体部211nよりも一回り大きい長方形状を呈している。図1及び図2に示すように、電極組立体11の積層方向から視た平面視におけるセパレータ3の中央部分は、正極活物質層22pと負極活物質層22nとの間に介在しており、これらによって積層方向に圧縮されている。これにより、正極活物質層22pと負極活物質層22nとの間に介在する部分が圧縮部31となっている。
 図3に示すように、セパレータ3の圧縮部31のうち、溝部4に面する部分311は金属箔21側に膨出している。また、本例においては、溝部4の内表面の全体がセパレータ3から離隔している。
 また、図2に示すように、圧縮部31の周囲には、積層方向に圧縮されておらず、圧縮部31よりも厚みの厚い非圧縮部32が形成されている。本例においては、非圧縮部32の幅、即ち、圧縮部31と非圧縮部32との境界321からセパレータ3の外周端縁322までの距離が十分に広いため、セパレータ3の外周端縁322において圧縮前のセパレータ3の厚みが維持されている。それ故、セパレータ3の外周端縁322の厚みを測定することにより、圧縮前のセパレータ3の厚みを推定することができる。
 本例のニッケル水素蓄電池1は、例えば、以下の方法により作製することができる。まず、上述した電極2と、セパレータ3とを準備し、これらを交互に積層して電極組立体11を作製する。セパレータ3としては、乾燥状態のものを積層作業に供してもよく、予め電解液を吸収させ、内部に電解液が保持されたセパレータ3を積層作業に供してもよい。また、複数の電極2のうち、溝部4を設ける電極2a~2cについては、上述した積層作業を行う前に、予め溝部4を形成すればよい。
 溝部4を形成する方法としては、種々の方法を採用することができる。例えば、集電体部211上の溝部4に相当する領域以外の領域に活物質層22を形成する、集電体部211の全体に活物質層22を形成した後、溝部4に相当する領域の活物質層22を除去する等の方法により、溝部4を形成することができる。また、溝部4の底が活物質層22内に留まる場合には、例えば、溝部4に相当する領域における活物質層22の厚みが周囲よりも薄くなるように活物質層22を形成する、溝部4に相当する領域の活物質層22を圧縮する等の方法により溝部4を形成することもできる。
 次に、電極組立体11における積層方向の両端に配置された電極2に拘束部材12を当接させる。本例においては、具体的には、2つの拘束部材12のうち底面側の拘束部材12aと側壁部13とを接合して側壁部13の一方の開口端面を閉鎖した後、側壁部13内に電極組立体11を収容する。次いで、側壁部13内に電解液を注入し、頂面側の拘束部材12bを電極組立体11上に載置する。
 その後、拘束部材12同士を互いに接近させて電極組立体11を積層方向に圧縮する。この圧縮作業を行うことにより、主としてセパレータ3が積層方向に圧縮され、圧縮部31と非圧縮部32とが形成される。そして、セパレータ3の圧縮部31の反力によって各電極2の活物質層22が押圧される。その後、側壁部13と頂面側の拘束部材12bとを接合して側壁部13の開口端面を閉鎖することにより、ニッケル水素蓄電池1を作製することができる。
 次に、本例の作用効果を説明する。本例のニッケル水素蓄電池1は、複数の電極2がセパレータ3を介して積層された電極組立体11を有している。電極組立体11は、拘束部材12により積層方向に圧縮されている。また、電極組立体11が積層方向に圧縮されていることにより、セパレータ3における電極2同士の間に介在する部分に圧縮部31が形成されている。セパレータ3の圧縮部31は、上記圧縮により生じた反力によって各電極2を押圧することができる。その結果、充放電時の収縮や膨張に伴う金属箔21からの活物質層22の剥離や脱落等を抑制し、充放電サイクルの初期における容量の低下を抑制することができる。
 また、セパレータ3の非圧縮部32は、電極2によって圧縮されていないため、圧縮部31よりも厚みが厚くなっている。このように、比較的厚みの厚い非圧縮部32を圧縮部31の周囲に設けることにより、セパレータ3を介して対面する電極2同士の電気的な絶縁性をより高めることができる。
 また、各電極2におけるセパレータ3と接する面のうち少なくとも一方の面には、電極組立体11の側周面110に開口した溝部4が設けられている。さらに、本例においては、溝部4の内表面の全面がセパレータ3から離隔しており、溝部4の内表面とセパレータ3との間に隙間が形成されている。それ故、充放電時に溝部4内に電解液を流通させ、電極組立体11の外部から内部への電解液の移動や、電極組立体11の内部から外部への電解液の移動を円滑に行うことができる。その結果、溝部4を介してセパレータ3や電極2の各部により迅速かつ円滑に電解液を供給することができる。更に、充放電時に電極2から発生したガスを溝部4内に流通させ、電極組立体11の内部から外部へのガスの放出を促進することができる。
 また、本例のニッケル水素蓄電池1は、上述したように、溝部4を介して電極2の各部に迅速かつ円滑に電解液を供給することができるため、セパレータ3の厚みを厚くしてセパレータ3内に多量の電解液を保持させる必要がない。それ故、電極2やセパレータ3への円滑な電解液の供給を可能としつつ、セパレータ3の厚みを従来よりも薄くすることができる。そして、セパレータ3の厚みを薄くすることにより、ニッケル水素蓄電池1のパワー密度やエネルギー密度を向上させることができる。
 また、本例の電極2は、金属箔21と、金属箔21の少なくとも一方の面上に設けられた活物質層22とを有している。そのため、セパレータ3の圧縮部31により活物質層22を直接押圧することができる。それ故、電極組立体11を圧縮することにより、金属箔21からの活物質層22の剥離や脱落をより効果的に抑制することができる。その結果、充放電サイクルの初期における容量の低下をより効果的に抑制することができる。
 以上のように、本例のニッケル水素蓄電池1によれば、充放電サイクルの初期における容量の低下を抑制することができる。また、ニッケル水素蓄電池1は、電極2やセパレータ3への電解液の供給を円滑に行うともに、電極組立体の内部から外部へのガスの放出を促進することができる。更に、ニッケル水素蓄電池1は、パワー密度及びエネルギー密度を向上させることができる。
 なお、本例においては、一定の幅を有する溝部4の例を示したが、溝部4の態様はこれに限定されるものではない。溝部4の態様は、例えば、図5に示したように、タブ部212に近いほど幅が広がっていてもよいし、図6に示したように、電極2の側周面20に近いほど幅が広がっていてもよい。
(実施例2)
 本例は、液溜部41を有する電極202の例である。なお、本実施例以降において用いる符号のうち、既出の実施例において用いた符号と同一のものは、特に説明のない限り、既出の実施例における構成要素等と同様の構成要素等を表す。
 図7に示すように、本例の電極202は、溝部4を備えた面に、溝部4に連なり、周囲よりも陥没した液溜部41を有している。また、電極202の厚み方向から視た平面視における液溜部41の幅は溝部4よりも広くなっている。より具体的には、本例の液溜部41は、溝部4の長手方向における中央に配置されており、電極202の厚み方向から視た平面視において正方形状を呈している。また、液溜部41の深さは溝部4の深さと同一である。その他は実施例1と同様である。
 本例の電極202は、溝部4を備えた面に、溝部4に連なり、周囲よりも陥没した液溜部41を有している。また、電極202の厚み方向から視た平面視における液溜部41の幅が溝部4よりも広くなっている。本例の電極202を電極組立体11に適用することにより、充放電時にセパレータ3から押し出された電解液を液溜部41に保持することができる。そして、液溜部41内に保持された電解液を、溝部4を介してセパレータ3や電極202の各部に供給することができる。その結果、セパレータ3や電極202への電解液の供給をより迅速かつ円滑に行うことができる。
 また、液溜部41は、電極202の側周面20よりも内側に配置されている。そのため、充放電時に圧縮されたセパレータ3から押し出された電解液を、電極組立体11の外部、即ち側壁部13と電極組立体11との間の隙間(図1参照)と、電極組立体11の内部に配置された液溜部41との両方に保持することができる。そして、セパレータ3の厚みが復元する際に、電極組立体11の外部と内部との両方から電解液を供給することができるため、電解液がセパレータ3や電極202の各部に到達する時間をより短縮することができる。その結果、セパレータ3や電極202への電解液の供給をより迅速かつ円滑に行うことができる。その他、本例の電極202が適用されたニッケル水素蓄電池1は、実施例1と同様の作用効果を奏することができる。
(実施例3)
 本例は、電極203としてのバイポーラ電極203bを備えたニッケル水素蓄電池103の例である。図8に示すように、本例のニッケル水素蓄電池103は、電極組立体113と、電極組立体113の積層方向における端部にそれぞれ当接する拘束部材123と、電極組立体113の側周面110を覆うシール部143とを有している。また、電極組立体113は、積層方向の一方の端部に配置された終端正極203aと、他方の端部に配置された終端負極203cと、終端正極203aと終端負極203cとの間に配置された複数のバイポーラ電極203bと、隣り合う電極203(203a~203c)の間に配置されたセパレータ3とを有している。
 図8及び図9に示すように、バイポーラ電極203bは、金属箔23と、金属箔23の表側面に設けられた正極活物質層22pと、裏側面に設けられた負極活物質層22nとを有している。図10に示すように、バイポーラ電極203bの金属箔23は、長方形状を呈している。
 正極活物質層22pは、金属箔23の表側面における、金属箔23の外周端縁230よりも内側の領域に設けられている。また、バイポーラ電極203bの表側面には、金属箔23の中央を通り、金属箔23の長辺と平行な方向に延びる1本の溝部4aが設けられている。溝部4aの両端は、電極組立体113の側周面110(図8参照)に開口している。
 負極活物質層22nは、正極活物質層22pと同様に、金属箔23の裏側面における、金属箔23の外周端縁230よりも内側の領域に設けられている。また、バイポーラ電極203bの裏側面には、金属箔23の中央を通り、金属箔23の短辺と平行な方向に延びる1本の溝部4bが設けられている。溝部4bの両端は、電極組立体113の側周面110(図8参照)に開口している。
 終端正極203aは、負極活物質層22nを有しない以外は、バイポーラ電極203bと同様の構成を有している。また、終端負極203cは、正極活物質層22pを有しない以外は、バイポーラ電極203bと同様の構成を有している。
 セパレータ3は、電極203同士の間に介在し、電極203と、当該電極203の隣の電極203とによって電極組立体113の積層方向に圧縮された圧縮部31を有している。また、本例のセパレータ3は、圧縮部31から外方に延設され、圧縮部31よりも厚みの厚い非圧縮部32を更に有している。なお、図8においては、便宜上、セパレータ3を厚みが一定となるように簡略化して記載した。
 本例の電極組立体113における電極203は、正極活物質層22pと負極活物質層22nとが積層方向において交互に並ぶように配置されている。これにより、セパレータ3と、当該セパレータ3に面した正極活物質層22p及び負極活物質層22nとにより構成される複数の単セルが電気的に直列に接続されている。
 図8に示すように、電極組立体113の積層方向における両端には、金属製の拘束部材123が配置されている。拘束部材123は、図示しない保持板により、終端正極203a及び終端負極203cの金属箔23に当接した状態で保持されている。また、拘束部材123は、ケース外に配置された電極端子と電気的に接続されている。これにより、電極組立体113と電極端子とが、拘束部材123を介して電気的に接続されている。
 電極組立体113の側周面110は、シール部143により覆われている。また、シール部143には、各電極203における金属箔23の周縁部231、即ち活物質層22が設けられていない部分(図10参照)が保持されている。その他は実施例1と同様である。
 本例のニッケル水素蓄電池103は、例えば、以下の手順により作製することができる。まず、上述した電極203を準備し、活物質層22p、22nに溝部4を形成する。次いで、各電極203における金属箔23の周縁部231上にシール部143を配置する。また、これらとは別にセパレータ3を準備する。
 次に、電極203とセパレータ3とを交互に積層し、電極組立体113を作製する。そして、拘束部材123により電極組立体113を積層方向に圧縮しつつシール部143を加熱して、シール部143同士を溶着させる。その後、図示しない注液口から電解液を注入することにより、ニッケル水素蓄電池103を得ることができる。
 本例のバイポーラ電極203bのように、各電極203におけるセパレータ3と接する面の両面に溝部4を設けることにより、溝部4内を通過する電解液及びガスの流通抵抗をより低減することができる。その結果、溝部4を介してセパレータ3や電極203の各部により迅速かつ円滑に電解液を供給するとともに、電極組立体113の内部から外部へのガスの放出を促進することができる。
 また、本例のニッケル水素蓄電池103には、バイポーラ電極203bが組み込まれている。そのため、バイポーラ電極203bを積層するという単純な構成により、複数の単セルを直列に接続することができる。その結果、ニッケル水素蓄電池103の起電力をより高くすることができる。また、バイポーラ電極203bが組み込まれたニッケル水素蓄電池103は、単セルの数を多くする、あるいは、積層方向における寸法を小さくする等の作用効果を奏することもできる。その他、本例のニッケル水素蓄電池103は、実施例1と同様の作用効果を奏することができる。
(実験例1)
 本例は、電極組立体114の圧縮により奏される、充放電サイクルの初期における容量低下の抑制効果を評価した例である。本例において使用した試験用セル104を図11に示す。試験用セル104は、角筒状の側壁部13と、側壁部13の開口端面を閉鎖する拘束部材12とを有している。また、試験用セル104の内部空間には、電極組立体114が収容されている。本例の電極組立体114は、1枚の正極204aと、1枚の負極204bと、これらの間に介在するセパレータ3とを有している。
 正極204aは、底面側の拘束部材12a上に載置された金属箔21pと、金属箔21pの片面上に設けられた正極活物質層22pとを有している。正極活物質層22p上には、セパレータ3が配置されている。
 負極204bは、頂面側の拘束部材12bに当接する金属箔21nと、金属箔21nの片面上に設けられた負極活物質層22nとを有している。負極活物質層22nは、セパレータ3を介して正極活物質層22pと対面している。
 セパレータ3は、正極活物質層22pと負極活物質層22nとの間に介在し、これらによって電極組立体114の積層方向に圧縮された圧縮部31と、圧縮部31から外方に延設され、圧縮部31よりも厚みの厚い非圧縮部32とを有している。
 本例において用いた試験材料のより詳細な構成は、以下の通りである。
<正極204a>
・正極活物質層22pの組成  β型水酸化ニッケル  88質量%
               コバルト粉末     5質量%
               バインダ       5質量%
               酸化イットリウム   1質量%
               増粘剤        1質量%
・正極活物質層22pの目付  25mg/cm2
・正極活物質層22pの密度  2.9g/cm3
・金属箔21p        ニッケル箔(厚み20μm)
・集電体部211pの寸法   29mm×24mm
・正極204aの厚みの公差da 3μm
<負極204b>
・負極活物質層22nの組成  A2B7型水素吸蔵合金  97質量%
               バインダ          2質量%
               増粘剤           1質量%
・負極活物質層22nの目付  31mg/cm2
・負極活物質層22nの密度  5.0g/cm3
・金属箔21n        ニッケル箔(厚み20μm)
・集電体部211nの寸法   31mm×26mm
・負極204bの厚みの公差db 3μm
<セパレータ3>
 ポリオレフィン系不織布 厚み120μm、空隙率50%
<電解液>
 KOH、NaOH、LiOHの混合水溶液(合計濃度7M)
 これらの電極204及びセパレータを底面側の拘束部材12a上に順次載置した後、側壁部13内に電解液を注入した。次いで、負極204bの上に頂面側の拘束部材12bを配置した。そして、頂面側の拘束部材12aにより電極組立体114を積層方向に押圧しつつ、側壁部13の開口端面を閉鎖した。
 本例では、試験用セル104内において、セパレータ3の圧縮部31の厚みが85μmとなるように、頂面側の拘束部材12bにおけるスペーサー122の厚みを調整した。セパレータ3の圧縮量は35μmであり、正極204aの厚みの公差daと、負極204bの厚みの公差dbとの和である6μmよりも大きい。また、試験用セル104内のセパレータ3の圧縮率は、圧縮前のセパレータ3の厚みの70.8%である。
 その後、電極組立体114に対し、充電と放電とを交互に繰り返す充放電サイクル試験を実施し、各サイクルにおける電池容量を測定した。また、本例においては、電極組立体114を圧縮した場合との比較のため、セパレータ3が圧縮されない状態での充放電サイクル試験も実施した。
 これらの試験結果は、図12に示した通りであった。なお、図12の縦軸は、理論容量に対する実際に測定した電池容量の容量比(%)であり、横軸はサイクル数(サイクル)である。サイクル数については、充電開始から放電完了までを1サイクルとした。
 図12に示したように、電極組立体114の圧縮を行った場合、5サイクル目までは充放電を繰り返すほど容量比が上昇し、6サイクル目に容量比が急激に上昇した。7サイクル目以降の容量比は理論容量の90%以上となった。
 一方、電極組立体114の圧縮を行わなかった場合、4サイクル目までは充放電を繰り返すほど容量比が上昇した。しかし、5サイクル目以降は、充放電を繰り返すほど容量比が低下した。そして、21サイクル目に容量比が急激に低下し、0%となった。
 これらの結果から、圧縮前のセパレータ3の厚みをD(μm)、正極204aと負極204bの厚み公差をそれぞれ±d(μm)、±d(μm)とした場合に、上記圧縮におけるセパレータの圧縮率Kを、100×{D-(d+d)}/D[%]以下とすることにより、充放電サイクルの初期における容量の低下を抑制できることが十分に理解できる。なお、本例の正極204aは溝部4を有していないが、溝部4を設けた場合においても、セパレータ3の圧縮によって容量の低下を抑制する作用効果を奏することは言うまでもない。
(実験例2)
 本例は、溝部4による内部抵抗の低減効果の評価を行った例である。本例では、セパレータ3の厚みや溝部4の形状を種々変更した正極204(図13~図17、204c~204g)を準備し、試験用セル104(試験体1~6)を作製した。また、溝部4を有する正極204c~204gとの比較のため、溝部4を有さない正極(図示略)を用いた試験用セル104(試験体7~8)を作製した。各試験体の構成を以下に説明する。
<試験体1>
 試験体1においては、実験例1の正極204aに替えて、集電体部211pの長辺と平行な方向に延びた2本の溝部4を有する正極204c(図13参照)を使用した。2本の溝部4は、実施例1の終端正極2a(図4参照)と同様に、正極活物質層22pを3等分するように配置されており、正極204cの側周面20に開口している。また、試験体1の電極組立体114は、スペーサー122により、セパレータ3の圧縮部31の厚みが80μmとなるように圧縮されている。その他は実験例1の試験用セル104と同様である。試験体1においては、圧縮前のセパレータ3の厚みの66.7%となるように、セパレータ3が圧縮されている。
<試験体2>
 試験体2においては、試験体1のセパレータ3に替えて、圧縮前の厚みが30μm、空隙率が58%のセパレータ3を使用した。また、試験体2においては、スペーサー122により、セパレータ3の圧縮部31の厚みが20μmとなるように電極組立体114を圧縮した。このセパレータ3の圧縮量は10μmであり、正極204cの厚みの公差daと、負極204bの厚みの公差dbとの和である6μmよりも大きい。また、試験体2においては、圧縮前のセパレータ3の厚みの66.7%となるように、セパレータ3が圧縮されている。その他は試験体1と同様である。
<試験体3>
 試験体3においては、格子状に配置された4本の溝部4(4c、4d)を有する正極204dを使用した(図14参照)。4本の溝部4のうち2本の溝部4cは、集電体部211pの長辺と平行な方向に延びており、残る2本の溝部4dは、短辺と平行な方向に延びている。これらの溝部4は、正極活物質層22pを9等分するように配置されている。また、溝部4の幅は1mmである。その他は試験体2と同様である。
<試験体4>
 試験体4においては、2本の溝部4と、これらの間に配置された2か所の液溜部41とを有する正極204eを使用した(図15参照)。2本の溝部4は、集電体部211pの長辺と平行な方向に延びており、正極活物質層22pを集電体部211pの短辺方向に3等分するように配置されている。また、2か所の液溜部41は、それぞれ、金属箔21pの外周端縁210に沿って配置されており、長方形状を呈している。集電体部211pの長辺方向における液溜部41の寸法は3mmである。その他は試験体2と同様である。
<試験体5>
 試験体5においては、2本の溝部4と、これらの間に配置された1か所の液溜部41とを有する正極204fを使用した(図16参照)。2本の溝部4は、集電体部211pの長辺と平行な方向に延びており、正極活物質層22pを集電体部211pの短辺方向に3等分するように配置されている。また、液溜部41は、正極活物質層22pの中央に配置されており、長方形状を呈している。集電体部211pの長辺方向における液溜部41の寸法は6mmである。その他は試験体2と同様である。
<試験体6>
 試験体6においては、電極2の側周面20に開口していない溝部4を有する正極204gを使用した(図17参照)。2本の溝部4は、集電体部211pの長辺と平行な方向に延びており、正極活物質層22pを集電体部211pの短辺方向に3等分するように配置されている。これらの溝部4の両端は、正極204gの側周面20よりも内側に配置されている。それ故、正極204gの溝部4は、電極組立体114の側周面に開口していない。なお、溝部4の長さは15mmである。その他は試験体2と同様である。
<試験体7>
 試験体7は、溝部4を有しない正極(図示略)を使用した以外は、試験体1と同様である。
<試験体8>
 試験体8は、溝部4を有しない正極(図示略)を使用した以外は、試験体2と同様である。
 これらの試験体1~8を用い、以下の方法により内部抵抗の測定を行った。まず、試験体を0℃の温度において満充電状態の60%の容量まで充電した。この状態から1Cの放電レートで10秒間放電させ、放電による電圧降下を測定した。そして、この電圧降下の値を電流値に換算した放電レートの値で除することにより、10秒抵抗の値を算出した。
 表1に、各試験体の10秒抵抗の値を正極活物質層22pの体積で規格化した値を示す。なお、この値が大きい場合には内部抵抗が高く、値が小さい場合には内部抵抗が小さいことを示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、圧縮後のセパレータ3における圧縮部31の厚みが80μmである試験体1と試験体7との比較において、溝部4を有する試験体1は、溝部4を有さない試験体7に比べて10秒抵抗が小さかった。同様に、圧縮後のセパレータ3における圧縮部31の厚みが20μmである試験体2~5と試験体8との比較において、溝部4を有する試験体2~5は、溝部4を有さない試験体8に比べて10秒抵抗が小さかった。
 これらの結果から、電極2に溝部4を設けることにより、電極組立体114の外部に存在する電解液を、溝部4を介してセパレータ3や電極2の各部に電解液を迅速かつ円滑に供給し、その結果、ニッケル水素蓄電池の内部抵抗を低減できることが理解できる。
 また、溝部4を設けた試験体の中でも、正極活物質層22pの中央に液溜部41を設けた試験体5は、他の試験体に比べてさらに10秒抵抗の値が小さくなった。これは、液溜部41を電極組立体114の内部に配置したことにより、電極組立体114の外部と内部との両方から電解液が供給され、電解液がセパレータ3や電極2の各部に到達する時間をより短縮することができたためと推定される。
 一方、溝部4を有する試験体であっても、電極組立体114の側周面110に開口していない溝部4を有する試験体6は、溝部4を有さない試験体8よりもさらに10秒抵抗の値が大きかった。これは、溝部4が電極組立体114の外部と連通していないため、電極組立体114の外部に存在する電解液が溝部4に流入せず、溝部4による作用効果が得られなかったためと推定される。
(実施例4)
 本例は、電極205の内側における深さが側周面20における深さよりも深い溝部405(405a~405c)の具体的な態様の例である。例えば、図18に示す電極205aは、長手方向の中央44における深さが最も深く、電極205aの側周面20に近いほど浅くなるように深さが連続的に変化している溝部405aを有している。また、図19に示す電極205bは、長手方向の中央44及びその近傍において一定の深さを有し、これらの部分から長手方向の外方へ離れるほど浅くなるように深さが連続的に変化している溝部405bを有している。
 更に、図20に示す電極205cは、側周面20に連なる部分45の深さと、長手方向の中央44及びその近傍の深さとが異なっている溝部405cを有している。溝部405cにおける、電極2の側周面20に連なる部分45と長手方向の中央44及びその近傍との間には、段差451が形成されている。
 本例の電極205は、側周面20よりも内側における深さが側周面20における深さよりも深い溝部405を有している。そのため、充放電時に圧縮されたセパレータ3(図示略)から押し出された電解液を溝部405内に保持することができる。そして、セパレータの厚みが復元する際に、溝部405内に保持された電解液を再びセパレータ3や電極205の各部に供給することができる。その結果、セパレータ3や電極205への電解液の供給をより迅速かつ円滑に行うことができる。更に、充放電時に発生したガスを溝部内に流通させ、電極組立体の内部から外部へのガスの放出をより促進することができる。
(実施例5)
 本例は、角部43を備えた溝部406(406a~406c)の他の態様の例である。例えば、図21に示す電極206aは、長手方向に垂直な断面においてV字状を呈する溝部406aを有している。溝部406aは、幅よりも深さの方が小さくなっている。また、溝部406aは、その長手方向に垂直な断面において、幅方向の中央に1か所の角部43を有している。角部43の曲率半径Rは、溝部406aの深さの0.5倍未満である。
 また、図22に示す電極206bは、長手方向に垂直な断面において、幅よりも深さの方が小さい長方形状を呈する溝部406bを有している。溝部406bは、その長手方向に垂直な断面において、底42bの両側に2か所の角部43を有している。角部43の曲率半径Rは、溝部406bの深さの0.5倍未満である。
 更に、図23に示す電極206cは、長手方向に垂直な断面において、幅よりも深さの方が小さい溝部406cを有している。溝部406cは、金属箔21の表面に平行な底42cと、底42cの片側に連なる角部43と、角部43から電極205cの厚み方向に延設された側面46と、底42cにおける角部43の反対側に連なる湾曲面47とを有している。角部43の曲率半径Rは、溝部406cの深さの0.5倍未満である。また、湾曲面47の曲率半径(図示略)は、溝部406cの深さの0.5倍以上である。
 本例の電極206(206a~206c)は、長手方向に沿って延設された角部43を1か所以上備えた溝部406を有している。そのため、電極組立体を積層方向に圧縮した際に、図21~図23に示すように、セパレータ3と角部43の表面との間に隙間を形成することができる。これにより、電解液及びガスの流通抵抗をより低減し、セパレータ3や電極206への電解液の供給をより迅速かつ円滑に行うとともに、電極組立体の内部から外部へのガスの放出をより促進することができる。
(実施例6)
 本例は、溝部407が注液口152または圧力開放弁153に対面する位置に開口しているニッケル水素蓄電池106の例である。本例のニッケル水素蓄電池106は、図24に示すように、略直方体状を呈し、頂面及び底面が開口したケース15と、ケース15内に収容された電極組立体116と、を有している。ケース15の頂面及び底面には、電極組立体116における終端電極206a、206cの金属箔24が露出している。なお、図には示さないが、金属箔24には、電極組立体116を積層方向に圧縮する拘束部材が当接している。
 ケース15の側壁151には、ケース15内に電解液を注入するための注液口152と、ケース15内からケース15の外部へガスを放出するための圧力開放弁153とが設けられている。図24に示すように、注液口152は、電解液の液漏れを防止するための栓154によって閉鎖されている。
 図26に示すように、本例の電極組立体116は、電極206としての終端電極206a、206c及びバイポーラ電極206bを有している。これらの電極206は、セパレータ3を介して互いに積層されている。
 図26及び図28に示すように、バイポーラ電極206bは、金属箔23と、金属箔23の表側面に設けられた正極活物質層22pと、裏側面に設けられた負極活物質層22nとを有している。図27及び図28に示すように、バイポーラ電極206bの表側面には、格子状に配置された溝部407が設けられている。より具体的には、溝部407は、金属箔23の長辺と平行な方向に延びる3本の溝部407a~407cと、短辺と平行な方向に延びる3本の溝部407d~407fとを有している。これらの溝部407の端部は、電極組立体116の側周面110に開口している。なお、図26においては、便宜上、溝部407の記載を割愛した。
 図27及び図28に示すように、長辺と平行な方向に延びる3本の溝部407a~407cのうち中央に配置された溝部407bは、延設方向の中央において最も狭い幅を有し、外方へ向かうにつれて幅が広がっている。同様に、短辺と平行な方向に延びる3本の溝部407d~407fのうち中央に配置された溝部407eは、延設方向の中央において最も狭い幅を有し、外方へ向かうにつれて幅が広がっている。
 図26に示すように、2枚の終端電極206a、206cのうち一方の終端電極206aは、電極組立体116の積層方向における一方の端部に配置されている。終端電極206aは、金属箔24の厚みがバイポーラ電極206bの金属箔23よりも厚い点、及び、正極活物質層22pを有しない点を除き、バイポーラ電極206bと同様の構成を有している。また、終端電極206cは、金属箔24の厚みがバイポーラ電極206bの金属箔23よりも厚い点、及び、負極活物質層22nを有しない点を除き、バイポーラ電極206bと同様の構成を有している。
 終端電極206a、206cにおける金属箔24の周縁部241及びバイポーラ電極206bにおける金属箔23の周縁部231は、シール部155によって覆われている。これらのシール部155はケース15によって覆われている。また、電極組立体116の積層方向において隣り合うシール部155は互いに接着されている。
 図25~図27に示すように、シール部155における注液口152に対面する位置にはシール部155を貫通する貫通穴156が形成されている。また、図26及び図27に示すように、貫通穴156の正面には、金属箔23、24の長辺と平行な方向に延びる3本の溝部407a~407cのうち中央に配置された溝部407bが開口している。
 また、図27に示すように、シール部155における圧力開放弁153に対面する位置にもシール部155を貫通する貫通穴157が形成されている。貫通穴157の正面には、金属箔23、24の短辺と平行な方向に延びる3本の溝部407d~407fのうち中央に配置された溝部407eが開口している。その他は実施例3と同様である。
 本例のニッケル水素蓄電池106は、電極組立体116を収容するケース15と、ケース15を貫通しケース15内に電解液を注入するための注液口152と、を有している。また、電極206の溝部407bは、図26及び図27に示すように、注液口152と対面する位置に開口している。
 そのため、セパレータ3に電解液を含浸させる作業において、注液口152から注入された電解液が溝部407内に流入しやすくなる。そして、電解液を溝部407内に流入させることにより、セパレータ3に速やかに電解液を含浸させるとともに、電解液が含浸されていない部分の発生をより効果的に抑制することができる。
 また、ニッケル水素蓄電池106は、電極組立体116を収容するケース15と、ケース15上に配置されケース15内からケース15の外部へガスを放出するための圧力開放弁153と、を有している。そして、電極206の溝部407eは、図27に示すように、圧力開放弁153と対面する位置に開口している。
 本例のように、溝部407eを圧力開放弁153に対面する位置に開口させることにより、充放電時に電極から発生したガスが溝部407内を移動して圧力開放弁153の正面に到達しやすくなる。そのため、ガスの量が多くなるにつれて、圧力開放弁153の周囲から電解液を排除することができる。その結果、ケース15内の圧力が過度に高くなり、圧力開放弁153が開放された際に、圧力開放弁153から放出される電解液の量をより低減することができる。その他、本例のニッケル水素蓄電池106は、実施例3と同様の作用効果を奏することができる。
 本発明に係るニッケル水素蓄電池1、103、104、106は、上述した実施例や実験例の態様に限定されるものではなく、その趣旨を損なわない範囲において、適宜構成を変更することができる。
 例えば、実施例6においては、バイポーラ電極206bにおける正極活物質層22p側に溝部407を設けたニッケル水素蓄電池106の例を示したが、負極活物質層22n側に溝部を設けてもよいし、正極活物質層22p側及び負極活物質層22n側の両方に溝部を設けてもよい。また、実施例6においては、注液口152と圧力開放弁153とが別々に設けられたニッケル水素蓄電池106の例を示したが、注液口152から電解液を注入した後に、注液口152に圧力開放弁153を取り付けてもよい。注液口152に対面して配置される溝部407の開口の数は、1か所であってもよいし、2か所以上であってもよい。また、圧力開放弁153に対面して配置される溝部407の開口の数も、1か所であってもよいし、2か所以上であってもよい。

Claims (10)

  1.  複数の電極がセパレータを介して積層された電極組立体と、
     上記電極組立体の積層方向における端部にそれぞれ当接し、上記電極組立体を積層方向に圧縮する拘束部材とを有し、
     上記電極は、
     金属箔と、
     上記金属箔の少なくとも一方の面上に設けられた活物質層と、
     上記セパレータと接する面のうち少なくとも一方の面に設けられ、上記電極組立体の側周面に開口した溝部とを有しており、
     上記セパレータは、
     上記電極同士の間に介在し、上記積層方向に圧縮された圧縮部と、
    上記圧縮部から外方に延設され、上記圧縮部よりも厚みの厚い非圧縮部とを有している、ニッケル水素蓄電池。
  2.  上記セパレータにおける上記圧縮部の厚みは、上記非圧縮部の厚みの51~99%である、請求項1に記載のニッケル水素蓄電池。
  3.  上記電極は、上記溝部を備えた面に、上記溝部に連なり、周囲よりも陥没した液溜部を有しており、上記電極の厚み方向から視た平面視における上記液溜部の幅は上記溝部よりも広い、請求項1または2に記載のニッケル水素蓄電池。
  4.  上記液溜部は、上記電極の外周端縁よりも内側に配置されている、請求項3に記載のニッケル水素蓄電池。
  5.  上記溝部の内表面における少なくとも一部が上記セパレータから離隔している、請求項1~4のいずれか1項に記載のニッケル水素蓄電池。
  6.  上記ニッケル水素蓄電池は、上記電極組立体を収容するケースと、上記ケースを貫通し上記ケース内に電解液を注入するための注液口と、を有し、上記電極の上記溝部は、上記電極組立体の側周面における上記注液口に対面する位置に開口している、請求項1~5のいずれか1項に記載のニッケル水素蓄電池。
  7.  上記ニッケル水素蓄電池は、上記電極組立体を収容するケースと、上記ケース上に配置され上記ケース内から上記ケースの外部へガスを放出するための圧力開放弁と、を有し、上記電極の上記溝部は、上記電極組立体の側周面における上記圧力開放弁に対面する位置に開口している、請求項1~6のいずれか1項に記載のニッケル水素蓄電池。
  8.  請求項1~7のいずれか1項に記載のニッケル水素蓄電池の製造方法であって、
     上記電極と上記セパレータとを交互に積層して電極組立体を作製し、
     上記電極組立体における積層方向の両端に配置された電極に拘束部材を当接させ、
     上記拘束部材同士を互いに接近させて上記電極組立体をその積層方向に圧縮する、ニッケル水素蓄電池の製造方法。
  9.  圧縮前のセパレータの厚みをD(μm)、上記電極のうち正極の厚み公差を±d(μm)、負極の厚み公差を±d(μm)とした場合に、上記圧縮において、セパレータの圧縮率K(%)が下記式(1)を満たすようにセパレータを圧縮して上記圧縮部を形成する、請求項8に記載のニッケル水素蓄電池の製造方法。
      K≦100×{D-(d+d)}/D ・・・(1)
  10.  圧縮前のセパレータの厚みをD(μm)、上記溝部の深さをDg(μm)とした場合に、上記圧縮において、セパレータの圧縮率K(%)が下記式(2)を満たすようにセパレータを圧縮して上記圧縮部を形成する、請求項8または9に記載のニッケル水素蓄電池の製造方法。
      Dg>D(100-K)/100 ・・・(2)
PCT/JP2017/046023 2017-04-26 2017-12-21 ニッケル水素蓄電池及びその製造方法 WO2018198432A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017087486 2017-04-26
JP2017-087486 2017-04-26
JP2017-136271 2017-07-12
JP2017136271 2017-07-12

Publications (1)

Publication Number Publication Date
WO2018198432A1 true WO2018198432A1 (ja) 2018-11-01

Family

ID=63918254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046023 WO2018198432A1 (ja) 2017-04-26 2017-12-21 ニッケル水素蓄電池及びその製造方法

Country Status (1)

Country Link
WO (1) WO2018198432A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090932A1 (ja) * 2018-11-01 2020-05-07 株式会社豊田自動織機 蓄電装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161377A (ja) * 1993-12-07 1995-06-23 Matsushita Electric Ind Co Ltd 角形密閉式アルカリ蓄電池とその単位電池
JP2005268045A (ja) * 2004-03-18 2005-09-29 Nissan Motor Co Ltd 電池およびこの電池を搭載する車両
JP2008016210A (ja) * 2006-07-03 2008-01-24 Sony Corp 二次電池及びその製造方法
JP2015065065A (ja) * 2013-09-25 2015-04-09 株式会社豊田自動織機 蓄電装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161377A (ja) * 1993-12-07 1995-06-23 Matsushita Electric Ind Co Ltd 角形密閉式アルカリ蓄電池とその単位電池
JP2005268045A (ja) * 2004-03-18 2005-09-29 Nissan Motor Co Ltd 電池およびこの電池を搭載する車両
JP2008016210A (ja) * 2006-07-03 2008-01-24 Sony Corp 二次電池及びその製造方法
JP2015065065A (ja) * 2013-09-25 2015-04-09 株式会社豊田自動織機 蓄電装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090932A1 (ja) * 2018-11-01 2020-05-07 株式会社豊田自動織機 蓄電装置
JPWO2020090932A1 (ja) * 2018-11-01 2021-09-16 株式会社豊田自動織機 蓄電装置
JP7057440B2 (ja) 2018-11-01 2022-04-19 株式会社豊田自動織機 蓄電装置

Similar Documents

Publication Publication Date Title
TWI496335B (zh) 階梯狀結構之電池單元
KR101958070B1 (ko) 비수 전해질 이차 전지 및 그 제조 방법
KR100876455B1 (ko) 미실링 잉여부를 포함하고 있는 파우치형 이차전지
JP3815774B2 (ja) 電解質を含む電気化学素子
JP3819785B2 (ja) 集合電池
CN106165152B (zh) 方形二次电池
KR101165066B1 (ko) 미실링 잉여부를 구비하는 파우치형 이차전지
WO2014024424A1 (ja) 電池パックの製造方法
KR101917496B1 (ko) 전기 화학 디바이스 및 전기 화학 디바이스의 제조 방법
JP2009076248A (ja) 蓄電デバイスおよびその製造方法
JP2015088280A (ja) 非水電解液二次電池の製造方法
US20070212601A1 (en) Battery and method of manufacturing the same
CN106025169B (zh) 蓄电元件
WO2018198432A1 (ja) ニッケル水素蓄電池及びその製造方法
JP7456947B2 (ja) 積層型二次電池
KR101357311B1 (ko) 파우치형 이차전지 및 그의 제조방법
WO2001020705A1 (fr) Accumulateur cylindrique hermetique au nickel-hydrogene
TWI472084B (zh) 具有優異產率及安全性之二次電池
JP2019102231A (ja) 蓄電素子
KR101596489B1 (ko) 이차 전지용 파우치 및 전지 성능 발현이 장기화된 파우치형 이차 전지, 이를 포함하는 디바이스
JP2011233408A (ja) 非水電解質二次電池
EP2747185A1 (en) Cylindrical battery
JP4162570B2 (ja) 二次電池
WO2018101224A1 (ja) ニッケル水素蓄電池用バイポーラ電極及びニッケル水素蓄電池
US20220158198A1 (en) Solid-state battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP