WO2018196810A1 - 从流体连续性中获得更大推动力和升力的飞行器 - Google Patents

从流体连续性中获得更大推动力和升力的飞行器 Download PDF

Info

Publication number
WO2018196810A1
WO2018196810A1 PCT/CN2018/084620 CN2018084620W WO2018196810A1 WO 2018196810 A1 WO2018196810 A1 WO 2018196810A1 CN 2018084620 W CN2018084620 W CN 2018084620W WO 2018196810 A1 WO2018196810 A1 WO 2018196810A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
passage
fluid
aircraft
windward
Prior art date
Application number
PCT/CN2018/084620
Other languages
English (en)
French (fr)
Inventor
朱晓义
Original Assignee
朱晓义
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710281619.8A external-priority patent/CN107089327A/zh
Priority claimed from CN201810379833.1A external-priority patent/CN108622375A/zh
Application filed by 朱晓义 filed Critical 朱晓义
Publication of WO2018196810A1 publication Critical patent/WO2018196810A1/zh
Priority to US16/569,443 priority Critical patent/US11396364B2/en
Priority to US17/843,700 priority patent/US11858617B2/en
Priority to US18/517,212 priority patent/US20240124131A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/467Aerodynamic features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/18Aerodynamic features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C21/00Influencing air flow over aircraft surfaces by affecting boundary layer flow
    • B64C21/02Influencing air flow over aircraft surfaces by affecting boundary layer flow by use of slot, ducts, porous areas or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C21/00Influencing air flow over aircraft surfaces by affecting boundary layer flow
    • B64C21/02Influencing air flow over aircraft surfaces by affecting boundary layer flow by use of slot, ducts, porous areas or the like
    • B64C21/025Influencing air flow over aircraft surfaces by affecting boundary layer flow by use of slot, ducts, porous areas or the like for simultaneous blowing and sucking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • B64C3/14Aerofoil profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • B64C3/14Aerofoil profile
    • B64C3/141Circulation Control Airfoils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • B64C3/14Aerofoil profile
    • B64C2003/143Aerofoil profile comprising interior channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • B64C3/14Aerofoil profile
    • B64C2003/148Aerofoil profile comprising protuberances, e.g. for modifying boundary layer flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/08Boundary layer controls by influencing fluid flow by means of surface cavities, i.e. net fluid flow is null
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/20Boundary layer controls by passively inducing fluid flow, e.g. by means of a pressure difference between both ends of a slot or duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/28Boundary layer controls at propeller or rotor blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Definitions

  • the present invention relates to the field of aircraft technology, and more particularly to an aircraft that obtains greater driving force and lift from fluid continuity.
  • the fluid travels through the different paths of the upper and lower surfaces of the wing while reaching the rear, where the "force" causes the fluid passing through the upper surface of the wing to speed up to reach the rear with the fluid of the lower surface.
  • fluid resistance to the positive, lateral, and rear negative pressure zones produced by the motion device is treated separately rather than as a whole.
  • fluid resistance has been created to maximize the energy consumption of the exercise device, while actual energy utilization is very low.
  • the wing structure of the aircraft is observed by observing the wings of the bird. Therefore, the wings of the bird have a direct and close relationship with the structure of the wing.
  • the technical problem to be solved by the present invention is to provide an aircraft that obtains greater driving force from fluid continuity and greater lift from fluid continuity.
  • the front part of the windward side of the eagle wings is the structure of the multi-layered feathers. Its function is to guide the fluid passing through the front half of the body to the length direction, and the number of feather layers in the small half is reduced until the single layer of feathers to the tail.
  • the shape of the arrangement structure is to guide the fluid to pass through the width direction, and the front and rear portions of the windward side of the wing have different flow rates between the length and the width to generate a pressure difference, and the pressure direction is the same as the movement direction from the rear to the front to generate a driving force.
  • the feather arrangement on the upper surface of the "Eagle” wings can also be guided by the fine adjustment of the wing fluid to the length direction.
  • the arrangement of the feathers on the leeward side of the eagle wings is to direct the fluid.
  • the direction of the width of the wings passes through the fluid continuity.
  • the paths passing through the length and width directions have different flow rates, and at the same time, a greater pressure difference and lift can be generated at the same time. Therefore, the "eagle” wing structure has the above characteristics, so its energy efficiency and flexibility are far more than any current aircraft.
  • the present invention is an aircraft that mimics the feather arrangement of the "Eagle” wings, thereby producing a greater lift and propulsion.
  • the inventors have found through years of research that the moving device is enclosed in the large negative pressure zone, and the negative pressure generated in the large negative pressure zone maintains the continuity of the fluid, so the fluid continuity is generated by the motion device.
  • the forward, lateral and rear negative pressure zones, as well as the fluids of different external pressure directions, are connected to each other, and a super-pressure zone in the same direction is formed by the superposition of pressures.
  • the metaphor of the image is like a closed negative pressure pocket.
  • the wing is placed in the negative pressure pocket to generate lift, and the entire moving device is placed in the negative pressure pocket to generate greater fluid resistance.
  • the technical solution adopted by the present invention is:
  • An aircraft comprising a fuselage and a wing, characterized in that a front opening and/or a middle portion of the windward side of the wing is provided with a first open passage for extending a fluid flow path, the self-wing being close to the fuselage a tail portion of one side to a side away from the side of the fuselage is provided with a first open passage in the longitudinal direction of the wing, and the first open passage is a concave passage and/or a convex passage for allowing fluid to pass over the windward side of the wing
  • the pressure difference from the rearward direction to the direction of motion due to the different flow rates also causes a greater pressure difference and lift between the windward side of the wing and the leeward side of the wing due to the different flow rates.
  • the invention has the beneficial effects that the fluid passes from the longitudinal direction of the windward front and/or middle portion of the wing, and the rear fluid passes from the width direction, and the fluid flows from the rear to the front due to the different flow rates passing through the length and the width direction.
  • the pressure difference between the direction and the direction of motion obtains the source of the driving force in the fluid continuity, and the flow of the windward surface of the wing from the long width direction respectively, resulting in a larger pressure difference and a source of lift due to the different flow rates.
  • FIG. 1 is a schematic view showing the overall structure of an aircraft according to the present invention.
  • Figure 2 is a cross-sectional view of the wing of the aircraft of Figure 1;
  • FIG. 3 is a schematic view showing another overall structure of the aircraft of the present invention.
  • FIG. 4 is a schematic view showing another overall structure of the aircraft of the present invention.
  • the most critical idea of the present invention is to provide an open channel for extending the fluid flow path at the front of the fuselage or the upper surface of the wing, and a pressure difference and a driving force from the rear to the front direction due to the different flow rates; Greater lift is generated between the upper and lower surfaces due to the different flow rates.
  • an aircraft includes a fuselage 1 and a wing 2, and the wing 2 is fixedly connected to the fuselage 1, and the front portion 211 and/or the middle portion 212 of the windward surface 21 of the wing respectively
  • a first open passage 214 is provided for extending the fluid flow path, the first open passage 214 extending from a root of the wing 2 near the side of the fuselage 1 to a tail of the wing 2 away from the side of the fuselage 1
  • the first open channel 214 is a concave channel 2141 and/or a convex channel 2142, such that the fluid passes between the length and the width direction above the windward surface 21 of the wing, resulting in a rearward and forward direction and movement due to different flow rates.
  • the uniform pressure difference causes a greater lift between the windward facing surface 21 of the wing and the leeward side 22 of the wing due to the different flow rates.
  • the present invention has the beneficial effects that the fluid passes from the longitudinal direction of the windward front and/or middle portion of the wing, and the rear fluid passes through the width direction, and the flow rate of the fluid from the length and the width direction is different.
  • the pressure difference is obtained from the back to the front and the direction of motion, and the source of the driving force is obtained in the fluid continuity; at the same time, the windward and leeward fluids of the wing pass between the long and wide directions respectively, and the flow rate is different. Pressure difference and source of lift.
  • the wing 2 is further provided with a disturbing fluid 216 for extending a fluid circulation path, and the shape of the disturbing fluid 216 is one of a triangle, a circle, a diamond, a trapezoid, an olive, a spiral or an arc. Or a plurality of the disturbing fluids 216 are evenly arranged on the wing 2; the concave passages 2141 are recessed downwardly on the casing surface of the windward facing surface 21 of the wing, and the convex passage 2142 is a wing The surface of the windward facing shell is convex upward.
  • the shape of the disturbing fluid can be selected as needed, and the position and number of the disturbing fluid can also be set as needed.
  • the opening of the concave channel 2141 is flush with the windward facing surface 21 of the wing, and the shape of the concave channel 2141 is upper and lower, and the width of the concave channel 2141 is concave from the opening of the concave channel 2141.
  • the direction of the bottom surface of the shaped passage 2141 gradually increases.
  • the shape of the concave channel 2141 and/or the convex channel 2142 is curved.
  • the concave channel 2141 and/or the convex channel 2142 are disposed on a housing in which a plurality of disturbing fluids 216 are evenly arranged, and the interference is respectively disposed on the bottom and/or the inner sidewall of the concave channel 2141. Fluid 216, more than two of said disturbing fluids 216 form said convex passage 2142.
  • the provision of the disturbing fluid can further extend the fluid flow path and increase the pressure difference.
  • the front portion 11 of the fuselage is provided with at least one second open channel 111 for extending the fluid flow path, and the second open channel 111 is a concave channel 2141 or a convex channel 2142.
  • the shape of the second open channel 111 is spiral.
  • a control mechanism 4 is further included, the wing including a skin, and the control mechanism 4 is configured to change the shape of the skin to form the first open channel 214.
  • the rear portion 213 of the windward surface 21 of the wing is provided with a third open channel 215, the third open channel 215 extends along the width direction of the wing, and the third open channel 215 is a concave channel 2141 or Male channel 2142.
  • the third open channel 215 is disposed on the leeward side 22 of the wing.
  • an aircraft including a fuselage 1, a wing 2 and an engine 3, the wing 2 is fixedly connected to the fuselage 1, and the engine 3 is fixedly disposed on the fuselage
  • the first intake passage 12 is provided in the fuselage 1
  • the front portion 211 and/or the middle portion 212 of the windward surface 21 of the wing are provided with an introduction port 217, which is the entire intake port of the engine 3.
  • a second intake passage 218 is disposed in the wing, and the second intake passage 218 is respectively connected to the introduction port 217 and the first intake passage 12;
  • the engine 3 includes an intake port, the intake port and the first intake passage 12 Connected so that the fluid passes under power from the front 211 and/or the middle portion 212 of the windward facing surface 21 of the wing and from the rear portion 213 of the windward surface 21 of the wing in a natural state, resulting in a rearward and backward flow due to the difference in flow rate.
  • the pressure difference in the direction of the direction of motion also causes the fluid to pass through the windward surface 21 of the wing and the leeward side 22 of the wing to produce greater lift due to the different flow rates.
  • the volume of the aircraft is significantly reduced by removing the intake duct of the conventional aircraft; the inlet of the windward side of the wing is the entire intake of the engine; the first intake passage and the second intake passage are The engine at the rear of the fuselage is directly connected, and the combination of the two functions of generating lift to generating the driving force makes the flow velocity of the windward side of the wing easily larger than the flow velocity of the leeward surface by more than ten times, resulting in greater lift.
  • the windward surface is different from the flow rate in the natural state under the action of power, and generates a pressure difference and a driving force in the same direction from the back to the front and the movement, and significantly reduces the fluid resistance.
  • the second intake passage 218 is provided with a spoiler surface 219 for extending the fluid circulation path, and the spoiler surface 219 has a spiral shape to more extend the path through which the fluid passes.
  • an aircraft a propeller-driven helicopter or an airplane, including a fuselage 1 and a propeller 7, the propeller 7 being fixedly coupled to the fuselage 1, the propeller 7 A plurality of blades are included, the blade windward side 71 being provided with at least one fourth open channel 72 in the length direction, the fourth open channel 72 being a concave channel 2141 and/or a convex channel 2142 for fluid Between the lengthwise direction of the windward surface 71 of the blade and the width direction of the leeward side of the blade, a larger pressure difference and lift are generated due to the difference in flow velocity.
  • the high flow rate and low pressure generated by the fluid passing through the fourth open passage in the lengthwise direction of the windward surface of the blade, and the lower surface of the blade passing through the width direction are low.
  • the pressure difference is different due to the different paths and flow rates of the fluid, which is a source of greater lift and driving force for the rotor and the aircraft driven by the rotary wing, thereby creating a greater push. Force and lift aircraft.
  • the fourth open channel 72 is disposed along the length direction of the blade to the windward surface along the root to the tail, and the concave channel 2141 is formed by recessing the upper surface of the blade of the blade, and the convex channel 2142 is An upward convexity is formed on an upper surface of the upper surface of the blade, and an opening of the concave passage 2141 is flush with an upper surface of the blade, and the width of the concave passage 2141 is open from the concave passage 2141 toward the bottom surface of the concave passage 2141. Gradually increase.
  • the shape of the concave channel 2141 and/or the convex channel 2142 is curved.
  • the fourth open channel 72 is located at the rear half 75 of the end of the blade in the longitudinal direction away from the fuselage, so that a pressure difference is generated between the blade rear half 75 and the front half 74 due to the different flow rates.
  • the aircraft is a propeller-driven aircraft
  • the fourth open channel 72 is provided on the windward side 71 or the leeward side of the blade along the length of the root to the tail.
  • An aircraft comprising a fuselage 1, a wing 2 or a propeller 7, respectively fixedly connected to the fuselage, the propeller 7 comprising a plurality of blades, the wing 2 or
  • the blades of the propeller 7 are respectively communicated between the respective windward or leeward sides through at least two pressure ports 73, so that the high pressure generated by the low flow velocity of the leeward surface is generated by the pressure port 73 to the high velocity of the windward surface.
  • the low pressure shifts the pressure difference, and the pressure port 73 generates a pressure direction opposite to the direction of the fluid pressure on the windward surface to cancel each other, so that the wing 2 or the propeller 7 can generate lift after reducing the fluid resistance.
  • the fluid passes through different paths of the upper and lower surfaces of the wing while reaching the rear portion to generate lift.
  • the fluid gradually generates lift during the process of passing the upper and lower surfaces of the wing.
  • the high pressure of the lower surface of the wing is uniformly shifted by the low pressure of the upper surface through the plurality of smaller pressure ports 73, and the pressure direction is opposite to the pressure direction of the outside and cancels each other, and how much fluid pressure is offset is reduced. How much lift is produced by fluid resistance, so the present invention produces greater lift after reducing fluid resistance.
  • an engine 3 is further disposed.
  • the engine 3 is fixedly disposed at a tail portion of the airframe 1.
  • the fuselage 1 is provided with a first air inlet passage 12, a front portion 211 of the windward surface 21 of the airfoil. Or a wide area of the central portion 212 is provided with an introduction port 217, and a second intake passage 218 is disposed in the wing, and the second intake passage 218 is respectively connected to the introduction port 217 and the first intake passage 12
  • the engine 3 includes an intake port that communicates with the first intake passage 12.
  • the opening area of the introduction port 217 is larger than the opening area of the pressure port 73.
  • Embodiment 1 Referring to FIG. 1 and FIG. 2, Embodiment 1 of the present invention is:
  • An aircraft as shown in FIG. 1 includes a wing 2, the upper surface of the wing 2 is a windward facing surface 21 of the wing, and the lower surface of the wing 2 is a wing leeward surface 22 at the front portion 211 of the windward facing surface 21 of the wing.
  • first open channels 214 which are concave channels 2141 and/or convex channels 2142, concave
  • the shaped channel 2141 is formed by slightly recessing the upper surface of the wing, and has a shape of a triangle, a circle, a trapezoid or a square, and the convex channel 2142 is slightly upwardly convex, preferably curved, on the upper surface of the wing.
  • the concave channel 2141 or the convex channel 2142 may be provided separately or at the front portion 211 of the windward side 21 of the wing.
  • the width of the concave passage 2141 gradually increases from the opening of the concave passage 2141 toward the bottom surface of the concave passage 2141, and the concave passage 2141 has a shape of a small upper and a lower, that is, a small opening. , and the inside of the upper surface of the wing is large.
  • the opening of the concave passage 2141 forms an elongated shape which is flat with the upper surface of the wing, and acts to smoothly pass the fluid from the narrow opening of the upper portion of the concave passage 2141 into a large space therein and can smoothly pass therethrough.
  • the concave channel 2141 and/or the convex channel 2142 are arcuate channels in the longitudinal direction of the wing 2 to extend more paths through which the fluid passes in the longitudinal direction.
  • the plurality of first open channels 214 disposed on the front portion 211 of the windward side 21 of the wing have a curvature gradually larger than the rear thereof, that is, the path through which the front fluid passes is greater than the rear, and thus is in the region of the plurality of first open channels 214.
  • a pressure difference from the rear to the front gradually occurs, and the slow flow velocity in the middle portion 212 and the rear portion 213 of the windward side 21 of the wing, and the high flow velocity generated in the front portion 211 region, across the entire wing
  • the windward surface 21 region produces a larger pressure difference from the rear to the front.
  • a concave channel 2141 and/or a convex channel 2142 are provided in the longitudinal direction of the front portion 211 and/or the middle portion 212 along the root to the tail of the wing, and the rear portion 213 is formed in the width direction due to the difference in flow velocity. The pressure difference from the back to the front.
  • the first open channel 214 of the front portion 211 passes through a path larger than the middle portion 212, and gradually generates a pressure difference from the rearward forward direction, and thus a slow flow velocity at the rear portion 213 of the windward surface 21 of the wing, and the front portion 211.
  • the region of the windward surface 21 of the entire wing produces a greater pressure difference from the rearward forward direction.
  • the present invention finds that the key to solving the fluid resistance is that the first, second, and third fluid resistances are uniformly reduced by the first driving force to close the fluid pressure inside the negative pressure pocket 5, in the moving device.
  • the difference in flow velocity between the front and the rear produces the same pressure direction from the back to the front and the direction of motion, and the opposite pressure to the negative pressure pocket 5, because the fluid continuity causes the pressure difference to instantaneously reach the front end of the wing, and its pressure direction,
  • the external fluid produces the opposite direction of pressure. Therefore, according to the natural law, the fluid pressures in different directions meet each other to cancel each other, and how much fluid pressure is offset by each other, and how much fluid resistance is reduced, how many first driving force sources of the present invention are obtained. Therefore, the only difference between the present invention and conventionally known common sense is that the direction of the pressure difference between the front and rear portions of the fluid passing through the upper surface of the wing is opposite.
  • the distance between the length and the width of the airfoil area is on the average multiple, so that between the front and rear regions of the upper surface of the wing, a larger pressure difference from the rear to the front is generated, from the fluid A greater source of first motivation is obtained in continuity.
  • a plurality of uniform pressure ports 73 are connected through a plurality of uniformly ventilating areas, and the function is to lower the flow rate of the leeward side 22 of the wing.
  • the generated high pressure uniformly transfers the pressure difference through the plurality of pressure ports 73 to the low pressure generated by the high flow velocity of the windward surface 21 of the wing, and the pressure direction generated by the pressure port 73 is opposite to the external pressure direction of the windward surface 21 of the wing and cancels each other.
  • the present invention first reduces the fluid resistance before the wing generates lift.
  • At least one second open channel 111 for extending the fluid flow path is provided around the front portion 11 of the fuselage (lateral direction), the second open channel being a concave channel 2141 and/or a convex channel 2142, in the natural state, the casing of the fuselage 1 is different in flow velocity between the front and rear ends, and generates the same pressure difference from the rear to the front and the moving direction to reduce the fluid resistance, and between the front and rear ends of the aircraft.
  • the greater the difference in flow rate the greater the pressure difference produced, and the more the offset with the external pressure, the more the source of the first driving force is obtained. This is a one-to-one correspondence and a corresponding energy saving relationship.
  • the rear negative pressure zone in the common sense is only the suction of the rear part of the moving device housing to generate negative pressure resistance, and the fluid continuity is generated by the superposition of various pressures.
  • An invisible large net encloses the moving device, tightly entangles the entire moving device housing from head to tail, and pulls the entire moving device tightly in the rearward direction, the pressure direction and the movement of the moving device
  • the opposite direction produces a large fluid resistance that also allows fluid to pass through different paths around the casing while reaching the rear to maintain fluid continuity in the large negative pressure zone 51.
  • the wing and the negative pressure pocket 5 of the body 1 are all the same, so FIG. 1 only draws the negative pressure pocket 5) for the body 1.
  • a plurality of disturbing fluids 216 may be evenly arranged on the second open channel 111 of the front portion 11 of the fuselage, and the disturbing fluid is slightly concave or convex.
  • the surface of the casing, the disturbing fluid is one or more of geometric shapes such as a triangle, a circle, a diamond, a trapezoid, an olive, a spiral, an arc, etc., which are small in size, and the plurality of small disturbances
  • the fluid is evenly arranged on the housing to extend the fluid passage more.
  • the concave channel 2141 and/or the convex channel 2142 are disposed above the housing in which the plurality of disturbing fluids 216 are evenly arranged.
  • a plurality of disturbing fluids 216 are evenly distributed on the front portion 211 and/or the middle portion 212 of the upper surface of the wing, and concave passages 2141 and/or convex portions are provided on the housings uniformly distributing the plurality of disturbing fluids 216.
  • Channels 2142 together extend the path through which more fluid passes.
  • a plurality of curved spoilers 216 are formed on the wing in the lower part of FIG. 1 to form a concave channel 2141 and/or a convex channel 2142 to extend the path through which the fluid passes, at the bottom of the interior of the concave channel 2141 or And the two side walls are provided with a plurality of disturbing fluids 216 to extend the path through which the fluid passes, such as a spiral in the concave channel 2141 to extend the fluid passage path (common technique is not drawn).
  • the motion device includes a smooth plane on the front of the aircraft to reduce the fluid resistance of the windward side, whereas the present invention is the opposite:
  • the fluid resistance of the windward side is increased by the concave passage 2141 and/or the convex passage 2142 or the disturbing fluid 216, but in practice, the present invention solves the forward and lateral directions by the whole rather than the partial And the fluid resistance technical scheme and specific structure of the rear negative pressure zone, so that by creating a greater pressure difference between the front and rear of the fuselage, the fluid continuity reduces the fluid pressure in the closed negative pressure pocket 5, making the first The second and third fluid resistances are reduced, thereby finding a new energy-saving method.
  • a second open channel 111 is provided around the front portion 11 of the fuselage, and the second open channel is formed by a concave channel 2141 and/or a convex channel 2142 spirally surrounding the front portion 11 of the body 1. Because the spiral shape can extend the path through which the fluid passes, so that the fluid surrounds the spiral around the front portion 211 of the aircraft, it is easy to extend the path of multiple or even more than ten times the fluid passage, so that before and after the fuselage 1 Due to the different flow rates between the parts, in the natural state, a pressure difference of more than ten times from the rear to the front is generated, and more sources of the first driving force are obtained.
  • Embodiment 2 This embodiment differs from Embodiment 1 in that:
  • the housing on the windward side 21 of the wing is a skin, and the shape of the skin is changed by providing a control mechanism 4, such as by creating a concave channel 2141 and/or a convex channel 2142 or a disturbing fluid 216 by compressing the gas. To extend the path through which the fluid passes (this is a common technique in the art).
  • the skin of the wing is the same as that of the normal machine when the aircraft is flying normally.
  • the control mechanism 4 causes the front portion 211 of the wing to change the shape of the skin to extend the path of how much fluid passes.
  • a pressure difference from the rear to front direction is generated between the front and rear wings 213 to obtain the first driving force source of the present invention.
  • the fluid surrounding the fuselage 1 gradually slows down in the outward direction until the positive pressure zone 6 formed corresponding to a larger range in the environment is generated.
  • the low flow rate and high pressure inevitably to the high flow rate generated by the negative pressure zone 51 around the negative pressure pocket 5, the low pressure transfer pressure difference, thereby exerting a larger range of external external fluid pressure on the housing.
  • Greater fluid resistance which is the third fluid resistance of the present invention.
  • the present invention thus reduces the third fluid resistance by reducing the fluid pressure within the enclosed negative pressure pocket 5, thereby obtaining a source of first urging force.
  • the positive pressure zone 6 necessarily transfers pressure to the negative pressure zone 51 according to the natural law. Therefore, the positive pressure zone 6 around the outside of the wing inevitably transfers the pressure difference to the negative pressure zone 51 around the negative pressure pocket 5, whereby the low flow velocity and high pressure generated by the positive pressure zone 6 around the outside of the wider range are inevitably flocked from all directions to negative.
  • the high flow rate low pressure negative pressure zone 51 generated around the pressure pocket 5 shifts the pressure difference, and the airfoil moves upward under the pressure difference, so that a pressure difference between the positive and negative pressures is generated as a second source of the second lift force.
  • Embodiment 3 This embodiment is different from Embodiment 2 in that the technical solution of this embodiment is reversed:
  • the control mechanism 4 is formed on the skin of the rear portion 213 of the windward side 21 of the wing to form a concave passage 2141 and/or a convex passage 2142 or a disturbing fluid 216 to further extend the path through which the fluid passes.
  • the wing windward surface 21 generates a pressure difference from the front to the rear direction opposite to the moving direction, so that the negative pressure generated inside the closed negative pressure pocket 5 is increased, so that the positive pressure zone 6 generated around the outside of the wing is inevitably to the negative pressure pocket.
  • the negative pressure zone 51 generated around 5 shifts the pressure difference, and the greater the pressure difference generated between the positive and negative pressures, the greater the lift generated, resulting in a larger source of second lift. Therefore, the lift generated by the wing is proportional to the fluid resistance, and inversely proportional to the energy saving. The greater the lift generated, the higher the energy consumption.
  • the skin of the wing is the same as that of the ordinary wing. If it is required to generate a larger lift in an instant, the flow rate generated at the rear of the wing is controlled to be larger than the front portion. As a result, a pressure difference from the front-rear direction and the moving direction is generated to increase the negative pressure in the negative pressure pocket 5, thereby causing a significant increase in the pressure difference between the positive and negative pressures, so that the lift generated by the wing is instantaneously obtained. Significantly improved, changing different flight conditions in an instant, this is very important in aircraft air combat.
  • control mechanism 4 controls the local or overall skin of the windward and convex faces 21 of the left and right sides to change the shape of the skin, thereby controlling the aircraft to instantaneously change different flight states, thereby making the aircraft flexible. Sexuality has been significantly improved.
  • Example 4 As shown in Figures 1 to 3, the four sources of lift generated by fluid continuity are as follows:
  • First lift source When the airplane is flying at high speed, the wing is squeezed through the fluid, and the negative pressure generated by the negative pressure at the rear of the wing follows the positive, lateral and external fluids around the rear casing of the wing. Connected to each other, thereby forming a negative pressure pocket 5 formed around the wing to fit the entire wing therein, and the faster the airplane speed, the greater the negative pressure generated in the negative pressure pocket 5, and the negative pressure is generated The great suction tightly sucks around the casing of the wing and maintains the continuity of the fluid under the action of the negative pressure, so that the fluid passes through different paths from the windward face 21 of the wing and the leeward face 22 of the wing while reaching the rear. Generate lift.
  • Second lift source enclosed around the wing in the negative pressure pocket 5, forming a high flow rate low pressure generated by the negative pressure zone 51, and a lower flow rate high pressure generated by a larger range of external positive pressure zones 6, due to The difference in flow rate produces a pressure difference that causes the aircraft to generate lift.
  • the faster the aircraft moves the greater the negative pressure generated in the negative pressure pocket 5, and the faster the flow rate in the negative pressure pocket 5, thus the pressure difference between the positive and negative pressures.
  • the larger the fluid the greater the source of the second lift generated by fluid continuity.
  • the third lift source is: at the position of the front portion 211 and the middle portion 212 of the windward side 21 of the wing, a first open passage 214 is provided along the entire length of the wing from the root to the tail to make the fluid from the length of the windward surface 21 of the wing Between the passage of the fluid from the width direction of the leeward side 22 of the wing, a greater pressure differential and source of lift are produced due to the different flow rates.
  • the fourth lift source on the basis of the first to third lift, the flow velocity on the upper surface of the wing is more than the flow velocity on the lower surface, and the plurality of ventilation areas are not passed between the windward surface 21 of the wing and the leeward side 22 of the wing.
  • the large, uniform pressure ports 73 are connected to each other such that the high pressure generated by the low flow velocity of the leeward side 22 of the wing is evenly distributed through the plurality of smaller pressure ports 73 to the low pressure uniform flow generated by the high velocity of the windward surface 21 of the wing.
  • the transfer pressure difference, the direction of the pressure is opposite to the direction of the external fluid pressure above the windward side of the wing, and cancels each other, and how much fluid pressure is offset, how much fluid resistance is reduced, how much lift is generated.
  • fluid passes through different paths on the upper and lower surfaces of the wing and reaches the rear portion to generate lift. Therefore, the fluid can indirectly generate lift when it reaches the rear portion at the same time, and also generates fluid resistance.
  • the present invention connects the upper and lower surfaces of the wing through a plurality of pressure ports 73, so that the high pressure generated by the lower surface directly shifts the pressure difference to the upper surface, thereby directly generating lift; not only can generate lift, but also reduce The fluid resistance, therefore, is to reduce the fluid resistance before the wing can generate lift.
  • Embodiment 5 This embodiment is different from the above embodiment in that:
  • a third open passage 215 is provided in the rear portion 213 of the windward facing surface 21 of the wing, the third open passage 215 extending in the width direction in the region of the rear portion 213 of the wing, and the third open passage 215 is a concave passage 2141 Or the convex passage 2142, the number of the third open passages 215 may be set as needed, thereby further defining the front portion 211 and/or the middle portion 212 of the windward windward surface 21 of the air passing through the length direction, and the rear portion 213 from the width direction.
  • a pressure difference from the rear to the front direction is generated and a source of the first driving force is obtained.
  • a plurality of concave passages and/or convex passages are provided in the width direction (lateral direction) of the leeward side 22 of the wing to better define the length of the fluid from the windward side 21 of the wing.
  • the direction passes and passes through the width of the wing leeward 22, creating a greater pressure differential and a third source of lift.
  • Embodiment 6 An aircraft as shown in FIG. 3 includes a fuselage 1, a wing 2 and an engine 3, the wing 2 being fixedly connected to the fuselage 1, and the engine 3 being fixedly disposed at the tail of the fuselage 1.
  • a first intake passage 12 is disposed on the left and right sides of the fuselage 1.
  • the front portion 211 and/or the middle portion 212 of the windward surface 21 of the wing are provided with an introduction port 217, and the second intake passage 218 is disposed in the wing 2.
  • the second intake passage 218 is respectively connected to the introduction port 217 and the first intake passage 12, and the engine 3 includes an intake port, and the intake port is in communication with the first intake passage 12; Passing from the front portion 211 and/or the middle portion 212 of the windward side 21 of the wing, and from the rear portion 213 of the windward side 21 of the wing in a natural state, due to the difference in flow rate between the dynamic action and the natural state,
  • the pressure difference in the forward direction coincides with the direction of motion also causes the fluid to pass through the windward surface 21 of the wing and the leeward side 22 of the wing to produce greater lift due to the different flow rates.
  • the plurality of inlets 217 on the wide portion of the front portion 211 and/or the middle portion 212 of the windward side 21 of the wing are all the intake ports of the engine 3, and the intake area thereof is not less than the intake area of the conventional aircraft intake duct, and The large intake air area provides sufficient intake air for the engine 3.
  • the engine 3 When the aircraft is flying fast, the engine 3 generates a strong suction state through a plurality of uniform inlets 217, and the fluid is rapidly inhaled into the second intake passage 218 in the wing, at the front portion 211 of the windward side 21 of the wing and
  • the central portion 212 and the second inlet passage 218 jointly form two high-velocity fluid layers of substantially high flow rate and low pressure at substantially the same flow rate, and generate pressure between the low-flow high-pressure gas generated by the rear fluid in a natural state.
  • the control of the engine 3 can easily make the flow rate of the high-speed fluid layer many times or even ten times faster than the flow rate in the natural state, and generate more than ten times the pressure difference from the back-forward direction, to more Reducing the fluid pressure inside the closed negative pressure pocket 5, reducing more first, second, and third fluid resistance, and obtaining a larger source of the first driving force from the fluid continuity while making the windward side of the wing 21
  • a ten-fold pressure difference is created between the wing and the leeward side 22, resulting in a larger source of fifth lift; therefore, the fifth source of lift not only produces greater lift, but also reduces more fluid resistance.
  • Embodiment 7 This embodiment differs from Embodiment 6 in that:
  • a plurality of pressure ports 73 are communicated between the windward surface 21 of the wing and the leeward side 22 of the wing, and the pressure difference is transferred to the low pressure of the windward surface by the pressure port 73, and the pressure direction generated by the pressure port 73 is generated.
  • the pressure port 73 is only a port for transferring the pressure difference, and does not require a large area. Therefore, the opening area of the inlet port 217 is larger than the opening area of the pressure port 73, or even larger.
  • the structure of the pressure port 73 can also be used in the wing structure of the other embodiments described above.
  • the structure of the above-mentioned aircraft is the most direct and most effective optimized structure for generating a larger source of lift.
  • the effect achieved is as follows: 1.
  • the volume of the traditional intake duct is removed, and the windward side of the fuselage is made. The area is significantly reduced, so that the fluid resistance is significantly reduced, and the moving speed is improved.
  • the upper surface of the wing is evenly arranged with a plurality of inlets directly communicating with the engine at the rear of the fuselage, so that the aircraft is lifted from the overall structure to the lift.
  • the combination of the two functions of generating the driving force; 3, the optimized structure not only produces greater lift, but also reduces more fluid resistance, thereby producing a high-speed energy-saving aircraft.
  • Embodiment 8 An aircraft as shown in FIG. 3 is different from Embodiment 6 in that:
  • the second intake passage 218 is provided with a spoiler surface 219 for extending the fluid flow path.
  • the spoiler surface 219 has a spiral shape, and is partially or entirely disposed in the second intake passage 218 in the wing. in.
  • the suction generated by the engine 3 is drawn into the second intake passage 218 in the wing at a high speed through the inlet 217 which is evenly distributed at the front portion 211 and/or the middle portion 212 of the windward side 21 of the wing.
  • the special spiral shape of the spiral spoiler surface 219 rotates one turn after another, and a longer path produces a very high flow rate on the front and/or the middle casing of the windward side 21 of the wing.
  • the second intake passage 218 jointly form two high-speed fluid layers having substantially the same flow velocity, and the flow rate of the fluid at the rear portion 213 between the low flow rate and the high pressure generated in the natural state is different from the flow rate, and the rearward direction is generated. Great pressure difference and first driving force.
  • Embodiment 9 A propeller 7 driven helicopter as shown in FIG. 4, comprising a fuselage 1 and a propeller 7, the propeller 7 being fixedly connected to a fuselage 1, the propeller 7 comprising a blade, the blade facing the wind
  • At least one fourth open passage 72 is provided on the face 71 along the length of the blade root to the tail.
  • the fourth discharge passage is a concave passage 2141 and/or a convex passage 2142, and the fluid is tight under the action of centrifugal force.
  • the fluid is easily passed through the concave channel and/or the convex channel uniformly distributed by the windward surface 71 of the blade under the action of centrifugal force, even if the fluid passes through the length of the windward surface 71 of the blade .
  • the length of the blade of the propeller 7 is long and the width is narrow, the distance between the length and width directions of the blade is usually about 20 times. Since the conventional helicopter is driven by the propeller, the fluid passes through the width direction of the propeller blades, so that the path through which the fluid passes in the narrow width direction is short, so that the driving force and the lift force are naturally small.
  • the present invention is similar to the conventional helicopter in the propeller 7 in that fluid passes through the width direction of the blade leeward surface; the difference is that the fluid passes through the length direction of the blade windward surface 71, and between the length and width directions of the blade
  • the distance difference is about 20 times, so the helicopter driven by the propeller 7 of the present invention generates about 20 times the pressure difference and the source of the lift.
  • the propeller 7 rotates at a high speed to generate a strong centrifugal force, and the fluid of the propeller is instantaneously thrown out from the inside to the outside, and the concave passage and/or the convex passage are in the same direction as the fluid in which the centrifugal force generates extremely strong traction. It makes it easier for the fluid to be ejected from the concave channel and/or the convex channel at a high speed outward at the tip of the blade, so that under the action of the fluid continuity generated by the centrifugal force, it is easy to make the fluid pass the longer path, faster.
  • the flow rate passes through the length of the entire surface of the windward facing shell, and forms a high flow velocity and low pressure of the high velocity fluid layer on the surface of the casing, and a low flow velocity and high pressure generated by a path of the leeward surface passing through a short direction from the width direction. Between, a greater pressure difference and a source of lift due to different flow rates.
  • each of the convex passages has a height slightly only slightly higher than the surface of the windward facing casing, and the propeller 7 is prevented from generating fluid resistance during high-speed rotation.
  • the convex passages and the concave passages are curved passages.
  • a concave channel and/or a convex channel are provided to form a high velocity fluid layer, ie the fourth open channel 72 is located in the rear half of the blade 75 away from the fuselage.
  • the pressure difference between the one end of 1 and the low flow rate and high pressure of the front half 74 is the same as the outward rotation direction of the propeller 7, resulting in a larger driving force and a larger source of lift.
  • a partial or integral portion between the windward surface 71 of the blade and the leeward surface of the blade is connected through a plurality of uniformly distributed pressure ports 73 (micropores) having a small ventilation area, and a low flow velocity of the leeward surface of the blade is generated.
  • the high pressure through a plurality of smaller pressure ports 73, uniformly shifts the pressure difference to the low pressure generated by the high flow velocity of the windward surface 71 of the blade, and the pressure port 73 has the opposite direction of the external pressure in the pressure direction, and cancels each other, and offsets the number of paddles.
  • the fluid pressure outside the windward facing surface 71 reduces the amount of fluid resistance and produces a source of lift.
  • the aircraft is a propeller-driven aircraft (not shown in the art), and the propeller 7 is disposed at the front of the fuselage 1 along the windward surface 71 of the blade or the leeward side of the blade along the root to the tail.
  • a plurality of concave passages and/or convex passages are provided in the longitudinal direction to allow fluid to pass between the length of the windward or leeward side of the blade and the width direction, and a greater pressure difference and driving force are generated due to different flow rates.
  • the present invention mimics the feather arrangement of the "Eagle' wings, thereby creating a larger lift and propulsion aircraft.
  • the present invention provides an aircraft that derives greater propulsion and lift from fluid continuity, Extend the fluid through the path machine by providing an open channel on the fuselage, the wing and the blade so that the flow rate at the front is greater than the rear, and in the natural state, the front and the rear of the fuselage are generated from the back to the front.
  • the pressure difference in the direction, the direction of the pressure is the same as the direction of motion of the aircraft, and the direction of the backward pressure is opposite to that of the large negative pressure zone. Therefore, by reducing or blocking the forward direction, the lateral fluid pressure is from the front to the rear and the rear negative pressure. Zone rendezvous, reducing the fluid pressure inside the closed negative pressure pocket, reducing or blocking the superposition of fluid pressure, thus obtaining a larger source of first propulsion from fluid continuity by reducing fluid resistance while achieving greater fluid continuity
  • the first to fifth sources of lift is

Abstract

一种飞行器,包括机身(1)和机翼(2),在机翼(2)迎风面(21)的前部(211)和或中部(212)分别设有用于延长流体流通路径的第一开放通道(12)。该第一开放通道(12)自所述机翼(2)靠近机身(1)的一侧向机翼(2)远离机身(1)的一侧延伸,该开放通道为凹形通道或凸形通道,使流体经过机翼(2)迎风面(21)上面的长度和宽度方向之间,因流速不同而产生从后向前方向与运动方向一致的压力差来减少流体阻力,也使机翼(2)迎风面(21)和机翼(2)背风面(22)之间因流速不同而产生更大的压力差和升力。

Description

从流体连续性中获得更大推动力和升力的飞行器 技术领域
本发明涉及飞行器技术领域,尤其涉及一种从流体连续性中获得更大推动力和升力的飞行器。
背景技术
飞行器发展至今有一百多年,存在固定翼飞行器机翼迎风面的弧形与下表面的平面之间微小差别产生的升力不大,旋转机的直升机螺旋桨产生的升力不大的技术问题。
流体经过机翼的上下表面不同路径而同时到达后部而产生升力,其中,是什么“力量”使经过机翼的上表面流体不得不加快速度才能与下表面流体同时到达后部。
更为重要的是,对于运动装置产生的正向、侧向及后部负压区的流体阻力,是分别而不是整体的对待。迄今为止,使流体阻力形成运动装置的最大的能源消耗,而实际能源利用率非常低。
进一步的,从观察飞鸟的翅膀从而发现飞机的机翼结构,因此,飞鸟的翅膀与机翼的结构有直接的,密切的关系。
另外,发明人在已授权美国专利号为US 8.448.892B3,名称为《一种以内部产生升力的飞碟》,专利号为US 9745047 B2,名称为《一种产生更大升力和推动力的大型飞机,以及专利号为US9315264B2,名称为《飞机动力装置》等多个发明专利中公开:运动装置被封闭在大负压区内产生更大的流体阻力,而阻挡流体洞口封闭使流体阻力显著减少,以及一种使固定翼和旋转翼飞机从内部产生更大的升力来源。
技术问题
本发明所要解决的技术问题是:提供一种从流体连续性中获得更大推动力以及从流体连续性中获得更大升力的飞行器。
首先,人们从观察飞鸟的翅膀结构,从而发现飞机的机翼结构,尤其是“鹰”在经过亿万年的进化中,逐渐发展成非常完美的翅膀结构,也是飞鸟中公认损失能耗最小、飞行速度最快的翅膀结构。鹰翅膀迎风面的前大半部分为多层羽毛的排列结构形状,其作用是把前大半部分经过的流体引向长度方向经过,而后小半部分的羽毛层数明显减少,直至到尾部单层羽毛的排列结构形状,是把流体引向从宽度方向经过,翅膀迎风面的前后部在长度和宽度之间流速不同而产生压力差,其压力方向为从后向前与运动方向一致而产生推动力。
其次“鹰”翅膀上表面的羽毛排列结构还可以通过自身的微调,把从翅膀流体更多的引向长度方向经过,同时在鹰翅膀背风面的羽毛的排列结构形状,是把流体引向从翅膀宽度方向经过,因此通过流体连续性在鹰翅膀迎风面和背风面之间,从长宽方向经过的路径不同流速不同,而能同时到达后部产生更大的压力差和升力。因此“鹰”的翅膀结构具备上述特点,所以其能源利用率,灵活机动性远远超过现在任何的飞机。本发明就是模仿“鹰’翅膀的羽毛排列结构,由此产生一种更大升力和推动力的飞行器。
在上述基础上,发明人经多年研究发现:运动装置被封闭在大负压区内,而大负压区内产生的负压力来保持了流体的连续性,因此流体连续性是把运动装置产生的正向、侧向和后部负压区,以及外部不同压力方向的流体相互连接在一起,通过压力的叠加形成更大流体阻力在同一方向的大负压区。
因此形象的比喻大负压区犹如一个封闭的负压口袋,把机翼装入负压口袋内产生升力,也把整个运动装置装入负压大口袋内而产生更大的流体阻力。
技术解决方案
为了解决上述技术问题,本发明采用的技术方案为:
一种飞行器,包括机身和机翼,其特征在于,所述机翼迎风面的前部和/或中部设有用于延长流体流通路径的第一开放通道,所述自机翼靠近机身的一侧的根部至远离机身一侧的尾部在机翼长度方向设有第一开放通道,所述第一开放通道为凹形通道和/或凸形通道,使流体经过机翼迎风面上面的长度和宽度方向之间,因流速不同而产生从后向前方向与运动方向一致的压力差,也使机翼迎风面和机翼背风面之间因流速不同而产生更大的压力差和升力。
有益效果
本发明的有益效果是:流体从机翼迎风面前部和/或中部区域的长度方向经过,与后部流体从宽度方向经过,因流体从长度和宽度方向经过的流速不同而产生从后向前方向与运动方向一致的压力差,在流体连续性中获得推动力来源,同时机翼迎风面流体分别从长宽度方向经过之间,因流速不同而产生更大的压力差和升力来源。
附图说明
图1为本发明的飞行器的整体结构示意图;
图2为图1中的飞行器的机翼的剖视图;
图3为本发明的飞行器的另一整体结构示意图;
图4为本发明的飞行器的另一整体结构示意图。
标号说明:
1、机身;11、机身的前部;111、第二开放通道;12、第一进气通道;2、机翼;21、机翼迎风面;22、机翼背风面;211、前部;212、中部;213、后部;214、第一开放通道;2141、凹形通道;2142、凸形通道;215、第三开放通道;216、扰流体;217、导入口;218、第二进气通道;219、扰流面;3、发动机;4、控制机构;5、负压口袋;51、负压区;6、正压区;7、螺旋桨;71、桨叶迎风面;72、第四开放通道;73、压力口;74、前半部;75、后半部。
具体实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。
本发明最关键的构思在于:在机身前部或机翼上表面设置用于延长流体流通路径的开放通道,因流速不同而产生从后向前方向的压力差和推动力; 也使机翼上下表面之间因流速不同而产生更大升力。
请参照图1以及图2,一种飞行器,包括机身1和机翼2,所述机翼2与机身1固定连接,所述机翼迎风面21的前部211和/或中部212分别设有用于延长流体流通路径的第一开放通道214,所述第一开放通道214自所述机翼2靠近机身1一侧的根部延伸至所述机翼2远离机身1一侧的尾部,所述第一开放通道214为凹形通道2141和/或凸形通道2142,使流体经过机翼迎风面21上面的长度和宽度方向之间,因流速不同而产生从后向前方向与运动方向一致的压力差,同时使机翼迎风面21和机翼背风面22之间因流速不同而产生更大的升力。
从上述描述可知,本发明的有益效果在于:流体从机翼迎风面前部和/或中部区域的长度方向经过,与后部流体从宽度方向经过,因流体从长度和宽度方向经过的流速不同,而产生从后向前与运动方向一致的压力差,在流体连续性中获得推动力来源;同时机翼迎风面和背风面流体分别从长宽度方向经过之间,因流速不同而产生更大的压力差和升力来源。
进一步的,所述机翼2上还设有用于延长流体流通路径的扰流体216,所述扰流体216的形状为三角形、圆形、菱形、梯形、橄榄形、螺旋形或弧形中的一种或多种,多个的所述扰流体216在机翼2上均匀排列;所述凹形通道2141在机翼迎风面21壳体表面向下凹陷形成,所述凸形通道2142为机翼迎风面壳体表面向上凸起形成。
由上述描述可知,扰流体的形状可以根据需要进行选择,扰流体的位置和数目也可以根据需要进行设置。
进一步的,所述凹形通道2141的开口与机翼迎风面21持平,所述凹形通道2141的形状为上小下大,所述凹形通道2141的宽度自凹形通道2141的开口向凹形通道2141的底面方向逐渐增大。
进一步的,所述凹形通道2141和/或凸形通道2142的形状为弧形。
进一步的,所述凹形通道2141和/或凸形通道2142设在多个扰流体216均匀排列的壳体上,所述凹形通道2141的底部和/或内侧壁上分别设有所述扰流体216,两个以上的所述扰流体216形成所述凸形通道2142。
由上述描述可知,设置扰流体可以进一步延长流体流通路径,增大压力差。
进一步的,所述机身的前部11设有至少一个的用于延长流体流通路径的第二开放通道111,所述第二开放通道111为凹形通道2141或凸形通道2142。
进一步的,所述第二开放通道111的形状为螺旋形。
进一步的,还包括控制机构4,所述机翼包括蒙皮,所述控制机构4用于改变蒙皮的形状形成所述第一开放通道214。
进一步的,所述机翼迎风面21的后部213设有第三开放通道215,所述第三开放通道215沿机翼的宽度方向延伸,所述第三开放通道215为凹形通道2141或凸形通道2142。
进一步的,所述机翼背风面22上设有所述第三开放通道215。
请参照图3,本发明涉及的另一技术方案为:一种飞行器,包括机身1、机翼2和发动机3,所述机翼2与机身1固定连接,发动机3固定设置于机身1的尾部,机身1内设有第一进气通道12,机翼迎风面21的前部211和/或中部212设有导入口217,所述导入口217为发动机3的全部进气口,机翼内设有第二进气通道218,第二进气通道218分别与导入口217和第一进气通道12连通;发动机3包括吸气口,吸气口与第一进气通道12连通,使流体在动力作用下从机翼迎风面21前部211和/或中部212经过与在自然状态中从机翼迎风面21后部213经过之间,因流速不同而产生从后向前方向与运动方向一致的压力差,也使流体经过机翼迎风面21和机翼背风面22之间因流速不同而产生更大的升力。
由上述描述可知,去掉传统飞机的进气涵道而使飞机的体积显著减小;机翼迎风面的导入口为发动机的全部进气口; 经过第一进气通道和第二进气通道与机身后部的发动机直接相连通,从产生升力到产生推动力两大功能有机的结合起来,使机翼迎风面的流速很容易大于背风面十多倍的流速而产生更大升力,机翼迎风面在动力作用下与在自然状态中因流速不同,而产生从后向前与运动同一方向的压力差和推动力,并显著减少流体阻力。
进一步的,所述第二进气通道218内设有用于延长流体流通路径的扰流面219,所述扰流面219的形状为螺旋形来更多的延长流体通过的路径。
请参照图4,本发明涉及的另一技术方案为:一种飞行器,为螺旋桨驱动的直升机或飞机,包括机身1和螺旋桨7,所述螺旋桨7与机身1固定连接,所述螺旋桨7包括多个桨叶,所述桨叶迎风面71在长度方向上设有至少一个的第四开放通道72,所述第四开放通道72为凹形通道2141和/或凸形通道2142,使流体从桨叶迎风面71长度方向经过与从桨叶背风面宽度方向经过之间,因流速不同而产生更大的压力差和升力。
由上述描述可知,对于螺旋桨驱动的直升机或飞机,使流体从桨叶迎风面长度方向的第四开放通道经过而产生的高流速且低压力,与桨叶下表面从宽度方向经过而产生的低流速且高压力之间,因流体经过的路径不同、流速不同而产生更大的压力差,为旋转翼驱动的直升机和飞机的更大升力和推动力来源,由此产生一种更大的推动力和升力的飞行器。
进一步的,所述第四开放通道72在桨叶迎风面沿根部至尾部的长度方向设置,所述凹形通道2141为桨叶的壳体上表面向下凹陷形成,所述凸形通道2142为桨叶的壳体上表面的向上凸起形成,所述凹形通道2141的开口与桨叶上表面持平,所述凹形通道2141的宽度自凹形通道2141开口向凹形通道2141的底面方向逐渐增大。
进一步的,所述凹形通道2141和/或凸形通道2142的形状为弧形。
进一步的,所述第四开放通道72位于所述桨叶长度方向远离机身的一端的后半部75,使桨叶后半部75与前半部74之间因流速不同而产生压力差。
进一步的,所述飞行器为螺旋桨驱动的飞机,所述桨叶迎风面71或背风面沿根部至尾部的长度方向设有所述第四开放通道72。
本发明采用的另一技术方案为:
一种飞行器,包括机身1、机翼2或螺旋桨7,所述机翼2或螺旋桨7分别与所述机身固定连接,所述螺旋桨7包括多个桨叶,所述机翼2或所述螺旋桨7的桨叶分别在各自的迎风面或背风面之间通过至少两个压力口73相连通,使所述背风面低流速产生的高压力通过压力口73向所述迎风面高流速产生的低压力转移压力差,所述压力口73产生的压力方向与所述迎风面上面外界的流体压力方向相反而相互抵消,使所述机翼2或螺旋桨7在减少流体阻力后才能产生升力。
由上述描述可知,在公知常识中,流体经过机翼的上下表面不同路径而同时到达后部而产生升力,而本发明公知常识相反,流体经过机翼上下表面的过程中而逐步产生升力。具体的,机翼下表面的高压力通过多个较小的压力口73向上表面的低压力均匀的转移压力差,其压力方向与外界的压力方向相反而相互抵消,而抵消多少流体压力就减少多少流体阻力,就产生多少升力,因此本发明是在减少流体阻力后才能产生更大升力。
进一步的,还包括发动机3,所述发动机3固定设置于所述机身1的尾部,所述机身1内设有第一进气通道12,所述机翼迎风面21的前部211和/或中部212的广大区域内设有导入口217,所述机翼内设有第二进气通道218,所述第二进气通道218分别与所述导入口217和第一进气通道12连通,所述发动机3包括吸气口,所述吸气口与第一进气通道12连通。
进一步的,所述导入口217的开口面积大于压力口73的开口面积。
实施例1: 请参照图1及图2,本发明的实施例一为:
如图1所示的一种飞行器,包括机翼2,机翼2上表面为机翼迎风面21,机翼2下表面为机翼背风面22,在机翼迎风面21的前部211的区域位置,沿机翼根部至尾部在整个长度方向(纵向),均匀的设有多个第一开放通道214,所述第一开放通道214为凹形通道2141和/或凸形通道2142,凹形通道2141为于机翼上表面略为向下凹陷形成,其形状为三角形、圆形、梯形或方形等形状,而凸形通道2142为机翼上表面略为向上凸起,优选为弧形,所述凹形通道2141或凸形通道2142可以分别,也可同时设在机翼迎风面21的前部211。
如图2所示,优选所述凹形通道2141的宽度自凹形通道2141的开口向凹形通道2141的底面方向逐渐增大,凹形通道2141为上小下大的形状,即开口处小,而陷入机翼上表面下的内部大。凹形通道2141的开口形成长条形状与机翼上表面持平,其作用使流体顺利从凹形通道2141上部较窄的开口进入其内较大的空间并能顺利从中通过。
进一步的,如图1下方机翼所示,所述凹形通道2141和/或凸形通道2142,在机翼2长度方向为弧形通道来延长更多流体从长度方向通过的路径。
进一步的,设在机翼迎风面21前部211的多个第一开放通道214其前方的弧度逐渐大于其后方,即前方流体经过的路径大于后方,因此在多个第一开放通道214区域的前后方之间,逐渐产生从后向前方向的压力差,进而在机翼迎风面21中部212及后部213区域的慢流速,与前部211区域产生的高流速之间,在整个机翼迎风面21区域产生从后向前方向的更大的压力差。
进一步的,在前部211和/或中部212沿机翼根部至尾部在长度方向设有凹形通道2141和/或凸形通道2142,与后部213在宽度方向之间,因流速不同而产生从后向前方向的压力差。
进一步的,前部211的第一开放通道214流体经过的路径大于中部212,而逐渐产生从后向前方向的压力差,进而在机翼迎风面21后部213的慢流速,与前部211和中部212产生的高流速之间,在自然状态中使整个机翼迎风面21区域产生从后向前方向的更大的压力差。
因此,本发明找到了解决流体阻力的关键之处在于:把上述第一、第二、第三流体阻力,都统一的通过第一推动力减少封闭负压口袋5内部的流体压力,在运动装置前后之间的因流速不同产生从后向前与运动方向相同,而与负压口袋5相反的压力相反的压力差,因为流体连续性使压力差瞬间到达机翼前端,而其压力方向,与外界的流体产生的压力方向相反。因此,根据自然规律,不同方向的流体压力相遇而相互抵消,而相互抵消多少流体压力,就减少多少流体阻力,就获得多少本发明的第一推动力来源。因此,本发明与传统公知常识唯一区别是:流体经过机翼上表面的前后部之间产生压力差的方向相反。
进一步的,通常机翼面积在其长度和宽度之间的距离平均相差多倍,因此在机翼的上表面前后区域之间,产生多倍从后向前方向的更大的压力差,从流体连续性中获得更大的第一推动力来源。
进一步的,在机翼迎风面21和机翼背风面22之间通过多个通气面积不大的,均布的压力口73(微孔)相连通,其作用是把机翼背风面22低流速产生的高压力通过多个压力口73均匀的向机翼迎风面21高流速产生的低压力转移压力差,而压力口73产生的压力方向与机翼迎风面21的外界压力方向相反而相互抵消,而抵消多少机翼迎风面21外界的流体压力,就减少多少流体阻力,就产生多少第四升力来源,因此本发明是先减少了流体阻力后才能使机翼产生升力。
进一步的,在机身的前部11区域周围(横向)设有至少一个的用于延长流体流通路径的第二开放通道111,所述第二开放通道为凹形通道2141和/或凸形通道2142,在自然状态中使机身1的壳体在前后两端之间因流速不同,而产生从后向前与运动方向相同的压力差来减少流体阻力,而在飞机前后两端之间的流速相差越大,产生的压力差越大,与外界的压力相互抵消的越多,获得第一推动力来源就越多。这是一一对应的相互关系,也是一对应的节能关系。
值得一提,公知常识中的后部负压区,仅仅是吸住运动装置壳体后部而产生负压阻力,而流体连续性通过各种压力的叠加而产生的大负压区51,犹如一张无形的大网把运动装置封闭其内,从头到尾紧紧的缠住整个运动装置壳体的四周,把整个运动装置在向后方向紧紧拉住,其压力方向与运动装置的运动方向相反而产生很大的流体阻力,也使流体经过壳体周围不同路径而同时到达后部来保持大负压区51内流体的连续性。(机翼和机身1的负压口袋5都是一样,因此图1仅对机身1画出负压口袋5)。
进一步的,为了使飞机前后部之间的流速相差更大,在所述机身的前部11的第二开放通道111上还可以均匀布置多个扰流体216,而扰流体略为凹或凸于其壳体表面,所述扰流体为体积较小的三角形、圆形、菱形、梯形、橄榄型、螺旋形、弧形等几何形状的一种或多种,所述多个体积较小的扰流体在壳体上均匀排列来更多的延长流体通过路径。所述凹形通道2141和/或凸形通道2142设在均匀排列多个扰流体216的壳体上面。
同理,在机翼上表面的前部211和/或中部212壳体上均布多个扰流体216,在均布多个扰流体216的壳体上设置凹形通道2141和/或凸形通道2142一起来延长更多流体通过的路径。
进一步的,如图1下方的机翼上由多个弧形的扰流体216,而构成凹形通道2141和/或凸形通道2142来延长流体通过的路径,在凹形通道2141内部的底部或/和两侧壁设有多个扰流体216来延长流体通过的路径,如凹形通道2141内设有螺旋形来延长流体通过路径(常见技术未画图)。
在公知常识中,运动装置包括飞机的前部为光滑平面来减少迎风面的流体阻力,而本发明与之相反:
从表面上看来通过凹形通道2141和/或凸形通道2142或扰流体216会增加迎风面的流体阻力,但实际上,本发明通过整体的,而不是局部的来解决正向、侧向和后负压区的流体阻力技术方案和具体结构,因此通过在机身前后部之间产生更大的压力差,使流体连续性产生封闭的负压口袋5内的流体压力减少,使第一、第二、第三流体阻力减少,由此找到一种全新的节能方法。
进一步的,在机身的前部11周围设有第二开放通道111,所述第二开放通道为凹形通道2141和/或凸形通道2142形成螺旋形围绕在机身1前部11周围,因为螺旋形可以延长流体通过的路径,使流体围绕在飞机前部211螺旋形周围一圈又一圈的经过,很容易延长多倍甚至十多倍流体通过的路径,从而在机身1的前后部之间因流速不同,而在自然状态中,产生从后向前方向十多倍的压力差,而获得更多的第一推动力来源。
实施例2:本实施例与实施例1的不同之处在于:
在机翼迎风面21的壳体为蒙皮,通过设有控制机构4来改变蒙皮的形状,如,通过压缩气体使蒙皮产生凹形通道2141和/或凸形通道2142或扰流体216,来延长流体通过的路径(这是本领域常见技术)。
根据需要,在飞机正常飞行时机翼的蒙皮与普通机一样,如在飞机稳定节能飞行时,控制机构4使机翼的前部211改变蒙皮的形状来延长多少流体通过的路径,使机翼前后部213之间产生从后向前方向的压力差,而获得本发明的第一推动力来源。
进一步的,因为封闭在大负压区51内的机身1和机翼周围形成负压口袋5,而负压口袋5周围产生的负压区51与外界周围的正压区6之间产生压力差,因此流体连续性使机翼产生第二升力,同时使机身1产生第三流体阻力,这是一一对应的相互关系, 在此需要进一步的说明:
关于机身1产生的第三流体阻力,根据自然规律,围绕在机身1周围的流体,在向外方向其流速逐渐减慢,直到等同于环境中更大范围而形成的正压区6产生的低流速和高压力,必然向负压口袋5周围的负压区51产生的高流速,低压力转移压力差,从而把更大范围的外界额外的流体压力,统统作用在壳体上而产生更大的流体阻力,这种流体阻力在此为本发明的第三流体阻力。因此本发明通过减少封闭的负压口袋5内的流体压力,使第三流体阻力减少,进而获得第一推动力来源。
关于机翼产生的第二升力来源,根据自然规律,正压区6必然向负压区51转移压力。因此机翼外界周围正压区6必然向负压口袋5周围的负压区51转移压力差,由此更大范围的外界周围正压区6产生的低流速高压力,必然从四面八方涌向负压口袋5周围产生的高流速低压力的负压区51转移压力差,在压力差的推动下机翼向上运动,因此正负压之间产生压力差为更大的第二升力来源。
由此说明了同样机翼上下表面产生的压力差和升力,却在飞机慢速飞行,或快速飞行及超音速飞行时,两者之间产生的升力的大小截然不同。即使飞机在高空中高速飞行时,高空的空气相对稀薄,流体阻力相对减少,但并不影响通过正负压之间产生的压力差,反而飞机速度越快,正负压之间产生的压力差越大,产生的升力就越大。因此第二升力来源与第三流体阻力表面上看似相互矛盾,但实质上前者产生升力,而后者产生流体阻力,两者所产生的作用不同。
实施例3:本实施例与实施例2的不同之处在于,本实施例的技术方案相反:
具体的,通过控制机构4在机翼迎风面21的后部213的蒙皮上面,产生凹形通道2141和/或凸形通道2142或扰流体216,来更多延长流体通过的路径,在机翼迎风面21产生从前向后方向而与运动方向相反的压力差,使封闭的负压口袋5内部产生的负压力增加,因此机翼的外界周围产生的正压区6,必然向负压口袋5周围产生的负压区51转移压力差,而正、负压的两者之间产生的压力差越大,产生的升力才越大,从而产生更大的第二升力来源。因此机翼产生升力与流体阻力成正比,与节能成反比,产生的升力越大能耗就越高。
本实施例可根据实际需要,在飞机需要正常飞行时,机翼的蒙皮与普通机翼一样,如需要瞬间产生更大升力时,通过控制使机翼后部产生的流速更大于前部,由此产生从前向后方向与运动方向相反的压力差而使负压口袋5内的负压力增加,因此使正,负压之间的压力差的显著的增加,使机翼产生升力在瞬间得到显著提高,瞬间改变不同的飞行状态,这一点在飞机空战中非常重要。
进一步的,通过控制机构4分别或同时,对左右两侧机翼迎风面21蒙皮局部或整体的控制来改变蒙皮的形状,从而控制飞机瞬间改变不同的飞行状态,从而使飞机的灵活机动性得到显著提高。
实施例4:如图1至图3所示,通过流体连续性产生的四种升力来源如下:
第一升力来源:飞机高速飞行时,机翼从流体中挤压通过,而机翼后部负压区产生的负压力顺着机翼后部壳体周围把正向,侧向和外部的流体相互连接在一起,由此形成围绕在机翼周围形成封闭的负压口袋5把整个机翼装入其中,而飞机速度越快,负压口袋5内产生的负压力越大,而负压力产生极大的吸力紧紧吸住机翼的壳体周围,在负压力的作用下保持了流体的连续性,使流体从机翼迎风面21和机翼背风面22经过不同路径而同时到达后部产生升力。
第二升力来源:封闭在负压口袋5内的机翼周围,形成负压区51产生的高流速低气压,与更大范围的外界的正压区6产生的低流速高气压之间,因流速不同产生压力差使飞机产生升力,而飞机的运动速度越快,负压口袋5内产生的负压力越大,负压口袋5内的流速越快,因此在正负压之间产生的压力差越大,流体连续性产生的第二升力来源越大。
第三升力来源:在机翼迎风面21的前部211及中部212的位置,沿根部至尾部的机翼整个长度方向设有第一开放通道214,使流体从机翼迎风面21的长度方向经过与机翼背风面22流体从宽度方向经过之间,因流速不同而产生更大的压力差和升力来源。
第四升力来源:在第一至第三升力基础上,使机翼上表面流速更多的大于下表面的流速,在机翼迎风面21和机翼背风面22之间通过多个通气面积不大的,均布的压力口73相连通,使机翼背风面22低流速产生的高压力均匀的通过多个较小的压力口73,向机翼迎风面21高流速产生的低压力均布的转移压力差,其压力方向,与机翼迎风面上面的外界流体压力方向相反,而相互抵消,而抵消多少流体压力,就减少多少流体阻力,就产生多少升力。
而在公知常识中:流体经过机翼上下表面不同路径而同时到达后部而产生升力,因此流体是在同时到达后部才能间接的产生升力,同时也产生流体阻力。
而本发明与此相反,通过多个压力口73把机翼上下表面相连通,使下表面产生的高压力直接的向上表面转移压力差,从而直接的产生升力;不但能产生升力,同时还减少流体阻力,因此是在先减少流体阻力后才能使机翼产生升力。
进一步的,通过第一至第四种升力的叠加来产生更大的升力来源。
实施例5:本实施例与上述实施例的不同之处在于:
在机翼迎风面21的后部213设有第三开放通道215,所述第三开放通道215沿机翼后部213区域内的宽度方向延伸,所述第三开放通道215为凹形通道2141或凸形通道2142,第三开放通道215的数目可以根据需要进行设置,由此进一步的界定机翼迎风面21的前部211和/或中部212流体从长度方向经过,后部213从宽度方向经过而产生从后向前方向的压力差,并获得第一推动力来源。
进一步的,在机翼背风面22的宽度方向(横向)设有多个凹形通道和/或凸形通道(图中未示),从而更好的来界定流体从机翼迎风面21的长度方向经过,及从机翼背风面22的宽度方向经过,而产生更大的压力差和第三升力来源。
实施例6:如图3所示的一种飞行器,包括机身1、机翼2和发动机3,所述机翼2与机身1固定连接,发动机3固定设置于机身1的尾部。机身1内左右两侧设有第一进气通道12,所述机翼迎风面21的前部211和/或中部212设有导入口217,机翼2内设有第二进气通道218,第二进气通道218分别与所述导入口217和第一进气通道12连通,发动机3包括吸气口,所述吸气口与第一进气通道12连通; 使流体在动力作用下从机翼迎风面21前部211和/或中部212经过,与在自然状态中从机翼迎风面21后部213经过之间,因在动力作用和自然状态之间,流速不同而产生从后向前方向与运动方向一致的压力差,也使流体经过机翼迎风面21和机翼背风面22之间因流速不同而产生更大的升力。
在机翼迎风面21前部211和/或中部212广大区域上的多个导入口217为发动机3的全部进气口,其进气面积不小于传统飞机进气涵道的进气面积,更大进气面积为发动机3提供足够的进气量。
当飞机快速飞行时,发动机3产生强大的吸力状态中通过多个均布的导入口217,把流体高速吸入机翼内的第二进气通道218,在机翼迎风面21的前部211及中部212壳体上和第二进气通道218内,共同形成两层流速大致相同的高流速低气压的高速流体层,与后部的流体在自然状态中产生的低流速高气压之间产生压力差,显而易见,对发动机3的控制很容易使高速流体层的流速比自然状态中的流速快多倍甚至十多倍,而产生十多倍从后向前方向更大的压力差,来更多的减少封闭负压口袋5内部的流体压力,减少更多的第一、第二、第三流体阻力,并从流体连续性中获得更大的第一推动力来源,同时使机翼迎风面21和机翼背风面22之间产生十多倍的压力差,而产生更大的第五升力来源;因此第五升力来源不但能产生更大升力,同时也减少更多的流体阻力。
实施例7:本实施例与实施例6的不同之处在于:
在机翼迎风面21和机翼背风面22之间通过多个压力口73相连通,通过压力口73把背风面高压力向迎风面的低压力转移压力差,而压力口73产生的压力方向,与迎风面外界的压力方向相反,而相互抵消,而抵消多少流体压力,减少多少流体阻力就产生多少升力,由此获得更大第四升力来源。
需要说明: 压力口73只是转移压力差的通口,不需要很大的面积,因此导入口217开口面积大于压力口73的开口面积,甚至大于很多。
同理,压力口73的结构,也可用于上述其它实施例的机翼结构之中。
由此可见,上述飞行器的结构是最直接,最有效的产生更大升力来源的优化结构,其达到的效果如下:1、由于去掉传统进气涵道所占的体积,使机身迎风面的面积显著的减少,从而使流体阻力显著的减少,运动速度提高;2、机翼上表面均匀布置多个导入口与机身后部的发动机直接相连通,使飞行器在整体结构上从产生升力到产生推动力两大功能有机的结合起来;3、该优化结构不但产生更大升力,还能减少更多的流体阻力,由此产生一种高速节能的飞行器。
实施例8:如图3所示的一种飞行器,与实施例6的不同之处在于:
所述第二进气通道218内设有用于延长流体流通路径的扰流面219,所述扰流面219的形状为螺旋形,局部或整体的设在机翼内第二进气通道218之中。
当飞机快速飞行时,发动机3产生的吸力通过在机翼迎风面21的前部211和/或中部212均布的导入口217,把流体高速吸入机翼内的第二进气通道218内,经过螺旋形的扰流面219的特殊螺旋形状一圈又一圈的转动,而经过更长的路径,产生极高的流速,在机翼迎风面21的前部和/或及中部壳体上和第二进气通道218内,共同形成两层流速大致相同的高速流体层,与其后部213的流体在自然状态中产生的低流速高气压之间因流速不同,而产生从后向前方向极大的压力差和第一推动力。
进一步的,通过对发动机3的控制很容易使机翼迎风面21的流速比机翼背风面22在自然状态中的流速快十多倍,甚至更多,从而产生更大的升力来源。
实施例9:如图4所示的一种螺旋桨7驱动的直升机,包括机身1和螺旋桨7,所述螺旋桨7与机身1固定连接,所述螺旋桨7包括桨叶,所述桨叶迎风面71上沿桨叶根部至尾部的长度方向设有至少一个的第四开放通道72,所述第四放通道为凹形通道2141和/或凸形通道2142,在离心力的作用下使流体紧紧的缠住桨叶周围,在离心力的作用下使流体很容易的从桨叶迎风面71均匀分布的凹形通道和/或凸形通道中通过,即使流体从桨叶迎风面71长度方向通过。因为螺旋桨7的桨叶的长度很长而宽度较窄,通常桨叶的长宽方向之间的距离差大约20倍左右。由于传统直升机在螺旋桨驱动下飞行时,流体从螺旋桨的桨叶的宽度方向经过,因此桨叶在较窄的宽度方向使流体经过的路径很短,所以产生的推动力和升力自然很小。
而本发明与传统直升机在螺旋桨7相同之处在于:流体从桨叶背风面宽度方向经过;不同之处在于:流体从桨叶迎风面71长度方向经过,而桨叶的长宽方向之间的距离差大约20倍左右,因此,本发明的螺旋桨7驱动的直升机就产生20倍左右压力差和升力来源。
当直升机飞行时,螺旋桨7高速旋转产生极强的离心力,把螺旋桨的流体瞬间从内向外方向高速抛出,而凹形通道和/或凸形通道与离心力产生极强牵引力的流体运动方向一致,使流体更容易从凹形通道和/或凸形通道通过在叶尖处向外高速抛出,因此在离心力产生的流体连续性的作用下,很容易使流体从经过更长的路径,更快的流速从迎风面壳体的整个表面的长度方向经过,而在壳体表面形成高速流体层的高流速且低压力,与背风面从宽度方向很短的路径经过而产生的低流速且高压力之间,因流速不同而产生更大的压力差和升力来源。
进一步的,各凸形通道其高度仅略高于迎风面壳体表面很少一些距离,避免螺旋桨7在高速转动中产生流体阻力,优选凸形通道和凹形通道为弧形通道。
进一步的,优选在桨叶迎风面71的后半部75区域上,设有凹形通道和/或凸形通道形成高速流体层,即第四开放通道72位于桨叶后半部75远离机身1的一端,与前半部74的低流速且高压力之间产生的压力差,其压力方向,与螺旋桨7向外旋转方向相同,而产生更大推动力和更大的升力来源。
进一步的,在桨叶迎风面71和桨叶背风面之间的局部或整体,通过多个通气面积不大的均布的压力口73(微孔)相连通,把桨叶背风面低流速产生的高压力,通过多个较小的压力口73均匀的向桨叶迎风面71高流速产生的低压力转移压力差,压力口73其压力方向外界压力方向相反,而相互抵消,而抵消多少桨叶迎风面71外界的流体压力,就减少多少流体阻力,就产生多少升力来源。
在另一具体实施方式中,飞行器为螺旋桨驱动的飞机(未画图本领域常见技术),螺旋桨7设在机身1的前部,在桨叶迎风面71或桨叶背风面沿根部至尾部的长度方向设有多个凹形通道和/或凸形通道,使流体从桨叶迎风面或背风面的长度与宽度方向经过之间,因流速不同而产生更大的压力差和推动力。
综上所述,本发明模仿“鹰’翅膀的羽毛排列结构,由此产生一种更大升力和推动力的飞行器。本发明提供的从流体连续性中获得更大推动力和升力的飞行器,通过在机身、机翼和桨叶上设置开放通道来延长流体通过路径机,使其前部的流速大于后部,在自然状态中使机身前部与后部之间产生从后向前方向的压力差,其压力方向与飞机的运动方向相同,而与大负压区产生向后的压力方向相反,因此通过减少或阻挡正向,侧向流体压力从前向后方向与后部负压区会合,减少封闭的负压口袋内部的流体压力,减少或阻挡流体压力的叠加,因此通过减少流体阻力从流体连续性中获得更大第一推动力来源,同时从流体连续性中获得更大的第一至第五升力来源。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种飞行器,包括机身和机翼,其特征在于,所述机翼迎风面的前部和/或中部设有用于延长流体流通路径的第一开放通道,所述第一开放通道自机翼靠近机身一侧的根部延伸至机翼远离机身一侧的尾部,所述第一开放通道为凹形通道和/或凸形通道,使流体经过机翼迎风面上面的长度和宽度方向之间,因流速不同而产生从后向前方向与运动方向一致的压力差,同时使机翼迎风面和机翼背风面之间因流速不同而产生更大的升力。
  2. 根据权利要求1所述的飞行器,其特征在于,所述机翼上还设有用于延长流体流通路径的扰流体,所述扰流体的形状为三角形、圆形、菱形、梯形、橄榄形、螺旋形或弧形中的一种或多种,多个的所述扰流体在机翼上均匀排列;所述凹形通道为机翼迎风面壳体表面向下凹陷形成,所述凸形通道为机翼迎风面壳体表面向上凸起形成。
  3. 根据权利要求2所述的飞行器,其特征在于,所述凹形通道的开口与机翼迎风面持平,所述凹形通道的形状为上小下大,所述凹形通道的宽度自凹形通道的开口向凹形通道的底面方向逐渐增大。
  4. 根据权利要求2所述的飞行器,其特征在于,所述凹形通道和/或凸形通道的形状为弧形。
  5. 根据权利要求2所述的飞行器,其特征在于,所述凹形通道和/或凸形通道设在多个扰流体均匀排列的壳体上,所述凹形通道的底部和/或内侧壁上设有所述扰流体,两个以上的所述扰流体形成所述凸形通道。
  6. 根据权利要求1所述的飞行器,其特征在于,所述机身的前部设有至少一个的用于延长流体流通路径的第二开放通道,所述第二开放通道为凹形通道或凸形通道。
  7. 根据权利要求6所述的飞行器,其特征在于,所述第二开放通道的形状为螺旋形。
  8. 根据权利要求1所述的飞行器,其特征在于,还包括控制机构,所述机翼包括蒙皮,所述控制机构用于改变蒙皮的形状形成所述第一开放通道。
  9. 根据权利要求8所述的飞行器,其特征在于,所述机翼迎风面的后部设有第三开放通道,所述第三开放通道沿机翼的宽度方向延伸,所述第三开放通道为凹形通道或凸形通道。
  10. 根据权利要求9所述的飞行器,其特征在于,所述机翼背风面上设有所述第三开放通道。
  11. 一种飞行器,包括机身、机翼和发动机,其特征在于,所述发动机固定设置于所述机身的尾部,所述机身内设有第一进气通道,所述机翼迎风面的前部和/或中部设有多个导入口,所述导入口为发动机的全部进气口,所述机翼内设有第二进气通道,所述第二进气通道分别与所述导入口和第一进气通道连通,所述发动机包括吸气口,所述吸气口与第一进气通道连通,使流体在动力作用下从机翼迎风面前部和/或中部经过与在自然状态中从机翼迎风面后部经过之间,因流速不同而产生从后向前方向与运动方向一致的压力差,也使流体经过机翼迎风面和机翼背风面之间因流速不同而产生更大的升力。
  12. 根据权利要求11所述的飞行器,其特征在于,所述第二进气通道内设有用于延长流体流通路径的扰流面,所述扰流面的形状为螺旋形。
  13. 一种飞行器,为螺旋桨驱动的直升机或飞机,包括机身和螺旋桨,所述螺旋桨包括多个桨叶,其特征在于,所述桨叶迎风面在长度方向上设有至少一个的第四开放通道,所述第四开放通道为凹形通道和/或凸形通道,使流体从桨叶迎风面长度方向经过与从桨叶背风面宽度方向经过之间,因流速不同而产生更大的压力差和升力。
  14. 根据权利要求13所述的飞行器,其特征在于,所述第四开放通道在桨叶迎风面沿根部至尾部的长度方向设置,所述凹形通道为桨叶的壳体上表面向下凹陷形成,所述凸形通道为桨叶的壳体上表面向上凸起形成,所述凹形通道的开口与桨叶上表面持平,所述凹形通道的宽度自凹形通道的开口向凹形通道的底面方向逐渐增大。
  15. 根据权利要求13所述的飞行器,其特征在于,所述凹形通道和/或凸形通道的形状为弧形。
  16. 根据权利要求13所述的飞行器,其特征在于,所述第四开放通道位于所述桨叶长度方向远离机身的一端的后半部,使桨叶后半部与前半部之间因流速不同而产生压力差。
  17. 17根据权利要求13所述的飞行器,其特征在于,所述飞行器为螺旋桨驱动的飞机,所述桨叶迎风面或背风面沿根部至尾部的长度方向设有所述第四开放通道。
  18. 一种飞行器,包括机身、机翼或螺旋桨,所述机翼或螺旋桨分别与所述机身固定连接,所述螺旋桨包括多个桨叶,其特征在于,所述机翼或所述桨叶分别在各自的迎风面或背风面之间通过至少两个压力口相连通,使所述背风面低流速产生的高压力通过压力口向所述迎风面高流速产生的低压力转移压力差,所述压力口产生的压力方向与所述迎风面上面外界的流体压力方向相反而相互抵消,使所述机翼或螺旋桨在减少流体阻力之后才能产生升力。
  19. 根据权利要求18所述的飞行器,其特征在于,还包括发动机,所述发动机固定设置于所述机身的尾部,所述机身内设有第一进气通道,所述机翼迎风面的前部和/或中部设有导入口,所述机翼内设有第二进气通道,所述第二进气通道分别与所述导入口和第一进气通道连通,所述发动机包括吸气口,所述吸气口与第一进气通道连通。
  20. 根据权利要求18所述的飞行器,其特征在于,所述导入口的开口面积大于压力口的开口面积。
PCT/CN2018/084620 2017-04-26 2018-04-26 从流体连续性中获得更大推动力和升力的飞行器 WO2018196810A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/569,443 US11396364B2 (en) 2017-04-26 2019-09-12 Aircraft generating larger thrust and lift by fluid continuity
US17/843,700 US11858617B2 (en) 2017-04-26 2022-06-17 Propeller-driven helicopter or airplane
US18/517,212 US20240124131A1 (en) 2017-04-26 2023-11-22 Aircraft generating larger thrust and lift by fluid continuity

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710281619.8 2017-04-26
CN201710281619.8A CN107089327A (zh) 2017-04-26 2017-04-26 一种产生更大升力的飞行器
CN201810379833.1 2018-04-25
CN201810379833.1A CN108622375A (zh) 2018-04-25 2018-04-25 从流体连续性中产生推动力或升力的运动装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/569,443 Continuation US11396364B2 (en) 2017-04-26 2019-09-12 Aircraft generating larger thrust and lift by fluid continuity

Publications (1)

Publication Number Publication Date
WO2018196810A1 true WO2018196810A1 (zh) 2018-11-01

Family

ID=63918042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084620 WO2018196810A1 (zh) 2017-04-26 2018-04-26 从流体连续性中获得更大推动力和升力的飞行器

Country Status (2)

Country Link
US (3) US11396364B2 (zh)
WO (1) WO2018196810A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109941425A (zh) * 2019-04-08 2019-06-28 涂常青 一种二维流体飞行器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107150788A (zh) * 2017-04-26 2017-09-12 朱晓义 一种产生更大升力的固定翼飞行器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101823554A (zh) * 2010-03-29 2010-09-08 朱晓义 载重飞机
CN101941522A (zh) * 2010-09-13 2011-01-12 朱晓义 飞行设备
WO2011015891A1 (en) * 2009-08-04 2011-02-10 Ferenc Apolczer Method for constructing rotor blade with upraised boundary layer and rotor blade
EP2390178A2 (en) * 2010-05-28 2011-11-30 Lockheed Martin Corporation (Maryland Corp.) Rotor blade having passive bleed path
CN102556345A (zh) * 2012-01-18 2012-07-11 朱晓义 飞机动力装置
CN104386236A (zh) * 2014-11-17 2015-03-04 朱晓义 具有更大升力的飞行器
CN104608919A (zh) * 2015-02-16 2015-05-13 西北工业大学 一种有引流槽的前缘缝翼及引流槽的设计方法
CN106364666A (zh) * 2016-09-30 2017-02-01 朱晓义 一种产生更大升力的机翼及飞行器
CN106467164A (zh) * 2015-08-20 2017-03-01 波音公司 减缓飞行器的飞行控制表面与机身之间的表面不连续性
CN107089327A (zh) * 2017-04-26 2017-08-25 朱晓义 一种产生更大升力的飞行器

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3586266A (en) * 1968-09-24 1971-06-22 Paul Bucher Jet propelled aircraft with auxiliary lifting means
US6004095A (en) * 1996-06-10 1999-12-21 Massachusetts Institute Of Technology Reduction of turbomachinery noise
RU2324625C2 (ru) 2002-04-18 2008-05-20 Эйрбас Дойчланд Гмбх Перфорированная конструкция обшивки для систем с ламинарным обтеканием
DE602005002144D1 (de) * 2004-05-13 2007-10-04 Airbus Gmbh Flugzeugbauteil, insbesondere flügel
US20060049302A1 (en) * 2004-08-31 2006-03-09 Kennedy Dennis K Apparatus and methods for structurally-integrated conductive conduits for rotor blades
DE102005016570A1 (de) * 2005-04-11 2006-10-19 Airbus Deutschland Gmbh Reduzierung von Reibungsverlusten im Bereich von Grenzschichten an fluidumströmten Oberflächen
CN101468713B (zh) 2007-12-27 2011-11-16 朱晓义 潜艇或船
CN101602404B (zh) * 2009-07-03 2013-12-25 朱晓义 一种新型结构的飞行器
US9745047B2 (en) * 2013-04-17 2017-08-29 Xiaoyi Zhu Aircraft generating a lift from an interior thereof
US8870124B2 (en) * 2009-07-10 2014-10-28 Peter Ireland Application of elastomeric vortex generators
GB2468978B (en) * 2010-04-27 2012-04-04 Aerodynamic Res Innovation Holdings Ltd Fluid flow control device for an aerofoil
US9132909B1 (en) * 2011-03-11 2015-09-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flap edge noise reduction fins
US9487288B2 (en) 2013-06-04 2016-11-08 The Boeing Company Apparatus and methods for extending hybrid laminar flow control
WO2016078575A1 (zh) * 2014-11-17 2016-05-26 朱晓义 一种交通运输装置
WO2016078537A1 (zh) * 2014-11-17 2016-05-26 朱晓义 一种动力装置以及汽车的发动机
CN104386237A (zh) 2014-11-17 2015-03-04 朱晓义 高速飞行器和弹药
CA2872375C (en) 2014-11-25 2015-12-08 Remi Laforest Profiled element for generating a force
CN104647168A (zh) 2015-01-30 2015-05-27 华南理工大学 一种具有曲面微沟槽结构的飞行体及其制造方法
CN104890858A (zh) 2015-06-12 2015-09-09 北京象限空间科技有限公司 一种具有主动流动控制机构的机翼结构
FR3042777B1 (fr) * 2015-10-22 2018-07-20 Danielson Aircraft Systems Aeronef a voilure fixe et a stabilite statique accrue
CN106672088A (zh) 2015-11-06 2017-05-17 朱晓义 一种行驶中减轻重量的节能汽车
CN106672089A (zh) 2015-11-06 2017-05-17 朱晓义 一种悬浮火车
CN105947163A (zh) 2016-05-10 2016-09-21 朱晓义 一种具有大推动力的船或潜艇
CN106218865A (zh) 2016-09-13 2016-12-14 中国航空工业集团公司沈阳空气动力研究所 一种飞机前体涡流动控制装置
CN107044442A (zh) 2017-04-26 2017-08-15 朱晓义 一种产生更大推动力的风扇

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011015891A1 (en) * 2009-08-04 2011-02-10 Ferenc Apolczer Method for constructing rotor blade with upraised boundary layer and rotor blade
CN101823554A (zh) * 2010-03-29 2010-09-08 朱晓义 载重飞机
EP2390178A2 (en) * 2010-05-28 2011-11-30 Lockheed Martin Corporation (Maryland Corp.) Rotor blade having passive bleed path
CN101941522A (zh) * 2010-09-13 2011-01-12 朱晓义 飞行设备
CN102556345A (zh) * 2012-01-18 2012-07-11 朱晓义 飞机动力装置
CN104386236A (zh) * 2014-11-17 2015-03-04 朱晓义 具有更大升力的飞行器
CN104608919A (zh) * 2015-02-16 2015-05-13 西北工业大学 一种有引流槽的前缘缝翼及引流槽的设计方法
CN106467164A (zh) * 2015-08-20 2017-03-01 波音公司 减缓飞行器的飞行控制表面与机身之间的表面不连续性
CN106364666A (zh) * 2016-09-30 2017-02-01 朱晓义 一种产生更大升力的机翼及飞行器
CN107089327A (zh) * 2017-04-26 2017-08-25 朱晓义 一种产生更大升力的飞行器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109941425A (zh) * 2019-04-08 2019-06-28 涂常青 一种二维流体飞行器
CN109941425B (zh) * 2019-04-08 2023-12-12 涂常青 一种二维流体飞行器

Also Published As

Publication number Publication date
US20240124131A1 (en) 2024-04-18
US20200001980A1 (en) 2020-01-02
US20220324554A1 (en) 2022-10-13
US11858617B2 (en) 2024-01-02
US11396364B2 (en) 2022-07-26

Similar Documents

Publication Publication Date Title
US11565793B2 (en) Aircraft generating larger lift by reduction of fluid resistance
JP6313829B2 (ja) 非軸対称後部エンジン
US8910903B2 (en) Aircraft generating a lift from an interior thereof
US6568630B2 (en) Ducted vehicles particularly useful as VTOL aircraft
US2873931A (en) Boundary layer control apparatus for improving the action of aircraft
CN103879556B (zh) 宽飞行包线变体飞行器
US8561935B2 (en) STOL and/or VTOL aircraft
US11485472B2 (en) Fluid systems that include a co-flow jet
CN109996725B (zh) 具有后发动机的飞行器和用于该飞行器的空气注入组件
JP2017061305A (ja) 航空機用の後部エンジンナセルの形状
US8267665B2 (en) Laminar flow rotor and related methods and systems
US20030201363A1 (en) Aircraft internal wing and design
JP2017061300A (ja) 後部エンジンを有する航空機
BR102013018101A2 (pt) lança de cauda em forma de aerofólio
US2041792A (en) Aircraft
US11338927B2 (en) Forward swept wing aircraft with boundary layer ingestion and distributed electrical propulsion system
US20240124131A1 (en) Aircraft generating larger thrust and lift by fluid continuity
CN103921931A (zh) 涵道机翼系统以及运用该系统的飞行器
WO2016078562A1 (zh) 高速飞行器和具有更大升力的飞行器
CN101823554A (zh) 载重飞机
CN103600844B (zh) 产生更大升力的组合飞行器
US4555079A (en) Multiple jet blowing around the blunt trailing edge of a circulation controlled airfoil
US20160229517A1 (en) Aircraft generating a lift from an interior thereof
US2041790A (en) Aircraft
CN106986028A (zh) 一种碟形飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 31/01/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18790494

Country of ref document: EP

Kind code of ref document: A1