WO2018196785A1 - 一种具有多层磁性调制结构的低噪声磁电阻传感器 - Google Patents

一种具有多层磁性调制结构的低噪声磁电阻传感器 Download PDF

Info

Publication number
WO2018196785A1
WO2018196785A1 PCT/CN2018/084439 CN2018084439W WO2018196785A1 WO 2018196785 A1 WO2018196785 A1 WO 2018196785A1 CN 2018084439 W CN2018084439 W CN 2018084439W WO 2018196785 A1 WO2018196785 A1 WO 2018196785A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
magnetoresistive
modulation structure
sensing unit
magnetic modulation
Prior art date
Application number
PCT/CN2018/084439
Other languages
English (en)
French (fr)
Inventor
迪克詹姆斯·G
周志敏
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to EP18792248.9A priority Critical patent/EP3617727A4/en
Priority to US16/608,596 priority patent/US11067647B2/en
Priority to JP2019558452A priority patent/JP7099731B2/ja
Publication of WO2018196785A1 publication Critical patent/WO2018196785A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0029Treating the measured signals, e.g. removing offset or noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0041Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration using feed-back or modulation techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0094Sensor arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor

Definitions

  • the present invention relates to the field of magnetic sensors, and more particularly to a low noise magnetoresistive sensor having a multilayer magnetic modulation structure.
  • the magnetoresistive sensor When the magnetoresistive sensor is in normal use, there is 1/f noise, which reduces the noise of the magnetoresistive sensor, and the development of a low-noise magnetoresistive sensor is of great significance for improving the accurate measurement of the magnetic signal.
  • the magnetoresistive sensor has high 1/f noise at low frequencies, while at high frequencies, it is dominated by thermal noise, and its noise energy density is much lower than the noise energy density at low frequencies. Therefore, the magnetic is selected.
  • the signal is pre-modulated into a high-frequency magnetic field, and then measured by the magnetoresistive sensor, and the high-frequency frequency voltage signal is output, and then demodulated, so that the magnetic signal measurement can be moved from the low-frequency region to the high-frequency region, thereby reducing 1/f. Noise energy density.
  • the vibration structure of the soft magnetic flux concentrator is processed on the surface of the magnetoresistive sensor, and the soft magnetic flux concentrator is periodically vibrated on the surface of the magnetoresistive sensor to realize modulation of the static external magnetic field, which helps Reducing the 1/f noise of the magnetoresistive sensor, however, the vibration structure and the addition of the driver greatly increase the complexity and size of the magnetoresistive sensor, and the process complexity is greatly increased.
  • the present invention provides a low noise magnetoresistive sensor having a multilayer magnetic modulation structure including: a substrate and a multilayer magnetic modulation structure array over the substrate; the multilayer magnetic modulation The structure array comprises a plurality of multi-layer magnetic modulation structures; the multi-layer magnetic modulation structure is a soft magnetic material layer, a metal conductive layer and a soft magnetic material layer from top to bottom, and the two ends of the multi-layer magnetic modulation structure pass through The conductive strips are connected into a two-port excitation coil and connected to the excitation coil pads, and the adjacent magnetic modulation structures have opposite current directions when operating;
  • a magnetoresistive sensing unit is located directly above or directly below the multi-layer magnetic modulation structure and at a center of the gap, and the sensing direction of the magnetoresistive sensing unit is perpendicular to a long axis direction of the multilayer magnetic modulation structure.
  • the array of magnetoresistive sensing units is electrically connected to a magnetoresistive sensor and connected to the sensor pad;
  • an excitation current is input through the excitation coil, and the magnetic resistance sensor voltage or current output signal is demodulated and output as a low noise voltage signal.
  • the multilayer magnetic modulation structure array comprises 2N of the multilayer magnetic modulation structures, and the magnetoresistive sensing unit array is located at N sides of the Nth and N+1th layers of the multilayer magnetic modulation structure. -1 within the gap;
  • the multilayer magnetic modulation structure array comprises 2N+1 of the multi-layer magnetic modulation structures, and the magnetoresistive sensing unit array is located at N of the N+1th of the multi-layer magnetic modulation structures Within the gap, where N is an integer greater than zero.
  • an excitation current of a frequency f is input, and when the magnetic permeability of the soft magnetic material is in a linear state as the excitation current changes, the frequency of the useful signal output by the magnetoresistive sensor is f; When the magnetic permeability of the soft magnetic material is in a linear and saturated state as the excitation current value changes, the frequency of the useful signal output by the magnetoresistive sensor is 2f.
  • the magnetoresistive sensor comprises a two-port excitation coil and a two-port magnetoresistive sensing unit array, wherein the two-port excitation coil and the two-port magnetoresistive sensing unit array are deposited on the same substrate;
  • the magnetoresistive sensor comprises a two-port excitation coil and four arrays of the two-port magnetoresistive sensing unit, wherein two of the two-port magnetoresistive sensing unit arrays are deposited on the same substrate; deposited on the same substrate
  • the two two-port magnetoresistive sensing unit arrays are assembled into a push-pull full-bridge magnetoresistive sensor by flipping the 180-degree slicing method, and the two exciting coils are connected in series to form the same two-port exciting coil;
  • the magnetoresistive sensor comprises a two-port excitation coil and two two-port magnetoresistive sensing unit arrays, wherein a two-port magnetoresistive sensing unit array deposited on a substrate is combined with a slice flip 180 degree Pull-type half-bridge magnetoresistive sensor, each excitation coil is connected in series to form a two-port excitation coil;
  • the magnetoresistive sensor comprises a two-port excitation coil and four arrays of the two-port magnetoresistive sensing unit, and one of the two-port magnetic sensing unit arrays deposited on the same substrate is flipped by two slices 180
  • the push-pull full-bridge magnetoresistive sensor is connected by a degree, and each excitation coil is connected in series to form a two-port excitation coil.
  • the magnetoresistive sensor comprises a two-port excitation coil and four two-port magnetoresistive sensing unit arrays, and the two-port excitation coil and four two-port magnetoresistive sensing unit arrays are deposited on the same substrate, two The two-port magnetoresistive sensing unit array and the other two of the two-port magnetoresistive sensing unit arrays have opposite magnetic field sensitive directions and are electrically connected into a single-chip push-pull full-bridge magnetoresistive sensor;
  • the magnetoresistive sensor comprises a two-port excitation coil and two two-port magnetoresistive sensing unit arrays, and the two-port excitation coil and two two-port magnetoresistive sensing unit arrays are deposited on the same substrate, one of the two The port magnetoresistive sensing unit array and the other of the two-port magnetoresistive sensing unit arrays have opposite magnetic field sensitive directions and are electrically connected into a single-chip push-pull half-bridge magnetoresistive sensor.
  • the magnetoresistive sensing unit is of the TMR, GMR or AMR type.
  • the conductive strip is a single layer conductive material structure or the same structure as the multilayer magnetic modulation structure;
  • the soft magnetic material is a high magnetic permeability soft magnetic alloy, and the high magnetic permeability soft magnetic alloy contains Fe One or more of Co, Ni, and a layer of insulating material is added between the layer of soft magnetic material and the metal conductive layer.
  • the intermediate layer of the multilayer magnetic modulation structure is Cu, and the thickness ranges from 1 to 10 um; the soft magnetic material layer is permalloy, and the thickness ranges from 1 to 10 um.
  • the multilayer magnetic modulation structure has a width ranging from 10 to 1000 um, and the multilayer magnetic modulation structure has a gap width ranging from 5 to 50 um; by increasing a ratio of a width of the multilayer magnetic modulation structure to the gap To increase the external magnetic field gain factor and reduce noise.
  • the frequency f of the excitation coil ranges from 1 to 100 KHz; when the density of the excitation current is 1 ⁇ 10 1 -1 ⁇ 10 12 A/m 2 , the frequency of the useful signal is the fundamental frequency f; the excitation When the current density is greater than 1 x 10 12 A/m 2 , the frequency of the useful signal is the second harmonic frequency 2f.
  • the low-noise magnetoresistive sensor with multi-layer magnetic modulation structure provided by the invention can effectively reduce the 1/f noise energy density, thereby improving the accuracy of measurement of the magnetic signal; the process is simple and compact And has the advantages of high sensitivity, low noise and small size.
  • FIG. 1 is a block diagram of a low noise magnetoresistive sensor having a multilayer magnetic modulation structure according to the present invention
  • FIG. 2 is a block diagram showing a structure of a low noise magnetoresistive sensor having a multilayer magnetic modulation structure according to the present invention
  • FIG. 3 is a block diagram showing another structure of a low noise magnetoresistive sensor having a multilayer magnetic modulation structure according to the present invention.
  • FIG. 4(a) is a structural view showing an excitation coil of a low noise magnetoresistive sensor having a multilayer magnetic modulation structure according to the present invention
  • FIG. 4(b) is a structural diagram of a magnetoresistive sensing unit array in a low noise magnetoresistive sensor having a multilayer magnetic modulation structure according to the present invention
  • FIG. 5(a) is a structural diagram of an excitation coil in a low noise magnetoresistive sensor having a multilayer magnetic modulation structure according to the present invention
  • 5(b) is a full bridge structure diagram of a push-pull magnetoresistive sensor in a low noise magnetoresistive sensor having a multilayer magnetic modulation structure according to the present invention
  • 6(a) is a structural view showing an excitation coil of a low noise magnetoresistive sensor having a multilayer magnetic modulation structure according to the present invention
  • 6(b) is a half bridge structure diagram of a push-pull magnetoresistive sensor in a low noise magnetoresistive sensor having a multilayer magnetic modulation structure according to the present invention
  • Figure 7 is a layer position diagram of a multilayer magnetic modulation structure array and a magnetoresistive sensing unit array of the present invention
  • Figure 8 (a) is a distribution diagram of an excitation magnetic field of two adjacent multilayer magnetic modulation structures in the absence of an external magnetic field
  • FIG. 8(b) is a diagram showing an excitation magnetic field distribution of a multilayer magnetic modulation structure under the action of an external magnetic field H0 according to the present invention
  • FIG. 9 is a waveform diagram of an excitation coil current of a pre-modulated low noise magnetoresistive sensor of a multilayer magnetic modulation structure of the present invention.
  • FIG. 10 is a waveform diagram of an output signal of a pre-modulated low noise magnetoresistive sensor of a multilayer magnetic modulation structure of the present invention.
  • Figure 11 is a typical field gain factor-current density curve of the present invention.
  • Figure 12 is a graph showing the relationship between the gain factor of the present invention and the thickness of the soft magnetic material layer
  • Figure 13 is a graph showing the relationship between the gain factor of the present invention and the thickness of the metal conductive layer
  • Figure 14 is a graph showing the relationship between the gain factor of the present invention and the gap of the conductive layer
  • Figure 15 is a graph showing the relationship between the gain factor of the present invention and the strip width of the conductive layer
  • Figure 16 is a graph showing the relationship between the gain factor of the present invention as a function of strip length/bar width of the conductive layer.
  • FIG. 1 is a low-noise magnetoresistive sensor slice structure diagram having a multilayer magnetic modulation structure including a substrate 1 and a multilayer magnetic modulation structure array on the substrate, the multilayer magnetic modulation structure including a plurality of a multilayer magnetic modulation structure in which 21, 22, ..., 2N in Fig.
  • the magnetoresistive sensing unit is electrically connected to a two-port structure of a magnetoresistive sensing unit array, and is connected to the magnetoresistive sensor pad 7 and the magnetoresistive sensor pad 8; when N is an even number 2k ( When k is an integer greater than 0), the magnetoresistive sensing cell array is located in k-1 of the gaps on both sides of the kth and k+1th multilayer magnetic modulation structures; when N is an odd number 2k+1 (k is an integer greater than 0), the magnetoresistive sensing cell array is located at the k+1th Within the k gaps
  • FIG. 2 is a block diagram of another low-noise magnetoresistive sensor having a multi-layer magnetic modulation structure, including two two-port magnetoresistive sensing unit arrays on the same substrate and a two-port exciting coil 11 9 and 10 of 2 are the two-port magnetoresistive sensors.
  • FIG. 3 is a block diagram of another low-noise magnetoresistive sensor having a multi-layer magnetic modulation structure, including four arrays of two-port magnetoresistive sensing elements on the same substrate, as shown in FIG. 3, 51, 52, 53 and 54, wherein the magnetoresistive sensing element arrays 51, 52 are opposite to the magnetic field sensing direction of the magnetoresistive sensing unit arrays 53, 54 and are electrically connected to a full-bridge of a push-pull magnetoresistive sensor, which is also in the slice structure diagram.
  • There is a two-port excitation coil 50 it should be noted that, in addition to the full bridge, two arrays of two-port magnetoresistive sensing elements having opposite magnetic field-sensitive directions on the same substrate may be included and electrically connected.
  • FIG. 4(a) is a Structure of excitation coil in low noise magnetoresistive sensor with multilayer magnetic modulation structure
  • Figure 4 (b) is a structural diagram of a magnetoresistive sensing unit array in a low-noise magnetoresistive sensor having a multilayer magnetic modulation structure; in this case, the two-port magnetoresistive sensing unit array can operate at a constant voltage The current is demodulated; or the voltage is demodulated under constant current.
  • another low-noise magnetoresistive sensor electrical connection structure diagram having a multi-layer magnetic modulation structure includes a two-port structure excitation coil and a push-pull magnetoresistive sensor full bridge;
  • FIG. 5(a) is another A structure diagram of an excitation coil in a low-noise magnetoresistive sensor having a multilayer magnetic modulation structure;
  • FIG. 5(b) is a push-pull magnetoresistance of a low-noise magnetoresistive sensor having a multilayer magnetic modulation structure according to the present invention;
  • the full bridge structure of the sensor specifically, the four two-port bridge arms of the full bridge can be obtained by flipping the slice by 180 degrees in four slice structures as shown in FIG.
  • the two-port structure excitation coil is composed of four slices.
  • the two-port excitation coils are connected in series; or the four-port bridge arms of the full bridge can be obtained by flipping the slice by 180 degrees of the two slice structures shown in FIG. 2, and the two-port structure excitation coil is composed of two slices.
  • the two-port excitation coils are connected in series; they can also be directly electrically connected by four two-port magnetic field sensors with opposite magnetic fields in opposite directions on the same single chip.
  • the excitation coils are connected in series to form a two-port structure.
  • FIG. 6(a) is the present invention Another structural diagram of an excitation coil in a low-noise magnetoresistive sensor having a multilayer magnetic modulation structure
  • FIG. 6(b) is a push-pull type of a low-noise magnetoresistive sensor having a multilayer magnetic modulation structure according to the present invention
  • the magnetoresistive sensor half-bridge structure; specifically, the two-port bridge arms of the half bridge can be obtained by flipping the slice 180 of the two slice structures shown in Fig.
  • the two-port structure excitation coil is composed of two on two slices
  • the port excitation coils are connected in series; they can also be directly electrically connected by two two-port magnetoresistive sensors with opposite magnetic field orientations on the same single chip. At this time, the two-port excitation coils are connected in series to form a two-port structure.
  • FIG. 7 is a layer position diagram of a multilayer magnetic modulation structure array and a magnetoresistive sensing unit array, the multilayer magnetic modulation structure including two layers of upper and lower soft magnetic materials and an intermediate metal conductive layer 102, wherein the soft magnetic material layer is 100 and 101 in Fig. 7; the magnetoresistive sensing unit 103 is located directly above or below the multilayer magnetic modulation structure and is interposed at the gap of the adjacent multilayer magnetic modulation structure.
  • Two adjacent multilayer magnetic modulation structures 104, 105 have opposite current directions, current flows through the intermediate metal conductive layer 102, and the intermediate metal conductive layer 102 and the upper and lower layers of the soft magnetic material layer are separated by an insulating material layer. .
  • Fig. 8(a) is a distribution diagram of excitation magnetic fields of two adjacent multilayer magnetic modulation structures without an external magnetic field, and the excitation current distributions of adjacent two multilayer magnetic modulation structures are I0 and -I0, and the magnetic resistance
  • the sensor is located at the center, the excitation magnetic field generated by I0 at the upper soft magnetic material layer is Hex(ft), the excitation magnetic field generated at the lower soft magnetic material layer is -Hex(ft), and -I0 is at the upper soft magnetic material layer.
  • Fig. 8(b) is an excitation magnetic field distribution diagram of two adjacent multilayer magnetic modulation structures under the action of an external magnetic field H0.
  • the magnetic field strengths of the upper and lower layers of the soft magnetic material of the multilayer magnetic modulation structure change, and The strength of the magnetic field strength in the same direction of the magnetic field increases, which is Hex(ft)+H0; and the strength of the magnetic field opposite to the external magnetic field decreases, which is -Hex(ft)+H0; and, due to the introduction of H0, the upper and lower soft magnetic
  • the magnetic permeability state of the material layer is in different states, and the magnetic fields generated by the two left and right multilayer magnetic modulation structures at the magnetoresistive sensing unit are Hex1(ft)+H0 and -Hex1(ft)+H0, respectively, and thus the magnetic resistance
  • the change of the magnetic field strength at the sensing unit is related to the external magnetic field strength H0 and the excitation magnetic field strength Hex(ft) of the upper and lower soft magnetic material layers of the multilayer magnetic modulation structure, and the excitation magnetic field strength Hex(ft) is directly related to the excitation current I0
  • the multi-layer magnetic modulation structure pre-modulation low-noise magnetoresistive sensor is actually a fluxgate sensor, and the difference is that a magnetoresistive sensor is used instead of the secondary coil to acquire a signal.
  • the relationship between the excitation current I0 and the external magnetic field H0 on the permeability of the soft magnetic material layer directly determines the mode and performance of the output signal of the magnetoresistive sensor.
  • Figure 9 is the excitation coil current waveform, the frequency is f, when the current density amplitude Je0
  • Figure 10 is the magnetic field measurement signal at the position of the magnetoresistive sensor, when the magnetic permeability is in the linear region, the magnetic induction intensity at the position of the magnetoresistive sensor also has The output characteristic of frequency f; on the other hand, when the magnitude of the excitation current is large enough to make the magnetic permeability in the linear region and the saturation region, according to the fluxgate principle, the output is the second harmonic 2f signal, and the magnetic field
  • the signal amplitudes Bex1f and Bex2f are proportional to the measured magnetic field strength H0.
  • the thickness of the soft magnetic material layer of the multilayer magnetic modulation structure soft magnetic strip array, the intermediate conductive layer are optimized.
  • the conductive strip in the present invention is a single layer conductive material structure or the same structure as the multilayer magnetic modulation structure, and the soft magnetic material is a high magnetic permeability soft magnetic alloy, and the high magnetic permeability is soft.
  • the magnetic alloy contains one or more of Fe, Co, and Ni elements, and an insulating material layer may be added between the soft magnetic material layer and the metal conductive layer.
  • the external magnetic field amplitude H0 is set in the range of 1-9G, and the current density amplitude Je0 of frequency f is scanned.
  • the magnetic field gain factor is calculated to measure the design parameters of the multilayer magnetic modulation structure array.
  • Figure 11 shows a typical gain factor-current density curve.
  • the external magnetic fields are H01, H03, H05, H07 and H09.
  • the current density varies from 0-1x10 8 A/m 2 .
  • the magnetic field gain factor is Linear characteristics, as the external magnetic field increases, the magnetic field gain factor decreases; as the current density increases, the magnetic field gain factor increases.
  • Figure 12 shows the relationship between the gain factor and the thickness of the soft magnetic material layer in the current density range of 0-1x10 10 A/m 2 . It can be seen that the gain factor reaches the maximum when the thickness of the soft magnetic material layer increases to 5 um. Continue to increase the thickness, the gain factor is not improved much.
  • Figure 13 shows the relationship between the gain factor and the thickness of the metal conductive layer. It can be seen that as the thickness of the metal conductive layer increases, the magnetic field gain factor increases gradually, and when the thickness of the metal conductive layer is 5 um, the increase tends to be slow.
  • 14 is a graph showing the relationship between the gain factor and the gap width.
  • the gain factor decreases as the gap width increases; wherein the gap is a gap between the multilayer magnetic modulation structure and the multilayer magnetic modulation structure.
  • Figure 15 shows the gain factor as a function of the width of the multilayer magnetic modulation structure. It can be seen that as the width of the multilayer magnetic modulation structure increases, the gain factor increases.
  • Figure 16 is a graph showing the gain factor as a function of the ratio of the gap to the width of the multilayer magnetic modulation structure. It can be seen that as the ratio increases, the gain factor decreases; wherein the gap is a multilayer magnetic modulation structure and A gap between the multilayer magnetic modulation structures.
  • the low-noise magnetoresistive sensor with multi-layer magnetic modulation structure provided by the invention can effectively reduce the 1/f noise energy density, thereby improving the accuracy of measurement of the magnetic signal; the process is simple and compact, and It has the advantages of high sensitivity, low noise and small size.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种具有多层磁性调制结构的低噪声磁电阻传感器,包括:衬底(1)和位于衬底(1)之上的多层磁性调制结构阵列,多层磁性调制结构为上下两层软磁材料层以及中间一层金属导电层,且多层磁性调制结构(21,22,…,2N)首尾两端依次通过导电条(31,32,…,3N-1)连接成两端口激励线圈,相邻多层磁性调制结构具有相反电流方向;位于多层磁性调制结构正上方或正下方且介于间隙中心的为磁电阻传感单元,磁电阻传感单元敏感方向为垂直于多层磁性调制结构的长轴方向,磁电阻传感单元的阵列(41,42,…,4N-2)电连接成磁电阻传感器,并连接传感器焊盘(7,8);测量外磁场时,激励线圈中输入激励电流,磁电阻传感器电压或电流信号经解调输出即为低噪声电压信号。所述低噪声磁电阻传感器具有结构紧凑,高灵敏,低噪声,小尺寸的优点。

Description

一种具有多层磁性调制结构的低噪声磁电阻传感器 技术领域
本发明涉及磁性传感器领域,特别涉及一种具有多层磁性调制结构的低噪声磁电阻传感器。
背景技术
磁电阻传感器在正常使用时,存在着1/f噪声,降低磁电阻传感器的噪声,发展低噪声磁电阻传感器,对于提高磁信号的精确测量具有重要的意义。一般情况下,磁电阻传感器在低频时具有高的1/f噪声,而在高频时,则以热噪声为主,其噪声能量密度大大低于低频时的噪声能量密度,因此,选择将磁信号预先调制成高频磁场,而后再被磁电阻传感器测量,输出高频频率电压信号,而后进行解调,可以实现将磁信号测量从低频区域移动到高频区域的目的,从而降低1/f噪声能量密度。
通过使用MEMS技术,在磁电阻传感器表面加工软磁通量集中器的振动结构,并驱动软磁通量集中器在磁电阻传感器表面周期性的振动,从而实现对静态外磁场的调制,该技术虽然有助于降低磁电阻传感器1/f噪声,但是,振动结构以及驱动器的加入使得磁电阻传感器的复杂程度和尺寸大为增加,工艺复杂程度也大为增加。
发明内容
为了解决上述问题,本发明提出了一种具有多层磁性调制结构的低噪声磁电阻传感器,包括:衬底和位于所述衬底之上的多层磁性调制结构阵列;所述多层磁性调制结构阵列包括多个多层磁性调制结构;所述多层磁性调制结构自上而下为软磁材料层、金属导电层和软磁材料层,且所述多层磁性调制结构首尾两端依次通过导电条连接成两端口激励线圈,并连接激励线圈焊盘,相邻所述多层磁性调制结构工作时具有相反的电流方向;
位于所述多层磁性调制结构正上方或正下方且介于间隙中心的为磁电阻 传感单元,所述磁电阻传感单元敏感方向为垂直于所述多层磁性调制结构的长轴方向,所述磁电阻传感单元的阵列电连接成磁电阻传感器,并连接传感器焊盘;
测量外磁场时,通过所述激励线圈中输入激励电流,所述磁电阻传感器电压或电流输出信号经解调输出即为低噪声电压信号。
进一步地,所述多层磁性调制结构阵列包含2N个所述多层磁性调制结构,所述磁电阻传感单元阵列位于第N和第N+1个所述多层磁性调制结构两侧的N-1个所述间隙内;
或者所述多层磁性调制结构阵列包含2N+1个所述多层磁性调制结构,所述磁电阻传感单元阵列位于第N+1个所述多层磁性调制结构两侧的N个所述间隙内,其中N为大于0的整数。
进一步地,所述激励线圈中输入频率f的激励电流,所述软磁材料磁导率随所述激励电流变化处于线性状态时,所述磁电阻传感器输出的有用信号的频率为f;所述软磁材料磁导率随所述激励电流值变化处于线性和饱和状态时,所述磁电阻传感器输出的有用信号的频率为2f。
进一步地,所述磁电阻传感器包含两端口激励线圈和一个两端口磁电阻传感单元阵列,其中两端口激励线圈和两端口磁电阻传感单元阵列沉积在同一衬底上;
或者所述磁电阻传感器包含两端口激励线圈和四个所述两端口磁电阻传感单元阵列,其中两个所述两端口磁电阻传感单元阵列沉积在同一衬底上;沉积在同一衬底上的两个所述两端口磁电阻传感单元阵列采用翻转180度切片方法通过绑定而成推挽式全桥磁电阻传感器,且两个激励线圈串联成同一个两端口激励线圈;
或者所述磁电阻传感器包含两端口激励线圈和两个两端口磁电阻传感单元阵列,其中沉积在一个衬底上的一个两端口磁电阻传感单元阵列采用切片翻转180度绑定而成推挽式半桥磁电阻传感器,各激励线圈串联成两端口激励线圈;
或者所述磁电阻传感器包含两端口激励线圈和四个所述两端口磁电阻传感单元阵列,沉积在同一衬底上的一个所述两端口磁传感单元阵列通过四个切片两两翻转180度通过绑定而成推挽式全桥磁电阻传感器,各激励线圈串联成两端口激励线圈。
进一步地,所述磁电阻传感器包含两端口激励线圈和四个两端口磁电阻传感单元阵列,两端口激励线圈和四个两端口磁电阻传感单元阵列沉积在同一衬底上,两个所述两端口磁电阻传感单元阵列和另外两个所述两端口磁电阻传感单元阵列具有相反的磁场敏感方向,并电连接成单芯片推挽式全桥磁电阻传感器;
或者所述磁电阻传感器包含两端口激励线圈和两个两端口磁电阻传感单元阵列,两端口激励线圈和两个两端口磁电阻传感单元阵列沉积在同一衬底上,其中一个所述两端口磁电阻传感单元阵列和另外一个所述两端口磁电阻传感单元阵列具有相反的磁场敏感方向,并电连接成单芯片推挽式半桥磁电阻传感器。
进一步地,所述磁电阻传感单元为TMR,GMR或者AMR类型。
进一步地,所述导电条为单层导电材料结构或者和所述多层磁性调制结构相同的结构;所述软磁材料为高磁导率软磁合金,该高磁导率软磁合金包含Fe、Co、Ni元素中的一种或多种,所述软磁材料层和所述金属导电层之间增加绝缘材料层。
进一步地,所述多层磁性调制结构的中间层为Cu,厚度范围1-10um;所述软磁材料层为坡莫合金,厚度范围为1-10um。
进一步地,所述多层磁性调制结构的宽度范围为10-1000um,所述多层磁性调制结构间隙宽度范围为5-50um;通过增加所述多层磁性调制结构宽度相对于所述间隙的比率,来增加外磁场增益因子,并降低噪声。
进一步地,所述激励线圈中频率f的范围为1-100KHz;所述激励电流的密度为1x10 1-1x10 12A/m 2时,所述有用信号的频率为基波频率f;所述激励电流密度大于1x10 12A/m 2时,所述有用信号的频率为二次谐波频率2f。
与现有技术相比,本发明提供的具有多层磁性调制结构的低噪声磁电阻传感器能够有效降低1/f噪声能量密度,进而提高磁信号的测量的精确性;其工艺复简单、结构紧凑,且具有高灵敏,低噪声,小尺寸的优点。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下,还可以根据这些附图获得其他的附图。
图1为本发明的一种具有多层磁性调制结构的低噪声磁电阻传感器切片结构图;
图2为本发明的另一种具有多层磁性调制结构的低噪声磁电阻传感器切片结构图;
图3为本发明的另一种具有多层磁性调制结构的低噪声磁电阻传感器切片结构图;
图4(a)为本发明的一种具有多层磁性调制结构的低噪声磁电阻传感器中激励线圈的结构图;
图4(b)为本发明的一种具有多层磁性调制结构的低噪声磁电阻传感器中磁电阻传感单元阵列结构图;
图5(a)为本发明的另一种具有多层磁性调制结构的低噪声磁电阻传感器中激励线圈结构图;
图5(b)为本发明的另一种具有多层磁性调制结构的低噪声磁电阻传感器中推挽式磁电阻传感器全桥结构图;
图6(a)为本发明的另一种具有多层磁性调制结构的低噪声磁电阻传感器中激励线圈的结构图;
图6(b)为本发明的另一种具有多层磁性调制结构的低噪声磁电阻传感器中推挽式磁电阻传感器半桥结构图;
图7为本发明的多层磁性调制结构阵列和磁电阻传感单元阵列的层位置图;
图8(a)为本发明在无外磁场情况下相邻两个多层磁性调制结构的激励磁场的分布图;
图8(b)为本发明在外磁场H0作用下多层磁性调制结构的激励磁场分布图;
图9为本发明的多层磁性调制结构预调制低噪声磁电阻传感器的激励线圈电流波形;
图10为本发明的多层磁性调制结构预调制低噪声磁电阻传感器的输出 信号波形;
图11为本发明的典型的场增益因子-电流密度曲线;
图12为本发明的增益因子随软磁材料层厚度的变化关系;
图13为本发明的增益因子随金属导电层厚度的变化关系;
图14为本发明的增益因子随导电层间隙的变化关系;
图15为本发明的增益因子随导电层长条宽度的变化关系;
图16为本发明的增益因子随导电层长条间隙/长条宽度的变化关系。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
下面将参考附图并结合实施例,来详细说明本发明。
实施例一
图1为一种具有多层磁性调制结构的低噪声磁电阻传感器切片结构图,包括衬底1和位于所述衬底上的多层磁性调制结构阵列,所述多层磁性调制结构包括多个多层磁性调制结构,其中图1中的21,22,…,2N为所述多层磁性调制结构;且相邻多层磁性调制结构之间通过导电条31,32,…,3N-1相互连接成两端口结构激励线圈,所述多层磁性调制结构同时连接激励线圈焊盘5和激励线圈焊盘6,以及位于多层磁性调制结构阵列间隙之间的磁电阻传感单元阵列41,42,…,4N-2,所述磁电阻传感单元电连接成两端口结构的磁电阻传感单元阵列,并连接磁电阻传感器焊盘7和磁电阻传感器焊盘8;当N为偶数2k(k为大于0的整数)时,磁电阻传感单元阵列位于第k和第k+1个所述多层磁性调制结构两侧的k-1个所述间隙内;当N为奇数2k+1(k为大于0的整数)时,磁电阻传感单元阵列位于第k+1个所述多层磁性调制结构两侧的k个所述间隙内。本发明中的磁电阻传感单元为TMR,GMR或者AMR类型,其磁场敏感方向为垂直于多层磁性调制结构的长轴方向或是长度方向。
图2为另一种具有多层磁性调制结构的低噪声磁电阻传感器切片结构图,包括位于同一衬底之上的两个两端口磁电阻传感单元阵列以及一个两端口激励线圈11,其中图2中的9和10为所述两端口磁电阻传感器。
图3为另一种具有多层磁性调制结构的低噪声磁电阻传感器切片结构图,包括位于同一衬底之上的四个两端口磁电阻传感单元阵列,如图3中的51,52,53和54,其中磁电阻传感单元阵列51,52与磁电阻传感单元阵列53,54的磁场敏感方向相反,且电连接成推挽式磁电阻传感器全桥,所述切片结构图中还有一个两端口激励线圈50;需要说明的是,除了全桥之外,还可以是包括位于同一衬底之上的两个具有相反磁场敏感方向的两端口磁电阻传感单元阵列,并电连接成推挽式半桥结构。
其中,一种具有多层磁性调制结构的低噪声磁电阻传感器电连接结构图,包括一个两端口激励线圈和一个两端口磁电阻传感单元阵列;图4(a)为本发明的一种具有多层磁性调制结构的低噪声磁电阻传感器中激励线圈的结构
图;图4(b)为本发明的一种具有多层磁性调制结构的低噪声磁电阻传感器中磁电阻传感单元阵列结构图;此时两端口磁电阻传感单元阵列能够工作在恒压下对电流进行解调;或者工作在恒流下对电压进行解调。
其中,另一种具有多层磁性调制结构的低噪声磁电阻传感器电连接结构图,包括一个两端口结构激励线圈和一个推挽式磁电阻传感器全桥;图5(a)为本发明的另一种具有多层磁性调制结构的低噪声磁电阻传感器中激励线圈结构图;图5(b)为本发明的另一种具有多层磁性调制结构的低噪声磁电阻传感器中推挽式磁电阻传感器全桥结构图;具体地,全桥的四个两端口桥臂,可以由如图1所示的四个切片结构翻转切片180度得到,此时所述两端口结构激励线圈由四个切片上的两端口激励线圈串联而成;或者全桥的四个两端口桥臂可以由图2所示的两个切片结构翻转切片180度得到,此时所述两端口结构激励线圈由两个切片上的两端口激励线圈串联而成;还可以通过位于同一单芯片上的四个两两磁场敏感方向相反的两端口磁电阻传感器直接电联结得到,此时两端口激励线圈串联成一个两端口结构。
其中,为另一种具有多层磁性调制结构的低噪声磁电阻传感器电连接结 构图,包括一个两端口结构激励线圈和一个推挽式磁电阻传感器半桥;图6(a)为本发明的另一种具有多层磁性调制结构的低噪声磁电阻传感器中激励线圈的结构图;图6(b)为本发明的另一种具有多层磁性调制结构的低噪声磁电阻传感器中推挽式磁电阻传感器半桥结构图;具体地,半桥的两个两端口桥臂可以由图1所示的两个切片结构翻转切片180得到,此时两端口结构激励线圈由两个切片上的两端口激励线圈串联而成;还可以通过位于同一单芯片上的两个磁场敏感方向相反的两端口磁电阻传感器直接电联结得到,此时两端口激励线圈串联成一个两端口结构。
图7为多层磁性调制结构阵列和磁电阻传感单元阵列的层位置图,多层磁性调制结构包括上下两层软磁材料层以及中间的金属导电层102,其中所述软磁材料层如图7中的100和101;磁电阻传感单元103位于多层磁性调制结构的正上方或者正下方,且介入相邻多层磁性调制结构的间隙处。相邻两个多层磁性调制结构104,105具有相反的电流方向,电流通过中间金属导电层102流入,且中间金属导电层102和上下两层所述软磁材料层之间有绝缘材料层隔离。
图8(a)为无外磁场情况下,相邻两个多层磁性调制结构的激励磁场的分布图,由于相邻两个多层磁性调制结构激励电流分布为I0及-I0,而磁电阻传感器位于中心处,I0在上层软磁材料层处产生的激励磁场为Hex(ft),在下层软磁材料层处产生的激励磁场为-Hex(ft);而-I0在上层软磁材料层处产生的激励磁场为-Hex(ft),在下层软磁材料层处产生的激励磁场为Hex(ft),那么在磁电阻传感单元处产生的激励磁场分别为Hex1(ft)和-Hex1(ft),其大小相同方向相反,因此相互抵消。图8(b)为外磁场H0作用下,相邻两个多层磁性调制结构的激励磁场分布图,此时,多层磁性调制结构上下两层软磁材料中的磁场强度发生变化,与外磁场同向的磁场强度的强度增加,为Hex(ft)+H0;而与外磁场反向的磁场强度减小,为-Hex(ft)+H0;并且,由于H0的引入,使得上下软磁材料层的磁导率状态处于不同状态,并且左右两个多层磁性调制结构在磁电阻传感单元处产生的磁场分别为Hex1(ft)+H0和-Hex1(ft)+H0,因此磁电阻传感单元处的磁场强度变化与多 层磁性调制结构的上下软磁材料层所处的外磁场强度H0及激励磁场强度Hex(ft)相关,且激励磁场强度Hex(ft)直接与激励电流I0相关:I0较大时,将使得软磁材料层在磁导率线性区和饱和区变化;而I0较小时,可以使得软磁材料层磁导率完全在线性区域范围内变化。因此多层磁性调制结构预调制低噪声磁电阻传感器实际上是一种磁通门传感器,其区别在于,采用磁电阻传感器来取代二次线圈采集信号。
因此,从磁通门原理角度来讨论激励电流I0和外磁场H0对软磁材料层磁导率的相互关系直接决定着磁电阻传感器的输出信号的样式和性能。图9为激励线圈电流波形,其频率为f,当电流密度幅度Je0,图10为磁电阻传感器位置处磁场测量信号,当磁导率在线性区域时,磁电阻传感器位置处的磁感应强度同样具有频率为f的输出特征;另一方面,当激励电流幅度足够大,使得磁导率处于线性区域和饱和区域,则根据磁通门原理可知,此时输出为二次谐波2f信号,且磁场信号幅度Bex1f和Bex2f与测量磁场强度H0成正比。
为了获得最优化的多层磁性调制结构软磁长条阵列的设计,将根据磁场增益因子的大小及变化规律,对多层磁性调制结构软磁长条阵列的软磁材料层厚度,中间导电层厚度,长条宽度和间隙尺寸进行优化设计。我们将以工作在一次基波状态为例进行讨论,其同样适用于二次谐波工作状态。
需要说明的是,本发明中的导电条为单层导电材料结构或者和所述多层磁性调制结构相同的结构,所述软磁材料为高磁导率软磁合金,该高磁导率软磁合金包含Fe、Co、Ni元素中的一种或多种,所述软磁材料层和所述金属导电层之间可以增加绝缘材料层。
其中,磁场增益因子的定义为:G=Bex1f/(u0*H0),实际仿真时,通过设定外磁场幅度H0在1-9G范围内,同时对频率为f的电流密度幅值Je0进行扫描,计算磁场增益因子,以此来衡量多层磁性调制结构阵列的设计参数。
图11为典型的增益因子-电流密度曲线,外磁场为H01,H03,H05,H07和H09,电流密度在0-1x10 8A/m 2范围内变化,从图中看出,磁场增益因子为线性特征,随外磁场增加,磁场增益因子减小;随电流密度增加,磁场增益因子增加。
图12为电流密度在0-1x10 10A/m 2范围内,增益因子随软磁材料层厚度的变化关系,可以看出,随软磁材料层厚度增加到5um时,其增益因子达到最大值;继续增加厚度,增益因子提高不大。图13为增益因子随金属导电层厚度的变化关系,可以看出,随金属导电层厚度增加,磁场增益因子,逐渐增加,而在金属导电层厚度为5um时,其增加趋势放缓。图14为增益因子随间隙宽度的变化关系,可以看出,随间隙宽度的增加,增益因子减小;其中,所述间隙为多层磁性调制结构与多层磁性调制结构之间的间隙。图15为增益因子随多层磁性调制结构宽度的变化关系,可以看出,随所述多层磁性调制结构宽度的增加,增益因子增加。图16为增益因子随所述间隙与多层磁性调制结构宽度的比率的变化关系,可以看出,随所述比率的增加,增益因子减小;其中,所述间隙为多层磁性调制结构与多层磁性调制结构之间的间隙。
综上所述,本发明提供的具有多层磁性调制结构的低噪声磁电阻传感器能够有效降低1/f噪声能量密度,进而提高磁信号的测量的精确性;其工艺复简单、结构紧凑,且具有高灵敏,低噪声,小尺寸的优点。
以上所述仅是本发明的优选实施方式,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种具有多层磁性调制结构的低噪声磁电阻传感器,其特征在于,包括:衬底和位于所述衬底之上的多层磁性调制结构阵列;所述多层磁性调制结构阵列包括多个多层磁性调制结构;所述多层磁性调制结构自上而下为软磁材料层、金属导电层和软磁材料层,且所述多层磁性调制结构首尾两端依次通过导电条连接成两端口激励线圈,并连接激励线圈焊盘,相邻所述多层磁性调制结构工作时具有相反的电流方向;
    位于所述多层磁性调制结构正上方或正下方且介于间隙中心的为磁电阻传感单元,所述磁电阻传感单元敏感方向为垂直于所述多层磁性调制结构的长轴方向,所述磁电阻传感单元的阵列电连接成磁电阻传感器,并连接传感器焊盘;
    测量外磁场时,通过所述激励线圈中输入激励电流,所述磁电阻传感器电压或电流输出信号经解调输出即为低噪声电压信号。
  2. 根据权利要求1所述的一种具有多层磁性调制结构的低噪声磁电阻传感器,其特征在于,所述多层磁性调制结构阵列包含2N个所述多层磁性调制结构,所述磁电阻传感单元阵列位于第N和第N+1个所述多层磁性调制结构两侧的N-1个所述间隙内;
    或者所述多层磁性调制结构阵列包含2N+1个所述多层磁性调制结构,所述磁电阻传感单元阵列位于第N+1个所述多层磁性调制结构两侧的N个所述间隙内,其中N为大于0的整数。
  3. 根据权利要求1所述的一种具有多层磁性调制结构的低噪声磁电阻传感器,其特征在于,所述激励线圈中输入频率f的激励电流,所述软磁材料磁导率随所述激励电流变化处于线性状态时,所述磁电阻传感器输出的有用信号的频率为f;所述软磁材料磁导率随所述激励电流值变化处于线性和饱和状态时,所述磁电阻传感器输出的有用信号的频率为2f。
  4. 根据权利要求1所述的一种具有多层磁性调制结构的低噪声磁电阻传感器,其特征在于,
    所述磁电阻传感器包含两端口激励线圈和一个两端口磁电阻传感单元阵列,其中两端口激励线圈和两端口磁电阻传感单元阵列沉积在同一衬底上;
    或者所述磁电阻传感器包含两端口激励线圈和四个所述两端口磁电阻传感单元阵列,其中两个所述两端口磁电阻传感单元阵列沉积在同一衬底上;沉积在同一衬底上的两个所述两端口磁电阻传感单元阵列采用翻转180度切片方法通过绑定而成推挽式全桥磁电阻传感器,且两个激励线圈串联成同一个两端口激励线圈;
    或者所述磁电阻传感器包含两端口激励线圈和两个两端口磁电阻传感单元阵列,其中沉积在一个衬底上的一个两端口磁电阻传感单元阵列采用切片翻转180度绑定而成推挽式半桥磁电阻传感器,各激励线圈串联成两端口激励线圈;
    或者所述磁电阻传感器包含两端口激励线圈和四个所述两端口磁电阻传感单元阵列,沉积在同一衬底上的一个所述两端口磁传感单元阵列通过四个切片两两翻转180度通过绑定而成推挽式全桥磁电阻传感器,各激励线圈串联成两端口激励线圈。
  5. 根据权利要求1所述的一种具有多层磁性调制结构的低噪声磁电阻传感器,其特征在于,
    所述磁电阻传感器包含两端口激励线圈和四个两端口磁电阻传感单元阵列,两端口激励线圈和四个两端口磁电阻传感单元阵列沉积在同一衬底上,两个所述两端口磁电阻传感单元阵列和另外两个所述两端口磁电阻传感单元阵列具有相反的磁场敏感方向,并电连接成单芯片推挽式全桥磁电阻传感器;
    或者所述磁电阻传感器包含两端口激励线圈和两个两端口磁电阻传感单元阵列,两端口激励线圈和两个两端口磁电阻传感单元阵列沉积在同一衬底上,其中一个所述两端口磁电阻传感单元阵列和另外一个所述两端口磁电阻传感单元阵列具有相反的磁场敏感方向,并电连接成单芯片推挽式半桥磁电阻传感器。
  6. 根据权利要求1所述的一种具有多层磁性调制结构的低噪声磁电阻传感器,其特征在于,所述磁电阻传感单元为TMR,GMR或者AMR类型。
  7. 根据权利要求1所述的一种具有多层磁性调制结构的低噪声磁电阻传感器,其特征在于,所述导电条为单层导电材料结构或者和所述多层磁性调制结构相同的结构;所述软磁材料为高磁导率软磁合金,该高磁导率软磁合金包含Fe、Co、Ni元素中的一种或多种,所述软磁材料层和所述金属导电层之间增加绝缘材料层。
  8. 根据权利要求7所述的一种具有多层磁性调制结构的低噪声磁电阻传感器,其特征在于,所述多层磁性调制结构的中间层为Cu,厚度范围1-10um;所述软磁材料层为坡莫合金,厚度范围为1-10um。
  9. 根据权利要求7所述的一种具有多层磁性调制结构的低噪声磁电阻传感器,其特征在于,所述多层磁性调制结构的宽度范围为10-1000um,所述多层磁性调制结构间隙宽度范围为5-50um;通过增加所述多层磁性调制结构宽度相对于所述间隙的比率,来增加外磁场增益因子,并降低噪声。
  10. 根据权利要求3所述的一种具有多层磁性调制结构的低噪声磁电阻传感器,其特征在于,所述激励线圈中频率f的范围为1-100KHz;所述激励电流的密度为1x10 1-1x10 12A/m 2时,所述有用信号的频率为基波频率f;所述激励电流密度大于1x10 12A/m 2时,所述有用信号的频率为二次谐波频率2f。
PCT/CN2018/084439 2017-04-26 2018-04-25 一种具有多层磁性调制结构的低噪声磁电阻传感器 WO2018196785A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18792248.9A EP3617727A4 (en) 2017-04-26 2018-04-25 LOW-NOISE MAGNETORESISTIVE SENSOR WITH A MULTI-LAYER MAGNETIC MODULATION STRUCTURE
US16/608,596 US11067647B2 (en) 2017-04-26 2018-04-25 Low-noise magnetoresistive sensor having multi-layer magnetic modulation structure
JP2019558452A JP7099731B2 (ja) 2017-04-26 2018-04-25 多層磁気変調構造を有する低ノイズ磁気抵抗センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710284467.7 2017-04-26
CN201710284467.7A CN107422283B (zh) 2017-04-26 2017-04-26 一种具有多层磁性调制结构的低噪声磁电阻传感器

Publications (1)

Publication Number Publication Date
WO2018196785A1 true WO2018196785A1 (zh) 2018-11-01

Family

ID=60424428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084439 WO2018196785A1 (zh) 2017-04-26 2018-04-25 一种具有多层磁性调制结构的低噪声磁电阻传感器

Country Status (5)

Country Link
US (1) US11067647B2 (zh)
EP (1) EP3617727A4 (zh)
JP (1) JP7099731B2 (zh)
CN (1) CN107422283B (zh)
WO (1) WO2018196785A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378994A (zh) * 2020-11-09 2021-02-19 华东理工大学 一种基于tmr磁阻传感器阵列的金属构件深层缺陷的电磁检测探头
US11067647B2 (en) 2017-04-26 2021-07-20 MultiDimension Technology Co., Ltd. Low-noise magnetoresistive sensor having multi-layer magnetic modulation structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108413992A (zh) 2018-01-30 2018-08-17 江苏多维科技有限公司 一种三轴预调制低噪声磁电阻传感器
CN108414951B (zh) * 2018-03-13 2023-06-30 武汉嘉晨电子技术有限公司 周期性调制磁传感器灵敏度降低器件噪声的方法及装置
CN111505545B (zh) * 2020-04-30 2022-02-18 江苏多维科技有限公司 一种机电调制磁阻旋转式磁场强探头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393962A (zh) * 2007-09-17 2009-03-25 希捷科技有限公司 具有多铁材料的磁阻传感器存储器
US20100039106A1 (en) * 2008-08-14 2010-02-18 U.S. Government As Represented By The Secretary Of The Army Mems device with tandem flux concentrators and method of modulating flux
CN101680740A (zh) * 2007-05-29 2010-03-24 Nxp股份有限公司 外部磁场角度确定
CN107422283A (zh) * 2017-04-26 2017-12-01 江苏多维科技有限公司 一种具有多层磁性调制结构的低噪声磁电阻传感器
CN206863194U (zh) * 2017-04-26 2018-01-09 江苏多维科技有限公司 一种具有多层磁性调制结构的低噪声磁电阻传感器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065797A (en) * 1974-12-20 1977-12-27 Matsushita Electric Industrial Co., Ltd. Multi-element magnetic head
US6166539A (en) * 1996-10-30 2000-12-26 Regents Of The University Of Minnesota Magnetoresistance sensor having minimal hysteresis problems
US6822443B1 (en) * 2000-09-11 2004-11-23 Albany Instruments, Inc. Sensors and probes for mapping electromagnetic fields
JP3206810B2 (ja) 1999-09-02 2001-09-10 マイクロマグネ有限会社 磁気検出装置
DE10113853B4 (de) * 2000-03-23 2009-08-06 Sharp K.K. Magnetspeicherelement und Magnetspeicher
JP3843343B2 (ja) * 2003-07-22 2006-11-08 国立大学法人金沢大学 非破壊検査用渦電流センサ
CN100587993C (zh) * 2006-12-26 2010-02-03 中国科学院合肥物质科学研究院 巨磁阻磁传感器及其制备方法
US8222898B1 (en) * 2011-04-15 2012-07-17 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for utilizing magnetic field modulation to increase the operating frequency of sensors
US9069031B2 (en) * 2012-03-20 2015-06-30 The Regents Of The University Of California Piezoelectrically actuated magnetic-field sensor
CN103076577B (zh) * 2012-08-03 2016-12-21 陈磊 一种检测磁场和加速度的磁阻传感器芯片
US9261571B2 (en) * 2013-08-15 2016-02-16 Texas Instruments Incorporated Fluxgate magnetic sensor readout apparatus
CN103630855B (zh) 2013-12-24 2016-04-13 江苏多维科技有限公司 一种高灵敏度推挽桥式磁传感器
CN103913709B (zh) * 2014-03-28 2017-05-17 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
JP2015197388A (ja) 2014-04-02 2015-11-09 アルプス電気株式会社 フラックスゲート型磁気センサ
US9519034B2 (en) 2014-05-15 2016-12-13 Everspin Technologies, Inc. Bipolar chopping for 1/F noise and offset reduction in magnetic field sensors
CN104280700B (zh) * 2014-09-28 2017-09-08 江苏多维科技有限公司 一种单芯片差分自由层推挽式磁场传感器电桥及制备方法
CN104569870B (zh) * 2015-01-07 2017-07-21 江苏多维科技有限公司 一种单芯片具有校准/重置线圈的z轴线性磁电阻传感器
CN204739999U (zh) * 2015-04-16 2015-11-04 江苏多维科技有限公司 一种单封装的高强度磁场磁电阻角度传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101680740A (zh) * 2007-05-29 2010-03-24 Nxp股份有限公司 外部磁场角度确定
CN101393962A (zh) * 2007-09-17 2009-03-25 希捷科技有限公司 具有多铁材料的磁阻传感器存储器
US20100039106A1 (en) * 2008-08-14 2010-02-18 U.S. Government As Represented By The Secretary Of The Army Mems device with tandem flux concentrators and method of modulating flux
CN107422283A (zh) * 2017-04-26 2017-12-01 江苏多维科技有限公司 一种具有多层磁性调制结构的低噪声磁电阻传感器
CN206863194U (zh) * 2017-04-26 2018-01-09 江苏多维科技有限公司 一种具有多层磁性调制结构的低噪声磁电阻传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3617727A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11067647B2 (en) 2017-04-26 2021-07-20 MultiDimension Technology Co., Ltd. Low-noise magnetoresistive sensor having multi-layer magnetic modulation structure
CN112378994A (zh) * 2020-11-09 2021-02-19 华东理工大学 一种基于tmr磁阻传感器阵列的金属构件深层缺陷的电磁检测探头
CN112378994B (zh) * 2020-11-09 2024-04-30 华东理工大学 一种基于tmr磁阻传感器阵列的金属构件深层缺陷的电磁检测探头

Also Published As

Publication number Publication date
JP7099731B2 (ja) 2022-07-12
EP3617727A4 (en) 2021-05-05
US11067647B2 (en) 2021-07-20
EP3617727A1 (en) 2020-03-04
US20200142009A1 (en) 2020-05-07
CN107422283B (zh) 2023-05-30
CN107422283A (zh) 2017-12-01
JP2020517962A (ja) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2018196785A1 (zh) 一种具有多层磁性调制结构的低噪声磁电阻传感器
US10060941B2 (en) Magnetoresistive gear tooth sensor
US4686472A (en) Magnetic sensor having closely spaced and electrically parallel magnetoresistive layers of different widths
JP5518661B2 (ja) 半導体集積回路、磁気検出装置、電子方位計
JP6429871B2 (ja) 磁気抵抗ミキサ
WO2019149197A1 (zh) 一种三轴预调制低噪声磁电阻传感器
CN102435959A (zh) 一种磁声表面波磁场传感器及其制备方法
JP6991862B2 (ja) プッシュ-プルx軸磁気抵抗センサ
US20060055614A1 (en) Apparatus for detection of the gradient of a magnetic field, and a method for production of the apparatus
CN111929625B (zh) 磁场传感器及测试方法
JP6968449B2 (ja) 平衡磁気抵抗周波数ミキサ
JPWO2020208907A1 (ja) 磁気抵抗素子および磁気センサ
US6819101B2 (en) Magnetic detector
JP2015219227A (ja) 磁気センサ
US20100271018A1 (en) Sensors for minute magnetic fields
CN110927636A (zh) 测量垂直磁场的传感器及其方法
EP3373022A1 (en) High-sensitivity single-chip push-pull type tmr magnetic field sensor
RU2436200C1 (ru) Магниторезистивный датчик
JPH052033A (ja) 電流センサ及びその検出電流範囲の設定方法
CN110389386A (zh) 可用于地磁场测量的高q值磁电超材料结构
JP3969002B2 (ja) 磁気センサ
JP2004117367A (ja) 磁気センサ及び同磁気センサの製造方法
Wu et al. Highly sensitive surface acoustic wave magnetic field sensor based on the loss mechanism
JPH0217476A (ja) 差動型磁気抵抗効果素子
JPH06500203A (ja) 小形高感度磁気抵抗式磁力計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018792248

Country of ref document: EP

Effective date: 20191126