WO2018196043A1 - 无人飞行器的控制装置及无人飞行器 - Google Patents

无人飞行器的控制装置及无人飞行器 Download PDF

Info

Publication number
WO2018196043A1
WO2018196043A1 PCT/CN2017/084485 CN2017084485W WO2018196043A1 WO 2018196043 A1 WO2018196043 A1 WO 2018196043A1 CN 2017084485 W CN2017084485 W CN 2017084485W WO 2018196043 A1 WO2018196043 A1 WO 2018196043A1
Authority
WO
WIPO (PCT)
Prior art keywords
board
interface
soft board
interface board
aerial vehicle
Prior art date
Application number
PCT/CN2017/084485
Other languages
English (en)
French (fr)
Inventor
尹亮亮
高廉洁
李少斌
张羽
Original Assignee
上海拓攻机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海拓攻机器人有限公司 filed Critical 上海拓攻机器人有限公司
Priority to EP17902586.1A priority Critical patent/EP3432111B1/en
Priority to US16/088,500 priority patent/US11032906B2/en
Publication of WO2018196043A1 publication Critical patent/WO2018196043A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/148Arrangements of two or more hingeably connected rigid printed circuit boards, i.e. connected by flexible means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1417Mounting supporting structure in casing or on frame or rack having securing means for mounting boards, plates or wiring boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/04Assemblies of printed circuits
    • H05K2201/042Stacked spaced PCBs; Planar parts of folded flexible circuits having mounted components in between or spaced from each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/04Assemblies of printed circuits
    • H05K2201/047Box-like arrangements of PCBs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/05Flexible printed circuits [FPCs]
    • H05K2201/056Folded around rigid support or component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10295Metallic connector elements partly mounted in a hole of the PCB
    • H05K2201/10303Pin-in-hole mounted pins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4688Composite multilayer circuits, i.e. comprising insulating layers having different properties
    • H05K3/4691Rigid-flexible multilayer circuits comprising rigid and flexible layers, e.g. having in the bending regions only flexible layers

Definitions

  • the present disclosure relates to the field of drone technology, for example, to a control device for an unmanned aerial vehicle and an unmanned aerial vehicle.
  • An unmanned aerial vehicle is an unmanned aerial vehicle that is operated by a radio remote control device or its own program control device.
  • the control device is required to control and navigate the unmanned aerial vehicle.
  • the control device controls the attitude of the unmanned aerial vehicle, feeds back the position of the unmanned aerial vehicle, and realizes the attitude control and positioning function of the unmanned aerial vehicle.
  • the control device of the unmanned aerial vehicle in the related art generally performs the analysis of the attitude information and the position information of the unmanned aerial vehicle by the inertial measurement device in the control device, thereby implementing the navigation function.
  • the present disclosure provides a control device for an unmanned aerial vehicle and an unmanned aerial vehicle, which avoids the problem that the degree of integration of the UAV control device in the related art is low and the vibration has a large influence on the control device.
  • a control device for an unmanned aerial vehicle can improve the reliability of the unmanned aerial vehicle system by providing the control device of the unmanned aerial vehicle described above.
  • An unmanned aerial vehicle control device includes an outer casing, an inertial measurement device fixed in the outer casing, a flight control main circuit board electrically connected to the inertial measurement device, and an electrical connection to the flight control main circuit board and closely attached to the outer casing An interface soft board of the inner wall, wherein both sides of the interface soft board are electrically connected to the external device through the outer casing.
  • the interface soft board includes a first interface board and a second interface board that are opposite to each other, and a first soft board that is connected to the first interface board and the second interface board, where the first interface board and the first interface board
  • the two interface boards are each provided with a pin header electrically connected to the external device, and the first soft board is electrically connected to the flight control main circuit board.
  • the interface board further includes a power soft board electrically connected to the second interface board, and a second soft board electrically connected to the power soft board, where the second soft board is located in the power soft board and the second board Between the interface boards, the second soft board is used to shield electromagnetic interference between the power soft board and the second interface board.
  • an interface plug is disposed on both sides of the housing, and the pin header on the first interface board and the pin header on the second interface board are electrically connected to the external device through the interface card.
  • the first interface board and the second interface board are fixed on the inner side of the interface card by fasteners;
  • a limiting plate is disposed on an outer side of the first interface board and an outer side of the second interface board, and the limiting board is disposed on the interface card.
  • the device further includes a limiting frame disposed inside the outer casing and sleeved outside the inertial measuring device, wherein the first interface board, the flight control main circuit board, and the power soft board are respectively affixed Outside the three side walls of the limiting frame.
  • an extension portion of one surface of the limiting frame body is provided with a card bump, and a gap is formed between the card bump and a sidewall of the limiting frame body, and the power soft board is adjacent to the first One end of a flexible board is placed in the gap.
  • the outer casing includes an upper shell and a bottom cover connected to each other, and the upper shell is provided with slots on both sides thereof, and the interface card is detachably inserted into the slot, the limit board
  • the top of the upper casing is provided with a limiting boss, and the inertial measuring device is limited by the limiting boss and supported by the bottom cover.
  • the side of the limiting frame body not attached to the first interface board, the flight control main circuit board, and the power soft board is provided with an arc-shaped protrusion, and the inner wall of the upper shell is provided with the arc a card slot in which a convex protrusion is stuck;
  • a top surface of one side of the limiting frame body is provided with a notch, and the bottom cover is provided with a protruding strip that is inserted into the notch.
  • an unmanned aerial vehicle includes any of the above control devices.
  • the above-mentioned control device is arranged by the above structure, and the structure between the plurality of components is compact, the integration degree of the entire control device is improved, the influence of the vibration on the inertial measurement device is reduced, and the stability of the measurement of the inertial measurement device is improved.
  • the interface soft board is placed in the outer casing, and the interface soft board integrates the existing plurality of interface boards which are separately arranged, which can improve the stability of the interface soft board installed in the outer casing, and can be folded at will, thereby saving installation space and reducing Small overall control unit volume.
  • Set the pin headers on both sides of the interface board The port plugs are placed on both sides of the case to avoid the problem of plugging the wrong interface.
  • the above-mentioned unmanned aerial vehicle can improve the accuracy of detection and control of the unmanned aerial vehicle and improve the flight reliability of the unmanned aerial vehicle system.
  • Figure 1 is an exploded perspective view of a control device in an embodiment
  • FIG. 2 is a schematic structural view of an upper case in an embodiment
  • Figure 3 is a schematic structural view of a bottom cover in an embodiment
  • FIG. 4 is an exploded perspective view of an inertial measurement device in an embodiment
  • FIG. 5 is a schematic structural view showing a first integrated circuit board of a sensing component of an inertial measurement device according to an embodiment
  • FIG. 6 is a schematic structural view showing a first integrated circuit board of a sensing component of an inertial measurement device according to an embodiment
  • FIG. 7 is a schematic structural view of a first weight increasing block of an inertial measuring device according to an embodiment
  • FIG. 8 is a schematic structural view of an interface soft board after installation according to an embodiment
  • FIG. 9 is a schematic structural view of an interface soft board after being unfolded in an embodiment
  • FIG. 10 is a schematic structural view of a limit frame in an embodiment.
  • control device The overall integration of the control device is not high, the structure between the various components of the control device is not compact, and vibration occurs during the flight of the UAV, which will affect the measurement of the inertial measurement device, resulting in no measurement data. accurate.
  • Each interface board connected to the circuit board on the control device is usually arranged separately.
  • the control device needs to have sufficient installation space, resulting in a larger volume of the entire control device, a relatively complicated structure, and a separate setting.
  • the interface board has a relatively poor stability problem and is greatly affected by vibration.
  • there are many external interfaces of the control device and there is a problem of inserting the wrong interface when using.
  • the embodiment provides a control device for an unmanned aerial vehicle.
  • the control device may include a casing, an interface insert 2, an inertial measurement device 3, a flight control main circuit board 4, an interface soft board 5, and a limit frame. Body 6.
  • the outer casing includes an upper casing 1 and a bottom cover 7.
  • the upper casing 1 and the bottom cover 7 are respectively provided with connecting holes at four corners thereof, and can pass through the upper casing 1 through the connecting member.
  • a connecting hole of the bottom cover 7, and the upper case 1 and the bottom cover 7 are fixedly connected.
  • the upper casing 1 may have a hollow structure. As shown in FIG. 2, two limiting bosses 1.2 may be disposed at the top of the upper casing 1, and the limiting bosses 1.2 are used for limiting and fixing the inertial measuring device 3. .
  • a card slot 1.3 having an arc structure is disposed on an inner wall of the upper casing 1 , and the card slot 1.3 is used for limiting the limiting frame 6 .
  • a slot 1.1 is symmetrically formed on both sides of the upper case 1, and an opposite first positioning pin hole 1.4 is vertically disposed on the upper and lower sides of the slot 1.1.
  • the interface plug 2 can be horizontally inserted. Inside the slot 1.1, and fixed to the first positioning pin hole 1.4 of the slot 1.1 by a positioning pin (not shown).
  • a rib 7.1 is disposed on the bottom cover 7, and the rib 7.1 is used to limit the limiting frame 6 so that the limiting frame 6 is restrained in the outer casing to reduce vibration. The effect on the limit frame 6.
  • the upper casing 1 and the bottom cover 7 are fixedly connected by a connecting member, so that the upper casing 1 and the bottom cover 7 can press the inertial measuring device 3, the interface soft plate 5 and the limiting frame 6 to make inertial measurement.
  • the position of the device 3, the interface soft board 5 and the limiting frame 6 is stabilized, and the influence of the vibration on the inertial measuring device 3, the interface soft board 5 and the limiting frame 6 is reduced.
  • the interface plug-in 2 is provided with two, and the two interface plug-ins 2 are respectively inserted into the slots 1.1 on both sides of the upper shell 1 and can be corresponding to the two ends of the interface plug-in 2 .
  • First positioning The position of the pin hole 1.4 is vertically provided with a second positioning pin hole 2.1, and the positioning pin passes through the first positioning pin hole 1.4 and the second positioning pin hole 2.1 in order from bottom to top, and the first positioning pin hole 1.4 connects the interface card 2 Removably installed in slot 1.1.
  • the interface card 2 of the present embodiment can be mass-produced separately, is easy to process, can be replaced at any time, and is not detachably mounted on the upper casing 1 by means of the upper casing and the interface insert integrally provided in the related art.
  • the upper case 1 needs to be replaced, which saves cost and improves the overall aesthetics of the outer casing.
  • the interface insert 2 can be a plastic part to facilitate processing and reduce processing cost.
  • the socket 2 can be provided with a socket 2.2 for inserting a plug of an external device, and the socket 2.2 can be provided with a pinhole hole 2.3 corresponding to the pin header 5.1 on the interface board 5, and the row of the interface board 5 is arranged.
  • the needle 5.1 is inserted into the pinhole hole 2.3 to electrically connect the interface card to the plug of the external device.
  • the inertial measurement device 3 is mounted in the upper casing 1 and is pressed into the upper casing 1 by the bottom cover 7.
  • the inertial measurement device 3 includes a first casing mounted on the first casing.
  • the inner sensing component and the shock absorbing assembly, wherein the first outer casing may include an annular casing 3.1, and an upper metal piece 3.2 and a lower metal piece 3.3 on the upper and lower sides of the annular casing 3.1.
  • the above sensing assembly and shock absorbing assembly are placed in the annular housing 3.1 and supported by the lower metal piece 3.3.
  • the upper metal piece 3.2 and the lower metal piece 3.3 can be fixed to the annular casing 3.1 by the buckle being engaged with the card hole.
  • two inserts 3.4 extend from opposite edges of the upper metal piece 3.2, and two opposite edges of the lower metal piece 3.3 extend with two inserts 3.4, and the inserts 3.4 can be inserted into the annular casing 3.1 and Resisting on the inner wall of the annular casing 3.1 prevents deformation of the annular casing 3.1, enhances the rigidity of the annular casing, acts as a reinforcing rib, and also makes the structure of the entire first casing more stable and can reduce vibration. The effect on the sensing components located within the first housing.
  • four through holes 3.5 are defined in the surface of the upper metal piece 3.2 and the lower metal piece 3.3.
  • the sensing component includes a first integrated circuit board 3.6 and a second integrated circuit board 3.7.
  • the first integrated circuit board 3.6 and the second integrated circuit board 3.7 may be connected by a first flexible cable (not shown).
  • the first integrated circuit board 3.6 may be provided with an inertial sensor (not shown in the figure).
  • a second flexible cable 3.8, on the second integrated circuit board 3.7 is provided with a gas pressure sensor, the second flexible cable 3.8 is connected to the flight control main circuit board 4, the first integrated circuit board 3.6 and the second
  • the signals of the sensors on the integrated circuit board 3.7 are transmitted to the flight control main circuit board 4 through the second flexible cable 3.8, which can realize the data fusion of the same data and multiple sensors, and realize the data integration of multiple sensor components. Improve measurement data reliability, effectiveness, stability and accuracy.
  • the above sensing component can acquire the flight state information of the unmanned aerial vehicle in real time, and the collected data has a three-axis attitude angle or an angular rate, and an acceleration and a three-axis orientation.
  • the shock absorbing assembly includes a first cushion 3.9, a first weight increasing block 3.1', a second weight increasing block 3.2', and a second cushioning pad 3.3' connected in sequence from top to bottom.
  • the above sensing component can be placed in a space between the first weight increasing block 3.1' and the second weight increasing block 3.2'.
  • a receiving cavity (not shown) for placing the sensing component is formed inside the first weight increasing block 3.1' and the second weight increasing block 3.2'.
  • the first integrated circuit board 3.6 can be placed within the second weighting block 3.2'. Referring to Fig. 7, a receiving chamber 3.4' and a pneumatic chamber 3.5' may be disposed on the first weight increasing block 3.1'.
  • the receiving chamber 3.4' may be provided with two, and the two receiving chambers 3.4' may be respectively used for accommodating the inertial sensor. Gyro and accelerometer.
  • the air pressure chamber 3.5' is connected to the outside for accommodating the second integrated circuit board 3.7 and the air pressure sensor on the second integrated circuit board.
  • the accommodating cavity is filled with thermal grease.
  • a sealed cover (not shown) may be mounted on the pneumatic chamber 3.5'. The sealed cover and the pneumatic chamber 3.5' may be secured by a connector for sealing the pneumatic chamber 3.5'.
  • the air pressure chamber 3.5' is sealed by the sealed cover, so that the air pressure chamber 3.5' is isolated from the accommodating cavity formed between the first weight increasing block 3.1' and the second weight increasing block 3.2', thereby preventing the thermal grease from affecting the air pressure chamber 3.5.
  • the internal pressure increases the accuracy of the measurement of the air pressure sensor located within the pressure chamber 3.5'.
  • the filling of the above thermal grease can alleviate the vibration, so that the temperature of each component on the first integrated circuit board 3.6 is kept within a certain range and the heat is uniform, and the vibration of the component itself can be avoided. Filled with thermal grease, it can integrate multiple components on the integrated circuit board and vibrate at the same frequency to reduce the vibration.
  • the first cushion 3.9 and the second cushion 3.3' can be made of loose porous, gas permeable and cushioning materials, which can avoid excessive wind speed and form local turbulence, thereby avoiding a large amount of rapid entry of outside air to affect the pressure chamber 3.5'.
  • the internal air pressure changes sharply, which can buffer the isolation vibration, reduce the resonance frequency and slow down Rush high-speed messy airflow.
  • the flight control main circuit board 4 may be integrated with a main control unit (not shown), the main control unit may be used to control the unmanned aerial vehicle and the mission equipment, and the main control unit may receive the inertial measurement.
  • the main control unit can be implemented by any one of the advanced RISC Machine (ARM), the digital signal processor (DSP), and the single chip.
  • the interface soft board 5 can be a flexible circuit board, and the interface soft board 5 has the characteristics of free folding and space saving.
  • the interface board 5 may be provided with a power unit for supplying power to the entire control device and an interface connected to the task device.
  • the interface may be a serial port, an integrated circuit (IIC) bus interface, or a serial peripheral interface (Serial). Peripheral Interface (SPI) bus interface and one or more of the Controller Area Network (CAN) bus interfaces.
  • IIC integrated circuit
  • SPI serial peripheral interface
  • CAN Controller Area Network
  • the interface flexible board 5 includes a first interface board 5.2 and a second interface board 5.3 opposite to each other, and is connected to the first interface board 5.2 and the first soft board 5.4 of the second interface board 5.3.
  • the first interface board 5.2, the second interface board 5.3, and the first soft board 5.4 can be closely attached to the inner side of the upper shell 1, so that the interface soft board 5 is more stably installed in the upper shell 1, and the space utilization is reasonable and improved.
  • the degree of integration reduces the volume of the entire control unit.
  • the interface flexible board 5 includes a pin header 5.1, and the pin header 5.1 of the interface soft board 5 is disposed on the first interface board 5.2 and the second interface board 5.3, and the board-to-board connection is provided on the first soft board 5.4.
  • the first flexible board 5.4 is connected to the flight control main circuit board 4 through the board-to-board connector.
  • a power soft board 5.5 is connected to one side of the second interface board 5.3, and a second soft board 5.6 is disposed between the power soft board 5.5 and the second interface board 5.3.
  • the second flexible board 5.6 can be covered with copper skin to shield electromagnetic interference between the power soft board 5.5 and the second interface board 5.3.
  • the first interface board 5.2 and the second interface board 5.3 are closely attached to the upper casing 1 .
  • a nut 5.8 is disposed on the first interface board 5.2 and the second interface board 5.3, and the first through hole corresponding to the slot 1.1 of the upper shell 1 is disposed through the fastener (such as a bolt).
  • the first through hole is connected to the nut 5.8, and the first interface board 5.2 and the second interface board 5.3 can be fixed in the two sides of the upper case 1 and the slot 1.1, and the back and forth movement of the interface board 5 can be restricted.
  • the first flexible board 5.4 is in close contact with a side wall of the upper casing 1.
  • the limiting plate 5.7 is disposed on the outer side of the first interface board 5.2 and the second interface board 5.3.
  • the area of the limiting board 5.7 is smaller than the area of the first interface board 5.2 and the second interface board.
  • the limiting plate can be locked in the slot 1.1, and can restrict the up and down and left and right movement of the interface soft board 5, and the first interface board 5.2 and the second interface board 5.3 can be fixed in the upper shell 1 by bolts and nuts 5.8.
  • the front and rear movement of the interface soft board is restricted, so that the entire interface soft board 5 is limited in the upper shell 1 to reduce the influence of vibration on the interface soft board.
  • the first interface board 5.2, the second interface board 5.3, the first soft board 5.4, the power soft board 5.5, and the second soft board 5.6 can be folded by the unfolded interface soft board 5 (shown in FIG. 9), and can be The size of the different upper casing 1 is folded into the interface soft board 5 adapted to the upper casing 1, which saves the installation space of the interface flexible board 5, so that the arrangement of the plurality of components on the interface soft board 5 is reasonable, and the entire control device is reduced.
  • the volume can be adjusted according to the shape of the upper casing 1 to improve the stability of the interface soft board 5 installation and reduce the influence of vibration on the interface soft board.
  • the limiting frame body 6 can be supported and fixed in the upper casing 1 by the bottom cover 7, and the bottom cover 7 presses the limiting frame body 6 into the upper casing 1.
  • the limiting frame body 6 can be sleeved outside the first outer casing of the inertial measuring device 3, and the first interface board 5.2 of the interface soft board 5 and the power soft board 5.5 and the flying control main circuit board 4 can be attached to the limiting frame.
  • the extending portion of one side surface of the limiting frame body 6 may be provided with a card bump 6.1, and a gap 6.2 is formed between the card bump 6.1 and the sidewall of the limiting frame body 6.
  • the card bump 6.1 is disposed between the power soft board 5.5 and the second soft board 5.6, and the end of the power soft board 5.5 is clamped in the gap 6.2, and the card bump 6.1 is soft.
  • the plate 5.5 is separated from the second soft board 5.6, and the second soft board 5.6 can be prevented from contacting the power soft board 5.5 to press the components on the power soft board 5.5, and the second soft board 5.6 can be supported to make the second soft board 5.6
  • the plate 5.6 is against the first interface plate 5.2, and supports the pin 5.1 on the first soft plate 5.4 to prevent the pin 5.1 from being damaged due to excessive force.
  • an arcuate protrusion 6.3 is disposed on a side of the limiting frame body 6 that is not in close contact with the first interface board 5.2, the flight control main circuit board 4, and the power soft board 5.5, and the arcuate protrusion 6.3 can be inserted.
  • the curved card slot 1.3 of the shell 1 is inside.
  • the curved protrusion 6.3 cooperates with the curved card slot 1.3 to restrain the limiting frame 6 in the upper casing 1.
  • a notch 6.4 is disposed on the top of the limiting frame 6 , and the protruding strip 7.1 of the bottom cover 7 can be inserted into the notch 6.4 to limit the limiting frame 6 .
  • the influence of the vibration on the limiting frame 6 can be reduced, and the influence on the interface soft board 5 and the inertial measuring device 3 can be reduced.
  • the interface flexible board 5 can be installed into the upper casing 1 Positioned and bolted to the side wall of the socket 1.1 of the upper casing 1; insert the interface insert 2 into the socket 1.1, and fix the interface insert 2 in the slot 1.1 with a positioning pin; place the inertial measurement device 3 To the corresponding position of the upper casing 1, the limiting boss 1.2 of the upper casing 1 is inserted into the through hole 3.5 of the lower metal piece 3.3 of the inertial measuring device 3 to limit the inertial measuring device 3; the flying control main circuit board 4
  • the first flexible board 5.4 of the interface soft board 5 is connected through the board-to-board connector, and the second flexible cable 3.8 of the inertial measurement device 3 is connected to the flight control main circuit board 4; the limit frame body 6 is installed, and the limit frame is installed.
  • the three sides of the body 6 are respectively in close contact with the first interface board 5.2, the second interface board 5.3 and the flight control main circuit board 4, and one side is closely matched with the curved card slot 1.3 on the side wall of the upper casing 1 through the arcuate bosses.
  • the inertial measurement device 3 is fastened in the upper casing 1 through the limiting frame 6, so that the components are tightly mounted, compact and firm, and the damping effect of the inertial measurement device 3 is improved.
  • the bottom cover 7 is mounted on the upper casing 1 and the ribs 7.1 on the bottom cover 7 are inserted into the notches 6.4 of the limiting frame body 6.
  • the bottom cover 7 presses the inertial measurement device 3 and the limiting frame body 6 to each other.
  • the above-mentioned mounting structure makes the entire control device compact and makes the inertial measurement device 3 stable in installation, reduces the influence of the UAV vibration frequency on the inertial measurement device 3, and improves the stability and accuracy of the inertial measurement device 3.
  • the above control device of the embodiment has a high degree of integration and a small volume, which improves the reliability of the entire control device.
  • the embodiment provides an unmanned aerial vehicle, including the above control device.
  • the accuracy of the detection and control of the UAV can be improved, and the flight reliability of the UAV system is improved.
  • the control device of the UAV of the present disclosure and the unmanned aerial vehicle improve the integration degree of the UAV control device and reduce the influence of the vibration on the control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Gyroscopes (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)

Abstract

一种无人飞行器的控制装置及无人飞行器,其中,无人飞行器的控制装置包括外壳、固定在外壳内的惯性测量装置(3)、电连接于惯性测量装置(3)的飞控主电路板(4)、以及电连接于飞控主电路板(4)且紧贴于外壳内壁的接口软板(5),接口软板(5)两侧穿过外壳电连接于外部设备。

Description

无人飞行器的控制装置及无人飞行器 技术领域
本公开涉及无人机技术领域,例如涉及一种无人飞行器的控制装置及无人飞行器。
背景技术
无人飞行器是一种由无线电遥控设备或自身程序控制装置操纵的无人驾驶飞行器。随着科技的发展,无人飞行器技术日趋成熟,无人飞行器以其速度快、操作灵活的特点被广泛应用。
无人飞行器在飞行过程中,需要控制装置对无人飞行器进行控制和导航,由控制装置控制无人飞行器的姿态,反馈无人飞行器所在的位置,实现无人飞行器的姿态控制和定位功能。相关技术中的无人飞行器的控制装置通常是通过控制装置内的惯性测量装置进行无人飞行器的姿态信息及位置信息的分析,进而实现导航作用。
发明内容
本公开提供一种无人飞行器的控制装置以及无人飞行器,避免相关技术中的无人飞行器控制装置集成化程度低、震动对控制装置影响较大的问题。
一种无人飞行器的控制装置,通过设置上述无人飞行器的控制装置,能够提高无人飞行器系统的可靠性。
一种无人飞行器的控制装置,包括外壳、固定在外壳内的惯性测量装置、电连接于惯性测量装置的飞控主电路板、以及电连接于所述飞控主电路板且紧贴于外壳内壁的接口软板,其中,所述接口软板的两侧面穿过所述外壳电连接于外部设备。
可选的,所述接口软板包括相对而设的第一接口板和第二接口板、以及连接于第一接口板和第二接口板的第一软板,所述第一接口板和第二接口板上均设置有电连接于所述外部设备的排针,所述第一软板电连接于所述飞控主电路板。
可选的,所述接口软板还包括电连接于第二接口板的电源软板以及电连接于电源软板的第二软板,所述第二软板位于所述电源软板和第二接口板之间,所述第二软板用于屏蔽电源软板和第二接口板之间的电磁干扰。
可选的,所述外壳两侧设置有接口插件,所述第一接口板上的排针和第二接口板上的排针穿过所述接口插件电连接于所述外部设备。
可选的,所述第一接口板和第二接口板通过紧固件固定在所述接口插件内侧;
所述第一接口板的外侧和第二接口板的外侧均设置有限位板,所述限位板卡设于所述接口插件上。
可选的,所述装置,还包括位于外壳内且套设在所述惯性测量装置外的限位框体,其中,所述第一接口板、飞控主电路板以及电源软板分别贴设在所述限位框体的三个侧壁外侧。
可选的,所述限位框体的一侧表面的延伸部分设置有卡凸块,且所述卡凸块与限位框体的侧壁之间形成有间隙,所述电源软板靠近第一软板的一端置于所述间隙内。
可选的,所述外壳包括互相连接的上壳和底盖,所述上壳两侧开设有插槽,所述接口插件可拆卸地插接在所述插槽内,所述限位板卡设于插槽内,所述上壳顶部设有限位凸台,所述惯性测量装置由所述限位凸台限位,并由所述底盖支撑。
可选的,所述限位框体未贴附第一接口板、飞控主电路板以及电源软板的侧面设置有弧形凸起,所述上壳一侧内壁上设有供所述弧形凸起卡入的卡槽;
所述限位框体的一侧面的顶部设有缺口,所述底盖上设有卡入所述缺口的凸条。
可选的,一种无人飞行器,包括上述任一控制装置。
上述的控制装置通过上述结构设置,多个部件间结构紧凑,提高了整个控制装置集成化程度,降低了震动对惯性测量装置的影响,提高了惯性测量装置测量的稳定性。在外壳内贴设接口软板,接口软板将现有多个分体设置的接口板集成于一体,能够提高接口软板安装在外壳内的稳定性,并且可以随意折叠,节省安装空间,减小整个控制装置的体积。将排针设置在接口软板的两侧,接 口插件设置在外壳两侧,能够避免插错接口的问题。
上述无人飞行器,通过安装上述控制装置,能够提高无人飞行器检测和控制的准确性,提高了无人飞行器系统的飞行可靠性。
附图说明
图1是一实施例中控制装置的分解示意图;
图2是一实施例中上壳的结构示意图;
图3是一实施例中底盖的结构示意图;
图4是一实施例中惯性测量装置的分解示意图;
图5是一实施例中的惯性测量装置的传感组件显示有第一集成电路板的结构示意图;
图6是一实施例中的惯性测量装置的传感组件显示有第一集成电路板的结构示意图;
图7是一实施例中惯性测量装置的第一增重块的结构示意图;
图8是一实施例中接口软板安装后的结构示意图;
图9是一实施例中接口软板展开后的结构示意图;以及
图10是一实施例中限位框体的结构示意图。
图中:
1、上壳;2、接口插件;3、惯性测量装置;4、飞控主电路板;5、接口软板;6、限位框体;7、底盖;1.1、插槽;1.2、限位凸台;1.3、卡槽;1.4、第一定位销孔;2.1、第二定位销孔;2.2、插口;2.3、排针孔;3.1、环形壳体;3.2、上金属片;3.3、下金属片;3.4、插片;3.5、通孔;3.6、第一集成电路板;3.7、第二集成电路板;3.8、第二软排线;3.9、第一减震垫;3.1′、第一增重块;3.2′、第二增重块;3.3′、第二减震垫3.4′、容纳腔;3.5′、气压仓;5.1、排针;5.2、第一接口板;5.3、第二接口板;5.4、第一软板;5.5、电源软板;5.6、第二软板;5.7、限位板;5.8、螺母;6.1、卡凸块;6.2、间隙;6.3、弧形凸起;6.4、缺口;7.1、凸条。
具体实施方式
相关技术中的无人飞行器的控制装置通常存在以下问题:
(1)控制装置的整体集成化程度不高,控制装置的多个部件之间的结构不紧凑,在无人飞行器飞行过程中产生震动,该震动会影响惯性测量装置的测量,导致测量数据不准确。
(2)控制装置上连接电路板的每个接口板通常是分体设置,安装接口板时,控制装置需要具有足够的安装空间,导致整个控制装置体积变大,结构相对复杂,且分体设置的接口板存在着稳定性相对较差的问题,受震动的影响较大。而且控制装置的外部接口较多,使用时存在插错接口的问题。
下面结合附图并通过具体实施方式来说明实施例的技术方案。
本实施例提供一种无人飞行器的控制装置,如图1所示,该控制装置可以包括外壳、接口插件2、惯性测量装置3、飞控主电路板4、接口软板5以及限位框体6。
可选的,上述外壳包括上壳1和底盖7,如图2和图3所示,上述上壳1以及底盖7的四角处均开设有连接孔,可通过连接件穿过上壳1以及底盖7的连接孔,将上壳1和底盖7固定连接。
上述上壳1可为中空结构,如图2所示,在上壳1的顶部可以设置有两个限位凸台1.2,该限位凸台1.2用于对惯性测量装置3进行限位和固定。可选的,在上壳1一侧内壁上设有呈弧形结构的卡槽1.3,卡槽1.3用于对限位框体6进行限位。可选的,在上壳1的两侧对称且贯通的开设有插槽1.1,在插槽1.1两端的上下面上竖直设有相对的第一定位销孔1.4,上述接口插件2可水平插入插槽1.1内,并通过定位销(图中未示出)与插槽1.1的第一定位销孔1.4固定。
可选的,如图3所示,在底盖7上设有凸条7.1,该凸条7.1用于对限位框体6限位,使得限位框体6被限制在外壳内,降低震动对限位框体6的影响。
本实施例中,通过连接件将上壳1以及底盖7固定连接,能够使得上壳1和底盖7将惯性测量装置3、接口软板5以及限位框体6压紧,使惯性测量装置3、接口软板5以及限位框体6的位置稳固,减小震动对惯性测量装置3、接口软板5以及限位框体6的影响。
本实施例中,可选的,如图1所示,上述接口插件2设置有两个,两个接口插件2分别插入上壳1两侧的插槽1.1内,可在接口插件2两端对应第一定位 销孔1.4的位置竖直设有第二定位销孔2.1,上述定位销由下而上的依次穿过第一定位销孔1.4和第二定位销孔2.1,第一定位销孔1.4将接口插件2可拆卸的安装在插槽1.1内。通过将接口插件2可拆卸的安装在上壳1上,相对于相关技术中一体设置的上壳和接口插件,本实施例的接口插件2可单独批量生产,便于加工,可随时替换,而且不需要更换上壳1,节省了成本,提高了外壳的整体美观性。本实施例中,上述接口插件2可为塑胶件,以便于加工,降低加工成本。
上述接口插件2上可设有供外部设备的插头插入的插口2.2,在插口2.2上可设有与接口软板5上的排针5.1相对应的排针孔2.3,上述接口软板5的排针5.1插入排针孔2.3内,使接口插件与外部设备的插头电连接。
如图4所示,上述惯性测量装置3安装在上壳1内,并由底盖7压紧在上壳1内,可选的,该惯性测量装置3包括第一外壳,安装在第一外壳内的传感组件和减震组件,其中,第一外壳可以包括环形壳体3.1,以及位于环形壳体3.1上下两侧的上金属片3.2以及下金属片3.3。上述传感组件和减震组件置于环形壳体3.1内并由下金属片3.3支撑。上述上金属片3.2和下金属片3.3均可通过该卡扣与卡孔相扣合的方式固定在环形壳体3.1上。可选的,在上金属片3.2相对的两边缘延伸有两个插片3.4,下金属片3.3上相对的两边缘延伸有两个插片3.4,上述插片3.4可插入环形壳体3.1内并且抵持在环形壳体3.1的内壁上,能够防止环形壳体3.1发生变形,增强了环形壳体的刚性,起到了加强筋的作用,也能使得整个第一外壳的结构更加稳定,能够降低震动对位于第一外壳内的传感组件的影响。
本实施例中,可选的,上述上金属片3.2和下金属片3.3的表面上均开设有四个通孔3.5。在将整个惯性测量装置3安装在外壳内时,上壳1顶部的两个限位凸台1.2卡入下金属片3.3上的两个通孔3.5内,将惯性测量装置3限位,所述惯性测量装置3由底盖7支撑固定在上壳1内。
可选的,如图5和图6所示,上述传感组件包括有第一集成电路板3.6和第二集成电路板3.7。第一集成电路板3.6和第二集成电路板3.7之间可通过第一软排线(图中未示出)连接,上述第一集成电路板3.6上可以设置有惯性传感器(图中未示出)以及第二软排线3.8,在第二集成电路板3.7上设置有气压传感器,上述第二软排线3.8连接于飞控主电路板4,第一集成电路板3.6以及第二 集成电路板3.7上的传感器的信号均通过第二软排线3.8传输至飞控主电路板4,既能实现同种数据多个传感器数据融合,又能实现多种多个传感器组件数据整合,能够提高测量数据可靠性、有效性、稳定性和准确性。上述传感组件可以实时采集获取无人飞行器的飞行状态信息,可采集到的数据有三轴姿态角或角速率,以及加速度和三轴方位。
可选的,参见图4,上述减震组件包括由上到下依次连接的第一减震垫3.9、第一增重块3.1′、第二增重块3.2′和第二减震垫3.3′,上述传感组件可置于第一增重块3.1′和第二增重块3.2′之间的空间内。可选的,在第一增重块3.1′和第二增重块3.2′之间内部形成有放置传感组件的容置腔(图中未示出)。第一集成电路板3.6可置于第二增重块3.2′内。参见图7,在第一增重块3.1′上可设有容纳腔3.4′以及气压仓3.5′,上述容纳腔3.4′可以设置有两个,两个容纳腔3.4′可分别用于容纳惯性传感器的陀螺仪和加速计。上述气压仓3.5′连通于外界,用于容纳第二集成电路板3.7以及第二集成电路板上的气压传感器。通过第一增重块3.1′和第二增重块3.2′两者自身的空间放置传感组件,节省了放置传感组件的额外空间,提高了整个惯性测量装置3的集成化程度。上述容置腔、容纳腔3.4′以及气压仓3.5′能够减少震动对惯性传感器的影响以及高速杂乱气流对气压传感器的干扰,提高两者的测量精度。
可选的,在上述容置腔内填充有导热硅脂。在气压仓3.5′上可安装有密封仓盖(图中未示出),该密封仓盖与气压仓3.5′可以通过连接件固定,密封仓盖用于将气压仓3.5′密封。通过密封仓盖密封气压仓3.5′,使得气压仓3.5′与第一增重块3.1′和第二增重块3.2′之间形成的容置腔相隔离,能够避免导热硅脂影响气压仓3.5′内的气压,提高了位于气压仓3.5′内的气压传感器测量结果的准确性。
上述导热硅脂的填充,能够缓和震动,使得第一集成电路板3.6上每个元器件温度保持在一定范围内且受热均匀,而且能避免元器件自身发生震动。填充导热硅脂,能够使集成电路板上多个元器件成为一体并在同一个频率上震动,降低缓和震动。
上述第一减震垫3.9与第二减震垫3.3′均可采用疏松多孔、透气以及缓冲的材料制成,能够避免风速过大形成局部湍流,从而避免外界空气大量快速进入影响气压仓3.5′内气压急剧变换,能够缓冲隔离震动、降低共振频率以及缓 冲高速杂乱气流。
本实施例中,上述飞控主电路板4上可以集成有主控单元(图中未示出),该主控单元可用于控制无人飞行器与任务设备,主控单元可接收来自于惯性测量装置3的传感组件的数据,通过对传感组件的信息数据进行融合,可生成控制信号以及产生无人飞行器飞行的控制命令。其中,所述主控单元可由进阶精简指令集机器(Advanced RISC Machine,ARM)、数字信号处理器(Digital Signal Processor,DSP)、单片机中任意一种运算单元实现。
如图8和图9所示,上述接口软板5可以为软性电路板,接口软板5具有随意折叠和节省空间的特点。在接口软板5上可以设有为整个控制装置供电的电源单元以及与任务设备连接的接口,接口可为串口、集成电路(Inter-Integrated Circuit,IIC)总线接口、串行外设接口(Serial Peripheral Interface,SPI)总线接口以及控制器局域网络(Controller Area Network,CAN)总线接口中的一种或多种。
可选的,该接口软板5包括相对而设的第一接口板5.2和第二接口板5.3,连接于第一接口板5.2和第二接口板5.3的第一软板5.4。上述第一接口板5.2、第二接口板5.3以及第一软板5.4均可紧贴在上壳1的内侧,以使得接口软板5更加稳固的安装在上壳1内,空间利用合理,提高了集成化程度,减小整个控制装置的体积。可选的,接口软板5包括排针5.1,上述接口软板5的排针5.1设置在第一接口板5.2和第二接口板5.3上,在第一软板5.4上设有板对板连接器(图中未示出),第一软板5.4通过该板对板连接器连接于飞控主电路板4。
可选的,第二接口板5.3的一侧连接有电源软板5.5,在电源软板5.5和第二接口板5.3之间设置有第二软板5.6。该第二软板5.6内可覆盖有铜皮,能够屏蔽电源软板5.5和第二接口板5.3两者之间的电磁干扰。
本实施例中,可选的,上述第一接口板5.2和第二接口板5.3紧贴的固定在上壳1内。可选的,在第一接口板5.2和第二接口板5.3上均设置螺母5.8,上壳1的插槽1.1上相对应的设置有第一通孔,通过紧固件(如螺栓)穿过第一通孔连接在螺母5.8上,能够将第一接口板5.2和第二接口板5.3固定在上壳1设置插槽1.1的两侧内,能够限制接口软板5的前后移动。在第一接口板5.2和第二接口板5.3固定在上壳1内时,第一软板5.4紧贴在上壳1的一侧壁上。通过上述结构,能够将接口软板5固定在上壳1内,且能够减轻震动对接口软板5 的影响。
参见图8,本实施例还可以在第一接口板5.2和第二接口板5.3的外侧均设有限位板5.7,该限位板5.7的面积小于第一接口板5.2的面积和第二接口板5.3的面积。该限位板可卡设在插槽1.1内,可以限制了接口软板5的上下以及左右的移动,而且第一接口板5.2和第二接口板5.3通过螺栓螺母5.8固定在上壳1内能够限制接口软板的前后移动,使得整个接口软板5被限位在上壳1内,降低震动对接口软板的影响。
上述第一接口板5.2、第二接口板5.3、第一软板5.4、电源软板5.5以及第二软板5.6均可通过展开的接口软板5(图9所示)折叠而成,可根据不同的上壳1的尺寸折叠成与上壳1适应的接口软板5,节省了接口软板5的安装空间,使得接口软板5上的多个元器件布置合理,减小整个控制装置的体积;能够根据不同的上壳1的形状对接口软板进行相应的调整,以提高接口软板5安装的稳定性,降低震动对接口软板的影响。
如图10所示,上述限位框体6可由底盖7支撑固定在上壳1内,底盖7将限位框体6紧压在上壳1内。上述限位框体6可以套设在惯性测量装置3的第一外壳外,上述接口软板5的第一接口板5.2和电源软板5.5以及飞控主电路板4可以贴设于限位框体6的外侧。可选的,在上述限位框体6的一侧表面的延伸部分可以设置有卡凸块6.1,在卡凸块6.1与限位框体6侧壁之间形成有间隙6.2。在安装限位框体6时,上述卡凸块6.1隔设在电源软板5.5与第二软板5.6之间,电源软板5.5端部卡设于间隙6.2内,卡凸块6.1将电源软板5.5与第二软板5.6隔开,能够避免第二软板5.6与电源软板5.5接触而挤压电源软板5.5上的元器件,能够对第二软板5.6进行支撑,使得第二软板5.6抵住第一接口板5.2,对第一软板5.4上的排针5.1起到支撑作用,防止排针5.1受力过大而受损。
可选的,在限位框体6未紧贴第一接口板5.2、飞控主电路板4以及电源软板5.5的一侧设置有弧形凸起6.3,该弧形凸起6.3可插入上壳1的弧形卡槽1.3内。弧形凸起6.3和弧形卡槽1.3配合,将限位框体6限制在上壳1内。
可选的,在限位框体6顶部设有缺口6.4,上述底盖7的凸条7.1可卡入该缺口6.4内,对限位框体6进行限位。通过对限位框体6的限位,能够降低震动对限位框体6的影响,降低了对接口软板5以及惯性测量装置3的影响。
本实施例的上述控制装置在安装时,可以将接口软板5安装到上壳1内对 应位置,并通过螺栓固定在上壳1的插槽1.1侧壁上;将接口插件2插入插槽1.1内,并用定位销将接口插件2固定在插槽1.1内;将惯性测量装置3放入到上壳1对应的位置,上壳1的限位凸台1.2插入到惯性测量装置3的下金属片3.3的通孔3.5内,对惯性测量装置3进行限位;将飞控主电路板4与接口软板5的第一软板5.4通过板对板连接器连接,惯性测量装置3的第二软排线3.8连接于飞控主电路板4;安装限位框体6,将限位框体6三个侧面分别与第一接口板5.2、第二接口板5.3以及飞控主电路板4紧贴,一侧面通过弧形凸台与上壳1侧壁上的弧形卡槽1.3紧密配合,通过限位框体6将惯性测量装置3紧固在上壳1内,使得各部件安装紧密,结构紧凑且牢固,提高了惯性测量装置3的减震效果。
将底盖7安装在上壳1上,并使得底盖7上的凸条7.1卡入限位框体6的缺口6.4内,底盖7将惯性测量装置3以及限位框体6压紧,完成整个控制装置的安装。上述安装结构,使得整个控制装置结构紧凑,并使得惯性测量装置3安装稳定,降低了无人飞行器震动频率对惯性测量装置3的影响,提高了惯性测量装置3测量的稳定性和准确度。本实施例的上述控制装置集成化程度高,体积小,提高了整个控制装置的可靠性。
本实施例提供一种无人飞行器,包括上述控制装置,通过安装上述控制装置,能够提高无人飞行器检测和控制的准确性,提高了无人飞行器系统的飞行可靠性。
工业实用性
本公开的无人飞行器的控制装置以及无人飞行器,提高了无人飞行器控制装置的集成化程度、减小了震动对控制装置的影响。

Claims (10)

  1. 一种无人飞行器的控制装置,包括外壳、固定在外壳内的惯性测量装置、电连接于惯性测量装置的飞控主电路板、以及电连接于所述飞控主电路板且紧贴于外壳内壁的接口软板,其中,所述接口软板的两侧面穿过所述外壳电连接于外部设备。
  2. 根据权利要求1所述的装置,其中,所述接口软板包括相对而设的第一接口板和第二接口板、以及连接于第一接口板和第二接口板的第一软板,所述第一接口板和第二接口板上均设置有电连接于所述外部设备的排针,所述第一软板电连接于所述飞控主电路板。
  3. 根据权利要求2所述的装置,其中,所述接口软板还包括电连接于第二接口板的电源软板以及电连接于电源软板的第二软板,所述第二软板位于所述电源软板和第二接口板之间,所述第二软板用于屏蔽电源软板和第二接口板之间的电磁干扰。
  4. 根据权利要求3所述的装置,其中,所述外壳两侧设置有接口插件,所述第一接口板上的排针和第二接口板上的排针穿过所述接口插件电连接于所述外部设备。
  5. 根据权利要求4所述的装置,其中,所述第一接口板和第二接口板通过紧固件固定在所述接口插件内侧;
    所述第一接口板的外侧和第二接口板的外侧均设置有限位板,所述限位板卡设于所述接口插件上。
  6. 根据权利要求5所述的装置,还包括位于外壳内且套设在所述惯性测量装置外的限位框体,其中,所述第一接口板、飞控主电路板以及电源软板分别贴设在所述限位框体的三个侧壁外侧。
  7. 根据权利要求6所述的装置,其中,所述限位框体的一侧表面的延伸部 分设置有卡凸块,且所述卡凸块与限位框体的侧壁之间形成有间隙,所述电源软板靠近第一软板的一端置于所述间隙内。
  8. 根据权利要求7所述的装置,其中,所述外壳包括互相连接的上壳和底盖,所述上壳两侧开设有插槽,所述接口插件可拆卸地插接在所述插槽内,所述限位板卡设于插槽内,所述上壳顶部设有限位凸台,所述惯性测量装置由所述限位凸台限位,并由所述底盖支撑。
  9. 根据权利要求8所述的装置,其中,所述限位框体未贴附第一接口板、飞控主电路板以及电源软板的侧面设置有弧形凸起,所述上壳一侧内壁上设有供所述弧形凸起卡入的卡槽;
    所述限位框体的一侧面的顶部设有缺口,所述底盖上设有卡入所述缺口的凸条。
  10. 一种无人飞行器,包括权利要求1-9任一所述的控制装置。
PCT/CN2017/084485 2017-04-28 2017-05-16 无人飞行器的控制装置及无人飞行器 WO2018196043A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17902586.1A EP3432111B1 (en) 2017-04-28 2017-05-16 Control apparatus for unmanned aerial vehicle, and unmanned aerial vehicle
US16/088,500 US11032906B2 (en) 2017-04-28 2017-05-16 Control device for unmanned aerial vehicle and unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710293130.2 2017-04-28
CN201710293130.2A CN106896823B (zh) 2017-04-28 2017-04-28 无人飞行器的控制装置及无人飞行器

Publications (1)

Publication Number Publication Date
WO2018196043A1 true WO2018196043A1 (zh) 2018-11-01

Family

ID=59197506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084485 WO2018196043A1 (zh) 2017-04-28 2017-05-16 无人飞行器的控制装置及无人飞行器

Country Status (4)

Country Link
US (1) US11032906B2 (zh)
EP (1) EP3432111B1 (zh)
CN (1) CN106896823B (zh)
WO (1) WO2018196043A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190033014A (ko) * 2017-09-20 2019-03-28 타이코에이엠피 주식회사 인쇄회로기판 어셈블리
CN109496462A (zh) * 2017-12-29 2019-03-19 深圳市大疆创新科技有限公司 中心板单元及无人飞行器
EP3876512A1 (en) * 2018-10-31 2021-09-08 SZ DJI Technology Co., Ltd. Circuit board system, photographing device, gimbal assembly, and movable platform
CN110155354A (zh) * 2018-11-12 2019-08-23 北京机电工程研究所 一种无人飞行器电子系统模块化集成装置
JP7179693B2 (ja) * 2019-06-28 2022-11-29 株式会社東芝 振動検出装置
US11362447B2 (en) * 2020-05-20 2022-06-14 SK Hynix Inc. Storage device with detachable capacitor connection structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203909620U (zh) * 2014-06-03 2014-10-29 温州大学 具备自主航线飞行能力的六旋翼无人飞行器飞行控制系统
CN204180445U (zh) * 2014-08-27 2015-02-25 深圳市大疆创新科技有限公司 调速器及使用该调速器的无人飞行器
CN205809699U (zh) * 2016-07-12 2016-12-14 上海拓攻机器人有限公司 一种飞行测量控制装置及含其的无人飞行器
US9527588B1 (en) * 2012-09-28 2016-12-27 Scott B. Rollefstad Unmanned aircraft system (UAS) with active energy harvesting and power management
CN205883822U (zh) * 2016-06-30 2017-01-11 广州极飞科技有限公司 电子调速器及无人机
CN206671895U (zh) * 2017-04-28 2017-11-24 上海拓攻机器人有限公司 无人飞行器的控制装置及无人飞行器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119482A (en) * 1989-12-18 1992-06-02 The United States Of America As Represented By The Secretary Of The Air Force Flight system for converting 12 volts 32-bit INS data into 5 volts 8-bit data pattern in real time
US6868314B1 (en) * 2001-06-27 2005-03-15 Bentley D. Frink Unmanned aerial vehicle apparatus, system and method for retrieving data
DE102005047873B4 (de) 2005-10-06 2010-10-14 Günthner, Wolfgang, Dipl.-Ing. Miniaturisiertes Inertialmesssystem
CN102121829B (zh) * 2010-08-09 2013-06-12 汪滔 一种微型惯性测量系统
KR101042200B1 (ko) * 2010-09-02 2011-06-16 드림스페이스월드주식회사 Pcb를 사용한 무인 비행체
CN202274882U (zh) * 2011-09-02 2012-06-13 深圳市大疆创新科技有限公司 一种无人飞行器惯性测量模块
US8991758B2 (en) * 2013-05-13 2015-03-31 Precisionhawk Inc. Unmanned aerial vehicle
US9592744B2 (en) * 2013-12-06 2017-03-14 SZ DJI Technology Co., Ltd Battery and unmanned aerial vehicle with the battery
CN205168871U (zh) * 2015-10-30 2016-04-20 深圳市大疆创新科技有限公司 飞行控制装置以及具有该飞行控制装置的无人机
CN105573196B (zh) 2015-12-10 2018-01-02 中国航天时代电子公司 一种基于刚柔一体化印制板的飞行控制器
US20170210241A1 (en) * 2016-01-22 2017-07-27 Eken Electronics Limited Battery module with high-precision digital display of battery capacity and unmanned aerial vehicle
KR102451679B1 (ko) * 2016-03-30 2022-10-07 삼성전자주식회사 무인 비행체
US20170282734A1 (en) * 2016-04-04 2017-10-05 Skycatch, Inc. Unmanned aerial vehicle self-aligning battery assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9527588B1 (en) * 2012-09-28 2016-12-27 Scott B. Rollefstad Unmanned aircraft system (UAS) with active energy harvesting and power management
CN203909620U (zh) * 2014-06-03 2014-10-29 温州大学 具备自主航线飞行能力的六旋翼无人飞行器飞行控制系统
CN204180445U (zh) * 2014-08-27 2015-02-25 深圳市大疆创新科技有限公司 调速器及使用该调速器的无人飞行器
CN205883822U (zh) * 2016-06-30 2017-01-11 广州极飞科技有限公司 电子调速器及无人机
CN205809699U (zh) * 2016-07-12 2016-12-14 上海拓攻机器人有限公司 一种飞行测量控制装置及含其的无人飞行器
CN206671895U (zh) * 2017-04-28 2017-11-24 上海拓攻机器人有限公司 无人飞行器的控制装置及无人飞行器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3432111A4 *

Also Published As

Publication number Publication date
CN106896823B (zh) 2018-09-21
CN106896823A (zh) 2017-06-27
EP3432111A4 (en) 2020-01-01
US11032906B2 (en) 2021-06-08
EP3432111B1 (en) 2021-08-25
US20210100100A1 (en) 2021-04-01
EP3432111A1 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
WO2018196043A1 (zh) 无人飞行器的控制装置及无人飞行器
CN108139216B (zh) 用于提供简单而可靠的惯性测量单元的系统和方法
US20160130015A1 (en) Universal mounting panel for a rotary-wing drone
US7746639B2 (en) Canister housing
EP3425336B1 (en) Inertia measurement apparatus and unmanned aerial vehicle
CN207773419U (zh) 无人机
US20200148350A1 (en) Unmanned aircraft
CN109032155A (zh) 一种用于无人飞行器的控制装置及无人飞行器
CN207487690U (zh) 一种无人飞行器惯性测量模块
WO2022061921A1 (zh) 惯性测量组件和无人飞行器
CN212721460U (zh) 一种基于三轴一体光纤陀螺的惯导系统
WO2019140659A1 (zh) 无人机
CN208953964U (zh) 一种飞行控制装置及无人飞行器
CN206671895U (zh) 无人飞行器的控制装置及无人飞行器
WO2010039280A1 (en) Aircraft canister design
CN112429270A (zh) 惯性测量模组、飞控惯性测量组件及飞行器
CN112964253B (zh) 惯性测量组件的减振机构、飞控惯性测量组件及飞行器
CN208351334U (zh) 一种用于无人飞行器的控制装置及无人飞行器
CN213502935U (zh) 惯性测量组件和无人飞行器
CN213705823U (zh) 惯性测量模组、飞控惯性测量组件及飞行器
CN206670648U (zh) 一种惯性测量装置及无人飞行器
CN211685666U (zh) 一种云台、无人机及控制系统
CN209008877U (zh) 一种gps外置的无人机云台
CN206525051U (zh) 无人机飞控系统
CN109644581B (zh) 屏蔽装置及无人飞行器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017902586

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017902586

Country of ref document: EP

Effective date: 20181002

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE