WO2018195788A1 - 电动机 - Google Patents

电动机 Download PDF

Info

Publication number
WO2018195788A1
WO2018195788A1 PCT/CN2017/081958 CN2017081958W WO2018195788A1 WO 2018195788 A1 WO2018195788 A1 WO 2018195788A1 CN 2017081958 W CN2017081958 W CN 2017081958W WO 2018195788 A1 WO2018195788 A1 WO 2018195788A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
air flow
cooling
airflow
end cover
Prior art date
Application number
PCT/CN2017/081958
Other languages
English (en)
French (fr)
Inventor
朱涛
邓实
Original Assignee
罗伯特·博世有限公司
朱涛
邓实
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗伯特·博世有限公司, 朱涛, 邓实 filed Critical 罗伯特·博世有限公司
Priority to CN201780072756.9A priority Critical patent/CN110313117B/zh
Priority to KR1020197031423A priority patent/KR102313057B1/ko
Priority to US16/607,350 priority patent/US11264860B2/en
Priority to PCT/CN2017/081958 priority patent/WO2018195788A1/zh
Priority to DE112017007480.0T priority patent/DE112017007480T5/de
Priority to JP2019558567A priority patent/JP6884230B2/ja
Publication of WO2018195788A1 publication Critical patent/WO2018195788A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/14Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K24/00Machines adapted for the instantaneous transmission or reception of the angular displacement of rotating parts, e.g. synchro, selsyn
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/09Machines characterised by drain passages or by venting, breathing or pressure compensating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • This invention relates to electric motors, and more particularly to cooling of electric motors.
  • a plurality of heat dissipating fins extending in the longitudinal direction of the casing are generally provided along the circumferential direction on the motor casing as the heat transfer surface of the electric motor, and longitudinally extending cooling air flow passages are formed between the adjacent heat dissipating fins.
  • the cooling airflow can exchange heat with the heat dissipating fins as it flows along the cooling airflow passages, thereby removing heat from the heat dissipating fins and dissipating them into the surrounding environment.
  • an electric motor comprising:
  • a casing on which a plurality of longitudinally extending fins are disposed along the circumferential direction, and longitudinally extending cooling air passages are formed between adjacent fins;
  • first end cap and a second end cap mounted to both ends of the outer casing to form a substantially enclosed interior space
  • a rotor located in the inner space and mounted to the rotating shaft;
  • stator surrounding the rotor and disposed adjacent to the outer casing in the inner space
  • the motor further includes an airflow guiding device disposed on the heat dissipating fin and allowing the heat dissipating fin to be partially exposed to the surrounding environment in a circumferential direction of the casing, the airflow guiding device being configured A cooling airflow that tends to overflow from the cooling airflow passage to the surrounding environment in the middle of the cooling airflow passage is redirected into the cooling airflow passage.
  • the airflow guiding device of the present invention on the one hand, it is ensured that the cooling airflow flows through the entire cooling airflow passage so that the portion of the motor downstream of the cooling airflow passage can also be effectively cooled, and on the other hand, it allows the heat radiating fins to be in the casing.
  • the circumferential direction is partially exposed to the surrounding environment, so that the external natural airflow can directly contact the heat dissipating fins, thereby improving the heat dissipation efficiency.
  • FIG. 1 is a schematic perspective view of an electric motor in accordance with a preferred embodiment of the present invention.
  • FIG. 2 is another schematic perspective view of an electric motor in accordance with a preferred embodiment of the present invention.
  • Figure 3 is a schematic cross-sectional perspective view of a motor in accordance with a preferred embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of an electric motor in accordance with a preferred embodiment of the present invention, in which an air flow path is shown by an arrow.
  • FIG. 1 is a schematic perspective view of an electric motor according to a preferred embodiment of the present invention
  • FIG. 2 is another schematic perspective view of the electric motor according to a preferred embodiment of the present invention
  • FIG. 3 is a schematic cross-sectional perspective view of the electric motor according to a preferred embodiment of the present invention.
  • the junction box of Fig. 1 is omitted in Figs. 2 and 3.
  • an electric motor 1 includes a housing 3, a first end cap 7 and a second end cap 9 mounted to the ends of the housing 3 to form a generally enclosed interior space 5, provided by A first bearing 11 on the first end cover 7 and a second bearing 13 disposed on the second end cover 9 are rotatably supported by the rotating shaft 15, in the internal space 5 and mounted to the rotating shaft 15 to follow the rotating shaft 15
  • the rotating rotor 17 and the stator 19 which surrounds the rotor 17 in the internal space 5 and is disposed adjacent to the outer casing 3.
  • the motor 1 further includes an airflow guiding device 25 disposed on the heat radiating fins 21 and allowing the heat radiating fins 21 to be partially exposed to the surrounding environment in the circumferential direction of the casing.
  • the airflow guiding device 25 is for redirecting the cooling airflow that tends to overflow from the cooling airflow passage 23 to the surrounding environment in the middle of the cooling airflow passage 23 into the cooling airflow passage 23, thereby preventing the cooling airflow from being cooled in the middle of the cooling airflow passage 23.
  • the air flow passage 23 overflows to the surrounding environment.
  • the airflow guiding device 25 includes a plurality of airflow guiding rings 27 disposed on the heat dissipating fins 21 spaced apart from each other along the longitudinal direction of the housing 3.
  • Each airflow guiding ring 27 is formed as a ring member surrounding the casing 3.
  • the airflow guiding ring 27 is slightly flared radially outwardly at an end 27a toward the inlet 23a of the cooling airflow passage 23 (for example, in the right direction in FIGS. 1-4) to form a flared shape, thereby further It is advantageous to redirect the cooling airflow that tends to overflow from the cooling airflow passage 23 to the surrounding environment in the middle of the cooling airflow passage 23 into the cooling airflow passage 23.
  • two airflow guiding rings 27 are shown disposed on the heat dissipating fins 21 spaced apart from each other along the longitudinal direction of the housing 3, but it should be understood that depending on the size of the motor, One, three or more airflow guiding rings 27 are provided on the heat radiating fins 21.
  • the airflow guiding device 25 may not be formed as a complete ring member, but may be a plurality of guide plates spaced apart from each other along the circumferential direction of the casing 3. Each of the guide sheets partially in close contact with the heat dissipating fins 21 is slightly flared radially outward on the side toward the inlet direction of the cooling air flow passage 23 (for example, in the right direction in FIGS. 1-4). Such a plurality of guide sheets spaced apart from each other may be provided at a plurality of locations along the longitudinal direction of the casing 3 as needed.
  • the airflow guiding device 25 may be an airflow guiding strip that is spirally disposed on the heat dissipating fins 21 along the casing 3.
  • the spiral airflow guide strips are easier to machine and assemble.
  • the pitch between adjacent threads of the spiral airflow guiding strip can be reasonably selected according to the size of the motor.
  • the spiral airflow guiding strip is slightly flared radially outward toward the side of the inlet 23a of the cooling airflow passage 23 (for example, in the right direction in FIGS. 1-4), thereby facilitating the trend.
  • the cooling airflow overflowing from the cooling airflow passage 23 to the surrounding environment in the middle of the cooling airflow passage 23 is redirected into the cooling airflow passage 23.
  • the airflow guiding device 25 may not be a spiral continuous airflow guiding strip, but rather includes a plurality of guide sheets spaced apart from one another along a helical path. Each of the guide sheets partially in close contact with the heat dissipating fins 21 may also be slightly flared radially outward on the side toward the inlet direction of the cooling air flow passage 23 (for example, in the right direction in FIGS. 1-4).
  • the airflow guiding device 25 comprises a plurality of guide plates spaced apart from each other along a circular path or a helical path, but it should also be understood that the airflow guiding device 25 may comprise spaced apart from each other in any other suitable pattern or form. Multiple guide boards.
  • the electric motor may employ a natural air flow as a forced cooling air flow, such as an air flow generated by the movement of the electric motor relative to the surrounding environment when the electric motor is mounted on the vehicle, it may be at the rear end cover of the electric motor (in the figure)
  • a cooling fan 29 is mounted at the second end cap 9) to create the desired forced cooling airflow. It is also possible that the cooling fan 29 is mounted at the front end cover.
  • the cooling fan 29 can be covered by a cover 31 that is mounted to the housing 3 and has a through hole.
  • the cooling fan 29 can be mounted on the rotating shaft 15 to be driven by the motor 1. More preferably, the cooling fan 29 is driven by another motor 33 provided separately to operate the cooling fan 29 and The operation of the motor 1 is independently controlled.
  • a resolver 35 mounted to the rotating shaft 15 is further provided at the front end cover (the first end cover 7 in the figure) of the motor to control the rotation of the motor 1. Further, in order to quickly and smoothly dissipate the airflow flowing through the cooling airflow passage 23 into the surrounding environment, the surface 7a of the end cover (the first end cover 7 in the drawing) opposite to the outlet 23b of the cooling airflow passage 23 is formed in an arc shape The surface is to facilitate the dissipation of the cooling airflow that has undergone heat exchange.
  • FIG. 4 is a schematic cross-sectional view of an electric motor in accordance with a preferred embodiment of the present invention, in which an air flow path is shown by an arrow.
  • a thick line arrow A indicates a desired ideal air flow path
  • a thin line arrow B indicates an actual possible air flow path after the air flow guiding device of the present invention is installed.
  • the cooling airflow may overflow from the cooling airflow passage 23 to the surrounding environment in the middle of the cooling airflow passage 23.
  • the airflow guiding device 25 of the present invention when the cooling airflow tends to overflow from the cooling airflow passage 23 to the surrounding environment in the middle of the cooling airflow passage 23, the airflow guiding device 25 of the present invention will overflow these The air flow is redirected into the downstream cooling air flow passage 23 as indicated by the thin line arrow B.
  • the actual possible airflow path is very close to the desired ideal airflow path indicated by the thickline arrow A, ensuring that the cooling airflow flows through the entire cooling airflow passage 23 and with the heat dissipating fins 21 defining the cooling airflow passage 23.
  • the heat exchange so that the portion of the motor 1 downstream of the cooling air flow passage 23 can also be effectively cooled.
  • the air flow guiding device does not completely cover the heat dissipating fins on the casing like the cylindrical shroud of the prior art. In this way, on the one hand, it can ensure that the cooling airflow flows through the entire cooling airflow passage, so that the portion of the motor downstream of the cooling airflow passage can also be effectively cooled, and on the other hand, the external natural airflow can be directly in contact with the heat radiating fins. Improve heat dissipation efficiency.
  • the present invention allows the motor to be cooled using only an external natural airflow in direct contact with the heat dissipating fins, without the need to create a forced cooling airflow through the cooling airflow passage, further reducing energy consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

一种电动机,电动机包括:外壳(3),在外壳(3)上沿着周向设置有纵向延伸的多个散热翅片(21),相邻散热翅片(21)之间形成纵向延伸的冷却气流通道(23);安装到外壳(3)两端以形成大体封闭的内部空间(5)的第一端盖(7)和第二端盖(9);由第一端盖(7)和第二端盖(9)可转动地支撑的转轴(15);位于内部空间(5)中并且安装到转轴(15)上的转子(17);以及在内部空间(5)中环绕转子(17)并且紧邻外壳(3)设置的定子(19);电动机还包括设置在散热翅片(21)上并且允许散热翅片(21)在外壳(3)的周向上部分地暴露于周围环境的气流引导装置(25),气流引导装置(25)被构造成将趋于在冷却气流通道(23)的中途从冷却气流通道(23)向周围环境溢出的冷却气流重新引导到冷却气流通道(23)中。由此不仅使电动机被均匀地冷却,还能够提高散热效率。

Description

电动机 技术领域
本发明涉及电动机,尤其是涉及电动机的冷却。
背景技术
随着诸如电动摩托车、电动自行车和电动汽车等的电动车辆中使用的电动机的功率增大,对于电动机进行有效冷却变得越来越重要。诸如轴承、旋转密封、磁铁和铜绕组等的电动机元件的最大许可运行温度确定了电动机的最大连续功率。在电动机运行时,在定子和转子中会产生热损失。尽管可以对电动机进行液体冷却,但是为了简化结构和降低成本,对于这类电动机通常采用气流冷却。为此,通常在作为电动机的传热表面的电动机壳体上沿着周向设置有沿着壳体纵向延伸的多个散热翅片,相邻散热翅片之间形成纵向延伸的冷却气流通道。冷却气流沿着冷却气流通道流动时可以与散热翅片进行热交换,从而将热量从散热翅片带走并且散发到周围环境中。
对于冷却气流通道向着周围环境完全敞开的电动机而言,当冷却气流沿着冷却气流通道流动时,气流速度越来越低,在没有完全流过冷却气流通道之前冷却气流就可能散发到周围环境中,这将导致位于冷却气流通道下游的电动机部分不能被充分地冷却。为了解决这个问题,已经提出在电动机壳体上设置一个圆柱形罩筒,圆柱形罩筒使得冷却气流通道形成为只在两端敞开的封闭通道,从而防止冷却气流从中途散发到周围环境中。但是,这种圆柱形罩筒限制了外部自然气流与散热翅片的接触,降低了散热效率,尤其是当没有强制冷却气流流过冷却气流通道时。
因此,需要对现有的电动机的冷却进行改进。
发明内容
本发明的目的就是要克服上述现有技术中的至少一种缺陷,提出一种电动机,这种电动机既能够使电动机被均匀地冷却,又能够提高电动机的散热效率。
为此,根据本发明的一方面,提供一种电动机,包括:
外壳,在所述外壳上沿着周向设置有纵向延伸的多个散热翅片,相邻散热翅片之间形成纵向延伸的冷却气流通道;
安装到所述外壳两端以形成大体封闭的内部空间的第一端盖和第二端盖;
由所述第一端盖和所述第二端盖可转动地支撑的转轴;
位于所述内部空间中并且安装到所述转轴上的转子;以及
在所述内部空间中环绕所述转子并且紧邻所述外壳设置的定子;
其特征在于,所述电动机还包括设置在所述散热翅片上并且允许所述散热翅片在所述壳体的周向上部分地暴露于周围环境的气流引导装置,所述气流引导装置被构造成将趋于在所述冷却气流通道的中途从所述冷却气流通道向周围环境溢出的冷却气流重新引导到所述冷却气流通道中。
根据本发明的气流引导装置,它一方面可以确保冷却气流流过整个冷却气流通道,以使电动机处于冷却气流通道下游的部分也能够被有效地冷却,另一方面它允许散热翅片在壳体的周向上部分地暴露于周围环境,使得外部自然气流可以与散热翅片直接接触,提高了散热效率。
附图说明
图1是根据本发明优选实施例的电动机的示意立体图;
图2是根据本发明优选实施例的电动机的另一示意立体图;
图3是根据本发明优选实施例的电动机的示意剖视立体图;以及
图4是根据本发明优选实施例的电动机的示意剖视图,其中,以箭头显示了气流流动路径。
具体实施方式
下面结合示例详细描述本发明的优选实施例。本领域技术人员应理解的是,这些示例性实施例并不意味着对本发明形成任何限制。
图1是根据本发明优选实施例的电动机的示意立体图,图2是根据本发明优选实施例的电动机的另一示意立体图,图3是根据本发明优选实施例的电动机的示意剖视立体图。在图2和3中省略了图1中的接线盒。如图1-3所示,根据本发明优选实施例的电动机1包括外壳3、安装到外壳3两端以形成大体封闭的内部空间5的第一端盖7和第二端盖9、由设置在第一端盖7上的第一轴承11和设置在第二端盖9上的第二轴承13可转动地支撑的转轴15、在内部空间5中并且安装到转轴15上以随着转轴15转动的转子17、以及在内部空间5中环绕转子17并且紧邻外壳3设置的定子19。
在外壳3上沿着周向设置有沿着壳体纵向延伸的多个散热翅片21,相邻散热翅片21之间形成纵向延伸的冷却气流通道23。根据本发明,电动机1还包括设置在散热翅片21上并且允许散热翅片21在壳体周向上部分地暴露于周围环境的气流引导装置25。气流引导装置25用于将趋于在冷却气流通道23的中途从冷却气流通道23向周围环境溢出的冷却气流重新引导到冷却气流通道23中,从而防止冷却气流在冷却气流通道23的中途从冷却气流通道23向周围环境溢出。
在附图所示优选实施例中,气流引导装置25包括沿着壳体3的纵向相互间隔开地设置在散热翅片21上的多个气流引导环27。每个气流引导环27形成为环绕壳体3的环形件。优选地,气流引导环27在朝着冷却气流通道23的入口23a方向(例如在图1-4中向着右侧方向)的一端27a径向向外地稍微张开,以形成喇叭形,从而更有利于将趋于在冷却气流通道23的中途从冷却气流通道23向周围环境溢出的冷却气流重新引导到冷却气流通道23中。在优选实施例中,显示为沿着壳体3的纵向相互间隔开地在散热翅片21上设置两个气流引导环27,但应理解的是,根据电动机的尺寸,可 以在散热翅片21上设置一个、三个或更多个气流引导环27。此外,气流引导装置25也可以不是形成为完整的环形件,而是沿着壳体3的周向相互间隔开地设置的多个引导板。部分地紧贴散热翅片21的每个引导板在朝着冷却气流通道23的入口方向(例如在图1-4中向着右侧方向)的一侧径向向外地稍微张开。根据需要,可以在沿着壳体3纵向的多个部位设置这种相互间隔开的多个引导板。
作为另一种实施方式,气流引导装置25可以是沿着壳体3螺旋地设置在散热翅片21上的气流引导条。螺旋式的气流引导条更加易于加工和装配。螺旋式的气流引导条的相邻螺牙之间的螺距可以根据电动机的尺寸进行合理选择。优选地,螺旋式的气流引导条在朝着冷却气流通道23的入口23a方向(例如在图1-4中向着右侧方向)的一侧径向向外地稍微张开,从而更有利于将趋于在冷却气流通道23的中途从冷却气流通道23向周围环境溢出的冷却气流重新引导到冷却气流通道23中。应当理解的是,气流引导装置25可以不是螺旋式的连续气流引导条,而是包括沿着螺旋路径相互间隔开设置的多个引导板。部分地紧贴散热翅片21的每个引导板在朝着冷却气流通道23的入口方向(例如在图1-4中向着右侧方向)的一侧也可以径向向外地稍微张开。
以上描述了气流引导装置25包括沿着圆形路径或螺旋路径相互间隔开设置的多个引导板,但还应理解的是,气流引导装置25可以包括以任何其它合适图案或形式相互间隔开设置的多个引导板。
尽管根据本发明优选实施例的电动机可以采用自然气流作为强制冷却气流,例如当电动机安装在车辆上时,电动机相对于周围环境的运动所产生的气流,但是可以在电动机的后端盖(图中的第二端盖9)处安装一个冷却风扇29来产生所需的强制冷却气流。冷却风扇29安装在前端盖处也是可行的。冷却风扇29可以由安装到壳体3上并且带有通孔的罩盖31盖住。冷却风扇29可以安装在转轴15上以便由电动机1驱动。更优选的是,冷却风扇29由单独设置的另一电动机33来驱动,以使冷却风扇29的运行与 电动机1的运行相独立地控制。这样,在电动机1运行时可以根据需要来控制冷却风扇29的运行,以达到进一步节约能量的目的。在电动机的前端盖(图中的第一端盖7)处还设置有安装到转轴15上的旋转变压器35,以控制电动机1的旋转。此外,为了使流过冷却气流通道23的气流快速顺畅地散发到周围环境中,与冷却气流通道23的出口23b相对的端盖(图中的第一端盖7)的表面7a形成为弧形表面,以有利于已经进行热交换的冷却气流的散发。
图4是根据本发明优选实施例的电动机的示意剖视图,其中,以箭头显示了气流流动路径。在图4中,粗线箭头A表示所需的理想气流流动路径,细线箭头B表示装有本发明的气流引导装置之后实际可能的气流流动路径。正如已知的,在电动机没有设置本发明的气流引导装置的情况下,冷却气流可能会在冷却气流通道23的中途从冷却气流通道23向周围环境溢出。但是,在电动机设置了本发明的气流引导装置25之后,当冷却气流趋于在冷却气流通道23的中途从冷却气流通道23向周围环境溢出时,本发明的气流引导装置25将这些即将溢出的气流重新引导至下游的冷却气流通道23中,如细线箭头B所示。这样,实际可能的气流流动路径与由粗线箭头A表示的所需理想气流流动路径非常接近,可以确保冷却气流流过整个冷却气流通道23、并且与限定冷却气流通道23的散热翅片21进行充分地热交换,从而使得电动机1处于冷却气流通道23下游的部分也能够被有效地冷却。
根据本发明的气流引导装置并不像现有技术中的圆柱形罩筒那样将壳体上的散热翅片完全罩住。这样,它一方面可以确保冷却气流流过整个冷却气流通道,以使电动机处于冷却气流通道下游的部分也能够被有效地冷却,另一方面它也使得外部自然气流可以与散热翅片直接接触,提高了散热效率。在一些情况下,本发明甚至允许只采用与散热翅片直接接触的外部自然气流就可以对电动机进行冷却,而不需要产生强制冷却气流流过冷却气流通道,从而进一步降低了能量消耗。
以上结合具体实施例对本发明进行了详细描述。显然,以上描述以及在附图中示出的实施例均应被理解为是示例性的,而不构成对本发明的限制。对于本领域技术人员而言,可以在不脱离本发明的精神的情况下对其进行各种变型或修改,这些变型或修改均不脱离本发明的范围。

Claims (10)

  1. 一种电动机(1),包括:
    外壳(3),在所述外壳(3)上沿着周向设置有纵向延伸的多个散热翅片(21),相邻散热翅片(21)之间形成纵向延伸的冷却气流通道(23);
    安装到所述外壳(3)两端以形成大体封闭的内部空间(5)的第一端盖(7)和第二端盖(9);
    由所述第一端盖(7)和所述第二端盖(9)可转动地支撑的转轴(15);
    位于所述内部空间(5)中并且安装到所述转轴(15)上的转子(17);以及
    在所述内部空间(5)中环绕所述转子(17)并且紧邻所述外壳(3)设置的定子(19);
    其特征在于,所述电动机(1)还包括设置在所述散热翅片(21)上并且允许所述散热翅片(21)在所述壳体(3)的周向上部分地暴露于周围环境的气流引导装置(25),所述气流引导装置(25)被构造成将趋于在所述冷却气流通道(23)的中途从所述冷却气流通道(23)向周围环境溢出的冷却气流重新引导到所述冷却气流通道(23)中。
  2. 根据权利要求1所述的电动机(1),其特征在于,所述气流引导装置(25)包括沿着所述壳体(3)的纵向相互间隔开地设置在所述散热翅片(21)上的至少一个气流引导环(27)。
  3. 根据权利要求2所述的电动机(1),其特征在于,所述气流引导环(27)在朝着所述冷却气流通道(23)的入口(23a)方向的一端径向向外地张开。
  4. 根据权利要求1所述的电动机(1),其特征在于,所述气流引导装 置(25)包括沿着所述壳体(3)螺旋地设置在所述散热翅片(21)上的气流引导条。
  5. 根据权利要求4所述的电动机(1),其特征在于,所述气流引导条在朝着所述冷却气流通道(23)的入口(23a)方向的一侧径向向外地张开。
  6. 根据权利要求1所述的电动机(1),其特征在于,所述气流引导装置(25)包括沿着所述壳体(3)的周向或者沿着螺旋路径相互间隔开设置的多个引导板。
  7. 根据权利要求6所述的电动机(1),其特征在于,所述引导板在朝着所述冷却气流通道(23)的入口(23a)方向的一侧径向向外地张开。
  8. 根据权利要求1所述的电动机(1),其特征在于,与所述冷却气流通道(23)的出口(23b)相对的端盖的表面(7a)形成为弧形表面。
  9. 根据权利要求1所述的电动机(1),其特征在于,所述电动机(1)还包括安装在所述第一端盖(7)或所述第二端盖(9)处的冷却风扇(29),所述冷却风扇(29)由所述电动机(1)或另一电动机(33)驱动。
  10. 根据权利要求1所述的电动机(1),其特征在于,所述电动机(1)还包括用于控制所述电动机(1)的旋转的旋转变压器(35)。
PCT/CN2017/081958 2017-04-26 2017-04-26 电动机 WO2018195788A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780072756.9A CN110313117B (zh) 2017-04-26 2017-04-26 电动机
KR1020197031423A KR102313057B1 (ko) 2017-04-26 2017-04-26 모터
US16/607,350 US11264860B2 (en) 2017-04-26 2017-04-26 Motor
PCT/CN2017/081958 WO2018195788A1 (zh) 2017-04-26 2017-04-26 电动机
DE112017007480.0T DE112017007480T5 (de) 2017-04-26 2017-04-26 Elektromotor
JP2019558567A JP6884230B2 (ja) 2017-04-26 2017-04-26 電動機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081958 WO2018195788A1 (zh) 2017-04-26 2017-04-26 电动机

Publications (1)

Publication Number Publication Date
WO2018195788A1 true WO2018195788A1 (zh) 2018-11-01

Family

ID=63919369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081958 WO2018195788A1 (zh) 2017-04-26 2017-04-26 电动机

Country Status (6)

Country Link
US (1) US11264860B2 (zh)
JP (1) JP6884230B2 (zh)
KR (1) KR102313057B1 (zh)
CN (1) CN110313117B (zh)
DE (1) DE112017007480T5 (zh)
WO (1) WO2018195788A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115395715A (zh) * 2022-10-27 2022-11-25 佛山登奇机电技术有限公司 一种散热冷却保护装置
CN116566107A (zh) * 2023-07-10 2023-08-08 深圳市智融自动化科技有限公司 一种混合冷却式电机

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102354434B1 (ko) 2020-03-24 2022-01-24 한국생산기술연구원 냉각 성능 향상용 구동모터
EP3961874A1 (de) * 2020-08-26 2022-03-02 Siemens Aktiengesellschaft Elektrodynamische rotatorische maschine mit eigenlüftung
US20240102432A1 (en) * 2022-09-22 2024-03-28 Safran Electrical & Power Axial fan for air cooled electrical aircraft motor
CN116613922B (zh) * 2023-07-20 2023-10-10 山东豪迈数控机床有限公司 旋转驱动装置和轮胎硫化机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3226580A (en) * 1960-08-03 1965-12-28 Siemens Ag Fluid-cooled rotating machines, particularly electric motors and generators
JPH0549216A (ja) * 1991-08-09 1993-02-26 Toshiba Corp 回転電機のフレーム
JP2002218704A (ja) * 2001-01-22 2002-08-02 Mitsubishi Electric Corp 全閉外扇形電動機
CN201839175U (zh) * 2010-10-29 2011-05-18 南阳防爆集团股份有限公司 高压紧凑型低噪声三相异步电动机
CN206117387U (zh) * 2016-10-08 2017-04-19 江苏美邦电机科技有限公司 全幅散热电机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH541896A (de) * 1971-08-25 1973-09-15 Nipkiep Anlauf-Regelvorrichtung für einen Asynchronmotor mit gewickeltem Läufer
JPS5943801Y2 (ja) * 1979-01-10 1984-12-27 株式会社東芝 回転変圧器付回転電機の冷却装置
JPS5943801U (ja) * 1982-09-10 1984-03-22 三洋電機株式会社 ガステ−ブルのガス管固定装置
JPS6028456U (ja) * 1983-08-03 1985-02-26 株式会社東芝 回転電機
DD240809A1 (de) * 1985-09-04 1986-11-12 Dresden Elektromaschinenbau Lagerschild oberflaechenbeluefteter dynamoelektrischer maschinen
JP2799030B2 (ja) * 1990-02-15 1998-09-17 株式会社日立製作所 冷却装置付き回転機
US5111095A (en) * 1990-11-28 1992-05-05 Magna Physics Corporation Polyphase switched reluctance motor
JPH08126246A (ja) * 1994-10-20 1996-05-17 Honda Motor Co Ltd 回転電機の冷却構造
CN1304203A (zh) * 1999-11-30 2001-07-18 通用电气公司 增强散热的风扇冷却电马达
US20030121259A1 (en) * 1999-12-17 2003-07-03 Conrad Wayne Ernest Heat engine
DE102006047269A1 (de) * 2006-10-04 2008-04-10 Robert Bosch Gmbh Umrichtermotor
JP4787351B2 (ja) 2009-11-09 2011-10-05 ファナック株式会社 ロータに発生する熱を放熱する放熱円盤を備えた誘導式電動機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3226580A (en) * 1960-08-03 1965-12-28 Siemens Ag Fluid-cooled rotating machines, particularly electric motors and generators
JPH0549216A (ja) * 1991-08-09 1993-02-26 Toshiba Corp 回転電機のフレーム
JP2002218704A (ja) * 2001-01-22 2002-08-02 Mitsubishi Electric Corp 全閉外扇形電動機
CN201839175U (zh) * 2010-10-29 2011-05-18 南阳防爆集团股份有限公司 高压紧凑型低噪声三相异步电动机
CN206117387U (zh) * 2016-10-08 2017-04-19 江苏美邦电机科技有限公司 全幅散热电机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115395715A (zh) * 2022-10-27 2022-11-25 佛山登奇机电技术有限公司 一种散热冷却保护装置
CN116566107A (zh) * 2023-07-10 2023-08-08 深圳市智融自动化科技有限公司 一种混合冷却式电机
CN116566107B (zh) * 2023-07-10 2024-01-16 深圳市智融自动化科技有限公司 一种混合冷却式电机

Also Published As

Publication number Publication date
US11264860B2 (en) 2022-03-01
US20200052544A1 (en) 2020-02-13
JP2020518227A (ja) 2020-06-18
CN110313117B (zh) 2022-11-04
CN110313117A (zh) 2019-10-08
KR20190139897A (ko) 2019-12-18
KR102313057B1 (ko) 2021-10-18
JP6884230B2 (ja) 2021-06-09
DE112017007480T5 (de) 2020-01-09

Similar Documents

Publication Publication Date Title
WO2018195788A1 (zh) 电动机
EP2058926B1 (en) Enhanced motor cooling system
WO2021196405A1 (zh) 一种外转子电动滚筒的风冷结构
CN203104215U (zh) 一种适用多种冷却方式的电机
BRPI0716803A2 (pt) Máquina elétrica com um rotor internamente resfriado
JP6376981B2 (ja) 回転装置
JP2014033584A (ja) 回転電機の風冷構造
MX2009000498A (es) Instalacion de refrigeracion para una maquina electrica.
JP2015192474A (ja) 回転電機装置
US8816547B2 (en) Electric machine with cooling arrangement
TWM547784U (zh) 具有冷卻功能的電機
US20170063199A1 (en) Rotor assembly having improved cooling path
CN110768414A (zh) 一种永磁电机的冷却结构
CN208539671U (zh) 一种自冷却电机转子
WO2017148415A1 (zh) 外转子式电机
KR101040755B1 (ko) 베어링 냉각장치
US2287953A (en) Electrical apparatus
US2185728A (en) Dynamo-electric machine
CN202798342U (zh) 带内置冷却器的大功率隔爆型三相异步电动机
JP2005117865A (ja) 集電装置の冷却装置
JP6287587B2 (ja) 駆動回路付車両用電動機
CN208767876U (zh) 一种高散热无壳体绕组外转子结构
JP2016213936A (ja) 回転電機
TWI627821B (zh) Motor with cooling function
JP6110338B2 (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197031423

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019558567

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17907895

Country of ref document: EP

Kind code of ref document: A1