WO2018194394A1 - 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초 및 이의 시공 방법 - Google Patents

하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초 및 이의 시공 방법 Download PDF

Info

Publication number
WO2018194394A1
WO2018194394A1 PCT/KR2018/004558 KR2018004558W WO2018194394A1 WO 2018194394 A1 WO2018194394 A1 WO 2018194394A1 KR 2018004558 W KR2018004558 W KR 2018004558W WO 2018194394 A1 WO2018194394 A1 WO 2018194394A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile
lower pile
aggregate
reinforcing material
ground
Prior art date
Application number
PCT/KR2018/004558
Other languages
English (en)
French (fr)
Inventor
임성대
Original Assignee
(주)삼일이엔씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)삼일이엔씨 filed Critical (주)삼일이엔씨
Publication of WO2018194394A1 publication Critical patent/WO2018194394A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/01Flat foundations
    • E02D27/08Reinforcements for flat foundations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/01Flat foundations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/48Piles varying in construction along their length, i.e. along the body between head and shoe, e.g. made of different materials along their length
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2200/00Geometrical or physical properties
    • E02D2200/16Shapes

Definitions

  • the lower pile, the top portion, and the upper connection layer share the basic upper and lower stresses, thereby simultaneously having the advantages of the deep pile supported on the harder ground than the surface of the ground and the minimization of the top soil to minimize the impact of the building during an earthquake. It is about the site-integral integrated top pile foundation and its construction method provided with a lower pile.
  • the ground of the building is weak
  • the ground is reinforced.
  • the ground is reinforced with a shallow foundation
  • the double top pile foundation is generally limited to ground reinforcement since the bearing capacity after reinforcement is only about twice the bearing capacity of the original ground before reinforcement.
  • the prior art such as "Top pile having a unified structure of a helical pile part and a precast top part and a top pile construction method using the same" of the Republic of Korea Patent No. 10-1522410, first constructed the helical pile by the method of non-soil rotation penetration. Then, by combining the precast concrete spinning top of the upper part with the helical pile head to improve the ground bearing capacity than the existing top pile foundation (Fig. 1).
  • top portion or the helical pile head may damage the top portion or the helical pile head due to stress concentration at the top portion and the helical pile junction, and adjacent top portions may be separated independently from each other to secure the continuity of the foundation.
  • the top portion in order to share the load of the helical pile, the top portion must have a diameter of 1.0 m or more.
  • the weight of the top portion which is a precast member, is excessively increased, resulting in an increase in yardage and transportation burden.
  • the present invention requires a precast concrete top pile or a top container product having a bottom pile that is a deep pile at the bottom of the top part and increasing a lot of ground support force, which is not only heavy and expensive but also inconvenient for installation work. It is intended to provide an on-site pour-integrated top pile foundation and a construction method thereof having lower piles, which are easy to transport and handle and are economical.
  • the present invention is to provide an on-site casting-integrated top pile base and a construction method thereof having a lower pile which is easier to install aggregate and secures a dense lower support layer than the conventional top pile.
  • the present invention can not only integrate the entire top of the plurality of tops, but also can integrally construct the discarded concrete and the top of the top of the base of the building foundation concrete, thereby efficiently distributing the load of the upper structure to the entire base and transmitting seismic resistance.
  • the purpose of the present invention is to provide a cast-in-place pile top and a construction method thereof having a lower pile, which can improve performance.
  • a lower pile protrudes into the ground to be embedded in the ground;
  • An aggregate compaction layer disposed on the ground to cover the upper upper pile;
  • a top portion coupled to an upper portion of the lower pile and provided in an aggregate compaction layer; Consists of the top portion, the top is open cone shape of the upper and lower straits, and is mounted on the lower pile upper portion of the mesh to form a mesh so that a portion including the paste of the cast-in-place concrete that is filled inside can flow out to the outside
  • a reinforcement provided in the aggregate compaction layer such that an upper surface thereof is exposed to an upper portion of the aggregate compaction layer;
  • Core portion formed by the concrete is poured into the reinforcing material;
  • an outer reinforcement part formed by mixing a portion of the concrete spilled from the reinforcement to the outside with the aggregate compaction layer outside the reinforcement and curing.
  • the reinforcement is provided, the total area of the mesh is more than 50% of the total area of the side surface of the reinforcement, neighboring reinforcement is provided to the site pile-integrated top pile foundation equipped with a bottom pile, characterized in that spaced apart from each other at regular intervals. .
  • the present invention according to another preferred embodiment provides an on-site pour-integrated top pile foundation provided with a lower pile, characterized in that the upper portion of the lower pile is provided with a mounting portion on which the reinforcement is mounted.
  • the present invention according to another preferred embodiment provides an on-site pour-integrated top pile foundation provided with a bottom pile, characterized in that the upper part of the mounting portion is provided with a connection fixing part embedded in the core portion.
  • the present invention according to another preferred embodiment provides a cast-in-place pile top table foundation provided with a bottom pile, characterized in that a cushioning material is provided between the reinforcement and the bottom pile.
  • the present invention according to another preferred embodiment provides a site-mounted integral top pile base provided with a bottom pile, characterized in that the auxiliary top portion is further provided between the neighboring top portion.
  • the top portion of the top portion and the aggregate compaction layer is provided with a top pile layer formed integrally with a core portion and an outer reinforcement portion. to provide.
  • the present invention according to another preferred embodiment relates to the construction method of the site-integrated top pile pile provided with the lower pile, (a) incorporating the lower pile on the ground so that a portion of the upper portion protrudes to the ground; (b) installing a reinforcing material on the lower pile; (c) arranging and compacting aggregate on the upper ground around the reinforcement to form an aggregate compaction layer; And (d) constructing the top portion by filling concrete in the reinforcement so that core parts and outer reinforcement parts are formed inside and outside the reinforcement, respectively. It provides a construction method of the cast-in-one integrated pile foundation base having a lower pile, characterized in that comprising a.
  • the upper connection layer is formed on the top and the aggregate compaction layer by simultaneously placing concrete on the aggregate compaction layer and the upper portion of the reinforcement together with the reinforcement.
  • the stress of the deep foundation is shared by the lower pile under the top of the top, and the stress of the shallow foundation is shared by the top of the top and the upper connection layer integrally connected to it. At the same time it can have the advantage of the gyrochoji to minimize the impact of the building.
  • the top portion of the upper part having a low construction cost share a large portion of the upper load, thereby reducing the load transferred to the lower pile, which is a deep pile, which requires a lot of construction costs, thereby reducing the lower pile construction cost and the overall basic construction cost.
  • the completed top portion is integrated with the neighboring top portion, while the reinforcement for the top portion construction is spaced apart from each other, a work space for filling and compacting aggregates between the reinforcement is sufficiently secured. Therefore, compared to the conventional top pile, it is possible to easily proceed with the aggregate laying and compacting operation, to minimize the settlement of the top portion and to secure a much dense lower support layer.
  • the top portion may be composed of an integrated slab structure and the upper connection layer, such as the discarded concrete or the base of the top. Accordingly, it is possible to reduce the deformation of the upper connection layer, such as the main foundation, and to increase the dispersion area of the upper load it is possible to obtain the effect of improving the bearing capacity of the foundation and minimizing settlement.
  • the top portion is coupled to the top of the lower pile, the horizontal projection area of the lower pile head is greatly increased, the resistance to the horizontal load is improved.
  • the size of the reinforcing material for the composition of the top portion is small and the weight is small as the mesh structure is convenient to manufacture, transport and handling.
  • it is possible to adjust the spacing of the reinforcing material is easy to tailor construction according to the shape of the earth.
  • FIG. 1 is a cross-sectional view showing a top pile provided with a conventional helical pile portion.
  • Figure 2 is a cross-sectional view showing a site-integral integral top pile foundation provided with a lower pile of the present invention.
  • Figure 3 is a cross-sectional view showing a cast-in-one integrated top pile foundation provided with a lower pile of the present invention to which various lower piles are applied.
  • FIG. 4 is a perspective view illustrating various embodiments of the reinforcement.
  • FIG. 5 is a view showing a coupling relationship between the lower pile and the reinforcement.
  • Figure 6 is a cross-sectional view showing a site-integral integral top pile foundation provided with a lower pile of the present invention provided with a cushioning material.
  • Figure 7 is a cross-sectional view showing the site-integral integral top pile foundation provided with a lower pile of the present invention having an auxiliary top portion.
  • Figure 8 is a view showing each step of the construction method of the site-integrated integrated top pile foundation with a lower pile according to the present invention.
  • Figure 9 is a perspective view showing a reinforcing material provided with a cover member and connecting rebar.
  • FIG. 10 is a cross-sectional view showing a state in which a cover member and a connecting rebar are coupled;
  • the present invention is in the best form, the lower pile (3) to be part of the ground (1) protruding into the upper portion of the ground (1); An aggregate compaction layer (4) disposed on the ground (1) to cover the upper portion of the lower pile (3); And a top portion (2) coupled to an upper portion of the lower pile (3) and provided in the aggregate compaction layer (4); Consisting of
  • the upper part is open cone shape of the upper and lower strait, and the mesh is formed on the lower pile 3 so that the mantle is formed so that a part including the paste of the site-pouring concrete filled therein can flow out to the outside, and the upper surface is A reinforcing material 21 provided in the aggregate compacting layer 4 so as to be exposed to the aggregate compacting layer 4; Core portion 22 formed by the concrete is poured into the reinforcing material 21 is hardened; And an outer reinforcement part 23 formed by mixing and curing a portion of the reinforcement material 21, which includes a paste of concrete flowing out of the reinforcement material 21, with the aggregate compaction layer 4 outside the reinforcement material 21. Consists of,
  • the total area of the mesh eye is 50% or more of the total area of the side surface of the reinforcing material 21, the neighboring reinforcing material 21 is disposed to be spaced apart from each other by a predetermined interval, the site-pouring integral top with the lower pile Present the pile foundation.
  • the construction method of the field-pouring integrated top pile foundation with a lower pile (a) incorporating the lower pile (3) in the ground (1) so that a portion of the upper end protrudes above the ground (1); (b) installing a reinforcing material (21) on the lower pile (3); (c) forming an aggregate compaction layer (4) by placing and compacting aggregate on the ground (1) around the reinforcement (21); And (d) constructing the top part 2 by filling concrete in the reinforcing material 21 so that the core part 22 and the outer reinforcing part 23 are formed inside and outside the reinforcing material 21, respectively. It proposes a construction method of the field-pouring integral top pile foundation with a lower pile, characterized in that configured to include.
  • Figure 2 is a cross-sectional view showing a site-integrated integrated top pile foundation provided with a lower pile of the present invention
  • Figure 3 is a cross-sectional view showing a site-integrated integrated top pile foundation provided with a lower pile of the present invention applied various lower piles
  • Figure 4 is a reinforcement Is a perspective view illustrating various embodiments of the present invention.
  • the site-mounted integrated top pile base with a lower pile of the present invention is to be entered into the ground (1), the lower pile (3), the upper part of which protrudes above the ground (1);
  • An aggregate compaction layer (4) disposed on the ground (1) to cover the upper portion of the lower pile (3);
  • a top portion (2) coupled to an upper portion of the lower pile (3) and provided in the aggregate compaction layer (4);
  • Consists of the top portion 2, the upper portion of the cone shape of the upper and lower straits open, the lower portion of the mesh is formed so that the mesh is formed so that a portion including the paste of the cast-in-place concrete to be filled out to the outside
  • a reinforcement 21 mounted on the pile 3 and provided in the aggregate compaction layer 4 so that an upper surface thereof is exposed to an upper portion of the aggregate compaction layer 4;
  • Core portion 22 formed by the concrete is poured into the reinforcing material 21 is hardened;
  • an outer reinforcement part 23 formed by mixing and curing a portion of the reinforcement material 21, which includes a paste of concrete flowing
  • the lower pile 3 may be supported by a solid soil layer or a rock layer as a deep pile that is incorporated into the ground 1 after the ground 1 stop operation.
  • the lower pile 3 is not only a helical pile shown in FIG. 2 but also a steel pile such as a micro pile 3a shown in FIG. 3A or a steel pipe pile 3b shown in FIG. It may be a concrete pile such as a ready-made concrete pile (3c) shown in (c) of FIG. 3 or a site-cast concrete pile (3d) shown in (d) of FIG.
  • the lower piles 3a, 3b, 3c, and 3d may be installed after rotationally intruding into the ground 1 or pre-punching the drilling holes 11.
  • the site-cast concrete pile 3d shown in FIG. 3d may be formed by inserting the pre-assembled reinforcing bar in the drilling hole 11 and filling concrete. At this time, the upper portion of the reinforcing bar may be inserted into the lower reinforcing material 21 to be integrated with the top portion (2).
  • the reinforcing material 21 is to be installed on the aggregate top layer 4 in the field top portion 2 is mounted on the upper portion of the lower pile (3). At this time, neighboring reinforcing materials 21 are arranged to be spaced apart from each other by a predetermined interval.
  • the reinforcing material 21 is open at the top to pour concrete therein, from the top to correspond to the shape of the top portion 2 to be constructed It is formed in the shape of a cone of the upper and lower straits narrowing toward the bottom.
  • the reinforcement 21 is formed to prevent the external aggregate, that is, the crushed stone of the aggregate compaction layer 4, etc. from penetrating into the interior, while some part of the concrete, such as paste or fine aggregate, poured into the interior is leaked to the outside. It is composed of a mesh.
  • the inside of the reinforcing material 21 and the external constant thickness of the reinforcing material 21 integrally form the top portion 2.
  • the thickness of the outer reinforcing portion 23 is 80 mm, which is the sum of the penetration thickness of the paste and the aggregate size engaged thereto. do.
  • the outer surface of the container and the aggregate compaction layer 4 are completely separated and the voids become large at the interface.
  • the reinforcement 21 by forming the reinforcement 21 with a mesh formed between the cross member and the longitudinal member to cross the cross member and the longitudinal member, the voids may be minimized at the interface between the reinforcement member 21 and the aggregate.
  • the space between neighboring reinforcing materials 21 is sufficient, and in the process of laying and compacting aggregates, the construction can be easily proceeded with sufficient working space, and at the same time, the diameter of the final top portion 2 can be sufficiently enlarged to secure a bearing force. Is also advantageous.
  • the portion formed by the site-pouring concrete in the interior of the reinforcing material 21 is the core portion 22, the paste is spread to the aggregate aggregate layer 4 of the surroundings to a predetermined thickness on the outside of the reinforcing material 21 is enlarged.
  • the part is the outer reinforcement 23.
  • the total area of the meshes in the reinforcement 21 may be configured to 50% or more of the total area of the side surface of the reinforcement (21).
  • the paste or fine aggregate of concrete poured into the reinforcement 21 is sufficiently leaked out through the man's eyes so that the outer reinforcement portion 23 having an appropriate thickness can be formed on the outside of the reinforcement 21, and the core portion 22 and the core portion 22.
  • the outer reinforcement 23 it is preferable that at least 50% of the total area of the side surface of the reinforcement 21 is formed.
  • the reinforcing material 21 may be manufactured in a polygonal cone phenomenon in addition to the circular cross-sectional shape, in the case of a polygon is advantageous in terms of manufacturing and transport if configured to be close to the circular.
  • the mesh size of the reinforcement 21 is to be made to be similar to or less than the aggregate size of the aggregate compaction layer 4 to prevent the aggregate of the aggregate compaction layer 4 from penetrating into the interior of the reinforcement 21. desirable.
  • the reinforcing material 21 may be directly installed on the ground (1).
  • the outer reinforcing portion 23 is formed to extend to the lower portion of the reinforcing material 21 to surround the top of the lower pile 3, the top portion 2 and the lower pile 3 so that the upper end of the structure (1) It is preferable to install the reinforcing material 21 so as to be spaced apart by a predetermined height.
  • the reinforcing material 21 may be manufactured by injection into a synthetic resin, as shown in Figure 4 (a). However, when the size of the reinforcing material 21 is increased, since the mold cost may be high during injection molding, it may be manufactured using a metal material such as steel wire as shown in FIG.
  • the reinforcing material 21 may be formed so that the lower part is opened to strengthen the coupling with the lower pile 3 or to facilitate the outflow of the lower part of the concrete paste.
  • the aggregate compaction layer 4 is formed by laying aggregate such as crushed stone on the ground 1, and directly between the reinforcement 21 after the reinforcement 21 is installed on the ground 1, that is, of the reinforcement 21 It can be formed by laying and compacting aggregate on the outside.
  • the aggregate compaction layer (4) is installed on the ground (1) first, and then aggregate the aggregate to a certain height, and then install the reinforcement (21) to be spaced apart from each other, and then the second aggregate between the reinforcement (21) and It may be formed by compacting.
  • the aggregate compaction layer 4 serves to support the bottom of the top portion 2 to transfer the load to the ground 1.
  • the outer reinforcement portion 23 is formed by hardening together with the aggregate compaction layer 4 around the reinforcement 21 by the portion of the concrete filled in the interior of the reinforcement 21, including the paste flows out through the mesh.
  • the cross section is extended to the outside of the reinforcing material 21 to form the top portion 2.
  • the reinforcement 21 serves as a reinforcement of the reinforced concrete structure between the inner core portion 22 and the outer reinforcing portion 23 on the inner side, and thus, the cast-in-placed top pile foundation Significantly improves the structural performance.
  • the outer reinforcing portion 23 may be formed by adjusting the slump of concrete that is poured in-site in the reinforcing material 21 or by adjusting the diffusion range of the concrete injected into the aggregate compaction layer 21 using a admixture.
  • the upper portion of the lower pile 3 may be provided with a mounting portion 31 on which the reinforcing material 21 is mounted.
  • the mounting portion 31 is for mounting the reinforcing material 21 to the upper portion of the lower pile 3 after the lower pile (3) is entered, it is preferably formed of a larger area than the lower surface of the reinforcing material (21).
  • the reinforcing material 21 is mounted on the mounting portion 31, the reinforcing material 21 may be installed in advance before the aggregate compaction layer 4 is formed.
  • the upper portion of the mounting portion 31 may be provided with a connection fixing portion 32 embedded in the core portion 22.
  • connection fixing part 32 is buried in the core portion 22 of the top part 2 and is fixed to serve to structurally integrate the top part 2 and the lower pile 3.
  • connection fixing part 32 fixes the position of the reinforcing material 21, it is easy to install the reinforcing material 21, and the position of the reinforcing material 21 during construction of the aggregate compaction layer 4 may be prevented from being separated. .
  • connection fixing portion 32 may be formed on the outer circumferential surface of the connection fixing portion 32 to improve the attachment force between the connection fixing portion 32 and the core portion 22.
  • Figure 6 is a cross-sectional view showing a site-integral integrated top pile foundation with a lower pile of the present invention provided with a cushioning material.
  • a cushioning material 33 may be provided between the reinforcing material 21 and the lower pile 3.
  • the present invention is a combination of a deep foundation and a shallow foundation, the settlement of the shallow base top portion 2 and the deep foundation lower pile 3 may be different from each other. However, when the top portion 2 and the lower pile 3 are fixed to each other with respect to the vertical displacement, the settlement of the shallow foundation may be transferred to the lower pile 3, and the settlement of the lower pile 3 may increase.
  • the vertical displacement can be separated by placing a cushioning material 33 between the top portion 2 and the bottom pile 3 so that the settlement of the top portion 2 which is a shallow foundation is not transmitted to the bottom pile 3.
  • the cushioning material 33 separates only the displacement due to initial settlement while transferring the upper load to the lower pile 3, it is preferable to use a material having elasticity and rigidity such as rubber or the like.
  • the shock absorbing material 33 may be configured to be directly supported on the lower surface of the reinforcing material 21, or may be configured to be provided under the mounting portion 31 as shown in FIG.
  • the guide tube 34 is formed at the lower part of the mounting part 31 to insert the shock absorbing material 33 into the guide tube 34, and then the upper end of the lower pile 3 is located inside the guide tube 34. It can be configured to be inserted.
  • Figure 7 is a cross-sectional view showing a site-integral integrated top pile foundation with a lower pile of the present invention with an auxiliary top.
  • an auxiliary top portion 2 ′ configured to be the same as the top portion 2 may be further provided between the neighboring top portions 2.
  • the auxiliary top 2 ' is disposed between the top parts 2 provided with the bottom pile 3. You can place more.
  • the auxiliary top portion 2 ′ may be configured of the reinforcing member 21 and the core portion 22 and the outer reinforcing portion 23 inside and outside the reinforcing member 21 in the same way as the top portion 2.
  • Plural pieces may be installed depending on the distance, the required number of top piles, and the like.
  • the top connection layer 5 formed integrally with the core portion 22 and the outer reinforcement portion 23 may be provided on the top portion 2 and the aggregate compaction layer 4. have.
  • the upper connection layer 5 may be formed integrally with the core portion 22 and the outer reinforcing portion 23 by pouring concrete on top of the core portion 22 and the aggregate compaction layer 4.
  • the upper connection layer 5 may be discarded concrete or basic foundation.
  • the upper connection layer 5 may be integrally formed by being poured at the same time as the concrete placed on the core portion 22 and the outer reinforcement portion 23.
  • top 5 and the upper connection layer 5 can be integrated.
  • FIG 8 is a view showing each step of the construction method of the site-pouring integrated top pile foundation with a lower pile according to the present invention
  • Figure 9 is a perspective view showing a reinforcement provided with a cover member and connecting reinforcing bars
  • Figure 10 Is a cross-sectional view showing a state in which the cover member and the connecting rebar are coupled.
  • the present invention provides a method for constructing a cast-in-one base pile having a lower pile, including: (a) injecting a lower pile 3 into the ground 1 so that a part of the upper end thereof protrudes above the ground 1; (b) installing a reinforcing material (21) on the lower pile (3); (c) forming an aggregate compaction layer (4) by placing and compacting aggregate on the ground (1) around the reinforcement (21); And (d) constructing the top part 2 by filling concrete in the reinforcing material 21 so that the core part 22 and the outer reinforcing part 23 are formed inside and outside the reinforcing material 21, respectively. Characterized in that comprises a.
  • step (a) a plurality of lower piles 3 are placed in the ground 1 on which the stop work is completed (FIG. 8A). At this time, the upper predetermined length of the lower pile (3) protrudes to the ground (1) above.
  • the reinforcing material 21 is installed to be spaced apart from the adjacent reinforcing material 21 by a predetermined interval, as shown in Figure 9, the upper portion of the reinforcing material 21, the connecting reinforcing bar 24 to interconnect the plurality of reinforcing material 21 Can be installed.
  • the plurality of reinforcing materials 21 may be pre-assembled by connecting with a connecting reinforcing rod 24 in advance, and may be installed at the same time on the lower pile 3.
  • Compaction work of the aggregate is preferably carried out using a compactor or a vibrator.
  • the top portion 2 is completed by filling concrete inside the reinforcement 21 so that the core portion 22 and the outer reinforcement portion 23 are formed inside and outside the reinforcement 21, respectively ( (D) of FIG. 8).
  • the concrete is placed on the aggregate compaction layer 4 and the reinforcement 21 together with the inside of the reinforcement 21 at the same time, the upper connection layer on the top portion 2 and the aggregate compaction layer 4. (5) can be constructed together.
  • step (b) after the reinforcement 21 is disposed, the open upper surface of the reinforcement 21 is closed by the cover member 25, but the cover member 25 is closed.
  • step (c) it may be configured to be removed after the aggregate compaction layer 4 is formed.
  • the cover member 25 prevents the aggregate from entering the reinforcing material 21 in the process of laying and compacting the aggregate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

본 발명은 하부 말뚝과 팽이부 및 상부연결층이 기초의 상하 응력을 분담함으로써, 지표 부근보다 단단한 지층에 지지되는 깊은 말뚝의 장점과 지진 발생시 건축물의 충격이 최소화되도록 하는 팽이기초의 장점을 동시에 가질 수 있는 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초 및 이의 시공 방법에 대한 것이다. 본 발명 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초는 지반 내부에 근입되는 것으로 상단 일부가 지반 상부로 돌출되는 하부 말뚝; 지반 상부에 상기 하부 말뚝 상부를 덮도록 포설되는 골재다짐층; 및 상기 하부 말뚝 상부에 결합되어 골재다짐층 내에 구비되는 팽이부; 로 구성되되, 상기 팽이부는, 상부가 개방된 상광하협의 콘 형상이고, 내부에 채워지는 현장 타설 콘크리트의 페이스트를 포함한 일부가 외부로 유출될 수 있도록 망눈이 형성되는 망형으로 상기 하부 말뚝 상부에 거치되고, 상면이 상기 골재다짐층 상부로 노출되도록 상기 골재다짐층 내에 구비되는 보강재; 상기 보강재 내부에 콘크리트가 타설되어 경화됨으로써 형성되는 심부; 및 상기 보강재에서 외부로 유출된 콘크리트의 페이스트를 포함한 일부가 보강재 외부의 골재다짐층과 혼합되어 경화됨으로써 형성되는 외측보강부; 로 구성되는 것을 특징으로 한다.

Description

하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초 및 이의 시공 방법
본 발명은 하부 말뚝과 팽이부 및 상부연결층이 기초 상하 응력을 분담함으로써, 지표 부근보다 단단한 지층에 지지되는 깊은 말뚝의 장점과 지진 발생시 건축물의 충격이 최소화되도록 하는 팽이기초의 장점을 동시에 가질 수 있는 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초 및 이의 시공 방법에 대한 것이다.
일반적으로 건축물의 지반이 약하면 지반을 보강한다. 이때, 얕은 기초로 지반이 보강되는 경우, 잡석 또는 매스 콘크리트로 연약층을 치환하거나 팽이말뚝을 주로 사용한다. 이중 팽이말뚝 기초는 대체로 보강 후 지지력이 보강 전 원지반 지내력의 2배 정도에 불과하여 지반 보강에 한계가 있다.
이에 대한민국 등록특허 제10-1522410호의 "헬리컬 말뚝부와 프리캐스트 팽이부의 일체화 구조를 가지는 팽이파일 및 이를 이용한 팽이파일 시공 방법"과 같은 종래 기술은 비배토 회전 관입의 방법으로 헬리컬 파일을 먼저 시공한 후 상부의 프리캐스트 콘크리트 팽이부를 헬리컬 파일 두부와 결합함으로써 기존 팽이말뚝 기초보다 지반지지력을 향상시키고자 하였다(도 1).
그러나 이러한 종래기술은 팽이부와 헬리컬 파일 접합부에서 응력집중으로 인해 팽이부 또는 헬리컬 파일 두부의 파손 우려가 있고, 인접하는 팽이부가 서로 독립적으로 분리되어 있어 기초의 연속성을 확보할 수 없다.
또한, 헬리컬 파일의 하중을 팽이부가 분담하기 위해서는 팽이부의 직경이 1.0m 이상 되어야 한다. 그러나 이 경우 거푸집 제작이나 콘크리트 양생에 어려움이 있고, 프리캐스트 부재인 팽이부의 중량이 과도하게 증가하게 되어 야적 및 운반 부담이 커지는 문제점이 있다.
뿐만 아니라 이웃하는 팽이부가 서로 맞닿아 있어 팽이부 사이 공간이 좁으므로 채움 골재의 다짐이 용이하지 않다. 이에 따라 상부 구조물의 하중 재하시 팽이부가 상부하중을 충분히 분담하기 전에 하부의 헬리컬 파일에 하중이 집중되는 문제도 있다.
한편, 최근에는 프리캐스트 콘크리트 팽이말뚝의 문제점을 해결하고자 합성수지재 팽이용기를 이용한 현장 타설형 팽이말뚝이 많이 사용되고 있다. 그런데 팽이말뚝 하단에 깊은 말뚝이 구비되는 경우, 앞서 설명한 바와 같이 팽이말뚝의 직경이 1.0m 이상이 되어야 하므로 합성수지재 팽이용기 제작시 금형 비용이 많이 증가할 수밖에 없다. 그리고 팽이용기의 면적 증가로 인해 팽이말뚝과 하부 쇄석과의 마찰 저항이 감소하여 팽이말뚝의 지지력이 저하될 수 있다. 또한, 이 경우에도 인접하는 팽이용기 사이 공간이 좁아 골재 채움 및 다짐이 어려워 팽이말뚝이 침하되는 문제가 그대로 남아 있다.
상기와 같은 문제점을 해결하기 위하여 본 발명은 팽이부 하부에 깊은 말뚝인 하부 말뚝을 구비하여 지반 지지력을 많이 증가시키면서도 무겁고 가격이 비쌀뿐 아니라 설치 작업도 불편한 프리캐스트 콘크리트 팽이말뚝이나 팽이용기 제품이 필요 없어 운반과 취급이 간편하고 경제적인 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초 및 이의 시공 방법을 제공하고자 한다.
본 발명은 종래의 팽이말뚝에 비하여 골재 포설이 용이하고 치밀한 하부 지지층을 확보할 수 있는 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초 및 이의 시공 방법을 제공하고자 한다.
본 발명은 복수의 팽이부 상부 전체를 일체화할 수 있을 뿐 아니라 건축물 기초 콘크리트 하부의 버림 콘크리트와 팽이부 전체를 일체로 시공할 수 있어, 상부 구조물의 하중을 효율적으로 기초 전반에 분배하여 전달하고 내진 성능을 향상시킬 수 있는 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초 및 이의 시공방법을 제공하고자 한다.
바람직한 실시예에 따른 본 발명은 지반 내부에 근입되는 것으로 상단 일부가 지반 상부로 돌출되는 하부 말뚝; 지반 상부에 상기 하부 말뚝 상부를 덮도록 포설되는 골재다짐층; 및 상기 하부 말뚝 상부에 결합되어 골재다짐층 내에 구비되는 팽이부; 로 구성되되, 상기 팽이부는, 상부가 개방된 상광하협의 콘 형상이고, 내부에 채워지는 현장 타설 콘크리트의 페이스트를 포함한 일부가 외부로 유출될 수 있도록 망눈이 형성되는 망형으로 상기 하부 말뚝 상부에 거치되고, 상면이 상기 골재다짐층 상부로 노출되도록 상기 골재다짐층 내에 구비되는 보강재; 상기 보강재 내부에 콘크리트가 타설되어 경화됨으로써 형성되는 심부; 및 상기 보강재에서 외부로 유출된 콘크리트의 페이스트를 포함한 일부가 보강재 외부의 골재다짐층과 혼합되어 경화됨으로써 형성되는 외측보강부; 로 구성되며, 상기 보강재에서 망눈의 전체 면적은 보강재의 측면 전체 면적의 50% 이상이고, 이웃하는 보강재는 상호 일정 간격 이격되도록 배치되는 것을 특징으로 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초를 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 하부 말뚝의 상부에는 보강재가 거치되는 거치부가 구비되는 것을 특징으로 하는 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초를 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 거치부의 상부에는 심부 내부에 매립되는 연결정착부가 구비되는 것을 특징으로 하는 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초를 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 보강재와 하부 말뚝의 사이에는 완충재가 구비되는 것을 특징으로 하는 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초를 제공한다.
다른 바람직한 실시예에 따른 본 발명은 이웃하는 팽이부의 사이에는 상기 팽이부와 동일하게 구성되는 보조 팽이부가 더 구비되는 것을 특징으로 하는 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초를 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 팽이부와 골재다짐층의 상부에는 심부 및 외측보강부와 일체로 형성되는 상부연결층이 구비되는 것을 특징으로 하는 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초를 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초의 시공 방법에 관한 것으로, (a) 상단 일부가 지반 상부로 돌출되도록 지반에 하부 말뚝을 근입하는 단계; (b) 상기 하부 말뚝 상부에 보강재를 설치하는 단계; (c) 상기 보강재 주변의 지반 상부에 골재를 포설하고 다짐하여 골재다짐층을 형성하는 단계; 및 (d) 상기 보강재의 내부에 콘크리트를 충전하여 보강재 내부와 외부에 각각 심부와 외측보강부가 형성되도록 함으로써 팽이부를 시공하는 단계; 를 포함하여 구성되는 것을 특징으로 하는 하부 말뚝이 구비된 현장타설 일체형 팽이말뚝 기초의 시공 방법을 제공한다.
다른 바람직한 실시예에 따른 본 발명은 상기 (d) 단계에서, 상기 보강재 내부와 함께 골재다짐층과 보강재 상부에 콘크리트를 동시 타설하여 팽이부와 골재다짐층 상부에 상부연결층이 형성되는 것을 특징으로 하는 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초의 시공 방법을 제공한다.
본 발명에 따르면 다음과 같은 효과가 있다.
첫째, 깊은 기초의 응력은 팽이부 하부의 하부 말뚝이 분담하고, 얕은 기초의 응력은 팽이부 상부 및 이와 일체로 연결된 상부연결층이 분담하도록 하여 지표 부근보다 단단한 지층에 지지되는 깊은 말뚝의 장점과 지진 발생시 건축물의 충격이 최소화되도록 하는 팽이기초의 장점을 동시에 가질 수 있다.
둘째, 콘크리트의 페이스트 등이 통과될 수 있는 망형의 보강재가 골재다짐층에 설치되므로, 보강재 외부로 유출된 페이스트 등이 골재다짐층과 불균일하게 맞물린 상태로 일체화된 외측보강부를 형성하여 보강재의 직경보다 더 큰 직경의 확대된 팽이부를 형성할 수 있다. 즉, 보강재 크기 이상의 지지력을 확보할 수 있다.
셋째, 공사비 부담이 적은 상부의 팽이부가 상부 하중을 상당 부분 분담함으로써, 공사비가 많이 소요되는 깊은 말뚝인 하부 말뚝에 전달되는 하중을 감소시켜 하부 말뚝 공사비는 물론 전체적인 기초 공사비를 절감할 수 있다.
넷째, 시공 완료된 팽이부는 이웃하는 팽이부와 서로 일체화되면서도 팽이부 시공을 위한 보강재는 서로 이격 설치되므로, 보강재 사이에 골재 채움 및 다짐을 위한 작업 공간이 충분히 확보된다. 따라서 종래의 팽이말뚝에 비해 골재 포설 및 다짐 작업을 쉽게 진행할 수 있고, 팽이부의 침하를 최소화할 수 있으며 훨씬 치밀한 하부지지층을 확보할 수 있다.
다섯째, 팽이부를 상부의 버림 콘크리트나 본기초와 같은 상부연결층과 일체형 슬래브 구조물로 구성할 수 있다. 이에 따라 본기초 등 상부연결층의 변형을 감소시킬 수 있으며, 상부하중의 분산 면적이 증가하므로 기초의 지지력 향상 및 침하 최소화의 효과를 얻을 수 있다.
여섯째, 하부 말뚝이 구비된 팽이부 사이에 하부 말뚝이 없는 보조 팽이부를 배치할 경우, 보다 경제적이며 자유롭게 기초 설계가 가능하다.
일곱째, 하부 말뚝 상부에 팽이부가 결합됨으로써, 하부 말뚝 두부의 수평 투영 면적이 대폭 증가하여 수평 하중에 대한 저항 능력이 향상된다.
여덟째, 팽이부 구성을 위한 보강재의 크기가 작고 망체 구조로써 중량이 작아 제작, 운반 및 취급이 편리하다. 아울러 보강재의 간격 조절이 가능하여 대지 형상에 따른 맞춤 시공이 용이하다.
아홉째, 하부 말뚝의 집중 하중이 아닌 넓은 면적의 팽이부에 의해 하중이 지지되므로 본기초의 두께를 감소시킬 수 있다.
도 1은 종래 헬리컬 말뚝부가 구비된 팽이파일을 도시하는 단면도.
도 2는 본 발명 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초를 도시하는 단면도.
도 3은 다양한 하부 말뚝이 적용된 본 발명 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초를 도시하는 단면도.
도 4는 보강재의 다양한 실시예를 도시하는 사시도.
도 5는 하부 말뚝과 보강재의 결합 관계를 도시하는 도면.
도 6은 완충재가 구비된 본 발명 하부 말뚝이 구비된 현장 타설 일체형 팽이 말뚝 기초를 도시하는 단면도.
도 7은 보조 팽이부가 구비된 본 발명 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초를 도시하는 단면도.
도 8은 본 발명에 의한 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초의 시공 방법에 대한 각 단계를 도시하는 도면.
도 9는 커버부재와 연결철근이 구비된 보강재를 도시하는 사시도.
도 10은 커버부재와 연결철근이 결합된 상태를 도시하는 단면도.
본 발명은 최선의 형태로, 지반(1) 내부에 근입되는 것으로 상단 일부가 지반(1) 상부로 돌출되는 하부 말뚝(3); 지반(1) 상부에 상기 하부 말뚝(3) 상부를 덮도록 포설되는 골재다짐층(4); 및 상기 하부 말뚝(3) 상부에 결합되어 골재다짐층(4) 내에 구비되는 팽이부(2); 로 구성되되,
상기 팽이부(2)는,
상부가 개방된 상광하협의 콘 형상이고, 내부에 채워지는 현장 타설 콘크리트의 페이스트를 포함한 일부가 외부로 유출될 수 있도록 망눈이 형성되는 망형으로 상기 하부 말뚝(3) 상부에 거치되고, 상면이 상기 골재다짐층(4) 상부로 노출되도록 상기 골재다짐층(4) 내에 구비되는 보강재(21); 상기 보강재(21) 내부에 콘크리트가 타설되어 경화됨으로써 형성되는 심부(22); 및 상기 보강재(21)에서 외부로 유출된 콘크리트의 페이스트를 포함한 일부가 보강재(21) 외부의 골재다짐층(4)과 혼합되어 경화됨으로써 형성되는 외측보강부(23); 로 구성되며,
상기 보강재(21)에서 망눈의 전체 면적은 보강재(21)의 측면 전체 면적의 50% 이상이고, 이웃하는 보강재(21)는 상호 일정 간격 이격되도록 배치되는 것을 특징으로 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초를 제시한다.
그리고, 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초의 시공 방법에 관한 것으로, (a) 상단 일부가 지반(1) 상부로 돌출되도록 지반(1)에 하부 말뚝(3)을 근입하는 단계; (b) 상기 하부 말뚝(3) 상부에 보강재(21)를 설치하는 단계; (c) 상기 보강재(21) 주변의 지반(1) 상부에 골재를 포설하고 다짐하여 골재다짐층(4)을 형성하는 단계; 및 (d) 상기 보강재(21)의 내부에 콘크리트를 충전하여 보강재(21) 내부와 외부에 각각 심부(22)와 외측보강부(23)가 형성되도록 함으로써 팽이부(2)를 시공하는 단계; 를 포함하여 구성되는 것을 특징으로 하는 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초의 시공 방법을 제시한다.
이하, 첨부한 도면 및 바람직한 실시예에 따라 본 발명을 상세히 설명한다.
도 2는 본 발명 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초를 도시하는 단면도이고, 도 3은 다양한 하부 말뚝이 적용된 본 발명 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초를 도시하는 단면도이며, 도 4는 보강재의 다양한 실시예를 도시하는 사시도이다.
도 2에 도시된 바와 같이, 본 발명 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초는 지반(1) 내부에 근입되는 것으로 상단 일부가 지반(1) 상부로 돌출되는 하부 말뚝(3); 지반(1) 상부에 상기 하부 말뚝(3) 상부를 덮도록 포설되는 골재다짐층(4); 및 상기 하부 말뚝(3) 상부에 결합되어 골재다짐층(4) 내에 구비되는 팽이부(2); 로 구성되되, 상기 팽이부(2)는, 상부가 개방된 상광하협의 콘 형상이고, 내부에 채워지는 현장 타설 콘크리트의 페이스트를 포함한 일부가 외부로 유출될 수 있도록 망눈이 형성되는 망형으로 상기 하부 말뚝(3) 상부에 거치되고, 상면이 상기 골재다짐층(4) 상부로 노출되도록 상기 골재다짐층(4) 내에 구비되는 보강재(21); 상기 보강재(21) 내부에 콘크리트가 타설되어 경화됨으로써 형성되는 심부(22); 및 상기 보강재(21)에서 외부로 유출된 콘크리트의 페이스트를 포함한 일부가 보강재(21) 외부의 골재다짐층(4)과 혼합되어 경화됨으로써 형성되는 외측보강부(23); 로 구성되며, 상기 보강재(21)에서 망눈의 전체 면적은 보강재(21)의 측면 전체 면적의 50% 이상이고, 이웃하는 보강재(21)는 상호 일정 간격 이격되도록 배치되는 것을 특징으로 한다.
상기 하부 말뚝(3)은 지반(1) 정지 작업 후 지반(1) 내에 근입되는 깊은 말뚝으로 단단한 토사층 또는 암반층에 지지될 수 있다.
상기 하부 말뚝(3)은 도 2에 도시된 헬리컬 파일 뿐 아니라 도 3의 (a)에 도시된 마이크로 파일(3a)이나 도 3의 (b)에 도시된 강관 파일(3b)과 같은 강말뚝 또는 도 3의 (c)에 도시된 기성콘크리트말뚝(3c)이나 도 3의 (d)에 도시된 현장 타설 콘크리트 말뚝(3d)과 같은 콘크리트 말뚝 등일 수 있다.
상기 하부 말뚝(3a, 3b, 3c, 3d)은 지반(1)에 회전 관입하거나 천공홀(11)을 선 천공한 후 설치될 수 있다.
도 3의 (d)에 도시된 현장 타설 콘크리트 말뚝(3d)은 천공홀(11) 내에 선조립된 철근농을 삽입하고 콘크리트를 충전하여 형성할 수 있다. 이때, 상기 철근농의 상부는 보강재(21) 하부로 삽입되어 팽이부(2)와 일체화될 수 있다.
상기 보강재(21)는 골재다짐층(4)에 현장 팽이부(2)를 시공하기 위한 것으로 하부 말뚝(3)의 상부에 거치된다. 이때, 이웃하는 보강재(21)는 상호 일정 간격 이격되도록 배치된다.
도 4의 (a) 내지 (b)에 도시된 바와 같이, 상기 보강재(21)는 내부에 콘크리트를 타설할 수 있도록 상부가 개방되고, 시공하고자 하는 팽이부(2)의 형상에 대응되도록 상부에서 하부로 갈수록 폭이 좁아지는 상광하협의 콘 형상으로 형성된다.
상기 보강재(21)는 외부의 골재, 즉 골재다짐층(4)의 쇄석 등이 내부로 침투하지 못하도록 하면서도 내부에 타설되는 콘크리트의 페이스트나 잔골재 등 콘크리트의 일부가 외부로 유출되도록 하기 위해 망눈이 형성된 망형으로 구성된다.
이에 따라 보강재(21)의 내부와 보강재(21)의 외부 일정 두께가 일체로 팽이부(2)를 형성한다. 예를 들어, 40㎜ 크기의 골재를 사용하는 경우, 페이스트가 보강재(21)의 외측으로 40㎜ 유출되면 외측보강부(23)의 두께는 페이스트의 침투 두께와 이에 맞물린 골재 크기의 합인 80㎜가 된다. 망눈이 없는 종래 합성수지 용기를 사용할 경우, 용기 외측면과 골재다짐층(4)이 완전히 분리되고 경계면에서 공극이 커지게 된다. 그런데 본 발명은 가로재와 세로재가 서로 교차하여 가로재와 세로재의 사이에 망눈이 형성된 망체로 보강재(21)를 구성함으로써, 보강재(21)와 골재 사이 경계면에서 공극을 최소화할 수 있다.
따라서 이웃하는 보강재(21) 사이의 간격을 충분히 하여 골재의 포설 및 다짐 공정에서는 충분한 작업 공간 확보로 시공을 쉽게 진행할 수 있고, 동시에 최종팽이부(2)의 지름을 충분히 크게 할 수 있어 지지력 확보 면에서도 유리하다.
즉, 시공성과 구조 성능을 모두 향상시킬 수 있다.
상기 보강재(21)의 내부에 현장 타설 콘크리트에 의해 형성되는 부분은 심부(22)이고, 상기 보강재(21)의 외부에 일정 두께로 페이스트가 주변의 골재다짐층(4)에 확산되어 확대 형성되는 부분은 외측보강부(23)이다.
상기 보강재(21)에서 망눈의 전체 면적은 보강재(21)의 측면 전체 면적의 50% 이상으로 구성할 수 있다.
상기 보강재(21)의 내부에 타설되는 콘크리트의 페이스트나 잔골재가 망눈을 통해 충분히 유출되어 보강재(21)의 외측에 적절한 두께의 외측보강부(23)가 형성될 수 있도록 하고, 심부(22)와 외측보강부(23)가 구조적으로 분리되지 않고 상호 일체가 되도록 하기 위해서는 최소한 보강재(21) 측면 전체 면적의 50% 이상의 면적을 갖는 망눈이 형성되는 것이 바람직하다.
상기 보강재(21)는 평단면 형상을 원형 외에 다각형인 콘 현상으로 제작할 수도 있으며, 다각형인 경우 원형에 가깝게 구성하면 제작 및 운반 측면에서 유리하다.
상기 보강재(21)의 망눈 크기는 골재다짐층(4)의 골재가 보강재(21)의 내부로 침투되는 것을 방지하기 위해 골재다짐층(4)의 골재 크기와 비슷하거나 그 이하가 되도록 제작하는 것이 바람직하다.
상기 보강재(21)는 지반(1) 상부에 직접 설치될 수 있다. 그러나 외측보강부(23)가 보강재(21)의 하부로 연장 형성되어 하부 말뚝(3)의 상단을 감싸 팽이부(2)와 하부 말뚝(3) 상단이 서로 일체화된 구조가 되도록 지반(1) 상부에 일정 높이 이격되도록 보강재(21)를 설치하는 것이 바람직하다.
상기 보강재(21)는 도 4의 (a)에 도시된 바와 같이 합성수지로 사출에 의하여 제작할 수 있다. 그러나 보강재(21)의 규격이 커지는 경우 사출 성형 시 금형 비용이 많이 소요될 수 있으므로, 도 4의 (b)에 도시된 바와 같이 강선 등의 금속 재질을 이용하여 제작할 수도 있다.
상기 보강재(21)는 하부 말뚝(3)과의 결합을 견고하게 하거나 콘크리트 페이스트의 하부 유출을 용이하게 하기 위해 하부가 개방되도록 형성할 수 있다.
상기 골재다짐층(4)은 지반(1) 상부에 쇄석 등 골재를 포설하여 형성되는 것으로, 지반(1) 상부에 보강재(21)를 직접 설치 후 보강재(21) 사이, 즉 보강재(21)의 외부에 골재를 포설 및 다짐하여 형성될 수 있다. 또한, 상기 골재다짐층(4)은 지반(1) 상부에 1차로 골재를 일정 높이 포설 및 다짐한 후 보강재(21)를 상호 이격되도록 설치한 다음, 보강재(21) 사이에 2차로 골재를 포설 및 다짐하여 형성될 수도 있다.
상기 골재다짐층(4)은 팽이부(2)의 저면을 지지하여 하중을 지반(1)으로 전달하는 역할을 한다.
상기 외측보강부(23)는 보강재(21)의 내부에 채워지는 콘크리트 중 페이스트를 포함한 일부가 망눈을 통해 외부로 유출되어 보강재(21) 주변의 골재다짐층(4)과 함께 경화되어 형성된다.
즉, 본 발명은 보강재(21)의 외부로 단면이 확대되어 팽이부(2)가 형성된다.
이때, 기존 무근 콘크리트 구조인 팽이말뚝과는 달리 상기 보강재(21)가 내측의 심부(22)와 외측의 외측보강부(23) 사이에서 철근콘크리트 구조물의 철근 역할을 하므로, 현장 타설 일체형 팽이말뚝 기초의 구조 성능을 크게 향상시킨다.
상기 외측보강부(23)는 보강재(21)의 내부에 현장 타설되는 콘크리트의 슬럼프를 조절하거나 혼화제를 사용하여 골재다짐층(21)으로 주입되는 콘크리트의 확산 범위를 조절하여 형성할 수 있다.
도 5는 하부 말뚝과 보강재의 결합 관계를 도시하는 도면이다.
도 5에 도시된 바와 같이, 상기 하부 말뚝(3)의 상부에는 보강재(21)가 거치되는 거치부(31)가 구비될 수 있다.
상기 거치부(31)는 하부 말뚝(3) 근입 후 보강재(21)를 하부 말뚝(3)의 상부에 거치하기 위한 것으로, 보강재(21)의 하면보다 넓은 면적으로 형성되는 것이 바람직하다.
상기 거치부(31)상에 보강재(21)가 거치되므로, 골재다짐층(4) 형성 전에 보강재(21)를 미리 설치할 수 있다.
또한, 상기 거치부(31)의 상부에는 심부(22) 내부에 매립되는 연결정착부(32)가 구비될 수 있다.
상기 연결정착부(32)는 팽이부(2)의 심부(22) 내부에 묻혀 정착되는 것으로 팽이부(2)와 하부 말뚝(3)을 구조적으로 상호 일체화하는 역할을 한다.
또한, 연결정착부(32)가 보강재(21)의 위치를 고정하므로 보강재(21)의 설치가 용이하고, 골재다짐층(4) 시공 중 보강재(21)의 위치가 이탈되는 것을 방지할 수 있다.
도면에는 도시되지 않았지만 연결정착부(32)와 심부(22)의 부착력을 향상시키기 위해 연결정착부(32)의 외주면에는 나사산이나 요철부 등을 형성할 수 있다.
도 6은 완충재가 구비된 본 발명 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초를 도시하는 단면도이다.
도 6에 도시된 바와 같이, 상기 보강재(21)와 하부 말뚝(3)의 사이에는 완충재(33)가 구비될 수 있다.
본 발명은 깊은 기초와 얕은 기초가 복합된 것으로서, 얕은 기초인 팽이부(2)와 깊은 기초인 하부 말뚝(3)의 침하량이 서로 다를 수 있다. 그런데 수직 방향 변위에 대해 팽이부(2)와 하부 말뚝(3)이 서로 고정되면, 얕은 기초의 침하량이 하부 말뚝(3)에 전달되어 하부 말뚝(3)의 침하량이 커질 우려가 있다.
따라서 얕은 기초인 팽이부(2)의 침하가 하부 말뚝(3)에 전달되지 않도록 팽이부(2)와 하부 말뚝(3) 사이에 완충재(33)를 두어 수직 방향 변위를 분리할 수 있다.
상기 완충재(33)는 상부 하중을 하부 말뚝(3)으로 전달하면서도 초기 침하에 의한 변위만을 분리하는 것이므로, 고무 등과 같이 탄성을 가지면서도 강성을 갖는 재질을 사용하는 것이 바람직하다.
상기 완충재(33)는 보강재(21)의 하면에 직접 지지되도록 구성할 수도 있고, 도 6에 도시된 바와 같이 거치부(31)의 하부에 구비되도록 구성할 수도 있다. 이 경우 거치부(31)의 하부에 가이드관(34)을 형성하여 완충재(33)를 가이드관(34)의 내부에 삽입한 후 하부 말뚝(3)의 상단이 가이드관(34)의 내부에 삽입되도록 구성할 수 있다.
도 7은 보조 팽이부가 구비된 본 발명 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초를 도시하는 단면도이다.
도 7에 도시된 바와 같이, 이웃하는 팽이부(2)의 사이에는 상기 팽이부(2)와 동일하게 구성되는 보조 팽이부(2')가 더 구비될 수 있다.
지반이나 하중 조건 등에 따라 하부 말뚝(3)에 비해 팽이부(2)의 소요 개수가 더 많은 경우에는 하부 말뚝(3)이 구비된 팽이부(2)의 사이에 보조 팽이부(2')를 더 배치할 수 있다.
상기 보조 팽이부(2')는 팽이부(2)와 동일하게 보강재(21) 및 보강재(21) 내외부의 심부(22)와 외측보강부(23)로 구성 가능하며, 팽이부(2)의 간격, 팽이말뚝의 소요 개수 등에 따라 복수 개가 설치될 수도 있다.
도 2 등에 도시된 바와 같이, 상기 팽이부(2)와 골재다짐층(4)의 상부에는 심부(22) 및 외측보강부(23)와 일체로 형성되는 상부연결층(5)이 구비될 수 있다.
상기 상부연결층(5)은 심부(22) 및 골재다짐층(4)의 상부에 콘크리트를 타설하여 심부(22) 및 외측보강부(23)와 일체로 형성 가능하다.
상기 상부연결층(5)은 버림 콘크리트 또는 본기초일 수 있다.
이때, 상기 상부연결층(5)은 심부(22) 및 외측보강부(23)에 타설되는 콘크리트와 동시에 타설되어 일체로 구성될 수 있다.
이에 따라 팽이부(5)와 상부연결층(5)을 일체화할 수 있다.
도 8은 본 발명에 의한 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초의 시공 방법에 대한 각 단계를 도시하는 도면이고, 도 9는 커버부재와 연결철근이 구비된 보강재를 도시하는 사시도이며, 도 10은 커버부재와 연결철근이 결합된 상태를 도시하는 단면도이다.
본 발명 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초의 시공 방법은 (a) 상단 일부가 지반(1) 상부로 돌출되도록 지반(1)에 하부 말뚝(3)을 근입하는 단계; (b) 상기 하부 말뚝(3) 상부에 보강재(21)를 설치하는 단계; (c) 상기 보강재(21) 주변의 지반(1) 상부에 골재를 포설하고 다짐하여 골재다짐층(4)을 형성하는 단계; 및 (d) 상기 보강재(21)의 내부에 콘크리트를 충전하여 보강재(21) 내부와 외부에 각각 심부(22)와 외측보강부(23)가 형성되도록 함으로써 팽이부(2)를 시공하는 단계; 를 포함하여 구성되는 것을 특징으로 한다.
상기 (a) 단계에서는 정지 작업이 완료된 지반(1)에 복수의 하부 말뚝(3)을 근입한다(도 8의 (a)). 이때, 하부 말뚝(3)의 상단 일정 길이가 지반(1) 상부로 돌출된다.
그리고 (b) 상기 하부 말뚝(3)의 상부에 보강재(21)를 설치한다(도 8의 (b)).
상기 보강재(21)는 이웃하는 보강재(21)와 일정 간격 이격되도록 설치되며, 도 9 등에 도시된 바와 같이 보강재(21)의 상부에는 복수의 보강재(21)를 상호 연결하도록 연결철근(24)이 설치될 수 있다. 이 경우 복수의 보강재(21)를 미리 연결 철근(24)으로 연결하여 선조립한 후 동시에 하부 말뚝(3) 상부에 설치할 수도 있다.
다음으로, (c) 상기 보강재(21) 주변의 지반(1) 상부에 골재를 포설하고 다짐하여 골재다짐층(4)을 형성한다(도 8의 (c)).
골재의 다짐 작업은 콤팩터나 진동기를 사용하여 실시하는 것이 바람직하다.
특히, 진동기에 의한 골재 다짐시 보강재(21) 사이에 충분한 공간을 확보할 수 있으므로, 골재의 포설 및 다짐 작업이 유리하다. 아울러 진동기의 운용이 용이하므로 종래 팽이말뚝에 비하여 골재다짐층(4)의 다짐도 확보에 유리하다.
이후, (d) 상기 보강재(21)의 내부에 콘크리트를 충전하여 보강재(21) 내부와 외부에 각각 심부(22)와 외측보강부(23)가 형성되도록 함으로써 팽이부(2)를 완성한다(도 8의 (d)).
이때, 상기 (d) 단계에서는 보강재(21) 내부와 함께 골재다짐층(4)과 보강재(21) 상부에 콘크리트를 동시 타설하여 팽이부(2)와 골재다짐층(4) 상부에 상부 연결층(5)이 함께 시공될 수 있다.
상기 (b) 단계에서는 도 9 및 도 10에 도시된 바와 같이, 상기 보강재(21)의 배치 후에 보강재(21)의 개방된 상면을 커버부재(25)로 폐쇄하되, 상기 커버부재(25)는 (c) 단계에서, 골재다짐층(4) 형성 후에 제거되도록 구성할 수 있다.
상기 커버부재(25)는 골재의 포설 및 다짐 과정에서 골재가 보강재(21) 내부로 들어가는 것을 방지한다.

Claims (8)

  1. 지반(1) 내부에 근입되는 것으로 상단 일부가 지반(1) 상부로 돌출되는 하부 말뚝(3);
    지반(1) 상부에 상기 하부 말뚝(3) 상부를 덮도록 포설되는 골재다짐층(4); 및
    상기 하부 말뚝(3) 상부에 결합되어 골재다짐층(4) 내에 구비되는 팽이부(2); 로 구성되되,
    상기 팽이부(2)는,
    상부가 개방된 상광하협의 콘 형상이고, 내부에 채워지는 현장 타설 콘크리트의 페이스트를 포함한 일부가 외부로 유출될 수 있도록 망눈이 형성되는 망형으로 상기 하부 말뚝(3) 상부에 거치되고, 상면이 상기 골재다짐층(4) 상부로 노출되도록 상기 골재다짐층(4) 내에 구비되는 보강재(21);
    상기 보강재(21) 내부에 콘크리트가 타설되어 경화됨으로써 형성되는 심부(22); 및
    상기 보강재(21)에서 외부로 유출된 콘크리트의 페이스트를 포함한 일부가 보강재(21) 외부의 골재다짐층(4)과 혼합되어 경화됨으로써 형성되는 외측보강부(23); 로 구성되며,
    상기 보강재(21)에서 망눈의 전체 면적은 보강재(21)의 측면 전체 면적의 50% 이상이고, 이웃하는 보강재(21)는 상호 일정 간격 이격되도록 배치되는 것을 특징으로 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초.
  2. 제1항에서,
    상기 하부 말뚝(3)의 상부에는 보강재(21)가 거치되는 거치부(31)가 구비되는 것을 특징으로 하는 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초.
  3. 제2항에서,
    상기 거치부(31)의 상부에는 심부(22) 내부에 매립되는 연결정착부(32)가 구비되는 것을 특징으로 하는 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초.
  4. 제1항에서,
    상기 보강재(21)와 하부 말뚝(3)의 사이에는 완충재(33)가 구비되는 것을 특징으로 하는 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초.
  5. 제1항에서,
    이웃하는 팽이부(2)의 사이에는 상기 팽이부(2)와 동일하게 구성되는 보조 팽이부(2')가 더 구비되는 것을 특징으로 하는 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초.
  6. 제1항에서,
    상기 팽이부(2)와 골재다짐층(4)의 상부에는 심부(22) 및 외측보강부(23)와 일체로 형성되는 상부연결층(5)이 구비되는 것을 특징으로 하는 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초.
  7. 제1항에 의한 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초의 시공 방법에 관한 것으로,
    (a) 상단 일부가 지반(1) 상부로 돌출되도록 지반(1)에 하부 말뚝(3)을 근입하는 단계;
    (b) 상기 하부 말뚝(3) 상부에 보강재(21)를 설치하는 단계;
    (c) 상기 보강재(21) 주변의 지반(1) 상부에 골재를 포설하고 다짐하여 골재 다짐층(4)을 형성하는 단계; 및
    (d) 상기 보강재(21)의 내부에 콘크리트를 충전하여 보강재(21) 내부와 외부에 각각 심부(22)와 외측보강부(23)가 형성되도록 함으로써 팽이부(2)를 시공하는 단계; 를 포함하여 구성되는 것을 특징으로 하는 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초의 시공 방법.
  8. 제7항에서,
    상기 (d) 단계에서, 상기 보강재(21) 내부와 함께 골재다짐층(4)과 보강재(21) 상부에 콘크리트를 동시 타설하여 팽이부(2)와 골재다짐층(4) 상부에 상부 연결층(5)이 형성되는 것을 특징으로 하는 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초의 시공 방법.
PCT/KR2018/004558 2017-04-20 2018-04-19 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초 및 이의 시공 방법 WO2018194394A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2017-0051299 2017-04-20
KR20170051299 2017-04-20
KR20170053876 2017-04-26
KR10-2017-0053876 2017-04-26
KR10-2018-0014103 2018-02-05
KR1020180014103A KR101859136B1 (ko) 2017-04-20 2018-02-05 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초 및 이의 시공 방법

Publications (1)

Publication Number Publication Date
WO2018194394A1 true WO2018194394A1 (ko) 2018-10-25

Family

ID=61874500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004558 WO2018194394A1 (ko) 2017-04-20 2018-04-19 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초 및 이의 시공 방법

Country Status (2)

Country Link
KR (3) KR101842474B1 (ko)
WO (1) WO2018194394A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113653087A (zh) * 2021-09-02 2021-11-16 中誉恒信工程咨询有限公司 一种桥梁桩基的防沉降装置
CN115404732A (zh) * 2022-08-30 2022-11-29 朱成凯 一种软土地基复合处理方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101838244B1 (ko) * 2017-04-05 2018-03-13 (주)삼일이엔씨 현장 타설 보강 팽이말뚝 기초 및 이의 시공방법
KR102014125B1 (ko) 2019-06-03 2019-08-26 (주)효창이엔지 3축 내진 말뚝 구조 및 공법
KR102217545B1 (ko) * 2019-08-22 2021-02-18 박경언 전단 보강재
KR102350067B1 (ko) * 2020-05-07 2022-01-11 한미지오텍건설 주식회사 연약층이 깊은 심도의 구조물 하부 지반침하 방지 및 복원공법
KR102552985B1 (ko) 2021-06-21 2023-07-07 (주)효창이엔지 브레이싱 타이 3축 내진 말뚝 구조
CN113789804A (zh) * 2021-09-02 2021-12-14 温州慧谷产品设计有限公司 一种具有抗震能力的加固地基
KR102549479B1 (ko) 2022-10-05 2023-06-29 한국건설기술연구원 다축 내진 말뚝 및 이를 이용한 건축물의 시공방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213815A (ja) * 1983-05-18 1984-12-03 Hiroshi Kitamura コンクリ−ト杭
JPS641828A (en) * 1987-06-20 1989-01-06 Maikoma Seven:Kk Top type block for ground stabilization and laying out method thereof
KR100842802B1 (ko) * 2007-03-12 2008-07-01 한국팽이파일 주식회사 현장 타설형 팽이파일의 콘크리트 타설판 및 이를 이용한시공방법
KR20140077487A (ko) * 2012-12-14 2014-06-24 주식회사 삼보지반기술 헬리컬 말뚝부와 프리캐스트 팽이부의 일체화 구조를 가지는 팽이파일 및 이를 이용한 팽이파일 시공방법
KR20140105238A (ko) * 2013-02-22 2014-09-01 박종민 상부 덮개를 포함한 팽이형 파일 및 이를 이용한 연약 지반 시공 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370102B1 (ko) 2013-03-18 2014-03-06 팽이파일산업 주식회사 현장타설형 팽이파일 및 그 시공방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213815A (ja) * 1983-05-18 1984-12-03 Hiroshi Kitamura コンクリ−ト杭
JPS641828A (en) * 1987-06-20 1989-01-06 Maikoma Seven:Kk Top type block for ground stabilization and laying out method thereof
KR100842802B1 (ko) * 2007-03-12 2008-07-01 한국팽이파일 주식회사 현장 타설형 팽이파일의 콘크리트 타설판 및 이를 이용한시공방법
KR20140077487A (ko) * 2012-12-14 2014-06-24 주식회사 삼보지반기술 헬리컬 말뚝부와 프리캐스트 팽이부의 일체화 구조를 가지는 팽이파일 및 이를 이용한 팽이파일 시공방법
KR20140105238A (ko) * 2013-02-22 2014-09-01 박종민 상부 덮개를 포함한 팽이형 파일 및 이를 이용한 연약 지반 시공 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113653087A (zh) * 2021-09-02 2021-11-16 中誉恒信工程咨询有限公司 一种桥梁桩基的防沉降装置
CN113653087B (zh) * 2021-09-02 2024-02-23 中誉恒信工程咨询有限公司 一种桥梁桩基的防沉降装置
CN115404732A (zh) * 2022-08-30 2022-11-29 朱成凯 一种软土地基复合处理方法

Also Published As

Publication number Publication date
KR101842475B1 (ko) 2018-03-27
KR101859136B1 (ko) 2018-05-16
KR101842474B1 (ko) 2018-03-27

Similar Documents

Publication Publication Date Title
WO2018194394A1 (ko) 하부 말뚝이 구비된 현장 타설 일체형 팽이말뚝 기초 및 이의 시공 방법
WO2020197061A1 (ko) 토목섬유거푸집을 이용한 지하의 수중구조물과 그 시공방법
WO2011126170A1 (ko) 프리스트레스를 도입한 현장타설 콘크리트말뚝 시공방법 및 그 구조
CN107100180A (zh) 超高轻型支挡结构及治理高填方、高边坡工程的方法
KR102050988B1 (ko) 슬립폼을 이용한 수직구 시공방법
WO2018186612A1 (ko) 현장 타설 보강 팽이말뚝 기초 및 이의 시공방법
CN107700361A (zh) 一种哑铃形灌浆套筒及用该灌浆套筒进行装配施工的方法
CN105201012A (zh) L型混凝土预制件装配后浇筑电缆沟及其施工方法
CA2454069C (en) Structure of pile head joint portion and pile head fitting tubular body
CN208136903U (zh) 一种预制预应力式地下连续墙
KR100991341B1 (ko) 프리캐스트 기초 및 말뚝과 프리캐스트 기초의 연결구조
WO2011059145A1 (ko) 강관 말뚝을 이용한 구조물
CN205116220U (zh) L型混凝土预制件装配后浇筑电缆沟
WO2018221781A1 (ko) 말뚝 및 그 시공방법
KR100390369B1 (ko) 개착(開鑿)식으로 시공되는 지하철 및 공동구의 아치형 구조 시공 방법
KR101733928B1 (ko) 연속보 구조를 구비한 패널식 옹벽
KR102447617B1 (ko) 현장 타설 콘트리트 말뚝 시공방법
CN214784092U (zh) 一种基坑减压井封闭结构
JP2002256571A (ja) 建物の建て替え方法および既存杭の利用方法ならびに建物
CN210439087U (zh) 一种抗井圈沉陷的路基
CN211498929U (zh) 一种路灯基础预制结构
WO2018194279A1 (ko) 현장 타설 팽이말뚝 기초 및 이의 시공방법
JP2787806B2 (ja) 土留め擁壁
KR20220002858U (ko) 통신용 강관주 지지용 기초 조립체
JPH0562161B2 (ko)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18786941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.01.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18786941

Country of ref document: EP

Kind code of ref document: A1