WO2018194160A1 - Filter regeneration control device and filter regeneration control method - Google Patents

Filter regeneration control device and filter regeneration control method Download PDF

Info

Publication number
WO2018194160A1
WO2018194160A1 PCT/JP2018/016319 JP2018016319W WO2018194160A1 WO 2018194160 A1 WO2018194160 A1 WO 2018194160A1 JP 2018016319 W JP2018016319 W JP 2018016319W WO 2018194160 A1 WO2018194160 A1 WO 2018194160A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter regeneration
fuel
amount
filter
regeneration control
Prior art date
Application number
PCT/JP2018/016319
Other languages
French (fr)
Japanese (ja)
Inventor
遊大 景山
和貴 大石
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201880023812.4A priority Critical patent/CN110546353B/en
Publication of WO2018194160A1 publication Critical patent/WO2018194160A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters

Definitions

  • the present disclosure relates to a filter regeneration control device and a filter regeneration control method for controlling regeneration of a filter that collects particulate matter in exhaust gas.
  • DPF Diesel Particulate Filter
  • PM particulate Matter
  • Part of the PM collected by the DPF is burned by high-temperature exhaust gas discharged from the diesel engine (referred to as passive regeneration or continuous regeneration), and the rest is deposited on the DPF.
  • passive regeneration or continuous regeneration high-temperature exhaust gas discharged from the diesel engine
  • the amount of accumulated PM exceeds a certain amount, for example, a decrease in output of the diesel engine, a decrease in fuel consumption, and damage to the DPF due to abnormal PM combustion occur.
  • filter regeneration also referred to as forced regeneration
  • fuel injection for example, post injection or exhaust pipe injection
  • An object of the present disclosure is to provide a filter regeneration control device and a filter regeneration control method that can prevent sulfur poisoning of a filter.
  • a filter regeneration control device is provided on a downstream side of a catalyst in a flow path of an exhaust gas of an internal combustion engine of a vehicle, and a filter that collects PM contained in the exhaust gas is forced by fuel injection.
  • a filter regeneration control device that controls the execution of filter regeneration to be regenerated, and determines whether the sulfur concentration of the fuel or the exhaust gas is equal to or greater than a threshold when the filter regeneration execution condition is satisfied When the sulfur concentration is not equal to or higher than the threshold, the fuel injection device is controlled to execute normal filter regeneration when the sulfur concentration is not equal to or higher than the threshold, and when the sulfur concentration is equal to or higher than the threshold,
  • the filter regeneration is the operation of injecting the first amount of the fuel for a second time longer than the first time, the second being greater than the first amount during the first time. Or the operation of injecting the second amount of the fuel during the second
  • a filter regeneration control method includes a filter that is provided on a downstream side of a catalyst in an exhaust gas flow path of an internal combustion engine of a vehicle, and that forcibly collects PM contained in the exhaust gas by fuel injection.
  • An operation of injecting a first amount of the fuel for a period of one time, and the special filter regeneration is to inject the first amount of the fuel for a second time longer than the first time.
  • sulfur poisoning of the filter can be prevented.
  • FIG. 1 is a conceptual diagram illustrating an example of a post-processing device and its peripheral configuration according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram illustrating a configuration example of the ECU according to the embodiment of the present disclosure.
  • FIG. 3 is a flowchart illustrating an operation example of the ECU according to the embodiment of the present disclosure.
  • FIG. 1 is a conceptual diagram showing an example of a post-processing apparatus and its peripheral configuration according to the present embodiment.
  • a solid arrow indicates a gas flow
  • a broken arrow indicates a signal flow.
  • An intake passage (intake passage) 2 is connected to the upstream side of a diesel engine (an example of an internal combustion engine, hereinafter referred to as an engine) 1, and an exhaust passage 3 is connected to the downstream side of the engine 1.
  • a diesel engine an example of an internal combustion engine, hereinafter referred to as an engine
  • a turbocharger (supercharger) 4 is provided between the air supply passage 2 and the exhaust passage 3.
  • the turbocharger 4 has a compressor 4 a disposed in the air supply passage 2 and an exhaust turbine 4 b disposed in the exhaust passage 3.
  • the compressor 4a is coaxially driven by the exhaust turbine 4b.
  • An intercooler 5 is provided in the air supply passage 2. The air discharged from the compressor 4 a is cooled by the intercooler 5 and flows into the combustion chambers (not shown) in the cylinders (not shown) of the engine 1.
  • the engine 1 is provided with a common rail fuel injection device (hereinafter referred to as a fuel injection device) 6 that injects fuel into a combustion chamber in each cylinder.
  • the fuel injection device 6 includes a pump 6a, a common rail 6b, and a fuel injection valve (injector) 6c.
  • the pump 6a pumps a predetermined amount of fuel from the fuel tank 8 at a predetermined timing based on a control signal from the ECU 7 (details will be described later with reference to FIG. 2).
  • the fuel injection valve 6c injects the supplied fuel into the combustion chamber.
  • Fuel is stored in the fuel tank 8.
  • the fuel tank 8 is provided with a concentration sensor that detects the concentration of sulfur contained in the stored fuel (hereinafter referred to as sulfur concentration).
  • the concentration sensor 9 appropriately outputs a signal indicating the detected sulfur concentration to the ECU 7.
  • the concentration sensor 9 is provided in the fuel tank 8, but the installation position of the concentration sensor 9 is not limited to the position of FIG. 1 as long as the sulfur concentration of the fuel can be detected.
  • the exhaust passage 3 is provided with an oxidation catalyst (Diesel Oxidation Catalyst: hereinafter referred to as DOC) 10 and a DPF 11 as post-treatment devices.
  • DOC 10 Diesel Oxidation Catalyst: hereinafter referred to as DOC
  • the DOC 10 is provided on the upstream side of the DPF 11.
  • the DOC 10 oxidizes and removes hydrocarbons (HC) and carbon monoxide (CO) in the exhaust gas and oxidizes nitrogen monoxide (NO) in the exhaust gas to generate nitrogen dioxide (NO 2 ).
  • the DPF 11 collects PM such as soot contained in the exhaust gas and removes it from the exhaust gas.
  • the exhaust gas discharged from the engine 1 passes through the exhaust passage 3 and drives the exhaust turbine 4b to drive the compressor 4a coaxially. Thereafter, the exhaust gas flows in the order of DOC10 and DPF11.
  • the ECU 7 includes, for example, a CPU (Central Processing Unit), a storage medium such as a ROM (Read Only Memory) storing a control program, a working memory such as a RAM (Random Access Memory), and a communication circuit.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • ECU7 controls execution of filter regeneration for forcibly regenerating DPF11. Specifically, the ECU 7 controls execution of fuel injection (for example, post injection) of the fuel injection device 6.
  • the ECU 7 includes a concentration determination unit 110 and a regeneration control unit 120.
  • the concentration determination unit 110 determines whether or not a sulfur concentration detected by the concentration sensor 9 (hereinafter referred to as a detected sulfur concentration) exceeds a predetermined threshold when a predetermined execution condition is satisfied.
  • the predetermined execution condition is a condition necessary for execution of filter regeneration. For example, the traveling distance of the vehicle exceeds a predetermined distance, or an estimated amount of PM accumulated in the DPF 11 is predetermined. Exceeding the amount.
  • the threshold value is, for example, a value smaller than a sulfur concentration at which sulfur poisoning can occur (for example, a value obtained through experiments or simulations). However, if the threshold is too small, the frequency of special filter regeneration, which will be described later, increases, resulting in deterioration of fuel consumption. Therefore, it is desirable that the threshold value be set to a value close to the sulfur concentration at which sulfur poisoning occurs.
  • the regeneration control unit 120 When the concentration determination unit 110 determines that the detected sulfur concentration is less than the threshold value, the regeneration control unit 120 outputs a normal control signal that instructs the fuel injection device 6 to perform normal filter regeneration.
  • Normal filter regeneration is an operation of injecting a predetermined amount (hereinafter referred to as a first amount) of fuel for a predetermined time (hereinafter referred to as a first time).
  • the fuel injection device 6 performs normal filter regeneration when receiving a normal control signal.
  • the regeneration control unit 120 outputs a special control signal that instructs the fuel injection device 6 to execute the special filter regeneration.
  • the special filter regeneration is an operation of injecting a first amount of fuel for a time longer than the first time (hereinafter referred to as a second time), and during the first time, than the first amount.
  • An operation for injecting a large amount of fuel hereinafter referred to as a second amount (operation for raising the temperature of the exhaust gas higher than that during normal filter regeneration), or a second amount of fuel for the second time period.
  • a second amount operation for raising the temperature of the exhaust gas higher than that during normal filter regeneration
  • One of the actions to be performed. Which of these operations is the special filter regeneration may be set, for example, when the ECU 7 is manufactured, or may be set by a vehicle user or the like. Further, the setting may be changed as appropriate.
  • the fuel injection device 6 When the fuel injection device 6 receives the special control signal, it performs special filter regeneration.
  • the concentration determination unit 110 determines whether or not the detected sulfur concentration is equal to or higher than a threshold when the predetermined execution condition is satisfied (step S101).
  • step S101 NO
  • the regeneration control unit 120 controls the fuel injection device 6 to perform normal filter regeneration (step S102).
  • the regeneration control unit 120 outputs a normal control signal instructing execution of normal filter regeneration to the fuel injection device 6. Then, the fuel injection device 6 performs normal filter regeneration based on the normal control signal received from the regeneration control unit 120.
  • step S101 when the detected sulfur concentration is equal to or higher than the threshold (step S101: YES), the regeneration control unit 120 controls the fuel injection device 6 so as to execute the special filter regeneration (step S103).
  • the regeneration control unit 120 outputs a special control signal instructing execution of the special filter regeneration to the fuel injection device 6. Then, the fuel injection device 6 performs special filter regeneration based on the special control signal received from the regeneration control unit 120.
  • the concentration sensor 9 detects the sulfur concentration of the fuel has been described as an example.
  • the ECU 7 may calculate (measure or estimate) the concentration of sulfur contained in the exhaust gas.
  • the internal combustion engine may be a gasoline engine.
  • a GPF Gas Particulate Filter
  • the sulfur poisoning of GPF can be prevented.
  • the second time or the second amount may be a fixed value, or may be a variable value that varies according to a detected sulfur concentration that is equal to or greater than a threshold value.
  • a filter regeneration control device is a filter that is provided downstream of a catalyst in an exhaust gas flow path of an internal combustion engine of a vehicle, and forcibly regenerates a filter that collects PM contained in the exhaust gas by fuel injection.
  • a filter regeneration control device that controls execution of regeneration, wherein a concentration determination unit that determines whether a sulfur concentration of the fuel or the exhaust gas is equal to or greater than a threshold when the filter regeneration execution condition is satisfied; If the sulfur concentration is not greater than or equal to the threshold value, the fuel injection device is controlled to perform normal filter regeneration, whereas if the sulfur concentration is greater than or equal to the threshold value, the fuel injector is configured to perform special filter regeneration.
  • the normal filter regeneration is an operation of injecting a first amount of the fuel during a first time
  • the special filter regeneration An operation of injecting the first amount of the fuel for a second time longer than the first time; a second amount greater than the first amount during the first time; Either the operation of injecting the fuel or the operation of injecting the second amount of the fuel during the second time period.
  • the second time or the second amount may be a value that varies according to the sulfur concentration equal to or greater than the threshold value.
  • the sulfur concentration of the fuel may be a value detected by a concentration sensor that detects the sulfur concentration of the fuel stored in a fuel tank.
  • the catalyst may be an oxidation catalyst or an occlusion type nitrogen oxide reduction catalyst.
  • the internal combustion engine may be a diesel engine, and the filter may be a DPF.
  • the internal combustion engine may be a gasoline engine
  • the filter may be a GPF.
  • a filter regeneration control method is a filter that is provided downstream of a catalyst in an exhaust gas flow path of an internal combustion engine of a vehicle, and forcibly regenerates a filter that collects PM contained in the exhaust gas by fuel injection.
  • a filter regeneration control method for controlling execution of regeneration wherein when the filter regeneration execution condition is satisfied, determining whether a sulfur concentration of the fuel or the exhaust gas is equal to or higher than a threshold value; and When the sulfur concentration is not equal to or higher than the threshold value, the fuel injection device is controlled to perform normal filter regeneration. On the other hand, when the sulfur concentration is equal to or higher than the threshold value, the fuel injection device is controlled to perform special filter regeneration.
  • the normal filter regeneration is an operation of injecting a first amount of the fuel during a first time
  • the special filter regeneration is An operation of injecting the first amount of the fuel for a second time longer than the first time, a second amount of the second amount being greater than the first amount during the first time. Either an operation of injecting fuel or an operation of injecting the second amount of the fuel during the second time period.
  • the filter regeneration control device and the filter regeneration control method of the present disclosure are useful for a filter regeneration control device and a filter regeneration control method that control forced regeneration of a filter that collects PM contained in exhaust gas.

Abstract

A filter regeneration control device and a filter regeneration control method for preventing sulfur poisoning of a filter. An ECU (7) comprises: a concentration determination unit (110) which, when a filter regeneration implementation condition is satisfied, determines whether a sulfur concentration in fuel supplied to a diesel engine (1) or in exhaust gas is greater than or equal to a threshold value; and a regeneration control unit (120) which, if the sulfur concentration is not greater than or equal to the threshold value, controls a fuel injection device (6) to implement conventional filter regeneration. If the sulfur concentration is greater than or equal to the threshold value, the regeneration control unit (120) controls the fuel injection device (6) to implement special filter regeneration in which the value of at least one of fuel injection time and fuel injection amount is increased compared with the conventional filter regeneration.

Description

フィルタ再生制御装置およびフィルタ再生制御方法Filter regeneration control device and filter regeneration control method
 本開示は、排ガス中の粒子状物質を捕集するフィルタの再生を制御するフィルタ再生制御装置およびフィルタ再生制御方法に関する。 The present disclosure relates to a filter regeneration control device and a filter regeneration control method for controlling regeneration of a filter that collects particulate matter in exhaust gas.
 従来、ディーゼルエンジンの排ガス中に含まれる粒子状物質(Particulate Matter:以下、PMという)を捕集するDPF(Diesel Particulate Filter)が知られている。 Conventionally, a DPF (Diesel Particulate Filter) that collects particulate matter (Particulate Matter: hereinafter referred to as PM) contained in exhaust gas of a diesel engine is known.
 DPFで捕集されたPMのうち、一部は、ディーゼルエンジンから排出される高温の排ガスによって燃焼し(パッシブ再生、または、連続再生と呼ばれる)、残りは、DPFに堆積する。そして、PMの堆積量が一定量を超えると、例えば、ディーゼルエンジンの出力の低下、燃費の低下、および、PMの異常燃焼によるDPFの損傷などが発生する。 Part of the PM collected by the DPF is burned by high-temperature exhaust gas discharged from the diesel engine (referred to as passive regeneration or continuous regeneration), and the rest is deposited on the DPF. When the amount of accumulated PM exceeds a certain amount, for example, a decrease in output of the diesel engine, a decrease in fuel consumption, and damage to the DPF due to abnormal PM combustion occur.
 そこで、DPFに堆積したPMを、燃料噴射(例えば、ポスト噴射または排気管噴射)により強制的に燃焼させることで、フィルタを再生させるフィルタ再生(強制再生ともいう)を実行することが知られている(例えば、特許文献1参照)。 Therefore, it is known to perform filter regeneration (also referred to as forced regeneration) to regenerate the filter by forcibly burning the PM accumulated in the DPF by fuel injection (for example, post injection or exhaust pipe injection). (For example, refer to Patent Document 1).
日本国特開2005-54631号公報Japanese Unexamined Patent Publication No. 2005-54631
 しかしながら、硫黄濃度が高い燃料を使用した場合、DPFが硫黄被毒し、DPFの性能が著しく低下するという問題がある。 However, when a fuel having a high sulfur concentration is used, there is a problem that the DPF is poisoned with sulfur and the performance of the DPF is remarkably lowered.
 本開示の目的は、フィルタの硫黄被毒を防止できるフィルタ再生制御装置およびフィルタ再生制御方法を提供することである。 An object of the present disclosure is to provide a filter regeneration control device and a filter regeneration control method that can prevent sulfur poisoning of a filter.
 本開示の一態様に係るフィルタ再生制御装置は、車両の内燃機関の排ガスの流路において触媒の下流側に設けられ、前記排ガスに含まれるPMを捕集するフィルタを、燃料の噴射により強制的に再生させるフィルタ再生の実行を制御するフィルタ再生制御装置であって、前記フィルタ再生の実行条件が満たされたときに、前記燃料または前記排ガスの硫黄濃度が閾値以上であるか否かを判定する濃度判定部と、前記硫黄濃度が閾値以上ではない場合、通常フィルタ再生を実行するように燃料噴射装置を制御する一方、前記硫黄濃度が閾値以上である場合、特別フィルタ再生を実行するように前記燃料噴射装置を制御する再生制御部と、を有し、前記通常フィルタ再生は、第1の時間の間、第1の量の前記燃料を噴射する動作であり、前記特別フィルタ再生は、前記第1の時間よりも長い第2の時間の間、前記第1の量の前記燃料を噴射する動作、前記第1の時間の間、前記第1の量よりも多い第2の量の前記燃料を噴射する動作、または、前記第2の時間の間、前記第2の量の前記燃料を噴射する動作、のいずれかである。 A filter regeneration control device according to an aspect of the present disclosure is provided on a downstream side of a catalyst in a flow path of an exhaust gas of an internal combustion engine of a vehicle, and a filter that collects PM contained in the exhaust gas is forced by fuel injection. A filter regeneration control device that controls the execution of filter regeneration to be regenerated, and determines whether the sulfur concentration of the fuel or the exhaust gas is equal to or greater than a threshold when the filter regeneration execution condition is satisfied When the sulfur concentration is not equal to or higher than the threshold, the fuel injection device is controlled to execute normal filter regeneration when the sulfur concentration is not equal to or higher than the threshold, and when the sulfur concentration is equal to or higher than the threshold, A regeneration control unit for controlling the fuel injection device, wherein the normal filter regeneration is an operation of injecting a first amount of the fuel during a first time period. The filter regeneration is the operation of injecting the first amount of the fuel for a second time longer than the first time, the second being greater than the first amount during the first time. Or the operation of injecting the second amount of the fuel during the second time period.
 本開示の一態様に係るフィルタ再生制御方法は、車両の内燃機関の排ガスの流路において触媒の下流側に設けられ、前記排ガスに含まれるPMを捕集するフィルタを、燃料の噴射により強制的に再生させるフィルタ再生の実行を制御するフィルタ再生制御方法であって、
 前記フィルタ再生の実行条件が満たされたときに、前記燃料または前記排ガスの硫黄濃度が閾値以上であるか否かを判定するステップと、前記硫黄濃度が閾値以上ではない場合、通常フィルタ再生を実行するように燃料噴射装置を制御する一方、前記硫黄濃度が閾値以上である場合、特別フィルタ再生を実行するように前記燃料噴射装置を制御するステップと、を有し、前記通常フィルタ再生は、第1の時間の間、第1の量の前記燃料を噴射する動作であり、前記特別フィルタ再生は、前記第1の時間よりも長い第2の時間の間、前記第1の量の前記燃料を噴射する動作、前記第1の時間の間、前記第1の量よりも多い第2の量の前記燃料を噴射する動作、または、前記第2の時間の間、前記第2の量の前記燃料を噴射する動作、のいずれかである。
A filter regeneration control method according to an aspect of the present disclosure includes a filter that is provided on a downstream side of a catalyst in an exhaust gas flow path of an internal combustion engine of a vehicle, and that forcibly collects PM contained in the exhaust gas by fuel injection. A filter regeneration control method for controlling execution of filter regeneration to be reproduced by
Determining whether the sulfur concentration of the fuel or the exhaust gas is equal to or higher than a threshold when the filter regeneration execution condition is satisfied, and executing normal filter regeneration when the sulfur concentration is not higher than the threshold Controlling the fuel injection device to control the fuel injection device to perform special filter regeneration when the sulfur concentration is equal to or greater than a threshold value. An operation of injecting a first amount of the fuel for a period of one time, and the special filter regeneration is to inject the first amount of the fuel for a second time longer than the first time. An operation of injecting, an operation of injecting a second amount of the fuel that is greater than the first amount during the first time, or a second amount of the fuel during the second time Injecting action, either A.
 本開示によれば、フィルタの硫黄被毒を防止することができる。 According to the present disclosure, sulfur poisoning of the filter can be prevented.
図1は、本開示の実施の形態に係る後処理装置とその周辺構成の一例を示す概念図である。FIG. 1 is a conceptual diagram illustrating an example of a post-processing device and its peripheral configuration according to an embodiment of the present disclosure. 図2は、本開示の実施の形態に係るECUの構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of the ECU according to the embodiment of the present disclosure. 図3は、本開示の実施の形態に係るECUの動作例を示すフローチャートである。FIG. 3 is a flowchart illustrating an operation example of the ECU according to the embodiment of the present disclosure.
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings.
 まず、本開示の実施の形態に係る後処理装置とその周辺構成について、図1を用いて説明する。 First, a post-processing apparatus and its peripheral configuration according to an embodiment of the present disclosure will be described with reference to FIG.
 図1は、本実施の形態に係る後処理装置とその周辺構成の一例を示す概念図である。図1において、実線の矢印は気体の流れを示し、破線の矢印は信号の流れを示している。 FIG. 1 is a conceptual diagram showing an example of a post-processing apparatus and its peripheral configuration according to the present embodiment. In FIG. 1, a solid arrow indicates a gas flow, and a broken arrow indicates a signal flow.
 図1に示す各構成要素は、例えば、車両に搭載される。 1 is mounted on a vehicle, for example.
 ディーゼルエンジン(内燃機関の一例。以下、エンジンという)1の上流側には給気通路(吸気通路)2が接続され、エンジン1の下流側には排気通路3が接続されている。 An intake passage (intake passage) 2 is connected to the upstream side of a diesel engine (an example of an internal combustion engine, hereinafter referred to as an engine) 1, and an exhaust passage 3 is connected to the downstream side of the engine 1.
 給気通路2と排気通路3との間には、ターボチャージャ(過給機)4が設けられている。ターボチャージャ4は、給気通路2に配置されたコンプレッサ4aと、排気通路3に配置された排気タービン4bとを有する。コンプレッサ4aは、排気タービン4bによって同軸駆動される。 A turbocharger (supercharger) 4 is provided between the air supply passage 2 and the exhaust passage 3. The turbocharger 4 has a compressor 4 a disposed in the air supply passage 2 and an exhaust turbine 4 b disposed in the exhaust passage 3. The compressor 4a is coaxially driven by the exhaust turbine 4b.
 給気通路2には、インタークーラ5が設けられている。コンプレッサ4aから吐出された空気は、インタークーラ5で冷却され、エンジン1の各シリンダ(図示略)内の燃焼室(図示略)に流入する。 An intercooler 5 is provided in the air supply passage 2. The air discharged from the compressor 4 a is cooled by the intercooler 5 and flows into the combustion chambers (not shown) in the cylinders (not shown) of the engine 1.
 エンジン1には、各シリンダ内の燃焼室に燃料を噴射するコモンレール燃料噴射装置(以下、燃料噴射装置という)6が設けられている。燃料噴射装置6は、ポンプ6a、コモンレール6b、および燃料噴射弁(インジェクタ)6cを有する。 The engine 1 is provided with a common rail fuel injection device (hereinafter referred to as a fuel injection device) 6 that injects fuel into a combustion chamber in each cylinder. The fuel injection device 6 includes a pump 6a, a common rail 6b, and a fuel injection valve (injector) 6c.
 例えば、燃料噴射装置6において、ポンプ6aは、ECU7(詳細は図2を用いて後述)からの制御信号に基づいて、所定のタイミングで所定量の燃料を、燃料タンク8から汲み上げ、コモンレール6bを介して燃料噴射弁6cに供給する。燃料噴射弁6cは、供給された燃料を、燃焼室に噴射する。 For example, in the fuel injection device 6, the pump 6a pumps a predetermined amount of fuel from the fuel tank 8 at a predetermined timing based on a control signal from the ECU 7 (details will be described later with reference to FIG. 2). To the fuel injection valve 6c. The fuel injection valve 6c injects the supplied fuel into the combustion chamber.
 燃料タンク8には、燃料が貯留されている。また、燃料タンク8には、貯留されている燃料に含まれる硫黄分の濃度(以下、硫黄濃度という)を検出する濃度センサが設けられている。濃度センサ9は、検出した硫黄濃度を示す信号を、適宜、ECU7へ出力する。 Fuel is stored in the fuel tank 8. The fuel tank 8 is provided with a concentration sensor that detects the concentration of sulfur contained in the stored fuel (hereinafter referred to as sulfur concentration). The concentration sensor 9 appropriately outputs a signal indicating the detected sulfur concentration to the ECU 7.
 なお、図1の例では、濃度センサ9を燃料タンク8に設けたが、濃度センサ9の設置位置は、燃料の硫黄濃度を検出できる位置であればよく、図1の位置に限定されない。 In the example of FIG. 1, the concentration sensor 9 is provided in the fuel tank 8, but the installation position of the concentration sensor 9 is not limited to the position of FIG. 1 as long as the sulfur concentration of the fuel can be detected.
 排気通路3には、後処理装置として、酸化触媒(Diesel Oxidation Catalyst:以下、DOCという)10およびDPF11が設けられている。DOC10は、DPF11の上流側に設けられている。 The exhaust passage 3 is provided with an oxidation catalyst (Diesel Oxidation Catalyst: hereinafter referred to as DOC) 10 and a DPF 11 as post-treatment devices. The DOC 10 is provided on the upstream side of the DPF 11.
 DOC10は、排ガス中の炭化水素(HC)や一酸化炭素(CO)を酸化除去するとともに、排ガス中の一酸化窒素(NO)を酸化して二酸化窒素(NO)を生成する。 The DOC 10 oxidizes and removes hydrocarbons (HC) and carbon monoxide (CO) in the exhaust gas and oxidizes nitrogen monoxide (NO) in the exhaust gas to generate nitrogen dioxide (NO 2 ).
 DPF11は、上述したとおり、排ガス中に含まれるススなどのPMを捕集し、排ガスから除去する。 As described above, the DPF 11 collects PM such as soot contained in the exhaust gas and removes it from the exhaust gas.
 エンジン1から排出された排ガスは、排気通路3を通って、排気タービン4bを駆動してコンプレッサ4aを同軸駆動させる。その後、排ガスは、DOC10、DPF11の順に流れる。 The exhaust gas discharged from the engine 1 passes through the exhaust passage 3 and drives the exhaust turbine 4b to drive the compressor 4a coaxially. Thereafter, the exhaust gas flows in the order of DOC10 and DPF11.
 以上、本実施の形態に係る後処理装置とその周辺構成について説明した。 Heretofore, the post-processing apparatus according to the present embodiment and its peripheral configuration have been described.
 次に、本実施の形態に係るECU7(フィルタ再生制御装置の一例)の構成について、図2を用いて説明する。 Next, the configuration of the ECU 7 (an example of a filter regeneration control device) according to the present embodiment will be described with reference to FIG.
 ECU7は、例えば、CPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)等の記憶媒体、RAM(Random Access Memory)等の作業用メモリ、および通信回路を有する。以下に説明する図2の各部の機能は、CPUが制御プログラムを実行することにより実現される。 The ECU 7 includes, for example, a CPU (Central Processing Unit), a storage medium such as a ROM (Read Only Memory) storing a control program, a working memory such as a RAM (Random Access Memory), and a communication circuit. The functions of the units shown in FIG. 2 described below are realized by the CPU executing the control program.
 ECU7は、DPF11を強制的に再生させるフィルタ再生の実行を制御する。具体的には、ECU7は、燃料噴射装置6の燃料噴射(例えば、ポスト噴射)の実行を制御する。 ECU7 controls execution of filter regeneration for forcibly regenerating DPF11. Specifically, the ECU 7 controls execution of fuel injection (for example, post injection) of the fuel injection device 6.
 図2に示すように、ECU7は、濃度判定部110および再生制御部120を有する。 As shown in FIG. 2, the ECU 7 includes a concentration determination unit 110 and a regeneration control unit 120.
 濃度判定部110は、所定の実行条件が満たされたときに、濃度センサ9により検出された硫黄濃度(以下、検出硫黄濃度という)が予め定められた閾値を超えているか否かを判定する。 The concentration determination unit 110 determines whether or not a sulfur concentration detected by the concentration sensor 9 (hereinafter referred to as a detected sulfur concentration) exceeds a predetermined threshold when a predetermined execution condition is satisfied.
 上記所定の実行条件とは、フィルタ再生の実行に必要な条件であり、例えば、車両の走行距離が予め定められた距離を超えること、または、DPF11に堆積したPMの推定量が予め定められた量を超えること、などである。 The predetermined execution condition is a condition necessary for execution of filter regeneration. For example, the traveling distance of the vehicle exceeds a predetermined distance, or an estimated amount of PM accumulated in the DPF 11 is predetermined. Exceeding the amount.
 また、上記閾値は、例えば、硫黄被毒が生じうる硫黄濃度(例えば、実験やシミュレーションで得られた値)よりも小さい値である。ただし、閾値が小さすぎると、後述の特別フィルタ再生が実行される頻度が多くなり、燃費の悪化等を招く。そのため、閾値は、硫黄被毒が生じる硫黄濃度に近い値に設定されることが望ましい。 The threshold value is, for example, a value smaller than a sulfur concentration at which sulfur poisoning can occur (for example, a value obtained through experiments or simulations). However, if the threshold is too small, the frequency of special filter regeneration, which will be described later, increases, resulting in deterioration of fuel consumption. Therefore, it is desirable that the threshold value be set to a value close to the sulfur concentration at which sulfur poisoning occurs.
 再生制御部120は、濃度判定部110により検出硫黄濃度が閾値未満であると判定された場合、燃料噴射装置6に対し、通常フィルタ再生の実行を指示する通常制御信号を出力する。 When the concentration determination unit 110 determines that the detected sulfur concentration is less than the threshold value, the regeneration control unit 120 outputs a normal control signal that instructs the fuel injection device 6 to perform normal filter regeneration.
 通常フィルタ再生とは、所定時間(以下、第1の時間という)の間、所定量(以下、第1の量という)の燃料を噴射する動作である。 Normal filter regeneration is an operation of injecting a predetermined amount (hereinafter referred to as a first amount) of fuel for a predetermined time (hereinafter referred to as a first time).
 燃料噴射装置6は、通常制御信号を受け取った場合、通常フィルタ再生を実行する。 The fuel injection device 6 performs normal filter regeneration when receiving a normal control signal.
 一方、再生制御部120は、濃度判定部110により検出硫黄濃度が閾値以上であると判定された場合、燃料噴射装置6に対し、特別フィルタ再生の実行を指示する特別制御信号を出力する。 On the other hand, when the concentration determination unit 110 determines that the detected sulfur concentration is equal to or greater than the threshold value, the regeneration control unit 120 outputs a special control signal that instructs the fuel injection device 6 to execute the special filter regeneration.
 特別フィルタ再生とは、第1の時間よりも長い時間(以下、第2の時間という)の間、第1の量の燃料を噴射する動作、第1の時間の間、第1の量よりも多い量(以下、第2の量という)の燃料を噴射する動作(通常フィルタ再生時よりも排ガスの温度を高くする動作)、または、第2の時間の間、第2の量の燃料を噴射する動作、のいずれかである。これらの動作のうちどの動作を特別フィルタ再生とするかは、例えば、ECU7の製造時に設定されてもよいし、車両のユーザ等により設定されてもよい。また、その設定を適宜変更できるようにしてもよい。 The special filter regeneration is an operation of injecting a first amount of fuel for a time longer than the first time (hereinafter referred to as a second time), and during the first time, than the first amount. An operation for injecting a large amount of fuel (hereinafter referred to as a second amount) (operation for raising the temperature of the exhaust gas higher than that during normal filter regeneration), or a second amount of fuel for the second time period. One of the actions to be performed. Which of these operations is the special filter regeneration may be set, for example, when the ECU 7 is manufactured, or may be set by a vehicle user or the like. Further, the setting may be changed as appropriate.
 燃料噴射装置6は、特別制御信号を受け取った場合、特別フィルタ再生を実行する。 When the fuel injection device 6 receives the special control signal, it performs special filter regeneration.
 以上、本実施の形態に係るECU7の構成について説明した。 The configuration of the ECU 7 according to the present embodiment has been described above.
 次に、本実施の形態に係るECU7の動作(フィルタ再生制御方法の一例)について、図3を用いて説明する。図3のフローは、車両の走行中、繰り返し行われる。 Next, the operation of the ECU 7 according to the present embodiment (an example of a filter regeneration control method) will be described with reference to FIG. The flow of FIG. 3 is repeatedly performed while the vehicle is traveling.
 まず、濃度判定部110は、上記所定の実行条件が満たされたときに、検出硫黄濃度が閾値以上であるか否かを判定する(ステップS101)。 First, the concentration determination unit 110 determines whether or not the detected sulfur concentration is equal to or higher than a threshold when the predetermined execution condition is satisfied (step S101).
 検出硫黄濃度が閾値以上ではない場合(ステップS101:NO)、再生制御部120は、通常フィルタ再生を実行するように燃料噴射装置6を制御する(ステップS102)。 If the detected sulfur concentration is not greater than or equal to the threshold value (step S101: NO), the regeneration control unit 120 controls the fuel injection device 6 to perform normal filter regeneration (step S102).
 具体的には、上述したとおり、再生制御部120は、通常フィルタ再生の実行を指示する通常制御信号を燃料噴射装置6へ出力する。そして、燃料噴射装置6は、再生制御部120から受け取った通常制御信号に基づいて、通常フィルタ再生を実行する。 Specifically, as described above, the regeneration control unit 120 outputs a normal control signal instructing execution of normal filter regeneration to the fuel injection device 6. Then, the fuel injection device 6 performs normal filter regeneration based on the normal control signal received from the regeneration control unit 120.
 一方、検出硫黄濃度が閾値以上である場合(ステップS101:YES)、再生制御部120は、特別フィルタ再生を実行するように燃料噴射装置6を制御する(ステップS103)。 On the other hand, when the detected sulfur concentration is equal to or higher than the threshold (step S101: YES), the regeneration control unit 120 controls the fuel injection device 6 so as to execute the special filter regeneration (step S103).
 具体的には、上述したとおり、再生制御部120は、特別フィルタ再生の実行を指示する特別制御信号を燃料噴射装置6へ出力する。そして、燃料噴射装置6は、再生制御部120から受け取った特別制御信号に基づいて、特別フィルタ再生を実行する。 Specifically, as described above, the regeneration control unit 120 outputs a special control signal instructing execution of the special filter regeneration to the fuel injection device 6. Then, the fuel injection device 6 performs special filter regeneration based on the special control signal received from the regeneration control unit 120.
 以上、本実施の形態に係るECU7の動作について説明した。 The operation of the ECU 7 according to the present embodiment has been described above.
 詳述してきたように、本実施の形態によれば、燃料の硫黄濃度が閾値以上である場合に、通常フィルタ再生に比べて、燃料噴射時間および燃料噴射量のうち少なくとも一方の値が大きい特別フィルタ再生を実行することを特徴とする。これにより、DPF11の硫黄被毒を防止することができる。また、DOC10の硫黄被毒も防止できる。 As described in detail, according to the present embodiment, when the sulfur concentration of the fuel is equal to or higher than the threshold value, at least one of the fuel injection time and the fuel injection amount is larger than the normal filter regeneration. Filter regeneration is executed. Thereby, sulfur poisoning of DPF11 can be prevented. Moreover, sulfur poisoning of DOC10 can also be prevented.
 以上、本開示の実施の形態について詳述してきたが、本開示は、上述の実施の形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。以下、各変形例について説明する。 Although the embodiments of the present disclosure have been described in detail above, the present disclosure is not limited to the above-described embodiments, and may be appropriately modified and implemented without departing from the spirit of the present disclosure. Is possible. Hereinafter, each modification will be described.
 [変形例1]
 上記実施の形態では、フィルタ再生時の燃料噴射がポスト噴射である場合を例に挙げて説明したが、排気通路3に設けられた燃料噴射弁(図示略)により燃料噴射(いわゆる排気管噴射)を行ってもよい。
[Modification 1]
In the above embodiment, the case where the fuel injection during filter regeneration is post injection has been described as an example. However, fuel injection (so-called exhaust pipe injection) is performed by a fuel injection valve (not shown) provided in the exhaust passage 3. May be performed.
 [変形例2]
 上記実施の形態では、濃度センサ9により燃料の硫黄濃度を検出する場合を例に挙げて説明したが、これに限定されない。例えば、ECU7は、排ガスに含まれる硫黄濃度を算出(測定、推定)してもよい。
[Modification 2]
In the above-described embodiment, the case where the concentration sensor 9 detects the sulfur concentration of the fuel has been described as an example. For example, the ECU 7 may calculate (measure or estimate) the concentration of sulfur contained in the exhaust gas.
 [変形例3]
 上記実施の形態では、DPF11の上流側にDOC10が備えられる場合を例に挙げて説明したが、これに限定されない。例えば、図1において、DOC10の代わりに、吸蔵型窒素酸化物還元触媒(LNT)が備えられてもよい。その場合、LNTの硫黄被毒を防止できる。
[Modification 3]
In the above embodiment, the case where the DOC 10 is provided on the upstream side of the DPF 11 has been described as an example, but the present invention is not limited to this. For example, in FIG. 1, an occlusion type nitrogen oxide reduction catalyst (LNT) may be provided instead of the DOC 10. In that case, sulfur poisoning of LNT can be prevented.
 [変形例4]
 上記実施の形態では、内燃機関がディーゼルエンジンである場合を例に挙げて説明したが、内燃機関はガソリンエンジンであってもよい。その場合、図1において、DPF11の代わりに、ガソリンエンジンの排ガス中に含まれる粒子状物質を捕集するGPF(Gasoline Particulate Filter)が備えられる。よって、GPFの硫黄被毒を防止できる。
[Modification 4]
Although the case where the internal combustion engine is a diesel engine has been described as an example in the above embodiment, the internal combustion engine may be a gasoline engine. In that case, in FIG. 1, instead of the DPF 11, a GPF (Gasoline Particulate Filter) for collecting particulate matter contained in the exhaust gas of the gasoline engine is provided. Therefore, the sulfur poisoning of GPF can be prevented.
 [変形例5]
 上記実施の形態において、第2の時間または第2の量は、固定値であってもよいし、閾値以上の検出硫黄濃度に応じて可変する可変値であってもよい。
[Modification 5]
In the above-described embodiment, the second time or the second amount may be a fixed value, or may be a variable value that varies according to a detected sulfur concentration that is equal to or greater than a threshold value.
 <本開示のまとめ>
 本開示のフィルタ再生制御装置は、車両の内燃機関の排ガスの流路において触媒の下流側に設けられ、前記排ガスに含まれるPMを捕集するフィルタを、燃料の噴射により強制的に再生させるフィルタ再生の実行を制御するフィルタ再生制御装置であって、前記フィルタ再生の実行条件が満たされたときに、前記燃料または前記排ガスの硫黄濃度が閾値以上であるか否かを判定する濃度判定部と、前記硫黄濃度が閾値以上ではない場合、通常フィルタ再生を実行するように燃料噴射装置を制御する一方、前記硫黄濃度が閾値以上である場合、特別フィルタ再生を実行するように前記燃料噴射装置を制御する再生制御部と、を有し、前記通常フィルタ再生は、第1の時間の間、第1の量の前記燃料を噴射する動作であり、前記特別フィルタ再生は、前記第1の時間よりも長い第2の時間の間、前記第1の量の前記燃料を噴射する動作、前記第1の時間の間、前記第1の量よりも多い第2の量の前記燃料を噴射する動作、または、前記第2の時間の間、前記第2の量の前記燃料を噴射する動作、のいずれかである。
<Summary of this disclosure>
A filter regeneration control device according to the present disclosure is a filter that is provided downstream of a catalyst in an exhaust gas flow path of an internal combustion engine of a vehicle, and forcibly regenerates a filter that collects PM contained in the exhaust gas by fuel injection. A filter regeneration control device that controls execution of regeneration, wherein a concentration determination unit that determines whether a sulfur concentration of the fuel or the exhaust gas is equal to or greater than a threshold when the filter regeneration execution condition is satisfied; If the sulfur concentration is not greater than or equal to the threshold value, the fuel injection device is controlled to perform normal filter regeneration, whereas if the sulfur concentration is greater than or equal to the threshold value, the fuel injector is configured to perform special filter regeneration. And the normal filter regeneration is an operation of injecting a first amount of the fuel during a first time, and the special filter regeneration. An operation of injecting the first amount of the fuel for a second time longer than the first time; a second amount greater than the first amount during the first time; Either the operation of injecting the fuel or the operation of injecting the second amount of the fuel during the second time period.
 なお、上記フィルタ再生制御装置において、前記第2の時間または前記第2の量は、前記閾値以上の前記硫黄濃度に応じて可変する値であってもよい。 In the filter regeneration control device, the second time or the second amount may be a value that varies according to the sulfur concentration equal to or greater than the threshold value.
 また、上記フィルタ再生制御装置において、前記燃料の硫黄濃度は、燃料タンクに貯留されている前記燃料の硫黄濃度を検出する濃度センサにより検出された値であってもよい。 In the filter regeneration control device, the sulfur concentration of the fuel may be a value detected by a concentration sensor that detects the sulfur concentration of the fuel stored in a fuel tank.
 また、上記フィルタ再生制御装置において、前記触媒は、酸化触媒または吸蔵型窒素酸化物還元触媒であってもよい。 In the filter regeneration control device, the catalyst may be an oxidation catalyst or an occlusion type nitrogen oxide reduction catalyst.
 また、上記フィルタ再生制御装置において、前記内燃機関は、ディーゼルエンジンであり、前記フィルタは、DPFであってもよい。 Further, in the filter regeneration control device, the internal combustion engine may be a diesel engine, and the filter may be a DPF.
 また、上記フィルタ再生制御装置において、前記内燃機関は、ガソリンエンジンであり、前記フィルタは、GPFであってもよい。 Further, in the filter regeneration control device, the internal combustion engine may be a gasoline engine, and the filter may be a GPF.
 本開示のフィルタ再生制御方法は、車両の内燃機関の排ガスの流路において触媒の下流側に設けられ、前記排ガスに含まれるPMを捕集するフィルタを、燃料の噴射により強制的に再生させるフィルタ再生の実行を制御するフィルタ再生制御方法であって、前記フィルタ再生の実行条件が満たされたときに、前記燃料または前記排ガスの硫黄濃度が閾値以上であるか否かを判定するステップと、前記硫黄濃度が閾値以上ではない場合、通常フィルタ再生を実行するように燃料噴射装置を制御する一方、前記硫黄濃度が閾値以上である場合、特別フィルタ再生を実行するように前記燃料噴射装置を制御するステップと、を有し、前記通常フィルタ再生は、第1の時間の間、第1の量の前記燃料を噴射する動作であり、前記特別フィルタ再生は、前記第1の時間よりも長い第2の時間の間、前記第1の量の前記燃料を噴射する動作、前記第1の時間の間、前記第1の量よりも多い第2の量の前記燃料を噴射する動作、または、前記第2の時間の間、前記第2の量の前記燃料を噴射する動作、のいずれかである。 A filter regeneration control method according to the present disclosure is a filter that is provided downstream of a catalyst in an exhaust gas flow path of an internal combustion engine of a vehicle, and forcibly regenerates a filter that collects PM contained in the exhaust gas by fuel injection. A filter regeneration control method for controlling execution of regeneration, wherein when the filter regeneration execution condition is satisfied, determining whether a sulfur concentration of the fuel or the exhaust gas is equal to or higher than a threshold value; and When the sulfur concentration is not equal to or higher than the threshold value, the fuel injection device is controlled to perform normal filter regeneration. On the other hand, when the sulfur concentration is equal to or higher than the threshold value, the fuel injection device is controlled to perform special filter regeneration. The normal filter regeneration is an operation of injecting a first amount of the fuel during a first time, and the special filter regeneration is An operation of injecting the first amount of the fuel for a second time longer than the first time, a second amount of the second amount being greater than the first amount during the first time. Either an operation of injecting fuel or an operation of injecting the second amount of the fuel during the second time period.
 本出願は、2017年4月21日付で出願された日本国特許出願(特願2017-084767)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2017-084767) filed on April 21, 2017, the contents of which are incorporated herein by reference.
 本開示のフィルタ再生制御装置およびフィルタ再生制御方法は、排ガスに含まれるPMを捕集するフィルタの強制再生を制御するフィルタ再生制御装置およびフィルタ再生制御方法に有用である。 The filter regeneration control device and the filter regeneration control method of the present disclosure are useful for a filter regeneration control device and a filter regeneration control method that control forced regeneration of a filter that collects PM contained in exhaust gas.
 1 ディーゼルエンジン(内燃機関の一例)
 2 給気通路
 3 排気通路
 4 ターボチャージャ
 4a コンプレッサ
 4b 排気タービン
 5 インタークーラ
 6 燃料噴射装置
 6a ポンプ
 6b コモンレール
 6c 燃料噴射弁
 7 ECU(フィルタ再生制御装置の一例)
 8 燃料タンク
 9 濃度センサ
 10 DOC(触媒の一例)
 11 DPF(フィルタの一例)
 110 濃度判定部
 120 再生制御部
1 Diesel engine (an example of an internal combustion engine)
DESCRIPTION OF SYMBOLS 2 Supply passage 3 Exhaust passage 4 Turbocharger 4a Compressor 4b Exhaust turbine 5 Intercooler 6 Fuel injection device 6a Pump 6b Common rail 6c Fuel injection valve 7 ECU (an example of filter regeneration control device)
8 Fuel tank 9 Concentration sensor 10 DOC (Example of catalyst)
11 DPF (example of filter)
110 Concentration determination unit 120 Reproduction control unit

Claims (7)

  1.  車両の内燃機関の排ガスの流路において触媒の下流側に設けられ、前記排ガスに含まれるPMを捕集するフィルタを、燃料の噴射により強制的に再生させるフィルタ再生の実行を制御するフィルタ再生制御装置であって、
     前記フィルタ再生の実行条件が満たされたときに、前記燃料または前記排ガスの硫黄濃度が閾値以上であるか否かを判定する濃度判定部と、
     前記硫黄濃度が閾値以上ではない場合、通常フィルタ再生を実行するように燃料噴射装置を制御する一方、前記硫黄濃度が閾値以上である場合、特別フィルタ再生を実行するように前記燃料噴射装置を制御する再生制御部と、を有し、
     前記通常フィルタ再生は、
     第1の時間の間、第1の量の前記燃料を噴射する動作であり、
     前記特別フィルタ再生は、
     前記第1の時間よりも長い第2の時間の間、前記第1の量の前記燃料を噴射する動作、前記第1の時間の間、前記第1の量よりも多い第2の量の前記燃料を噴射する動作、または、前記第2の時間の間、前記第2の量の前記燃料を噴射する動作、のいずれかである、
     フィルタ再生制御装置。
    Filter regeneration control for controlling the execution of filter regeneration that is provided downstream of the catalyst in the exhaust gas flow path of the internal combustion engine of the vehicle and forcibly regenerates the filter that collects PM contained in the exhaust gas by fuel injection A device,
    A concentration determination unit that determines whether a sulfur concentration of the fuel or the exhaust gas is equal to or higher than a threshold when the filter regeneration execution condition is satisfied;
    When the sulfur concentration is not equal to or higher than the threshold value, the fuel injection device is controlled to perform normal filter regeneration. On the other hand, when the sulfur concentration is equal to or higher than the threshold value, the fuel injection device is controlled to perform special filter regeneration. A playback control unit that
    The normal filter regeneration is
    Injecting a first amount of the fuel during a first time;
    The special filter regeneration is
    An operation of injecting the first amount of the fuel for a second time longer than the first time, a second amount of the second amount being greater than the first amount during the first time. Either an operation of injecting fuel, or an operation of injecting the second amount of the fuel during the second time period.
    Filter regeneration control device.
  2.  前記第2の時間または前記第2の量は、前記閾値以上の前記硫黄濃度に応じて可変する値である、
     請求項1に記載のフィルタ再生制御装置。
    The second time or the second amount is a value that varies according to the sulfur concentration equal to or higher than the threshold value.
    The filter regeneration control device according to claim 1.
  3.  前記燃料の硫黄濃度は、燃料タンクに貯留されている前記燃料の硫黄濃度を検出する濃度センサにより検出された値である、
     請求項1に記載のフィルタ再生制御装置。
    The sulfur concentration of the fuel is a value detected by a concentration sensor that detects the sulfur concentration of the fuel stored in a fuel tank.
    The filter regeneration control device according to claim 1.
  4.  前記触媒は、酸化触媒または吸蔵型窒素酸化物還元触媒である、
     請求項1に記載のフィルタ再生制御装置。
    The catalyst is an oxidation catalyst or an occlusion type nitrogen oxide reduction catalyst.
    The filter regeneration control device according to claim 1.
  5.  前記内燃機関は、ディーゼルエンジンであり、
     前記フィルタは、DPFである、
     請求項1に記載のフィルタ再生制御装置。
    The internal combustion engine is a diesel engine;
    The filter is a DPF;
    The filter regeneration control device according to claim 1.
  6.  前記内燃機関は、ガソリンエンジンであり、
     前記フィルタは、GPFである、
     請求項1に記載のフィルタ再生制御装置。
    The internal combustion engine is a gasoline engine;
    The filter is a GPF;
    The filter regeneration control device according to claim 1.
  7.  車両の内燃機関の排ガスの流路において触媒の下流側に設けられ、前記排ガスに含まれるPMを捕集するフィルタを、燃料の噴射により強制的に再生させるフィルタ再生の実行を制御するフィルタ再生制御方法であって、
     前記フィルタ再生の実行条件が満たされたときに、前記燃料または前記排ガスの硫黄濃度が閾値以上であるか否かを判定するステップと、
     前記硫黄濃度が閾値以上ではない場合、通常フィルタ再生を実行するように燃料噴射装置を制御する一方、前記硫黄濃度が閾値以上である場合、特別フィルタ再生を実行するように前記燃料噴射装置を制御するステップと、を有し、
     前記通常フィルタ再生は、
     第1の時間の間、第1の量の前記燃料を噴射する動作であり、
     前記特別フィルタ再生は、
     前記第1の時間よりも長い第2の時間の間、前記第1の量の前記燃料を噴射する動作、前記第1の時間の間、前記第1の量よりも多い第2の量の前記燃料を噴射する動作、または、前記第2の時間の間、前記第2の量の前記燃料を噴射する動作、のいずれかである、
     フィルタ再生制御方法。
    Filter regeneration control for controlling the execution of filter regeneration that is provided downstream of the catalyst in the exhaust gas flow path of the internal combustion engine of the vehicle and forcibly regenerates the filter that collects PM contained in the exhaust gas by fuel injection A method,
    Determining whether the sulfur concentration of the fuel or the exhaust gas is equal to or higher than a threshold when the filter regeneration execution condition is satisfied;
    When the sulfur concentration is not equal to or higher than the threshold value, the fuel injection device is controlled to perform normal filter regeneration. On the other hand, when the sulfur concentration is equal to or higher than the threshold value, the fuel injection device is controlled to perform special filter regeneration. And a step of
    The normal filter regeneration is
    Injecting a first amount of the fuel during a first time;
    The special filter regeneration is
    An operation of injecting the first amount of the fuel for a second time longer than the first time, a second amount of the second amount being greater than the first amount during the first time. Either an operation of injecting fuel, or an operation of injecting the second amount of the fuel during the second time period.
    Filter regeneration control method.
PCT/JP2018/016319 2017-04-21 2018-04-20 Filter regeneration control device and filter regeneration control method WO2018194160A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880023812.4A CN110546353B (en) 2017-04-21 2018-04-20 Filter regeneration control device and filter regeneration control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017084767A JP6729473B2 (en) 2017-04-21 2017-04-21 Filter regeneration control device and filter regeneration control method
JP2017-084767 2017-04-21

Publications (1)

Publication Number Publication Date
WO2018194160A1 true WO2018194160A1 (en) 2018-10-25

Family

ID=63856817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016319 WO2018194160A1 (en) 2017-04-21 2018-04-20 Filter regeneration control device and filter regeneration control method

Country Status (3)

Country Link
JP (1) JP6729473B2 (en)
CN (1) CN110546353B (en)
WO (1) WO2018194160A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114645761A (en) * 2022-03-31 2022-06-21 潍柴动力股份有限公司 DOC sulfur poisoning judgment method and vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113431664A (en) * 2021-07-21 2021-09-24 广西优艾斯提传感技术有限公司 Engine tail gas treatment system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065042A (en) * 2001-08-30 2003-03-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003120373A (en) * 2001-10-15 2003-04-23 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2015169105A (en) * 2014-03-05 2015-09-28 トヨタ自動車株式会社 Internal combustion engine controller
JP2016035229A (en) * 2014-08-01 2016-03-17 トヨタ自動車株式会社 Internal combustion engine exhaust emission control device
JP2016188604A (en) * 2015-03-30 2016-11-04 トヨタ自動車株式会社 Exhaust emission control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104981599A (en) * 2013-02-06 2015-10-14 丰田自动车株式会社 Control device of internal combustion engine
JP6256391B2 (en) * 2015-03-13 2018-01-10 トヨタ自動車株式会社 Failure diagnosis device for exhaust purification system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065042A (en) * 2001-08-30 2003-03-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003120373A (en) * 2001-10-15 2003-04-23 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2015169105A (en) * 2014-03-05 2015-09-28 トヨタ自動車株式会社 Internal combustion engine controller
JP2016035229A (en) * 2014-08-01 2016-03-17 トヨタ自動車株式会社 Internal combustion engine exhaust emission control device
JP2016188604A (en) * 2015-03-30 2016-11-04 トヨタ自動車株式会社 Exhaust emission control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114645761A (en) * 2022-03-31 2022-06-21 潍柴动力股份有限公司 DOC sulfur poisoning judgment method and vehicle
CN114645761B (en) * 2022-03-31 2023-03-21 潍柴动力股份有限公司 DOC sulfur poisoning judgment method and vehicle

Also Published As

Publication number Publication date
JP2018178979A (en) 2018-11-15
CN110546353B (en) 2021-08-06
CN110546353A (en) 2019-12-06
JP6729473B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
KR101816430B1 (en) Control method of exhaust gas purification system
US8549843B2 (en) Method of controlling exhaust gas purification system and exhaust gas purification system
JP4270155B2 (en) Exhaust purification catalyst thermal degradation state detection device
EP2559876B1 (en) Exhaust gas purification device, and control method for exhaust gas purification device
KR20140046920A (en) System for purifying exhaust of vehicle and regeneration control method thereof
JP4022714B2 (en) Exhaust gas purification device for internal combustion engine
JP5332575B2 (en) Exhaust gas purification device for internal combustion engine
US9683504B2 (en) Internal combustion engine equipped with an aftertreatment device
WO2018194160A1 (en) Filter regeneration control device and filter regeneration control method
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
JP2004340137A (en) Exhaust emission control device for internal combustion engine
JP2010116817A (en) Exhaust emission control device of engine
WO2016132875A1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP6070941B2 (en) Exhaust gas purification device for internal combustion engine
JP2008050946A (en) Exhaust gas recirculation system for internal combustion engine
JP4709733B2 (en) Exhaust gas purification device for internal combustion engine
JP2012154238A (en) Exhaust gas purification system and method for forced regeneration of diesel particulate filter
JP2020033970A (en) DPF regeneration control device and DPF regeneration control method
JP5131477B2 (en) Engine exhaust purification system
WO2018198996A1 (en) Filter-regeneration control device and filter-regeneration control method
WO2017130408A1 (en) Exhaust purification device
JP2012154237A (en) Exhaust gas purification system and method for forced regeneration of diesel particulate filter
JP2005163652A (en) Emission control device
JP2010174794A (en) Exhaust emission control device
JP7006139B2 (en) Fuel injection control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787672

Country of ref document: EP

Kind code of ref document: A1